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Abstract

Inertio-gravity mode and Rossby mode dispersion properties are examined for dis-
cretizations of the linearized rotating shallow water equations on a regular hexagonal
C-grid in planar geometry. It is shown that spurious non-zero Rossby mode frequen-
cies found by previous authors in the f -plane case can be avoided by an appropriate
discretization of the Coriolis terms. Three generalizations of this discretization that
conserve energy even for non-constant Coriolis parameter are presented. A quasi-
geostrophic β-plane analysis is carried out to investigate the Rossby mode dispersion
properties of these three schemes. The Rossby mode dispersion relation is found to
have two branches. The primary branch modes are good approximations, in terms of
both structure and frequency, to corresponding modes of the continuous governing
equations, and offer some improvements over a quadrilateral C-grid scheme. The
secondary branch modes have vorticity structures approximating those of small-
scale modes of the continuous governing equations, suggesting that the hexagonal
C-grid might have an advantage in terms of resolving extra Rossby modes; how-
ever, the frequencies of the secondary branch Rossby modes are much smaller than
those of the corresponding continuous modes, so this potential advantage is not
fully realized.

1 Introduction

Geodesic grids, obtained by iterative refinement of a parent icosahedron, are
potentially attractive for the horizontal discretization of global atmospheric
models because they provide a nearly homogeneous and isotropic coverage of
the sphere [27,19,3,12,9,22,21,8,18,2,13]. Several groups are now using such
grids for complex weather and climate models [17,11,20]. There are essentially
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two types of geodesic grid, based either on a triangular refinement of the
icosahedron, or on its dual comprised of hexagons and (always exactly 12)
pentagons.

Despite growing interest, the theoretical understanding of numerical methods
on geodesic grids is rather less developed than it is for Cartesian or longitude-
latitude quadrilateral grids. One set of issues involves the numerical wave
dispersion properties and how accurately they capture the wave dispersion
properties of the continuous governing equations. For quadrilateral grids, a
C-grid staggering, in which the mass variable is stored at cell centres and the
normal component of the velocity is stored at cells edges, captures inertio-
gravity wave propagation and hence geostrophic adjustment well provided the
Rossby radius is well resolved [1,16,6]; an analogous C-grid staggering might
be expected to work well on triangular or hexagonal grids. However, the ratio
of number of degrees of freedom in the wind field to number of degrees of
freedom in the mass field depends on the grid structure, leading to concerns
that non-quadrilateral grids might give rise to computational modes that do
not propagate or are unphysical in some other way [10].

Ničković et al. [14] analysed the wave dispersion properties under the f -plane
approximation (that is, assuming planar geometry and constant Coriolis pa-
rameter f) for the linearized shallow water equations on hexagonal grids with
several alternative staggerings. For a C-grid staggering they found a numer-
ical dispersion relation with four branches, two corresponding to eastward
and westward inertio-gravity modes, and two corresponding to geostrophic or
Rossby modes. This may be contrasted with the quadrilateral grid numerical
dispersion relation, which has only three branches, corresponding to eastward
and westward inertio-gravity modes and a single Rossby mode branch. The
extra Rossby mode branch found for the hexagonal grid might be considered
an advantage, given that in most practical applications the Rossby modes are
of greater interest than the inertio-gravity modes. However, it is necessary
to check that the extra Rossby modes really are approximations to physical
Rossby modes and not unphysical artefacts of the discretization. In fact both
Rossby mode branches found by [14] have the undesirable property of having
non-zero frequency, whereas the f -plane Rossby mode frequency for the con-
tinuous equations is identically zero. Thus the hexagonal C-grid would seem
to have a serious drawback in terms of its wave propagation characteristics.

This drawback can be overcome by using a ‘skewed’ variant of the C-grid with
fewer velocity degrees of freedom [15,14], but at the price of sacrificing the
isotropy of the grid. The purpose of the present paper is to revisit numerical
wave propagation on the standard, isotropic, hexagonal C-grid. On a C-grid
of any structure, some spatial averaging is unavoidable in the Coriolis terms;
however, there is some choice available both in the stencil for the averaging
and in the evaluation and weighting of the Coriolis parameter, and numerical
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Rossby mode propagation can be sensitive to these details [24,25,4,23]. In sec-
tion 2 it will be shown that an appropriate discretization of the Coriolis terms
can remove the unphysical non-zero Rossby mode frequencies on the f -plane
hexagonal C-grid found by [14]. In section 3, possible generalizations of this
discretization to the case of non-constant f are considered. Three alternatives
that conserve energy are presented. In section 4 a quasigeostrophic β-plane
analysis is carried out to obtain the Rossby mode dispersion relations for
these three energy-conserving schemes. These theoretical dispersion relations
are compared with direct numerical calculations of normal mode frequencies
in section 5. Section 6 discusses in some detail the extra Rossby mode branch
and the extent to which these modes approximate physical solutions of the
continous governing equations.

2 f-plane dispersion relation

It is convenient to work in terms of coordinate directions and velocity compo-
nents normal to the edges of the hexagonal grid. Let

x1 = x, x2 =

√
3

2
y − 1

2
x, x3 = −

√
3

2
y − 1

2
x, (1)

where x and y are the usual Cartesian coordinates. Let x̂1 = ∇x1, x̂2 = ∇x2,
x̂3 = ∇x3 be the corresponding unit vectors, and let

uj = u.x̂j , j = 1, 2, 3, (2)

be the velocity components in these directions (see Fig. 1). An important
identity in this framework is

x̂1 + x̂2 + x̂3 = 0, (3)

implying, among other things, that

∂x1
ψ + ∂x2

ψ + ∂x3
ψ = 0, (4)

where ∂xj
= x̂j.∇. (Here, and later, ψ will stand for an arbitrary field either

in the continuous equations or on the grid.)

The continuous shallow water equations, linearized about a resting state with
mean geopotential Φ0, then become [14]

∂tΦ +
2

3
Φ0 (∂x1

u1 + ∂x2
u2 + ∂x3

u3) = 0, (5)
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Fig. 1. Schematic showing the hexagonal C-grid configuration and the coordinate
systems used in this paper. Filled circles indicate the locations of the Φ points, open
circles u1 points, triangles u2 points, and squares u3 points.

∂tu1 −
f√
3

(u2 − u3) + ∂x1
Φ = 0, (6)

∂tu2 −
f√
3

(u3 − u1) + ∂x2
Φ = 0, (7)

∂tu3 −
f√
3

(u1 − u2) + ∂x3
Φ = 0, (8)

where Φ is the geopotential perturbation. In this section f will be taken to be
a constant f0; in later sections a spatial variation of f will be allowed.

A couple of symmetry properties of these equations are worth noting. First,
equations (7) and (8) can be obtained from (6) by cyclic permutations of the
indices (1, 2, 3). Second, in (6), terms involving u2 appear with opposite sign
to terms involving u3, etc. Analogous properties hold throughout all of the
derivations below. These provide valuable checks on the somewhat lengthy
algebra.

These equations have an extra degree of freedom compared with their ana-
logues in Cartesian coordinates. We should therefore expect them to satisfy
some constraint, otherwise they might support spurious solutions associated
with the extra degree of freedom. From the definition of the velocity compo-
nents and unit vectors

u1 + u2 + u3 = u. (x̂1 + x̂2 + x̂3) = 0. (9)

4



Adding (6), (7) and (8) shows that

∂t (u1 + u2 + u3) = 0, (10)

so that the constraint (9) is maintained provided it is satisfied initially.

