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Abstract
A variety of biomedical imaging techniques such as optical and fluorescence tomography, electrical
impedance tomography, and ultrasound imaging can be cast as inverse problems, wherein image
reconstruction involves the estimation of spatially distributed parameter(s) of the PDE system
describing the physics of the imaging process. Finite element discretization of imaged domain with
tetrahedral elements is a popular way of solving the forward and inverse imaging problems on
complicated geometries. A dual-adaptive mesh-based approach wherein, one mesh is used for solving
the forward imaging problem and the other mesh used for iteratively estimating the unknown
distributed parameter, can result in high resolution image reconstruction at minimum computation
effort, if both the meshes are allowed to adapt independently. Till date, no efficient method has been
reported to identify and resolve intersection between tetrahedrons in independently refined or
coarsened dual meshes. Herein, we report a fast and robust algorithm to identify and resolve
intersection of tetrahedrons within nested dual meshes generated by 8-similar subtetrahedron
subdivision scheme. The algorithm exploits finite element weight functions and gives rise to a set of
weight functions on each vertex of disjoint tetrahedron pieces that completely cover up the
intersection region of two tetrahedrons. The procedure enables fully adaptive tetrahedral finite
elements by supporting independent refinement and coarsening of each individual mesh while
preserving fast identification and resolution of intersection. The computational efficiency of the
algorithm is demonstrated by diffuse photon density wave solutions obtained from a single- and a
dual-mesh, and by reconstructing a fluorescent inclusion in simulated phantom from boundary
frequency domain fluorescence measurements.
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1. Introduction
Over the past few decades, electrical impedance, microwave computed, diffuse optical, and
fluorescence enhanced optical tomographies have been sought as medical imaging techniques
that use model-based, iterative reconstruction algorithms to reconstruct distinct tissue
properties for identification of interior, diseased tissue from boundary value measurements. In
these imaging modalities, the finite element method (FEM) is used to represent arbitrary tissue
volumes for solution of the forward problem, i.e., prediction of the boundary measurements
from a model and a given (or guessed) tissue property map, and for solution of the inverse
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problem, i.e. recovery of the interior tissue property map from a model and set of boundary
measurements. The inverse imaging solution depends upon optimization procedures that seek
to minimize the error between forward FEM predictions and actual measurements by iteratively
adjusting the spatially distributed parameter of interest. In tomography applications, unknown
parameter is typically discretized by nodal basis functions. However, other discretization
schemes such as piecewise discontinuous parameter maps are also possible. The accuracy of
the forward imaging problem solution along with the computation expense, increases with the
refinement of the finite element mesh. For the inverse problem, increasing mesh refinement
results in better potential image resolution, while at the same time increasing the number of
unknown variables which can create numerical instability. Goal-based adaptive local
refinement of finite element meshes can produce highly resolved images at a low computational
cost.

The basis for mesh refinement for optimal forward and inverse problems differs and hence
using a single mesh for solving the forward problem accurately as well as limiting the number
of unknowns in the inverse problem is not possible. Therefore, the use of separate meshes, i.e.,
a refined mesh for accurate forward solutions and a coarse inverse mesh for parameter recovery
enables a complete decoupling of the two problems. Based upon this recognition, fixed dual-
mesh-based approaches have been proven to be successful [1–7]. However, when there is no
a priori information available on the spatial distribution of tissue properties, the discretization
of forward and inverse meshes becomes arbitrary rather than optimal.

Adaptive mesh refinements based upon a posteriori error estimates have been tailored to
specific models [8–16] but have not been widely applied to distributed parameter estimation
problems of the type encountered in tomography. The few reports that employ adaptive mesh
refinement in two- and three-dimensional electrical impedance tomography [17–19] are based
upon a single mesh used for both forward and inverse problems. Although the adaptive dual-
mesh techniques employing refinement both in the forward and the inverse meshes were
attempted for optical tomography [20], the work was limited to the two-dimensional problems.
Recently, Joshi et al. [21,22] reported the use of a fully adaptive, three-dimensional
fluorescence enhanced optical tomography technique that used a hexahedron-based dual-mesh
scheme to improve image resolution at feasible computational cost. The approach employed
a forward mesh that was refined/coarsened based upon the spatial gradient of excitation and
emission fluences and of tissue properties while the inverse mesh was independently refined/
coarsened based upon the spatial gradient of tissue fluorophore concentration. The use of
hexahedral elements, however, limits application to simple rectilinear geometries. Curved
geometries require higher order or isoparametric brick shaped elements resulting in complex
algorithms. As tetrahedral meshes can be relatively easily generated for complicated
geometries encountered in medical imaging, optimal, three-dimensional adaptive tomography
employing tetrahedron-based dual-adaptive mesh scheme will positively impact multiple
biomedical imaging modalities. However, independent refinement of tetrahedral elements in
the two meshes requires solution to a computationally intensive intersection problem between
two tetrahedrons on the different meshes, which prohibits its deployment in iterative parameter
estimation algorithms. In principle, the intersection between two tetrahedrons can be found
using a series of triangle-line piercing tests conducted in three-dimensional real object space.
However, the object space intersection scheme is not robust due to the finite precision floating
point arithmetic and thus sophisticated implementation is required to circumvent the precision
errors. Furthermore, geometrical searching is required to pick candidate tetrahedrons for
intersection in the two related forward and inverse meshes. However, the simple brute force
algorithm employing intersection check for all possible pairs of tetrahedrons in the two meshes
will cost O(N2) operations where N is the number of tetrahedrons. For static tetrahedral dual-
mesh tomography, the intersection is computed once and stored at the preprocessing step. For
iterative reconstruction phase, the intersection information thus stored is repetitively used.
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However, the adaptive dual-mesh tomography requires intersection be resolved whenever the
geometric environment changes due to refinement/coarsening of forward or inverse mesh.
Therefore, for adaptive tetrahedron-based dual-mesh tomography, a fast and robust solution
to the intersection problem is essential to cope with repetitive and independent refinement/
derefinement of the two related tetrahedral meshes. To our knowledge, there is no demonstrated
method for handling intersection in this dynamically varying situation, and consequently, no
adaptive tomography technique using tetrahedral meshes is yet available for iterative
tomographic parameter estimation problems.

In this contribution we present a fast and robust algorithm to handle intersection in the nested
conforming tetrahedral elements that enables the adaptive dual-mesh-based three-dimensional
tomography. The demonstrated intersection algorithm performs refinement of a parent mesh
using the 8-subtetrahedron subdivision scheme [23] but does not perform intersection based
upon real object space. Instead, the algorithm uses the volume coordinates or linear tetrahedral
element basis functions, leading to dramatically simplified, fast and robust intersection outputs.
The resolved intersection results in a set of vertices and weight function values on each vertex
of disjoint tetrahedron pieces that completely cover up the intersection region of two
tetrahedrons.