The governing equations are now discretized in space on a hexagonal C-grid;
see Fig. 1. The distance between neighbouring Φ points is d. To begin with
we review the analysis for the scheme discussed by [14]:

∂tΦ +
2

3
Φ0 (δ1u1 + δ2u2 + δ3u3) = 0, (11)

∂tu1 −
f0√
3

(
u2

3 − u3
2
)

+ δ1Φ = 0, (12)

∂tu2 −
f0√
3

(
u3

1 − u1
3
)

+ δ2Φ = 0, (13)

∂tu3 −
f0√
3

(
u1

2 − u2
1
)

+ δ3Φ = 0. (14)

Here, δj is the centred, second-order, two-point finite difference approximation

to ∂xj
, and (.)

j
is the two-point average in the xj direction.

If the domain is periodic or infinite in each direction then the discrete equations
will support solutions proportional to exp{i(k.x−ωt}, where k = (k, l) is the
wave vector and ω is the frequency. For such solutions, we may replace ∂t by
−iω, ui

j by cjui and δjΦ by 2isjΦ/d in (11)-(14), where

cj = cos (kjd/2) , (15)

sj = sin (kjd/2) , (16)

with kj = k.x̂j . Thus,

−iωΦ +
4i

3d
Φ0 (u1s1 + u2s2 + u3s3) = 0, (17)

−iωu1 −
f0√
3

(u2c3 − u3c2) +
2is1

d
Φ = 0, (18)

−iωu2 −
f0√
3

(u3c1 − u1c3) +
2is2

d
Φ = 0, (19)

−iωu3 −
f0√
3

(u1c2 − u2c1) +
2is3

d
Φ = 0. (20)
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Then, eliminating u1, u2 and u3 and finally cancelling Φ (or, equivalently,
demanding that the determinant of this 4 × 4 linear system should vanish)
leads to the dispersion relation for the discrete equations

ω4 − ω2

{
f 2

0

3

(
c2
1
+ c2

2
+ c2

3

)
+

8Φ0

3d2

(
s2

1
+ s2

2
+ s2

3

)}

+
8Φ0f

2

0

9d2
(s1c1 + s2c2 + s3c3)

2 =0. (21)

As discussed by [14], this has four roots, two corresponding to eastward and
westward propagating inertio-gravity modes, and two corresponding to “geo-
strophic” modes. In the limit of small wavenumber |k| d ≪ 1 we have cj ∼ 1,
2sj/d ∼ kj, (8/3d2) (s2

1
+ s2

2
+ s2

3
) ∼ |k|2, and s1c1 +s2c2 +s3c3 ∼ 0. Then (21)

becomes

ω4 − ω2
{
f 2

0
+ Φ0 |k|2

}
≈ 0, (22)

giving the correct frequencies for inertio-gravity modes

ω2 ≈ f 2

0
+ Φ0 |k|2 (23)

and the geostrophic modes (ω ≈ 0). For finite |k| d the factor (c2
1
+ c2

2
+ c2

3
) /3

is reduced below 1, leading to a reduction of the Coriolis effect on inertio-
gravity modes that is well known for the quadrilateral C-grid. More impor-
tantly, however, the last term in (21) does not generally vanish, so the geo-
strophic modes must have non-zero frequency. Moreover, as shown by [14],
this frequency is not small but can be of order f0.

For a quadrilateral C-grid, [23] found that improved Rossby mode behaviour
could be obtained by averaging u to Φ points before picking up the Coriolis
factor and averaging to v points, and averaging v to Φ points before picking
up the Coriolis factor and averaging to u points. Seeking a hexagonal grid
analogue of this f -at-Φ-point scheme suggests an alternative to the scheme
analysed by [14] in which the contributions to the tangential velocity at each
cell edge are obtained by averaging over four neighbours rather than two:

∂tu1 −
f0√
3

(
u2

2 1 − u3
3 1
)

+ δ1Φ = 0, (24)

∂tu2 −
f0√
3

(
u3

3 2 − u1
1 2
)

+ δ2Φ = 0, (25)

∂tu3 −
f0√
3

(
u1

1 3 − u2
2 3
)

+ δ3Φ = 0. (26)
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Here ψ
i j

is shorthand for ψ
i
j

. (Note, also, that averages in different directions
commute with each other and also with finite difference derivatives.) The Φ
equation (11) remains unchanged.

The dispersion analysis proceeds exactly as for the previous scheme, except
that c1 is replaced by c2c3, c2 by c3c1, and c3 by c1c2 throughout. Unfortunately
the resulting dispersion relation still has a non-zero coefficient of ω0 so the
scheme still supports geostrophic modes of non-zero frequency.

A third scheme can be obtained by taking 2/3 times (24)-(26) plus 1/3 times
(12)-(14):

∂tu1 −
f0√
3

(
ũ2

3 − ũ3

2
)

+ δ1Φ = 0, (27)

∂tu2 −
f0√
3

(
ũ3

1 − ũ1

3
)

+ δ2Φ = 0, (28)

∂tu3 −
f0√
3

(
ũ1

2 − ũ2

1
)

+ δ3Φ = 0. (29)

The notation ψ̃
1

to stand for
(
2ψ

2 3

+ ψ
1
)
/3, along with the obvious permu-

tations, will be useful throughout the rest of this paper. Again the Φ equation
(11) remains unchanged.

It can be shown that this new averaging operator satisfies the following iden-
tity:

δ1 ψ̃
1

+ δ2 ψ̃
2

+ δ3 ψ̃
3

= 0. (30)

This is the analogue of the continuous equation identity (4), suggesting that

(̃.) is a natural averaging operator on the hexagonal C-grid.

Now the dispersion analysis proceeds exactly as for the first scheme except
that c1 is replaced by a1 = (2c2c3 + c1)/3, c2 by a2 = (2c3c1 + c2)/3, and c3 by
a3 = (2c1c2 + c3)/3 throughout. In this case the coefficient of ω0 is found to
vanish on account of the identity

s1a1 + s2a2 + s3a3 = 0, (31)

which can be derived using standard trigonometric identities starting from the
fact that k1 + k2 + k3 = 0, or by substituting wavelike solutions into (30).
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The resulting dispersion relation is

ω4 − ω2

{
f 2

0

3

(
a2

1
+ a2

2
+ a2

3

)
+

8Φ0

3d2

(
s2

1
+ s2

2
+ s2

3

)}
= 0. (32)

As for the previous schemes, this gives the correct dispersion relation in the
limit |k| d ≪ 1, but, unlike them, it always gives frequency exactly zero for
the geostrophic modes.

Figure 2 shows the exact inertio-gravity mode dispersion relation and the cor-
responding numerical inertio-gravity mode dispersion relations for the scheme
analysed by [14] and the new scheme (27)-(29) (with (11)) analysed here. The
parameters have been chosen to give a well-resolved Rossby radius. The nu-
merical dispersion relations are very nearly isotropic, and the two numerical
schemes give very similar results. Wave frequencies are well approximated for
small wavenumbers but are artificially slowed as the finite difference deriva-
tives become less accurate for large wavenumbers. Also shown is the dispersion
relation for the geostrophic modes for the scheme analysed by [14]. For the
shortest resolved wavelengths the frequencies are close to f0/2.

Figure 3 shows analogous results for a case with poorly resolved Rossby radius.
Both numerical schemes accurately capture the inertio-gravity mode frequen-
cies for small wavenumbers, but give an unrealistic decrease of frequency with
increasing wavenumber due to the averaging of the Coriolis terms, which dom-
inate pressure gradients in this parameter regime. This decrease is worse for
the new scheme, consistent with the larger stencil used to average the Corio-
lis terms. In this regime too, the geostrophic modes of the [14] scheme have
maximum frequency close to f0/2.

3 Energy conserving generalizations of the Coriolis term discretiza-

tion

The Coriolis force acts normal to the flow and therefore does no work, so the
Coriolis terms conserve energy. It is highly desirable that a numerical scheme
should retain an analogous property. On an f -plane the Coriolis terms in (27)-
(29) do have this property, in other words, if we take the sum over all grid
points of u1 times (27) plus u2 times (28) plus u3 times (29) to form a kinetic
energy equation we find that all Coriolis terms cancel.

We wish to extend this result to allow for arbitrary spatial variations in f ;
we do not restrict attention to the case f = f(y) because we wish to consider
arbitrary orientations of the grid relative to the northward direction. We have
some freedom in whether we choose to multiply by f before averaging (e.g.
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Fig. 2. Values of ω/f0 versus kd and ld for continuous and discrete dispersion rela-
tions. Top left: inertio-gravity modes for the continuous equations. Top right: iner-
tio-gravity modes for the scheme analysed by [14]. Bottom left: inertio-gravity modes
for the new scheme analysed here. Bottom right: geostrophic modes for the scheme
analysed by [14]. The hexagonal region shows the range of resolvable wavenumbers
on the hexagonal grid. The parameters used are d = 105 m, Φ0 = 105 m2s−2, and
f0 = 10−4 s−1, implying a resolution factor d/λ = 0.0316 where λ =

√
Φ0/f0 is the

Rossby radius.

f̃u2

3

), after averaging (e.g. fũ2

3), or at an intermediate stage in the averaging
process; these options are all equivalent when f is constant, but not when it
varies.

We require that all terms proportional to u1u2 that arise from u1 times the u1

equation should cancel with corresponding terms from u2 times the u2 equa-
tion, etc. By considering the symmetries of the terms involved, the following
three schemes are seen to conserve energy without introducing a preferred
direction in the discretization:

Scheme (i): fu2 at u1 points is discretized as
(
4fu2

2
1

+ fu2
3 + fu2

3

)
/6, etc;

Scheme (ii): fu2 at u1 points is discretized as
(
fũ2

3 + f̃u2

3
)
/2, etc.
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Fig. 3. As in Fig. 2 except that Φ0 is reduced to 10m2s−2, implying d/λ = 3.16.

Scheme (iii): fu2 at u1 points is discretized as
(
4fu2

1
2

+ fu2
3 + fu2

3

)
/6, etc;

(We could also take any linear combination of these three). Scheme (i) is the
most similar in form to the f -at-Φ-points discretization discussed by [23], since
the f in its first term is indeed evaluated at a Φ point.

Finally, for completeness, note that the other terms in the spatial discretization
are also energy conserving: upon taking 2/3 of Φ0u1 times (27) plus Φ0u2 times
(28) plus Φ0u3 times (29) and adding to Φ times (11) and summing over all
grid cells, we find that all contributions from terms involving Φ times uj cancel,
implying zero tendency of the total energy.

4 Quasigeostrophic β-plane dispersion relation

In order to understand the properties of the two branches of geostrophic or
Rossby modes, and determine whether they are approximations to physical
modes or merely numerical artefacts, it is necessary to compare them with
Rossby mode solutions of the continuous equations when there is a β-effect,
i.e. a spatial variation in f , so that the Rossby modes are non-degenerate.
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However, if f is allowed to vary then (5)-(8) no longer support exact wavelike
solutions proportional to exp{i(k.x − ωt}. Progress can be made, in both
the continuous and discrete cases, by making the quasigeostrophic β-plane
approximation [26,5,7].

On the hexagonal C-grid there are some additional mathematical complica-
tions and subtleties linked to the extra degree of freedom and the associated
extra Rossby mode branch. The derivation is therefore given below in some
detail. We consider the three energy conserving schemes proposed in section 3,
starting with scheme (i).

4.1 Scheme (i)

For scheme (i) the spatially discretized momentum equations become

∂tu1 −
1

6
√

3

{(
4fu2

2
1

+ fu2
3 + fu2

3

)
−
(
4fu3

3
1

+ fu3
2 + fu3

2

)}

+δ1Φ = 0, (33)

∂tu2 −
1

6
√

3

{(
4fu3

3
2

+ fu3
1 + fu3

1

)
−
(
4fu1

1
2

+ fu1
3 + fu1

3

)}

+δ2Φ = 0, (34)

∂tu3 −
1

6
√

3

{(
4fu1

1
3

+ fu1
2 + fu1

2

)
−
(
4fu2

2
3

+ fu2
1 + fu2

1

)}

+δ3Φ = 0. (35)

Now let f = f0 + f ′, where f0 is constant and f ′ = β.x has a constant
spatial gradient β = (α, β). (Retaining both components of β will allow us
to investigate the effects of changing the alignment of the grid relative to
the northward direction.) Assume that variations in f ′ on the spatial scale
of interest L are much smaller than f0, i.e. L|β| ≪ f0, and that the flow
evolves on a timescale much longer than 1/f0, i.e. ∂t ≪ f0. Together with the
assumption |Φ| ≪ Φ0, which we already made in linearizing the equations,
these are the standard assumptions for quasigeostrophic β-plane shallow water
theory.

Under these assumptions the leading terms in (33)-(35) define the geostrophic
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velocity. We will write

uj = ug j + ua j , (36)

where ug j is the geostrophic component and ua j is the ageostrophic compo-
nent, but then drop the subscript g in what follows to reduce the clutter of
symbols. The leading terms in (33)-(35) are then

− f0√
3

(
ũ2

3 − ũ3

2
)

+ δ1Φ = 0, (37)

− f0√
3

(
ũ3

1 − ũ1

3
)

+ δ2Φ = 0, (38)

− f0√
3

(
ũ1

2 − ũ2

1
)

+ δ3Φ = 0. (39)

An important point is that this system, considered as a set of equations for u1,
u2 and u3 in terms of Φ, is singular and so has a solution only if a solvability

condition is satisfied. The solvability condition can be found by applying (̃.)
1

to (37), (̃.)
2

to (38), and (̃.)
3

to (39), and summing to obtain

δ1 Φ̃
1

+ δ2 Φ̃
2

+ δ3 Φ̃
3

= 0. (40)

By (30), this is indeed satisfied, so there is a solution for the geostrophic flow.

Note that the use of the averaging operator (̃.) as the basis for the discretiza-
tion of the Coriolis terms is crucial here. The solvability condition arising
with other averaging operators would not be satisfied. This is consistent with
the existence of geostrophic mode frequencies of order f0 so that the quasi-
geostrophic assumption ∂t ≪ f0 is not satisfied for other averaging operators.

Because the system (37)-(39) is singular, its solution (if it exists) is non-
unique. For future reference, we note that, for wavelike solutions proportional
to exp{i(k.x − ωt)}, the solution is




u1

u2

u3




=
2i

f0d
√

3








−p1

−p2

−p3




Φ +




a1

a2

a3



µ





, (41)

where
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p1 = s2/a3 − s3/a2, (42)

p2 = s3/a1 − s1/a3, (43)

p3 = s1/a2 − s2/a1, (44)

and µ is an arbitrary complex number times exp{i(k.x−ωt)}, making explicit
the non-uniqueness.

The usual approach in quasigeostrophic theory (both for the continuous equa-
tions and for the discrete equations on quadrilateral grids) is to determine the
time evolution of the geostrophic flow by going to next order in the momentum
equations, forming the vorticity equation, and eliminating the ageostrophic
divergence via the mass continuity equation. In the present case we have the
additional unknown µ and so we will require an additional constraint to deter-
mine the solution. This extra constraint will come from the solvability condi-
tion for the ageostrophic flow at next order, leading to two coupled equations
for the two unknowns ω and µ/Φ.