This paper is organized as follows: In Section 2, the 8-subtetrahedron subdivision scheme
[23] used as the basis of this work is briefly reviewed before the intersection handling algorithm
FINT is detailed and applied towards the finite element assembly procedure on dual mesh
intersection outputs. In Section 3, first the efficiency of FINT is validated by demonstrating
that the finite element assembly time scales linearly with the number of elements, followed by
the application of FINT to a simulated fluorescence image reconstruction problem. Finally, we
conclude by summarizing our work and commenting upon its future implications.

2. Theory and approach
For a dual-adaptive mesh-based finite element scheme, we first define two meshes: M and M
′. For the inverse problem, M will be the forward mesh for solutions of the forward variables
and M′ will be the inverse mesh for the unknown parameter recovery, or for coupled field
problems like fluorescence optical imaging, M can be used for discretizing the excitation field
while M′ is used for solving for the fluorescence emission field. For the applications considered
in this paper, M′ will be created by duplicating an initial coarse mesh M. Both meshes will be
then allowed to adaptively refine and derefine independently. Any tetrahedron in the initial
dual-mesh is called a root tetrahedron. If any tetrahedron T is subdivided into subtetrahedrons,
then each subtetrahedron is called a child of T and T is called the parent of the child. A
tetrahedron with no children is called a leaf tetrahedron. In the following subsection, the mesh
refinement and derefinement procedure is detailed.

2.1. Refinement and derefinement in 8-similar subtetrahedron subdivision scheme
2.1.1. Mesh refinement—The 8-similar subtetrahedron subdivision scheme [23] is
illustrated in Fig. 1. The scheme allows only 0, 1, or 3 split points on each triangle face, leading
to four different types of tetrahedron subdivisions. Initial tetrahedrons are called regular. When
any regular tetrahedron is refined, it is always subdivided into eight subtetrahedrons as shown
in Fig. 1(a). The subdivision is created by the basic operation termed SUB8. Any tetrahedrons
generated by SUB8 are called regular and of the type S8. All the other subdivision
configurations shown in Fig. 1(b)–(d) are introduced to ensure conformity. The subdivisions
are created by operations termed SUB2, SUB4a, and SUB4b and produce two, four, and four
child tetrahedrons, respectively. The resulting subtetrahedrons are called non-regular and of
type S2, S4a, and S4b, respectively. If any non-regular tetrahedron T is chosen for refinement,
its regular parent Tp is always refined first by SUB8. Therefore, the non-regular tetrahedrons
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exist only at leaf levels with no children. In the sequence of nested tetrahedral meshes, only
tetrahedrons of types S8, S2, S4a, and S4b are present. In accordance with the 8-subtetrahedron
subdivision for tetrahedrons, triangle faces in the tetrahedral networks are refined by 4-similar
subtriangle subdivision [23]. It can be noted that another tetrahedron subdivision scheme can
be generated by dividing the tetrahedron into four subtetrahedrons about a single point in the
center. However, poorly shaped elements thus created will require face-edge swapping to
ensure good quality, and the new elements will not be nested, which makes the intersection
problems harder to handle for implementing dual-adaptive mesh refinement.

2.1.2. Mesh derefinement—Mesh coarsening or derefinement is another operation that
must be considered in fully adaptive finite element methods. With the combination of
refinement and derefinement operations, the sequence of nested mesh becomes more efficient
than when refinement operations are used alone. The efficiency arises because coarsening
operations prevent the exponential increase in the number of nodes that would otherwise occur
from refinement operations. To date, derefinement operations have been developed for nested
meshes generated from edge bisection [24] and none exist for 8-subtetrahedron subdivision.
A local derefinement algorithm in the nested meshes created by the 8-subtetrahedron
subdivision has been developed by the authors and implemented also in this work. Fig. 2
illustrates examples of derefinement in a two-dimensional triangle mesh that can be extended
to three-dimensional tetrahedral mesh in a straightforward manner. Initially, all nodes present
in the tetrahedral mesh are marked as alive. Then, the nodes of the tetrahedral element T to be
derefined are marked as dead except those shared by their parent. Next, we iterate the marking
process until all triangle facets of the tetrahedral elements lying at T’s parent level have only
0, 1, or 3 alive split points. However, uncontrolled iteration leads to arbitrary disentanglement
of the nested mesh. Mesh derefinement is restricted to a local region by employing the
following procedure:

i. Mark a tetrahedron T of the subdivision level l as dead.

ii. Pick the neighbor regular tetrahedron Tn of the level l −1 sharing the nodes of the
parent tetrahedron Tp of the tetrahedron T to be derefined.

iii. Set the split point of any Tn’s edge connected to any Tp’s node as dead.

iv. If any edge has an endpoint marked as dead, mark its split point as dead.

v. Mark any children of Tn and Tp with dead nodes as dead; and recurs (ii)–(v) for dead
children of Tn and Tp until no dead point appears.

vi. Any edge E any one of whose endpoint is marked as dead, and any triangle face F
any one of whose vertex is marked as dead, are marked as dead.

The procedure completes marking up to T’s subdivision level l and may result in dead endpoints
of edges of the subdivision level l + 1, triggering marking procedure for elements of the level
l + 1 outside the region occupied by Tp and Tn. The marking front propagates outward
symmetrically with decreasing sequence of the subdivision level until no marking procedure
is necessary. The above procedure ensures the triangles of the subdivision level l − 1 on the
boundary of the region occupied by the tetrahedrons Tp ∪ {Tn} to be unaffected and retain
their original 0, 1, or 3 split points, and the triangles faces shared between Tn’s to have either
0 or 1 alive split point lying only on the boundary of the region occupied by Tp ∪ {Tn}.
Therefore, the tetrahedral network of the subdivision level l lying outside the region occupied
by Tp ∪ {Tn} are not affected. When tetrahedrons initially chosen for derefinement have
different subdivision levels, we do marking processes for tetrahedrons lying at the deepest level
first and then proceed to the next deepest level. Finally, deletion of all dead nodes, edges, faces,
and tetrahedrons, followed by reapplication of regular 8-subtetrahedron subdivision according
to the number of remaining split points, recovers conformity of the tetrahedral mesh.
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In the two-dimensional cases as illustrated in Fig. 2, the element T in the above (i)–(v)
corresponds to a triangle and therefore the geometrical entity that should have 0, 1, or 3 split
points is the T itself; accordingly, we have only an edge E to mark as dead in (vi). For the
derefinement of a triangle T of the subdivision level l, the edges of the subdivision level l − 1
on the boundary of the region occupied by the triangles Tp ∪ {Tn} are unaffected and thus
retain their original 0 or 1 split point, whereas the edges shared between Tn’s have 0 alive split
point. Therefore, the triangular network of the subdivision level l lying outside the region
occupied by the triangles Tp ∪ {Tn} are not affected. Similarly, deletion of all dead nodes,
edges, and triangles followed by reapplication of regular 4-similar subtriangle subdivision
according to the number of remaining split points, recovers conformity of the triangle mesh.