At next order the discrete momentum equations are

∂tu1 −
f0√
3

(
ũa 2

3 − ũa3

2
)

− 1

6
√

3

{(
4f ′u2

2
1

+ f ′u2
3 + f ′u2

3

)

−
(
4f ′u3

3
1

+ f ′u3
2 + f ′u3

2

)}
= 0, (45)

∂tu2 −
f0√
3

(
ũa 3

1 − ũa1

3
)

− 1

6
√

3

{(
4f ′u3

3
2

+ f ′u3
1 + f ′u3

1

)

−
(
4f ′u1

1
2

+ f ′u1
3 + f ′u1

3

)}
= 0, (46)

∂tu3 −
f0√
3

(
ũa 1

2 − ũa2

1
)

− 1

6
√

3

{(
4f ′u1

1
3

+ f ′u1
2 + f ′u1

2

)

−
(
4f ′u2

2
3

+ f ′u2
1 + f ′u2

1

)}
= 0. (47)
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By repeated application in different directions of the one-dimensional identity

ab = ab+
1

4
∆a∆b (48)

for any two fields a and b, where overbar indicates a two point average and
∆ indicates a two-point difference, and making use of the fact that second
differences of f ′ vanish because its gradient is constant, we can rewrite the
terms involving f ′. For example,

4f ′u2
2
1

+ f ′u2
3 + f ′u2

3

= 6f ′ũ2

3 + d2

(
β1δ1u2

2 +
1

4
β3δ3u2

)
, (49)

etc., where βj = δjf
′ = x̂j .∇f ′. Equations (45)-(47) then become

∂tu1 −
f0√
3

(
ũa 2

3 − ũa 3

2
)
− f ′

√
3

(
ũ2

3 − ũ3

2
)
− d2

6
√

3
B1 = 0, (50)

∂tu2 −
f0√
3

(
ũa 3

1 − ũa 1

3
)
− f ′

√
3

(
ũ3

1 − ũ1

3
)
− d2

6
√

3
B2 = 0, (51)

∂tu3 −
f0√
3

(
ũa 1

2 − ũa 2

1
)
− f ′

√
3

(
ũ1

2 − ũ2

1
)
− d2

6
√

3
B3 = 0, (52)

where

B1 =
(
β1δ1u2

2 +
1

4
β3δ3u2

)
−
(
β1δ1u3

3 +
1

4
β2δ2u3

)
, (53)

B2 =
(
β2δ2u3

3 +
1

4
β1δ1u3

)
−
(
β2δ2u1

1 +
1

4
β3δ3u1

)
, (54)

B3 =
(
β3δ3u1

1 +
1

4
β2δ2u1

)
−
(
β3δ3u2

2 +
1

4
β1δ1u2

)
. (55)

First we find the solvability condition for the ageostrophic flow. Take (̃.)
1

of

(50) plus (̃.)
2

of (51) plus (̃.)
3

of (52) to obtain

∂t

(
ũ1

1 + ũ2

2 + ũ3

3
)

− 1√
3

(
f̃ ′ũ2

3
1

− f̃ ′ũ3

2
1

+ f̃ ′ũ3

1
2

− f̃ ′ũ1

3
2

+ f̃ ′ũ1

2
3

− f̃ ′ũ2

1
3
)

− d2

6
√

3

(
B̃1

1

+ B̃2

2

+ B̃3

3
)

= 0. (56)
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Using (48), the terms involving f ′ may be simplified. For example

6f̃ ′ψ
1

= 6f ′ ψ̃
1

+ d2T1(ψ), (57)

where the operator T1 is defined by

T1(ψ) =
(
β3δ3ψ

2

+ β2δ2ψ
3

+
1

2
β1δ1ψ

)
. (58)

Analogous relations hold for f̃ ′ψ
2

and f̃ ′ψ
3

with T2 and T3 defined by cyclic
permutation of indices in (58). The solvability condition (56) becomes

∂t

(
ũ1

1 + ũ2

2 + ũ3

3
)

− d2

6
√

3

{
T1

(
ũ2

3 − ũ3

2
)

+ T2

(
ũ3

1 − ũ1

3
)

+ T3

(
ũ1

2 − ũ2

1
)}

− d2

6
√

3

(
B̃1

1

+ B̃2

2

+ B̃3

3
)

= 0. (59)

Finally, substitute from (37)-(39) to obtain

∂t

(
ũ1

1 + ũ2

2 + ũ3

3
)

− d2

6f0

{T1 (δ1Φ) + T2 (δ2Φ) + T3 (δ3Φ)}

− d2

6
√

3

(
B̃1

1

+ B̃2

2

+ B̃3

3
)

= 0. (60)

Now turn to the mass continuity equation:

∂tΦ +
2Φ0

3
{δ1(u1 + ua1) + δ2(u2 + ua2) + δ3(u3 + ua3)} = 0. (61)

We must first establish a discrete analogue of the condition that the geostrophic

flow is non-divergent. Take (̃.)
2

of (39) minus (̃.)
3

of (38) to obtain

− f0√
3

(
ũ1

2 2 − ũ2

1 2 − ũ3

1 3 + ũ1

3 3
)

+ δ3 Φ̃
2 − δ2 Φ̃

3

= 0, (62)

with two further equations obtained by cyclic permutation of indices

− f0√
3

(
ũ2

3 3 − ũ3

2 3 − ũ1

2 1 + ũ2

1 1
)

+ δ1 Φ̃
3 − δ3 Φ̃

1

= 0, (63)
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− f0√
3

(
ũ3

1 1 − ũ1

3 1 − ũ2

3 2 + ũ3

2 2
)

+ δ2 Φ̃
1 − δ1 Φ̃

2

= 0. (64)

Now take δ1 of (62) plus δ2 of (63) plus δ3 of (64); the Φ terms cancel leaving

δ1
(
ũ1

2 2 − ũ2

1 2 − ũ3

1 3 + ũ1

3 3
)

+

δ2
(
ũ2

3 3 − ũ3

2 3 − ũ1

2 1 + ũ2

1 1
)

+

δ3
(
ũ3

1 1 − ũ1

3 1 − ũ2

3 2 + ũ3

2 2
)

=0. (65)

Then use the identity (30) with ψ equal to ũ1

1, ũ2

2 and ũ3

3 in turn to obtain

δ1
(
ũ1

1 1 + ũ1

2 2 + ũ1

3 3
)

+ δ2
(
ũ2

1 1 + ũ2

2 2 + ũ2

3 3
)

+

δ3
(
ũ3

1 1 + ũ3

2 2 + ũ3

3 3
)

= 0. (66)

This is the discrete analogue of the condition that the geostrophic flow is non-
divergent. We can therefore eliminate the divergence of the geostrophic flow
from the mass continuity equation (61) to obtain

∂t

(
Φ̃

1 1

+ Φ̃
2 2

+ Φ̃
3 3
)

+

2Φ0

3

{
δ1
(
ũa1

1 1 + ũa 1

2 2 + ũa 1

3 3
)

+

δ2
(
ũa 2

1 1 + ũa 2

2 2 + ũa 2

3 3
)

+

δ3
(
ũa3

1 1 + ũa 3

2 2 + ũa 3

3 3
)}

= 0. (67)

Now we form the vorticity equation, which can then be combined with the mass

continuity equation to eliminate the ageostrophic velocity. Take (̃.)
2

applied

to (52) minus (̃.)
3

applied to (51) to obtain

∂t

(
ũ3

2 − ũ2

3
)
− f0√

3

(
ũa 1

2 2 − ũa2

1 2 − ũa 3

1 3 + ũa 1

3 3
)

− 1√
3

(
f̃ ′ũ1

2
2

− f̃ ′ũ2

1
2

− f̃ ′ũ3

1
3

+ f̃ ′ũ1

3
3
)
− d2

6
√

3

(
B̃3

2 − B̃2

3
)

=0. (68)

Substitute for the first term using (37), use (57) to simplify the terms in f ′, and
use (38) and (39) to replace the resulting terms T2(ũ1

2−ũ2

1) and T3(ũ3

1−ũ1

3),
to obtain
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∂tδ1Φ +
f 2

0

3

(
ũa 1

2 2 − ũa2

1 2 − ũa 3

1 3 + ũa 1

3 3
)

+
f0f

′

3

(
ũ1

2 2 − ũ2

1 2 − ũ3

1 3 + ũ1

3 3
)

+
d2

6
√

3
{T2 (δ3Φ) − T3 (δ2Φ)}

+
d2f0

18

(
B̃3

2 − B̃2

3
)

= 0. (69)

In an analogous way, or by permutation of indices, we also have

∂tδ2Φ +
f 2

0

3

(
ũa 2

3 3 − ũa3

2 3 − ũa 1

2 1 + ũa 2

1 1
)

+
f0f

′

3

(
ũ2

3 3 − ũ3

2 3 − ũ1

2 1 + ũ2

1 1
)

+
d2

6
√

3
{T3 (δ1Φ) − T1 (δ3Φ)}

+
d2f0

18

(
B̃1

3 − B̃3

1
)

= 0 (70)

and

∂tδ3Φ +
f 2

0

3

(
ũa 3

1 1 − ũa1

3 1 − ũa 2

3 2 + ũa 3

2 2
)

+
f0f

′

3

(
ũ3

1 1 − ũ1

3 1 − ũ2

3 2 + ũ3

2 2
)

+
d2

6
√

3
{T1 (δ2Φ) − T2 (δ1Φ)}

+
d2f0

18

(
B̃2

1 − B̃1

2
)

= 0. (71)

Now take δ1(69)+δ2(70)+δ3(71) to form the vorticity equation. Use the iden-
tity (30) to rewrite the ageostrophic velocity terms, by analogy with the step
from (65) to (66), and hence eliminate them using the mass continuity equa-
tion (67). Using the fact that the operators δj commute with the operators
Tk, j, k = 1, 2, 3, we find that all terms involving Tk cancel, leaving

∂t

{
(δ1δ1Φ + δ2δ2Φ + δ3δ3Φ) − f 2

0

2Φ0

(
Φ̃

1 1

+ Φ̃
2 2

+ Φ̃
3 3
)}

+
f0

3

{
δ1
[
f ′

(
ũ1

2 2 − ũ2

1 2 − ũ3

1 3 + ũ1

3 3
)]

+δ2
[
f ′

(
ũ2

3 3 − ũ3

2 3 − ũ1

2 1 + ũ2

1 1
)]
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+δ3
[
f ′

(
ũ3

1 1 − ũ1

3 1 − ũ2

3 2 + ũ3

2 2
)]}

+
d2f0

18

{
δ1

(
B̃3

2 − B̃2

3
)

+ δ2

(
B̃1

3 − B̃3

1
)

+ δ3

(
B̃2

1 − B̃1

2
)}

= 0. (72)

Now use the one dimensional identitity

∆(ab) = (∆a)b+ a(∆b) (73)

to re-express the terms involving f ′, then use (65) to eliminate some of the
resulting terms and (37)-(39) to simplify the rest, to obtain

∂t

{
(δ1δ1Φ + δ2δ2Φ + δ3δ3Φ) − f 2

0

2Φ0

(
Φ̃1 1 + Φ̃2 2 + Φ̃3 3

)}

+
1√
3

{
β1

(
δ3Φ̃2 − δ2Φ̃3

)1

+ β2

(
δ1Φ̃3 − δ3Φ̃1

)2

+ β3

(
δ2Φ̃1 − δ1Φ̃2

)3
}

+
d2f0

18

{
δ1

(
B̃3

2 − B̃2

3
)

+ δ2

(
B̃1

3 − B̃3

1
)

+ δ3

(
B̃2

1 − B̃1

2
)}

= 0. (74)

We now have two equations, the solvability condition (60) and the vorticity
equation (74), that have constant coefficients. We can therefore seek solutions
proportional to exp{i(k.x − ωt)}, and use the fact that the solution is of
the form (41); for a given wave vector k the two equations determine the
two unknowns µ/Φ, which ties down the wave structure, and ω, the wave
frequency. Substituting (41) into (60) and simplifying leads to

ω(Aµ− RΦ) + SΦ +Mµ −NΦ = 0, (75)

while substituting (41) into (74) and simplifying leads to

ωWΦ − V Φ + PΦ −Qµ = 0, (76)

where

A =
1

d
√

3

(
a2

1
+ a2

2
+ a3

3

)
, (77)

R =
1

d
√

3
(a1p1 + a2p2 + a3p3) , (78)

S =
1

3
(s1t1 + s2t2 + s3t3) , (79)
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M =
1

9
{(a3b3 1 − a2b2 1) a1 + (a1b1 2 − a3b3 2) a2 + (a2b2 3 − a1b1 3) a3} ,(80)

N =
1

9
{(a3b3 1 − a2b2 1) p1 + (a1b1 2 − a3b3 2) p2 + (a2b2 3 − a1b1 3) p3} ,(81)

W =
4

d2

(
s2

1
+ s2

2
+ s2

3

)
+

f 2

0

2Φ0

(
a2

1
+ a2

2
+ a2

3

)
, (82)

V =
2

d
√

3
(β1c1q1 + β2c2q2 + β3c3q3) , (83)

P =
4

9
√

3d
{(q3b3 1 − q2b2 1) p1 + (q1b1 2 − q3b3 2) p2

+ (q2b2 3 − q1b1 3) p3} , (84)

Q =
4

9
√

3d
{(q3b3 1 − q2b2 1) a1 + (q1b1 2 − q3b3 2) a2

+ (q2b2 3 − q1b1 3) a3} , (85)

b1 2 = β1s1c2 + β3s3/4, (86)

t1 = β3s3c2 + β2s2c3 + β1s1/2 = b3 2 + b2 3, (87)

q1 = s2a3 − s3a2, (88)

with other bj k, tj and qj defined by cyclic permutation of indices.

Eliminating µ/Φ gives the dispersion relation, a quadratic in ω:

ω2AW + ω {A(P − V ) − RQ+MW} +M(P − V ) +Q(S −N)

= 0. (89)

The two roots for ω correspond to the two Rossby mode branches. It may be
verified that the coefficient of ω2 is independent of β, the coefficient of ω is
proportional to |β|, and the constant term is proportional to |β|2, implying
that both roots for ω are proportional to |β|, as one would hope for Rossby
modes. Note also that, because the spatial discretization is energy conserving,
the roots for ω must be real.
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4.2 Scheme (ii)

The derivation of the dispersion relation for scheme (ii) follows the same steps
and is very similar in detail to that for scheme (i). The only differences arise
in the terms involving f ′ and the way they are simplified. The dispersion
relation is found to take the same form as (89) provided we redefine four of
the coefficients:

M = 0, (90)

N =
1

18
{(a3t2 − a2t3) p1 + (a1t3 − a3t1) p2 + (a2t1 − a1t2) p3} , (91)

P =
2

9
√

3d
{(q3t2 − q2t3) p1 + (q1t3 − q3t1) p2 + (q2t1 − q1t2) p3} , (92)

Q =
2

9
√

3d
{(q3t2 − q2t3) a1 + (q1t3 − q3t1) a2 + (q2t1 − q1t2) a3} . (93)

4.3 Scheme (iii)

The derivation of the dispersion relation for scheme (iii) is again very similar
in detail to that for scheme (i). The dispersion relation is found to take the
same form as (89) provided we redefine the four coefficients M , N , P and Q
by replacing bi j by bj i throughout (80), (81), (84) and (85).