2.2. Solution of intersection problem
Finite element-based solution of PDE’s on an adaptive mesh M, when the parameters are
discretized on another independently adapting mesh M′, requires the resolution of intersections
between M and M′. Refinement/coarsening operations in a dual-mesh environment require
efficient solution to tracking tetrahedron partners in the dual-meshes, finding the plane of
intersection and solving the intersection problem. In this work, we solve the intersection
problem by taking advantage of (i) the partnership of the twin tetrahedrons in the nested dual-
mesh environments that enables fast searching of candidates of intersecting pairs of
tetrahedrons and (ii) the local linear finite element basis functions or weight functions,
otherwise called volume coordinates that make intersection computations simple and concise.

2.2.1. Partnership—The partnership in the dual-mesh scheme is created as follows. A
partner data field is introduced for each tetrahedron of the type S8. An input parent mesh P is
duplicated. P and its duplicate will be denoted as M and M′, respectively. Then each tetrahedron
in M has its twin in M′ and vice versa. Initially, all tetrahedrons in M and M′ are marked as
regular, i.e., of the type S8. The partnership is defined in Definition 1.

Definition 1: The partner of any regular tetrahedron T in M is T’s twin T′ in M′ if T′ exists,
and vice versa.

If T’s partner is T′, then T′’s partner is T. Any twin tetrahedrons are always mutually related
to each other by the partner field. Therefore, each root tetrahedron in M at subdivision level
0 has its partner in M′. Whenever a new tetrahedron T of S8 is created in M by refinement, its
twin T′ is assigned as the partner of T if T′ exists in M′. Likewise, whenever a new tetrahedron
T′ of S8 is created in M′ by refinement, its twin T is assigned as the partner of T′ if T exists in
M. When T is the ith child among its parent Tp’s eight children, then its partner T′ is the ith
child of  if (i) Tp has its partner  and (ii)  also have eight children. Otherwise if the
condition (i) or (ii) fails, T has no partner in M′. Any tetrahedron T of the type S2, S4a, or S4b
that is not regular has no partner. However, T’s parent Tp may have its partner because Tp is
regular. Whenever any T in M has its partner T′ in M′ and T is deleted by derefinement, T′
will lose its twin and consequently will lose its partner, and vice versa. With these rules, the
partnership is updated after each cycle of refinement/derefinement.

2.2.2. Determination of intersection candidates—Whether a parameter or a variable,
consider a quantity Q and another quantity Q′ discretized on M and on M′, respectively, where
Q and Q′ are coupled in the governing equations. Since constant or piecewise continuous finite
element basis functions are used to describe a continuously varying Q and Q′, finite element
assembly involving both Q and Q′ must be done on the intersection between a leaf tetrahedron
T on M and a leaf tetrahedron T′ on M′. Because of partnership, the assembly can be done
either on T or on T′ basis. Suppose that the assembly is performed using T. There are three
cases that need to be considered.
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• case 1: T has its partner T′.
• case 2: T is of the type S8 and T has no partner.
• case 3: T is of the type S2, S4a or S4b.

In the first case in which T is of type S8, we determine whether its partner T′ has children. If
T′ has children, then all descendant tetrahedrons of T′ including T′ are completely inside T.
Therefore, the intersection is trivial, and T and T′ map directly.

In the second case, if T of type S8 has no partner, then any leaf tetrahedron in M′ that intersects
with T either (i) has a lower level of subdivision than T or (ii) has the same level as T and is
of type S2, S4a, or S4b. In both cases, we traverse up the hierarchy through parents until any
one of T’s ancestors Ta that has its partner  in M′ is visited.  must either (i) have only non-
regular child tetrahedrons of type S2, S4a, or S4b at the leaf level or (ii) be a leaf tetrahedron of
type S8: If  should have eight regular children of type S8, then the first T’s ancestor that has
its partner would be found at the deeper refinement level than Ta, which contradicts that Ta is
the first ancestor with its partner. Therefore Ta cannot have eight regular children. If T is
determined to be a candidate for intersection with ’s children, then the intersections are
computed with respect to the internal triangle faces shared by ’s children if they exist, as
shown in Fig. 3. Otherwise, the intersection is trivial.

In the third case in which T is a non-regular tetrahedron of the type S2, S4a, or S4b, we traverse
up the hierarchy through parents until any one of T’s ancestors Ta that has its partner  in M
′ is visited. There are three possible scenarios regarding : (i) If  is a leaf tetrahedron, the
intersection is trivial because T is inside . (ii) If  has non-regular child tetrahedrons of type
S2, S4a, or S4b, then T is observed as a candidate for intersections with ’s children. In this
case, the intersections are computed with respect to the internal triangle faces shared by ’s
children. (iii) Otherwise,  must have eight regular child tetrahedrons of type S8 which is
possible only if Ta is T’s parent Tp. If we suppose that Ta is not Tp, then Ta is an ancestor of
Tp and Tp must be inside one of ’s eight children of type S8. Consequently, one of ’s eight
children has one of T’s ancestors as its partner which contradicts by mutual partnership that
Ta is the first ancestor of T with its partner. Therefore, Ta = Tp holds. Consequently, ’s leaf-
level descendants are the candidates for intersection with Tp’s children and the intersections
are computed with respect to the internal triangle faces shared by Tp’s children.

From the above scenarios, one can summarize with the following general rule. If a leaf
tetrahedron T has a partner, then T works as a geometric container covering T’s partner and
all its descendants. Otherwise, the first ancestor of T which has a partner P in M′ can be found
by traversing up the parents. If P has non-regular children, P works as a container of covering
P’s partner and all its descendants. Otherwise, P has eight regular children and T’s parent
works as a container of P and P’s children. Therefore, any non-trivial intersecting situations
arise from the internal triangle faces in some container tetrahedron C that is regular and the
tetrahedrons embedded therein which are all leaf-level descendants of C’s partner. The
container tetrahedron C is classified into four different types by Definition 2:

Definition 2: If a container C is a leaf tetrahedron, C is called a type C8-container. If C has
two children of type S2, C is called a type C2-container. If C has four children of type S4a, C
is called a type C4a-container. Finally, if C has four children of type S4b, C is called a type
C4b-container.
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In Fig. 3, Tijkl corresponds to the container and an edge pq is an edge of one of the leaf-level
descendants of Tijkl’s partner. The algorithm handling intersections in nested adaptive
tetrahedral dual-mesh is given by Algorithm 1 FINT which is detailed in pseudocode below.

Algorithm 1: Fast intersections of nested tetrahedrons (FINT)

Given the nested two tetrahedral meshes M and M′,

For each leaf tetrahedron T on M not yet handled,

 If T has a partner,

  Handle intersection using T as C8-container.

 Else

  Search the first ancestor of T which has a partner P by traversing up the parents.

  If P has no child,

   Handle intersection using P as C8-container.

  Else If P has two children of type S2,

   Handle intersection using P as C2-container.

  Else If P has four children of type S4a,

   Handle intersection using P as C4a-container.

  Else If P has four children of type S4b,

   Handle intersection using P as C4b-container.

  Else If P has eight children of type S8,

   Denoting T’s parent by Q,

   If T is of type S2,

    Handle intersection using Q as C2-container.

   Else if T is of type S4a,

    Handle intersection using Q as C4a-container.

   Else if T is of type S4b,

    Handle intersection using Q as C4b-container.

   End If

  End If

 End If

End For.
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2.2.3. Computation of intersection points—Tetrahedron–tetrahedron intersections in
nested meshes generated by the 8-subtetrahedron subdivision algorithm provide relatively
simple configurations in comparison with non-nested arbitrarily configured tetrahedral meshes.
Unfortunately, the accuracy of the intersection computations in real object space is dependent
upon the tetrahedron shapes, which results in non-robust computation in real object space.
However, we have utilized that the volume coordinate is independent of the tetrahedron shapes
and can be used to provide a robust solution to the intersection problem. For a tetrahedron T
with nodes 0, 1, 2, and 3, the volume coordinate ϕi of a point p for node i inside the tetrahedron
is the volume of the subtetrahedron Tpjkl normalized with the volume VT of T:

(1)

for i, j, k, l = 0,1,2,3. The volume coordinate is identical to the local linear finite element basis
function or weight. For fast and robust intersection handling, we define a 4-vector by Definition
3 as

Definition 3: For any point p inside a tetrahedron T, a 4-vector p given by

(2)

is called T-based representation of p, where wi(p), wj(p), wk(p), and wl(p) are weights of T’s
node i, j, k, and l, respectively, at p’s location.

The 4-vector is linear in the space occupied by T and four basis vectors i = |1, 0, 0,0|T, j = |0,
1, 0,0|T, k = |0, 0, 1,0|T, and l = |0, 0, 0,1|T span the 4-vector space in T-based representation.
Suppose that four nodes of a container C are i, j, k, and l. Without loss of generality, we can
associate nodes i, j, k, and l with four basis vectors i = |1, 0, 0,0|C, j = |0, 1, 0,0|C, k = |0, 0,
1,0|C, and l = |0, 0, 0,1|C in C-based representation. Furthermore, the following planes of
intersection can be defined:

• C of type C2 has a plane of intersection passing the triangle Fjk with the nodes i, m,
and l where m is the midpoint of the edge jk.

• C of type C4a has two planes of intersection, passing the triangle Fjk with the nodes
i, m, and l, and the triangle Fil with the nodes j, n, and k, respectively, where m and
n are mid-points of the edges jk and il.

• C of type C4b has three planes of intersection passing the triangle, Fj with the nodes
i, o, and m, the triangle Fk with the nodes i, m, and n, and the triangle Fl with the nodes
i, n, and o, respectively, where m, n, and o are mid-points of the edge jk, kl, and lj,
respectively.

All triangles of interest are illustrated with shaded triangles and node locations in Fig. 3. In the
following, the approach to find the intersection for each container type is described:

2.2.3.1. Intersections in C8-container: The intersection is trivial. Each intersection is each leaf
tetrahedron T embedded in the container C. T- and C-based 4-vector representations for each
node of T are used directly for finite element assembly related two leaf tetrahedrons separately
from M and M′.

2.2.3.2. Intersections in C2-container: The child tetrahedron of a type C2-container C with
nodes i, j, m, and l located in the back of Fjk is denoted as L. As shown in Fig. 3(b), the mid-
point m of the edge jk is associated with a 4-vector m = |0, 1/2, 1/2,0|C and hence |1, 0, 0,0|C,
|0, 1, 0,0|C, |0, 1/2, 1/2,0|C, and |0, 0, 0,1|C span 4-vectors in the space occupied by L. Any
point p inside L is also associated with a 4-vector |a,b, c,d|L where a, b, c, and d are weights
of L’s four nodes i, j, m, and l. The point p is represented as |wi,wj,wk,wl|C in C-based
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representation as well. The 4-vector |wi,wj,wk,wl|C must be a linear combination of |1, 0,
0,0|C, |0, 1, 0,0|C, |0, 1/2, 1/2,0|C, and |0, 0, 0,1|C, which means that

(3)

Therefore, we have p’s 4-vector p as

(4)

(5)

with djk defined by

(6)

For the other child tetrahedron R with four nodes i, m, k, and l in the front of Fjk, |1, 0, 0,0|C,
|0, 1/2, 1/2,0|C, |0, 0, 1,0|C, and |0, 0, 0,1|C span 4-vectors in the space occupied by R. In the
same manner, a 4-vector q of any point q inside R is obtained in the same way;

(7)

(8)

The intersection point r between the edge pq and the triangle Fjk can be represented by

(9)

because of the linearity. From (5), (6), and (8), one can show that

(10)

if r is on Fjk. Eq. (10) then requires (1 − t)wj(p)+twj(q)=(1 − t)wk(p)+twk(q) and t becomes

(11)

Eq. (10) expresses the plane equation of Fjk in 4-vector space and any edge with endpoints p
and q will intersect if and only if dkj(p)dkj(q) < 0. Combination of (9) and (11) gives rise to the
4-vector r in C-based representation at the intersection point r. At the final output of the
presented algorithm, any points inside C will be switched into L or R-based representation
using (5) or (8) for finite element assembly related two leaf tetrahedrons separately from M
and M′.

2.2.3.3. Intersections in C4a-container: As shown in Fig. 3(c), there exist two mid-points m
and n represented by m = |0, 1/2, 1/2,0|C and n = |1/2, 0, 0, 1/2|C. The four subtetrahedrons of
C are denoted by P with nodes i, j, m, and n; Q with nodes i, k, n, and m; R with nodes l, j, n,
and m; and S with nodes l, k, m, and n. Then, any 4-vector p = |wi(p), wj(p), wk(p), wl(p)|C
inside P, Q, R, or S is represented by one of the following 4-vectors, respectively;

(12)

(13)
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(14)

(15)

The intersection condition can be derived similarly to (10) and reads;

(16)

(17)

with respect to the triangles Fil and Fjk, respectively. Then the intersection point r is obtained
using (9) and (11) with dli and djk defined with respect to Fil and Fjk. At the end, any points
inside C will be switched into P, Q, R, or S-based representation using (12)–(15) for finite
element assembly related two leaf tetrahedrons separately from M and M′.