4.4 Results

It is useful first to check the behaviour of the numerical dispersion relation in
the well-resolved limit |k|d≪ 1. By examining how the different contributions
scale for small |k|d, the dominant contributions to the coefficients in (89) can
be identified; (89) becomes

Wω2 − V ω + C ≈ 0. (94)

where C = [−MV +Q(S−N)]/A is O ((|k|d)4). One of the roots, the primary
Rossby mode branch, is relatively large and is the same for all three schemes:

ω ≈ V

W
≈ (αl − βk)Φ0

f 2
0 + Φ0|k|2

. (95)
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The frequency clearly agrees with the continuous case in this well-resolved
limit; this is also evident from the central regions of the panels in Figs. 4, 5,
and 8 below. The other root, the secondary Rossby mode branch,

ω ≈ C

V
, (96)

is relatively small, scaling like O(|k|3d4); its mathematical form is rather com-
plicated and is different for each of the three schemes.

For arbitrary |k|d, motivated by the fact that the Rossby mode frequency for
the continuous equations goes to zero for wave vectors satisfying αl − βk =
0, we identify the primary branch of the numerical Rossby mode dispersion
relation as given by the “+” root in the formula

ω =
−b± sign(αl − βk)(b2 − 4ac)1/2

2a
(97)

and the secondary branch as given by the “-” root, where a = AW , b =
A(P − V ) − RQ+MW , and c = M(P − V ) +Q(S −N). The results below
justify this choice, confirming that the primary branch is indeed almost always
closer than the secondary branch to the continuous equation Rossby mode
frequency for that wave vector.

Figure 4 shows the quasigeostrophic Rossby mode dispersion relations for the
continuous equations and for the primary Rossby mode branch of the three
numerical schemes analysed above for a case with α = 0. All three schemes
are very accurate for small wavenumbers and show some artificial slowing for
larger wavenumbers. Scheme (i) is noticeably more accurate than the other
two, and scheme (ii) shows some anomalous behaviour for the very largest
resolvable wavenumbers.

Figure 5 shows analogous results when the coordinate system and grid are ro-
tated through 90o. At first glance the results are qualitatively very similar to
those in Fig. 4. Again, scheme (i) is noticeably more accurate than the other
two and scheme (ii) shows some anomalous behaviour for the largest resolv-
able wavenumbers. Similar results are also found for other rotation angles (not
shown). The fact that these numerical dispersion relations are almost insensi-
tive to grid orientation is an improvement over the corresponding behaviour
on a quadrilateral C-grid. In particular, for a quadrilateral C-grid aligned with
the north-south and east-west directions, short east-west wavelengths are sig-
nificantly retarded, with frequency going to zero for the shortest resolvable
east-west scales [23]. This is not the case for any of the hexagonal C-grid
schemes examined here; Rossby mode frequencies go to zero only when the
east-west component of the wave vector goes to zero, in agreement with the
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Fig. 4. Values of ω × 106 versus kd and ld for quasigeostrophic Rossby mode dis-
persion relations. Top left: continuous equations. Top right: scheme (i) primary
branch. Bottom left: scheme (ii) primary branch. Bottom right: scheme (iii) primary
branch. Contour values are 1, 2, and 5 times powers of 10. The parameters used are
d = 105 m, Φ0 = 105 m2s−2, f0 = 10−4 s−1, α = 0 s−1m−1, and β = 10−11 s−1m−1,
implying a resolution factor d/λ = 0.0316.

continuous dispersion relation. Thus, the hexagonal C-grid has better isotropy
properties and, for short east-west wavelengths on the primary Rossby mode
branch, better accuracy, than a quadrilateral C-grid.

An interesting feature of Fig. 5, however, is the fact that for all three schemes
the primary branch numerical Rossby mode frequency changes discontinuously
at ld = 0. More generally, a similar discontinuity occurs for all non-zero values
of α along the line αl − βk = 0 in wave vector space. From (97), it is clear
that the discontinuity occurs as the root of the quadratic corresponding to the
primary branch of the dispersion relation switches. Figure 6 shows several one-
dimensional sections through the numerical dispersion relation for scheme (i)
for the same case shown in Fig. 5. The discontinuity is almost unnoticeable for
smaller values of kd, but it becomes increasingly noticeable, and the numerical
dispersion relation becomes less accurate, for larger kd. Similar results are
found for other grid orientations (not shown). This figure also makes it clear
that the definition of the primary and secondary branches used here (97) is
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Fig. 5. As in Fig. 4, except that α = 10−11 s−1m−1 and β = 0 s−1m−1.

reasonable.

Figure 7 shows the dispersion relations for the secondary Rossby mode branch
of the three numerical schemes. All three schemes correctly give zero frequency
for kd = 0. However, they all appear to give unrealistic eastward propagation,
with ω < 0 for kd < 0 and ω > 0 for kd > 0. Typical magnitudes of the
frequencies are much smaller than for the primary branch. There are striking
differences between the three schemes, with the scheme (ii) and scheme (iii)
dispersion relations showing quite complex structure. For all three schemes,
the secondary branch dispersion relations are much more sensitive to grid
orientation than the primary branches (not shown). The secondary Rossby
mode branch is discussed in more detail in section 6

Figure 8 is like Fig. 4 but for a case with poorly resolved Rossby radius.
Although the C-grid is not expected to perform well in this parameter regime,
schemes (ii) and (iii) remain accurate for the small wavenumber part of the
spectrum and scheme (i) remains accurate for almost all of the spectrum.
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Fig. 6. Quasigeostrophic Rossby mode dispersion relations. Solid curves: con-
tinuous equations. Dashed curves: scheme (i) primary branch. Dotted curves:
scheme (i) secondary branch. Left hand panels, top to bottom: frequency versus
ld at kd = 1/4, 1/2 and 3/4 times kdmax = 4π/3 respectively. Right hand panels,
top to bottom: frequency versus kd at ld = 1/4, 1/2 and 3/4 times ldmax = 2π/

√
3

respectively. Note the different frequency scales on the different panels. Parameters
are the same as in Fig. 5.

5 Comparison with direct numerical calculation of normal modes

As a valuable check on the results of sections 2 and 4, the normal mode fre-
quencies for schemes (i)-(iii) can also be calculated directly via numerical im-
plementations of the schemes. Consider the linearized shallow water equations
in a Cartesian β-plane channel of width D: the channel extends infinitely in
the east-west direction with impermiable walls at the northern and southern
boundaries, and f = f0 + βy where y is the northward coordinate.

Because of the symmetry in the x-direction, this system has normal modes
proportional to exp(ikx). By making the f -plane approximation the approxi-
mate frequencies for the inertio-gravity modes of the continuous system can be
found. For the parameters used below this is an excellent approximation. Al-
ternatively, by making the quasigeostrophic approximation the approximate
frequencies for the Rossby modes of the continuous system can be found.
Again, for the parameters used below this is an excellent approximation.
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Fig. 7. Values of ω × 106 versus kd and ld for secondary branch of the numerical
quasigeostrophic Rossby mode dispersion relations. Top: scheme (i). Bottom left:
scheme (ii). Bottom right: scheme (iii). The parameters are the same as in Fig. 4.