2.2.3.4. Intersections in C4b-container: As shown in Fig. 2(d), there exist three mid-points
m, n, and o represented by m = |0,1/2, 1/2,0|C, n = |0, 0, 1/2, 1/2|C, and o = |0, 1/2, 0, 1/2|C.
The four subtetrahedrons of C are denoted by P with nodes i, j, m, and o; Q with nodes i, k,
n, and m; R with nodes i, l, o, and n; and S with nodes i, m, n, and o. Following the same
convention as above, |1, 0,0,0|C, |0, 1, 0,0|C, |0, 1/2, 1/2,0|C, and |0, 1/2, 0, 1/2|C span 4-vectors
in the space occupied by P; |1, 0, 0,0|C, |0, 0, 1,0|C, |0, 0, 1/2, 1/2|C, and |0, 1/2, 1/2,0|C span
4-vectors in Q; |1, 0, 0,0|C, |0, 0, 0,1|C, |0, 1/2,0, 1/2|C, and |0, 0, 1/2, 1/2|C span 4-vectors in
R; and finally, |1, 0, 0,0|C, |0, 1/2, 1/2,0|C, |0, 0, 1/2, 1/2|C, and |0, 1/2, 0, 1/2|C span 4-vectors
in S.

Using the same analyses carried out above, any 4-vector p = |wi(p), wj(p), wk(p), wl(p)|C inside
P, Q, R, or S is represented by one of the following 4-vectors, respectively;

(18)

(19)

(20)

(21)

where di,jk is defined by

(22)

The plane equations for the triangles Fj, Fk, and Fl become

(23)

with α, β, γ = j, k, l cyclic, respectively. 4-vectors rj, rk, and rl for intersection points with
respect to Fj, Fk, and Fl can be derived from (9) and (23), and the resulting interpolation
coefficients tj, tk, and tl are given by

(24)
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with α, β, γ = j, k, l cyclic. At the end, any points inside C will be switched into P, Q, R, or S-
based representation using (18)–(21) for finite element assembly related two leaf tetrahedrons
separately from M and M′.

2.2.4. Weight registering—The weight-based intersection computation requires 4-vectors
in container-based representation. Therefore, each node of any leaf tetrahedron Tl in M
embedded in its container C in M′ must be registered with a 4-vector in C-based representation.
The 4-vectors are computed from the partner Ta of the container C where Ta is one of Tl’s
ancestors in M. It is noteworthy that direct computations of weights using nodal coordinates
are avoided. All leaf tetrahedrons including Tl, inside the volume occupied by C, are accessible
by downward preorder traversal of the tetrahedron subtree rooted at the tetrahedron Ta. If the
tetrahedron Tc currently visited is not a leaf, the preorder work is to register weights for split
points on edges of Tc. Otherwise if Tc is a leaf, the preorder work is to resolve intersection and
gather disjoint tetrahedron pieces including weight maps and nodal indices that are coupled.
The details are as follows: Ta’s four nodes ia, ja, ka, and la are represented by ia = |1, 0, 0,0|C,
ja = |0, 1, 0,0|C, ka = |0, 0, 1,0|C, and la = |0, 0, 0,1|C, because Ta is C’s twin. Then the recursive
weight registering procedure starts with Tc = Ta where Tc denotes the tetrahedron currently
visited. Whenever any edge pq of Tc has a mid-point m, a 4-vector m for m is registered using
(9) with t = 1/2, that is, m = (p + q)/2 and then each child of Tc is visited. If Tc is a leaf,
intersection is resolved and disjoint tetrahedron pieces including coupling information related
with the pieces are collected using the method described in the Section 2.2.3. Weight registering
terminates when all leaf tetrahedrons in M embedded in C are visited and returns with all
intersections in C fully resolved.

Fig. 4 illustrates the process of weight registering in 2D triangle meshes that is directly
applicable to 3D tetrahedral meshes except that in 2D, we work with 3-vectors instead of 4-
vectors. Assuming that i = |1, 0,0|C, j = |0, 1,0|C, and k = |0, 0,1|C, then 3-vector representation
of l is given by l = |0, 1/2, 1/2|C. Any point p in the space occupied by C is associated by a 3-
vector p = |wi(p),wj(p),wk(p)|C where wi(p) is p’s weight or area coordinate with respect to i,
etc. We also know that the equation of the line of intersection is given by djk(p) = wj(p) −
wk(p) = 0 in the 3-vector space and any edge pq intersects with the edge il if djk(p)djk(q) < 0.
Because C is the partner of Ta = {n1,n2,n3}, we have n1 = |1, 0,0|C, n2 = |0, 1,0|C, and n3 = |0,
0,1|C. Next, we start the preorder traversal down the subtree rooted at Ta. The firstly visited
triangle is Ta. Because it is not a leaf, the 3-vectors n4 = |0, 1/2,1/2|C, n5 = |1/2, 0, 1/2|C, and
n6 = |1/2, 1/2,0|C are registered. The secondly visited triangle is the first Ta’s child T1 =
{n1,n6,n5}. Because T1 is a leaf, we check whether it intersects with the edge il. We see that
the edge n6n5 intersects with il since djk(n6)djk(n5) = −1/4 < 0 and therefore we resolve
intersection for T1 and obtain disjoint triangle pieces and weight maps for (T1,L) and for
(T1,R). The third visited triangle is T2 = {n2,n4,n6} which is not a leaf and therefore n7 = |1/4,
1/2, 1/4|C, n8 = |1/4, 3/4,0|C, and n9 = |0, 3/4, 1/4|C are registered. The fourth visited triangle
is a leaf triangle T5 = {n6,n8,n7} and therefore intersection is checked. Since djk(n6) = 1/2 > 0,
djk(n8) = 3/4 > 0, and djk(n7) = 1/4 > 0, T5 does not intersect with il and is inside L since all
djk ⩾ 0. We collect T5 as a triangle piece and obtain weight maps between T5 and L, etc. In
the same manner, the next visited three leaf triangles T6, T7, and T8 can be found not to intersect
with il and satisfy djk ⩾ 0 for all nodes. Since all children of T2 have been visited, we next
move to T3 = {n3,n5,n4}. Since T3 is a leaf, we check intersection and find that djk(n3) = −1 <
0, djk(n5) = −1/2 < 0, and djk(n4) = 0. Since djk ≤ 0 for all nodes of T3, T3 does not intersect
il. The negative sign denotes that T3 is inside R and we obtain T3 as a triangle piece and weight
maps between T3 and R. Next we visit T4 = {n4,n5,n6} which is not a leaf, and register n7; we
allow overwriting though n7 was already registered. Now, only leaf triangles T9 and T10 are
left, and in the same manner as described above, we see that they intersect il and obtain triangle
pieces, etc. One should note that the whole procedure described so far is applied to 3D
tetrahedral meshes in exactly the same manner.
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2.2.5. Tetrahedron piece collection and weight mapping—Whenever a leaf
tetrahedron T on M is visited during weight registration inside the container C on M′,
intersections are considered between T and T′ on M′, where T′ is C or one of C’s children if
they exist. Two 4-vectors u and v in T- and T′-based representation, respectively, are required
to couple T and T′. If all edges of T are non-intersecting, then all four nodes of T belong to
the space occupied by some T′, and u and v are collected for each node of T. If any edge of
T is intersecting one of the internal triangles of C, the 4-vectors u and v in T- and C-based
representation, respectively, are computed at the intersection point, and two tetrahedron pieces
are generated by bisection of T using the intersection point as a split point. Intersection
computation and tetrahedron bisection are repeated for each tetrahedron piece thus generated
and new pieces are created until no intersections are encountered. Any resulting tetrahedron
piece Tr belongs to the space occupied by either T′ or T′’s siblings. After each 4-vector v for
Tr’s vertices is switched into T′ or into T′’s sibling-based representation from C-based one by
using (5), (8), (12)–(15) or (18)–(21), then u, v, spatial coordinates for each vertex of the
tetrahedron piece and two index arrays indicating nodes of T and T′ (or one of T′’s siblings)
that are coupled are gathered together. Finally, the gathered information is stored in computer
memory, or if required, finite element assembly is performed using the information. Fig. 5
illustrates examples of the set of disjoint tetrahedron pieces generated by FINT.