We can also discretize this system using a hexagonal C-grid. Rows of hexagons
are aligned parallel to the channel, and the boundary condition v = 0 at the
northern and southern boundaries is approximated by setting the components
u2 and u3 to zero there. The normal mode frequencies of the discrete system
can be found by expressing the discrete equations in matrix form

−iωs = Ms, (98)

where s is the state vector comprising a list of all the u1, u2, u3 and Φ values,
and then finding the eigenvalues of M. The symmetry of the problem again
implies that normal modes will be proportional to exp(ikx). Specifying k and
taking out the exponential factor allows the problem to be reduced from two
dimensions to one (though keeping all the properties of the two dimensional
scheme) and greatly reducing the size of M. The matrix M can be constructed
numerically by repeated calls to a subroutine that calculates the tendencies
of u1, u2, u3 and Φ given their gridded values. This procedure gives the nor-
mal mode frequencies for the discrete, but otherwise unapproximated, channel
problem.
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Fig. 8. As in Fig. 4, except that Φ0 = 10m2s−2, implying d/λ = 3.16.

Finally, for comparison, approximate normal mode frequencies for the discrete
problem are given by finding the quantized values of the meridional component
l of the wave vector allowed by the boundary conditions and substituting
those, along with the specified k, into the f -plane discrete inertio-gravity mode
dispersion relation (the non-zero roots of (32)) and the quasigeostrophic β-
plane Rossby mode dispersion relation (89).

Figure 9 shows the results of these three calculations plotted together for
scheme (i). The inertio-gravity mode frequencies for the numerical scheme
are very accurate for small wavenumbers but are somewhat slowed for large
wavenumbers, in agreement with Fig. 2. (The inertio-gravity mode frequencies
in Fig. 9 correspond to a section kd = π/10, ld = (0, 2π/

√
3) in the top left

and bottom left panels of Fig. 2.) There is almost exact symmetry between
eastward and westward inertio-gravity modes.

The primary (ω < 0) Rossby mode branch for the numerical scheme is also
very accurate across the whole spectrum. (This branch corresponds to a sec-
tion kd = π/10, ld = (0, 2π/

√
3) in the top left and bottom left panels of

Fig. 4.) Interestingly, the largest relative errors occur around the middle of
the spectrum.
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Fig. 9. Comparison of continuous and numerical dispersion relations for a β-plane
channel, showing frequency versus meridional mode number, defined as the number
of zeros in the Φ field in a section across the channel. Diamonds correspond to the
continuous governing equations. Frequencies greater than 10−4 s−1 in magnitude
are inertio-gravity modes, obtained using the f -plane approximation. Frequencies
smaller than 10−4 s−1 in magnitude are Rossby modes, obtained using the quasi-
geostrophic β-plane approximation; the positive frequency Rossby mode branch
is computed using aliased wave vectors—see section 6. Crosses (×) correspond to
theoretical frequencies for scheme (i), given by the non-zero roots of (32) for iner-
tio-gravity modes and by (89) for Rossby modes. Plus (+) symbols are normal mode
frequencies for scheme (i) computed directly via the eigenvalue problem (98). Note
that plus and cross symbols overlay each other almost exactly. The parameters used
are d = 105 m, Φ0 = 105 m2s−2, f0 = 10−4 s−1, α = 0 s−1m−1, β = 10−11 s−1m−1,
and kd = π/10. For the direct normal mode calculation N = 30 rows of hexagons
were used giving a channel width 30d

√
3/2 ≈ 2.6 × 106 m.

The secondary Rossby mode branch for the numerical scheme has ω > 0, but
with |ω| significantly smaller than for the primary branch and with largest
|ω| for the largest mode numbers. (This branch corresponds to a section kd =
π/10, ld = (0, 2π/

√
3) in the top panel of Fig. 7.) The secondary Rossby mode

branch will be discussed further in section 6.
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For the inertio-gravity modes, the excellent agreement between the theoretical
frequencies for the numerical scheme and those calculated directly using (98)
provides a valuable check on the correctness of the calculations as well as the
accuracy of the f -plane approximation. For Rossby modes there is also excel-
lent agreement, but this is somewhat fortuitous. The theoretical frequencies
are calculated for a single Fourier mode of wave vector (k, l) in an infinite
or periodic domain, whereas the calculation (98) is for a channel. In order
for the two calculations to agree, the (k, l) Fourier mode must have the same
frequency as the (k,−l) mode, which it does, and the velocity structures of
the (k, l) and (k,−l) modes must allow the channel boundary condition to be
satisfied by a suitable superposition; however, a detailed examination of the
velocity structures shows that this is not the case for the Rossby modes, though
it is almost true for many modes. The effects are not noticeable for scheme (i),
but they are noticeable for scheme (ii) and are significant for scheme (iii) (see
below).

Figure 10 is similar to Fig. 9 but for scheme (ii). Again the inertio-gravity
modes are well captured by the scheme, though with some slowing at large
wavenumbers. The primary Rossby mode branch is quite accurately captured,
though there is significant slowing for large wavenumbers making it less accu-
rate than for scheme (i). As for scheme (i), the secondary Rossby mode branch
has ω > 0 with |ω| much smaller than for the primary branch; however, for
scheme (ii) the frequency does not vary monotonically with mode number.
For large mode numbers there is a small but noticeable discrepancy between
the theoretical numerical Rossby mode frequencies and those calculated using
(98) due to the channel boundary condition.

Figure 11 is similar to Fig. 9 but for scheme (iii). Once again the inertio-
gravity modes are well captured by the scheme, though with some slowing
at large wavenumbers. The primary Rossby mode branch is more accurate
than for scheme (ii) but less accurate than for scheme (i). The secondary
Rossby mode branch again has ω > 0, with |ω| much smaller than for the
primary branch modes. The effects of the channel boundary condition are
much greater for scheme (iii): for the secondary branch modes labelled with
smaller mode numbers there is now a significant discrepancy between the
theoretical numerical frequencies and those calculated using (98); also, three
negative frequency modes lie well away from the main dispersion curve.

6 The secondary Rossby mode branch

A key question is whether or not the modes in the secondary Rossby mode
branch are useful approximations to modes of the continuous equations, that
is, whether or not the extra degrees of freedom in the wind field translate, in
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Fig. 10. As in Fig. 9 but for scheme (ii).

effect, into extra resolution.

For a single field proportional to exp(ik.x) defined at Φ points (say) the re-
solvable wave vectors all lie within the hexagonal regions indicated in Figs. 2-5
and 7-8. Any field with a wave vector outside this region is aliased into the
hexagonal region. Specifically, a mode of wave vector k is indistinguishable,
on the grid, from one of wave vector k + k′ where

k′d = n1(0, 4π/
√

3) + n2(−2π,−2π/
√

3) + n3(2π,−2π/
√

3) (99)

for any integers n1, n2, n3.

Now consider fields with three components (u, v,Φ) required to describe shal-
low water flow. For any given k, the space of such fields is spanned by the
eastward gravity, westward gravity, and Rossby normal modes of the continu-
ous equations for that k. For k within the hexagonal region of resolvable wave
vectors, the eastward gravity, westward gravity, and primary branch Rossby
normal modes of the discrete equations are useful approximations to these
continuous normal modes. Therefore, if the secondary Rossby mode branch
is an approximation to anything physical, it must be to something with a k
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Fig. 11. As in Fig. 9 but for scheme (iii).

outside the hexagonal region.