2.2.6. Finite element assembly—FINT gives rise to a set of vertices, 4-vectors u and v
on each vertex of disjoint tetrahedron pieces that completely cover up the intersection of two
leaf tetrahedrons T and T′ from the meshes M and M′, respectively. Suppose that {ϕn(x)|n =
0,1,2,…} and {ψn(x)|n = 0,1,2,…} are linear finite element basis functions in M and M′,
respectively, where x is a real space coordinate vector. For each vertex α of a tetrahedron piece
Δ in the intersection of T and T′, 4-vectors u and v are given by

(25)

(26)

where {i, j, k, l} and {i′, j′, k′, l′} are nodes of T and T′, respectively, and xα is the coordinate
vector of α. For each vertex α of the piece Δ, a virtual linear basis function πα(x) is introduced.
πα(x) subtends Δ and behaves like a usual basis function with

(27)

(28)

where vertices {p, q, r, s} and VΔ are the vertices and the volume of Δ, respectively; that is,
πα is the volume coordinates with respect to Δ. Linear property of ϕn(x), ψn(x), and πα(x) gives
rise to the relationships, ϕn(x) = Σαϕn(xα)πα(x) and ψn(x) = Σαψn(xα)πα(x), enabling two 4 × 4
transformation matrices U and V to be introduced:

(29)

(30)

The matrices U and V perform the change of basis from the virtual basis π to the actual basis
ϕ and ψ, respectively, and inside Δ result in:

(31)
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(32)

Integrations of products that ϕ, ψ, or both are involved in are performed over Δ for finite element
assembly by treating π as the usual linear finite element basis function. For example, ∫Δ∇ϕi(x) ·
∇ ψj(x)dv = ΣαβUiαVjβ ∫Δ∇πα(x) · ∇πβ(x)dv, and ∫Δϕi(x)ψj(x)dv = ΣαβUiαVjβ ∫Δπα(x)πβ(x)dv,
and so forth.

3. Computational experiments
3.1. Forward imaging problem in fluorescence optical tomography

A coupled system of PDE for fluorescence enhanced optical imaging provides an excellent
example to assess the finite element assembly cost and the capability for independent
refinement/derefinement in the dual-mesh scheme using FINT. The coupled governing
equations describing excitation and fluorescence light propagation can be described as [25]

(33)

(34)

where , kx,m = iω/c + μaxi,ami(x)+μaxf,amf(x), and βxm =
qμaxf/[1 − iωτ (x)]. An index x denotes the excitation field and m denotes the emission field;
Φx,Φm are photon fluence fields at excitation and emission wavelengths, respectively; Dx,m
are photon diffusion coefficients; μaxi,ami is the absorption coefficient due to endogenous
chromophores; μaxf,amf is the absorption coefficient due to exogenous fluorophores;  is
the reduced scattering coefficient; ω = 2π f where f is the modulation frequency; q is the
quantum efficiency of the fluorophore; finally, τ is the lifetime of fluorescence. Eqs. (33) and
(34) are solved under the Robin-type boundary conditions

(35)

(36)

where n is the unit outward surface normal vector, γ is a constant depending only upon the
refractive index mismatch on the boundary, and S(x) is the excitation boundary source
distribution.

In order to evaluate FINT, we considered excitation and emission fluence solutions for two
cases: (1) adaptive single mesh discretizing both Φx and Φm in which the combination of the
spatial gradients of Φx and Φm determined refinement/derefinement and (2) two adaptive
meshes separately discretizing Φx and Φm in which the spatial gradients of Φx and Φm
independently determined refinement/derefinement. The geometry considered was an
otherwise optically homogeneous sphere (chosen to challenge curvilinear surface
representation) embedded with two fluorescent spheres. The “background” sphere was 5 cm
in diameter and centered at the (x,y, z) coordinate origin. The embedded two spheres were 1
cm in diameter and centered at (1.25 cm, 0, 1.25 cm) and (− 1.25 cm, 0, 0), respectively. A
point source of modulated excitation light was at the surface location of (0, 0, 2.5 cm). For
simplicity, we assumed optical properties of μaxi = μami = μamf = 0.01 cm−;1,

, and μaxf = 1.0 cm−1. The other parameters were assumed to be f = 100
MHz, q = 0.1, τ = 0.1 ns, and refractive index n = 1.33. As an a posteriori error estimator for
refinement/derefinement of tetrahedral meshes, we used an error estimator based upon Kelly’s
flux jump criterion [26]
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(37)

across the triangle facet of the tetrahedral element, where h is the height of the tetrahedron,
A is the area of the triangle, and |∂f/∂n|± is the jump of the normal derivative of f across the
triangle facet. Eq. (37) measures the spatial curvature of the variable f of interest. For the present
case, we relate f with a fluence field Φ. In the single-mesh, we took the element error with εs
= ε[Φx/max{|Φx|}] + εm[Φm/max{|Φm|}] to put an equal significance to Φx and Φm, by which
the element is chosen for refinement if εs > δs,rmax{εs} or derefinement if εs < δs,dmax{εs}.
In the dual-mesh, we took the element error in the first mesh (in which Φx is solved) with εx
= ε[Φx], and the element error in the second mesh (in which Φm is solved) with εm = ε[Φm],
by which the element in the first mesh is chosen for refinement if εx > δx,rmax{εx} or
derefinement if εx < δx,dmax{εx}, and the element in the second mesh is chosen for refinement
if εm > δm,rmax{εm} or derefinement if εm < δm,dmax{εm}. The refinement/derefinement
factors chosen are δs,r = 10−4, δs,d = 10−8, δx,r = 10−8,δx,d = 10−14, δm,r = 10−1, and δm,d =
10−8. In both single- and dual-mesh schemes, we solved the excitation equation first, passed
the value of the excitation fluence field to the emission equation and solved the emission field.
In the single-mesh, the finite element assembly was executed directly using the elements in
excitation and emission problems, respectively. In the dual-mesh scheme, finite element
assembly in the excitation problem was executed by passing elements in the first mesh to FINT
as input tetrahedrons, while elements in the second mesh were passed to FINT as input
tetrahedrons for finite element assembly in the emission problem. All computations were done
using the PC with 3.6 GHz Pentium 4 processor and 3.25 GB RAM.

3.2. Inverse problem in fluorescence optical tomography
FINT will be applied primarily for inverse imaging problems. The second computational
experiment illustrates the application of FINT toward dual-adaptive mesh-based fluorescence
tomography. A cylindrical phantom with 5 cm diameter and 6 cm height was simulated with
a 5 mm diameter spherical fluorescent target located at the off-center position, (1.0 cm, 0.0,
1.0 cm). Synthetic frequency domain fluorescence measurements were collected for 24 sources
and 24 detectors positioned in three concentric rings with eight sources and eight detectors
each. The source-detector rings were positioned 1.5 cm apart in the axial direction. Simulation
geometry is depicted in Fig. 6. The optical properties were assumed to resemble that of 1%
Liposyn solution and the fluorescence contrast corresponded to a 0.5 μM indocyanine green
dye in the tumor equivalent to μaxf = 0.1 cm−1. For more details on optical properties, we refer
the reader to [27]. A trust region Gauss–Newton image reconstruction algorithm was used to
invert the synthetic measurements.

4. Results and discussion
4.1. Forward problem simulation results

For the forward simulation experiment described in Section 3.1, starting from an initial coarse
mesh with 3760 tetrahedral elements and 791 nodes, five refinement/derefinement iterations
were executed. The initial mesh and iteratively adapted meshes after three and five refinements/
derefinements are illustrated in Fig. 7. The changes in the number of tetrahedral elements and
nodes for the (i) single mesh-based discretization of both excitation/emission fields, (ii) dual-
mesh discretization of excitation field, and (iii) dual-mesh discretization of the emission field
are summarized in Tables 1–3, respectively. At the first adaptation, global refinements were
applied for both the single and the dual meshes, and the selective refinement/derefinement
according to the error estimates were performed from the second adaptation onwards. For the
single mesh, the mesh obtained after five iterations of refinement/derefinement had 376,565
tetrahedral elements and 64,820 nodes. After five iterations of the dual-mesh adaptation, the
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first mesh which was refined/derefined on the basis of Φx and discretizing Φx, μaxi, and 
had 426,331 tetrahedral elements and 73,990 nodes and the second mesh which was refined/
derefined on the basis of Φm and discretizing Φm, μami, μamf, μaxf, and  had 367,847
tetrahedrons and 63,200 nodes.

The FEM solutions in single-mesh and dual-mesh method for the phase and amplitude of Φx
and Φm are illustrated in Fig. 8 with alpha-blended 3D isosurface plots. The solutions from the
single-mesh and dual-mesh approaches shown in Fig. 8 are identical, demonstrating that we
can successfully decouple and solve the coupled field problems using two independently self-
adapting dual meshes if FINT is employed. The results show that FINT gives rise to the exact
coupling between the two independently self-adapting meshes and therefore enables the
separate adaptive finite element analysis for each field, bringing flexibility into the adaptive
finite element methods using tetrahedral elements.

The finite element assembly time cost is illustrated in Fig. 9, where the assembly cost includes
all operations in FINT, such as the identification of the container, tree traversal, tetrahedron
piece generation, and actual finite element assembly. For the refined/derefined dual-mesh, the
overall finite element assembly times in the dual-mesh scheme for Φx and Φm were
approximately linear in the total number of tetrahedral elements involved in the assembly as
shown in Fig. 9. The patterns of assembly cost in the first and in the second mesh shown in
Fig. 9(a), with respect to number of elements in the first and the second mesh, respectively,
match the patterns of the number of tetrahedron pieces shown in Fig. 9(b). It is noteworthy that
the assembly time required for Φx and Φm in the dual-mesh is proportional to the number of
disjoint tetrahedron pieces generated based upon the first and the second mesh, respectively,
as illustrated in Fig. 9(c), which indicates the cost of FINT operations including container
identification, tree traversal, and tetrahedron piece collection is marginal and the whole
computational cost is dominated by the actual finite element assembly step.

4.2. Inverse image reconstruction results
For the inverse imaging computational experiment described in Section 3.2, the initial
parameter mesh consisted of 187 nodes and 754 tetrahedrons. This mesh was used for
discretizing the μaxf. For forward simulations the initial parameter mesh was duplicated and
refined once toward the cylinder boundary to provide 643 nodes and 2927 tetrahedrons for
solving the coupled photon diffusion equations. A trust region Gauss–Newton algorithm was
used to iteratively update the parameter map. Both the forward and parameter meshes were
adaptively refined along the Gauss–Newton iterations.

To drive adaptive mesh refinement, we introduced a smoothness measure of the spatial
distribution of μaxf where the measure is checked after every five successive iterative
reconstructions to determine whether or not to trigger refinements [28]. If a significant change
in μaxf was detected, the dual-mesh adaptation was performed where the two meshes
discretizing fluence fields and the unknown parameter μaxf were locally refined using Kelly’s
criterion (37) for the fluence fields and μaxf, respectively. In practice, derefinement was found
to be unnecessary since the overly refined situations were avoided using the smoothness check.
However it must be noted that these image reconstructions have been performed with simulated
measurements, under realistic conditions of low SNR fluorescence measurements, and the
absence of prior knowledge about the interior of the imaged domain, derefinement might be
necessary in obtaining suitable meshes, and for avoiding spurious mesh refinements in the first
few Newton steps. The image reconstruction algorithm and the image smoothness measure
used for mesh refinements are detailed elsewhere in the description of dual-adaptive mesh-
based fluorescence optical tomography [28].
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One hundred Gauss–Newton iterations were carried out during which the forward mesh
refinement was triggered 12 times, while the parameter mesh was locally refined 10 times.
Final forward and parameter meshes are depicted in Fig. 10. Reconstructed fluorescent target
is depicted via slice plots and isosurfaces drawn at FWHM(50% of the maximum contour
levels) are illustrated in Fig. 11. The variations in the number of nodes and elements due to
refinements in the forward and the parameter meshes are illustrated in Fig. 12. Total image
reconstruction time was 7.28 min on a PC with 3.6 GHz Pentium 4 processor and 3.25 GB
RAM. The total computational cost of the image reconstruction algorithm is dominated by the
forward problem solution cost [28]. Final parameter mesh consisted of only 608 nodes, while
still providing diffusion length limited resolution in the vicinity of the reconstructed target
demonstrating the power of adaptive mesh refinement- based inverse imaging.