This can be illustrated by considering the Rossby modes on the two branches
in the limit |k| → 0. The primary branch mode has µ/Φ → 0, and, since
the pj also tend to zero, by (41) the velocity field tends to zero. Thus the
mode consists of a constant Φ field and zero velocity field, consistent with
geostrophic balance. The secondary branch mode, however, has Φ/µ → 0 as
|k| → 0, and so has non-zero velocity but zero geopotential perturbation in
the limit. Since the aj all tend to 1, by (41) the three velocity components
u1, u2, u3 are all constant and equal in value. The velocity field is therefore like
that depicted in Fig. 12. The velocity field clearly has small scale structure,
even though k = 0. This is best illustrated by the vorticity field, defined at
the grid vertices, and indicated by the open and filled circles. This vorticity
pattern is consistent with that of a mode of large wavenumber; indeed there is
some ambiguity as several different wave vectors are possible, the most obvious
being kd = ±(0, 4π/

√
3), kd = ±(−2π,−2π/

√
3), or kd = ±(2π,−2π/

√
3),

that is, with wave crests aligned with rows of filled circles in Fig. 12 in one of
three possible orientations, parallel to x̂1, x̂2 or x̂3.

Similar arguments hold for wave vectors other than zero on the secondary
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Fig. 12. Schematic showing the small scale structure of the secondary branch Rossby
mode with k = 0. Filled circles indicate positive vorticity; open circles indicate
negative vorticity.

Rossby mode branch. Thus, in terms of their vorticity structures these modes
are plausible approximations to small-scale modes with wave vectors outside
the hexagonal region depicted in Figs. 2-5 and 7-8.

We now need to determine whether they are good approximations in terms
of their frequencies. For a mode with positive k, a negative value of ω corre-
sponds to westward propagation. The secondary branch Rossby modes have
positive ω > 0; we can interpret this as westward propagation only if we
assume that they represent small scale modes with k < 0. This suggests
we might be able to interpret the secondary branch Rossby mode propor-
tional to exp(ik.x) as representing a small-scale mode of aliased wave vector
k + k′ where k′d = (−2π,−2π/

√
3). The upper panels of Figs. 9, 10 and 11

show the continuous quasigeostrophic β-plane Rossby mode frequency at these
aliased wave vectors (diamonds) for comparison with the corresponding dis-
crete secondary branch Rossby mode frequencies (plus and cross symbols). For
schemes (i) and (ii) it is clear that the discrete Rossby mode frequencies vastly
underestimate the continuous Rossby mode frequencies, by at least an order of
magnitude and often much more. (Other choices for k′ do not improve this con-
clusion.) Moreover, for scheme (ii) the frequency does not vary monotonically
with l, implying that group velocity will have the wrong sign for part of the
spectrum. Thus, although the hexagonal C-grid is capable of resolving extra
small-scale vorticity features, these features will propagate much too slowly,
i.e. be excessively passive, and so cannot be expected to contribute additional
accuracy to numerical solutions of the governing equations. For scheme (iii)
the situation is only slightly better. About one third of the secondary Rossby
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mode branch has frequencies within a factor 10 of the continuous frequencies
for aliased wave vectors; however, the discrete frequencies are still too small
by at least a factor 6.

7 Conclusions

For a hexagonal C-grid discretization of the f -plane shallow water equations,
the spurious non-zero frequencies for geostrophic modes noted by previous
authors can be avoided by appropriate averaging of the Coriolis terms (27)-
(29). Three extensions of this averaging that conserve energy in the case of
spatially varying f have been presented (section 3).

As noted by previous authors, the discrete solution has two Rossby mode
branches, giving the same total number of Rossby modes as inertio-gravity
modes; this may be contrasted with the case of a quadrilateral C-grid which
gives a single Rossby mode branch and only half as many Rossby modes as
inertio-gravity modes. A heuristic argument for why this occurs is as follows.
On a C-grid the divergence is naturally calculated at Φ points, while vorticity
is naturally calculated at the grid vertices. For both the quadrilateral and
hexagonal C-grids, the number of Rossby modes is equal to the number of
vorticity degrees of freedom, while the number of inertio-gravity modes is
equal to the number of mass plus divergence degrees of freedom. (As an aside,
the same reasoning applies on a triangular C-grid, showing that the triangular
C-grid supports five times as many inertio-gravity modes as Rossby modes;
this might be considered a disadvantage of the triangular C-grid if the Rossby
modes are of the greatest physical interest.)

Another view of how the extra Rossby mode branch arises on the hexagonal
C-grid is as follows. For the continuous equations, quasigeostrophic theory
isolates the Rossby modes by assuming geostrophic balance at leading order,
thereby reducing the number of degrees of freedom at each point from three to
one. Similar reasoning applies on the quadrilateral C-grid. On the hexagonal
C-grid, however, the geostrophic velocity is not uniquely determined by the Φ
field; the ambiguity is expressed mathematically by the field µ in (41). Thus
the quasigeostrophic theory has two degrees of freedom per grid cell, giving
rise to two Rossby mode branches.

A quasigeostrophic β-plane analysis has been carried out (section 4) to de-
termine the discrete dispersion relation for both Rossby mode branches for
the three energy conserving schemes. The results have been compared with a
direct numerical calculation of the normal mode frequencies (section 5). The
primary branches give good approximations to the Rossby mode frequencies
of the continuous governing equations, particularly scheme (i), which is more
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accurate than schemes (ii) and (iii) at large wavenumber.

The hexagonal C-grid has very good isotropy properties. The inertio-gravity
mode dispersion relation shows only a very weak dependence on the direction
of the wave vector relative to the grid; and the primary Rossby mode branch
shows only weak dependence on the orientation of the grid relative to the
northward direction. Also, particularly for scheme (i), the primary branch
Rossby mode frequency remains quite accurate even near the resolution limit,
and does not go to zero for the shortest resolvable east-west scales as it does for
a quadrilateral C-grid aligned with the north-south and east-west directions.

The secondary branch Rossby modes (section 6) have vorticity structures re-
sembling smaller scale Rossby modes, suggesting that the extra vorticity de-
grees of freedom on the hexagonal C-grid do translate into extra resolution
for vortical modes. However, there is ambiguity over the wave vector of the
continuous equation modes that they represent. Also, the frequencies of the
secondary branch modes are much smaller than those of the corresponding
modes of the continuous equations. Thus, the additional small-scale features
that may be resolved in the vorticity field will be excessively passive, and
cannot be expected to contribute additional accuracy to numerical solutions.
Moreover, the secondary branch dispersion relations are strongly sensitive to
the details of the discretization of the Coriolis terms, and, for any choice of
discretization, are strongly sensitive to the orientation of the grid relative to
the northward direction.

All numerical models of the atmosphere include some form of dissipation on
small scales, whether explicitly specified or inherent in the numerical methods
used; it serves several purposes, including providing a sink for the downscale
potential enstrophy cascade as well as cleaning up noise generated by disper-
sion errors and parameterization schemes. Secondary branch Rossby modes
would be most strongly damped by such scale-selective dissipation. There-
fore, it is possible that in practice their poor dispersion properties would not
be an issue. In that case, the good isotropy and accurate behaviour at large
wavenumber of the inertio-gravity modes and primary branch Rossby modes
might make hexagonal grids competitive with quadrilateral grids in terms of
accuracy per unit cost.

The results presented here apply only to regular hexagonal grids in planar
geometry. Good behaviour of hexagonal C-grid schemes depends crucially on
the appropriate averaging of the Coriolis terms. An important extension of this

work, therefore, will be to determine how the averaging operator (̃.) must be
modified for the slightly distorted hexagons and the pentagons on a spherical
geodesic grid.
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