5. Summary and conclusions
We have presented and demonstrated an algorithm called FINT for handling intersections in
the nested conforming tetrahedral environments that enables the adaptive dual-mesh-based
finite element methods. The motivation of this work is to obtain an efficient dual-mesh coupling
scheme for development of fully adaptive three-dimensional fluorescence enhanced optical
tomography using two tetrahedral meshes generated by 8-subtetrahedron subdivision. The key
strength of FINT algorithm lies in using nested meshes and weight registering using linear
finite element basis functions that significantly facilitates the intersection handling and weight
mapping between tetrahedral elements from the two separate meshes. FINT can be applied not
only to the polyhedral regions but also to the geometry with smooth curved surfaces, a benefit
that arises from 4-vector- based intersection and interpolation schemes. FINT produces
information on a set of disjoint tetrahedrons with weight maps of tetrahedral elements from
two separate meshes. Finite elements are assembled on the tetrahedron piece by piece basis
using virtual linear basis functions defined on each piece. We have also demonstrated that
FINT provides a fast and robust tool to couple two meshes while allowing them to be
independently refined or derefined as evidenced in the coupled system of excitation/emission
photon diffusion equations. The finite element assembly time on dual meshes with FINT
increased linearly with the number of elements against the quadratic increase which will result
from a brute force intersection computation. We also demonstrated the application of FINT
for a simple fluorescence optical tomography problem. Detailed discussions of mesh
refinement criteria and tomography algorithm development have been reported elsewhere
[28]. This work represents the first step for incorporating tetrahedral FEM strategies in an array
of parameter estimation problems, including that of fluorescence optical tomography and other
medical, model-based tomography approaches. The dual-adaptive strategies enabled by FINT
algorithm can increase the computational performance of recently proposed shape-based
inverse imaging algorithms [29,30].
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Fig. 1.
Four types of tetrahedron subdivisions permitted in the 8-regular subtetrahedron subdivision
algorithm [15]. Filled circles are termed split points. (a) Regular 8-subtetrahedron subdivision
of a tetrahedron with one split point on each edge; (b) a non-regular subdivision of a tetrahedron
with one split point; (c) a non-regular subdivision of a tetrahedron with two split points on a
pair of opposite edges; and (d) a non-regular subdivision of a tetrahedron with three split points
on the same face.
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Fig. 2.
A 2D example providing an overview of our derefinement algorithm. In the figure, a shaded
triangle denotes the element to be derefined and the open symbols mark dead nodes which
trigger derefinement. When the shaded triangle element is to be derefined, the affected elements
are the children of the elements with thick edges. (a) A shaded leaf triangle to derefine in the
center; (b) the derefined mesh created by deletion of the shaded triangle in (a). (c) A shaded
leaf triangle chosen for derefinement in the lower left from the center element, and (d) the
derefined mesh resulting by deletion of the shaded triangle in (c). The derefinement algorithm
for 2D triangle meshes can be extended to the derefinement algorithm for 3D tetrahedral
meshes.
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Fig. 3.
Configurations of the intersection between a specific internal triangle plane and a edge pq
where r is an intersection point. The regular tetrahedron Tijkl is a container tetrahedron and (a)
a leaf tetrahedron of type S8, (b) a parent of type S2 tetrahedrons, (c) a parent of type S4a
tetrahedrons, and (d) a parent of type S4b tetrahedrons. Intersections are checked with respect
to the shaded internal triangles (a) triangle Fjk passing i, m, and l, (b) triangle Fjk passing i,
m, and l, and triangle Fil passing j, n, and k, (c) triangle Fj passing i, o, and m, triangle Fk
passing i, m, and n, and triangle Fl passing i, n, and o, of the tetrahedron Tijkl.
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Fig. 4.
Illustration of weight registering in 2D triangle meshes which is extended directly to 3D
tetrahedral meshes. (a) Two intersecting sub-meshes in M (left) and M′ (right); (b) the triangle
subtree rooted at Ta where Ta is the ancestor with its partner C that is first visited when
traversing upward the triangle tree through parents from a leaf triangle, for example, T3, or
T9, etc. (c) The sequence of visiting triangles in preorder traversal of the subtree. L and R are
two non-regular children of the container triangle C and the edge il lies on the line of
intersection. Wand I indicate the preorder work that is performed when visiting each triangle,
where W registers weight on the mid-point of edges of the triangle currently visited and I
resolves intersection and obtains disjoint triangle pieces including weight maps and nodal
indices of the two triangles that are coupled.
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Fig. 5.
Illustration of three sets of disjoint tetrahedron pieces generated by FINT for a given set of
tetrahedrons embedded in its container (a) of type C2, (b) of type C4a, and (c) of type C4b,
respectively.
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Fig. 6.
Simulated frequency domain fluorescence measurements to assess the inverse imaging
application of FINT. (a) The mesh used to create simulated boundary measurement; (b) 24
source locations; and (d) 24 detector locations.

Lee et al. Page 24

J Comput Phys. Author manuscript; available in PMC 2008 August 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
Tetrahedral mesh refinement/derefinement evolutions from (a) an initial mesh. For each two
meshes shown in (b)–(d), the left and right meshes have been obtained after the third and fifth
adaptive iteration, respectively. The illustrated in (b)–(d) are the evolutions: in (b) a single
mesh in which gradients of {Φx, Φm} were used as criteria for refinement/derefinement; in (c)
the first of a dual-mesh in which the excitation Eq. (33) was solved and gradients of Φx were
used as a criteria for refinement/derefinement; and in (d) the second of the dualmesh in which
the emission Eq. (34) was solved and gradients Φm were used as a criteria for refinement/
derefinement. The meshes were globally refined using the regular subdivision at the first
iterations. In (b) and (c), regular elements of the subdivision level zero or non-regular elements
of the subdivision level one are visible around the opposite side of the illuminated position,
illustrating that small portions of the meshes were derefined.
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Fig. 8.
Isosurface plots for amplitude and phase of Φx and Φm in the single- and dual–mesh schemes
using the fifth refined/derefined meshes where (a)–(d) are results from the single-mesh scheme,
and (e)–(h) are results from the dual-mesh scheme. The figures shown are the plots of (a)
log10|Φx|, (b) phase[Φx], (c) log10|Φm|, and (d) phase[Φm], (e) log10|Φx|, (f) phase[Φx], (g)
log10|Φm|, and (h) phase[Φm].
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Fig. 9.
Time required for finite element assembly in single-mesh (S) and dual-mesh (D) scheme: (a)
assembly times with respect to the number of elements, (b) the number of disjoint tetrahedron
pieces generated by FINT with respect to the number of elements, and (c) the assembly time
with respect to the number of the tetrahedron pieces obtained by FINT. X andM mean the
excitation field and the emission field, respectively. X +M indicates that elements and times
are counted by adding the counts from X and from M.
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Fig. 10.
Final forward and parameter meshes obtained from refinements of the initial coarse mesh
shown in (a) through 100 Gauss–Newton iterations where (b) and (c) show the final forward
and parameter meshes, respectively.

Lee et al. Page 28

J Comput Phys. Author manuscript; available in PMC 2008 August 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 11.
Reconstructed and actual fluorescent targets in slice and isosurface plot, where (a) and (b) show
reconstructed target while (c) and (d) show actual target. The isosurface represents FWHM
(50% of the maximum contour levels).
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Fig. 12.
The variations in the number of elements and nodes in the forward and the parameter mesh
with respect to the number of the iterative reconstructions performed.
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