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Abstract

As two-dimensional fluid shells, lipid bilayer membranes resist bending and stretching but are unable to
sustain shear stresses. This property gives membranes the ability to adopt dramatic shape changes. In this paper,
a finite element model is developed to study static equilibrium mechanics of membranes. In particular, a viscous
regularization method is proposed to stabilize tangentialmesh deformations and improve the convergence rate of
nonlinear solvers. The Augmented Lagrangian method is usedto enforce global constraints on area and volume
during membrane deformations. As a validation of the method, equilibrium shapes for a shape-phase diagram
of lipid bilayer vesicle are calculated. These numerical techniques are also shown to be useful for simulations
of three-dimensional large-deformation problems: the formation of tethers (long tube-like exetensions); and
Ginzburg-Landau phase separation of a two-lipid-component vesicle. To deal with the large mesh distortions of
the two-phase model, modification of vicous regularizationis explored to achieve r-adaptive mesh optimization.

1 Introduction

Lipid membranes are a critical part of life because they serve as a barrier to separate the contents of the cell from
the external world. Lipid molecules are composed of a hydrophilic headgroup and two hydrophobic hydrocarbon
chains [1], and will form a bilayer structure spontaneouslyby the hydrophobic effect when introduced into water
in sufficient concentration. Though the cell membrane has more complex structure, being littered with all kinds
of proteins that serve as selective receptors, channels, and pumps, in this paper we will focus on closed spherical
pure lipid bilayer membranes, i.e., vesicles.

Common experience reveals that it is much easier to bend a thin plate than to stretch it (a good example is
a sheet of paper). This is also true for lipid bilayer membranes, except that there’s no shear force because of
the fluid property of membranes. The mechanical energy of a lipid bilayer has three major contributors: bend-
ing (curvature) of each monolayer; area or in-plane expansion and contraction of each monolayer; and osmotic
pressure. Because the last two energy scales are much largerthan the first one (by several orders of magnitude)
[2], they effectively place constraints on the total surface area and enclosed volume of the bilayer membrane on
experimental time scales (up to at least one hour). Thus, themechanically interesting energy arises from bending
of the membrane.

Canham [3], Helfrich [4] and Evans [5] pioneered the development of the lowest-order bending energy theory,
often referred to as the spontaneous curvature model, in which energy is a quadratic function of the principle
curvatures and the intrinsic orspontaneouscurvature of the surface. Incremental improvements to thismodel
include the bilayer couple model [6, 7], which imposes the hard constraint on the area difference of the two
monolayers, and the area-difference-elasticity (ADE) model [8, 9, 10], which adds a non-local curvature energy
term representing an elastic penalty on the area difference.

The equations of equilibrium for the spontaneous curvaturemodel, first calculated by Jenkins [11, 12], are
difficult to solve being highly nonlinear fourth-order PDEs. The most common approach to modeling membrane
mechanics numerically has been to discretize a vesicle surface by a triangle mesh, and approximate the curvature
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along mesh edges with finite-difference (FD) operators. Starting from some suitable initial shape, the FD ap-
proximation of curvature energy can be summed on the triangulation, and an adjacent local minimum then can be
found by downhill minimization (often via a conjugate gradient algorithm) [13, 14, 15, 16]. Another mesh-based
approach, the finite element method (FEM), was also recentlyapplied to the study of membrane mechanics by
Feng and Klug [17], usingC1-conforming triangular subdivision-surfaces elements toapproximate the membrane
curvature energy.

One feature shared in common among these mesh-based methodsis the need for stabilization of mesh vertex
motions tangential to the discretized surface. This issue arises as a fundamental consequence of the use of a mesh
for explicit coordinate parameterization of the geometry of a fluid membrane having no physically meaningful ref-
erence configuration. As pointed out previously [e.g., 18, 19], the dependence of the curvature energy functional
on the surface position map is invariant upon changes in parameterization. Physically this implies that in-plane
dilatational and shear modes of mesh deformation carry no energy cost, and therefore, no stiffness. The addition
of an artificial in-plane stiffness, for example by placing Hookean springs along the edges of a triangular mesh
[18] does indeed stabilize these motions, but in doing so also changes the physics, yielding a model for a poly-
merized (rather than fluid) membrane. In order to allow for fluid-like diffusion of membrane vertices, a number
of researchers have used adynamic triangulationapproach, wherein the edge connecting a pair of adjacent trian-
gles along one of the diagonals between the four associated vertices is swapped for the other diagonal. Within a
Monte Carlo simulation framework this method yields mean-square vertex displacements that are consistent with
microscopic diffusion [20], and this approach has been shown to produce an effective viscosity that increases as
the edge swapping rate decreases [21]. However, it is unclear whether the dynamic triangulation approach can
enable unphysical in-plane forces to fully relax to zero in azero-temperatureenergy minimization context as is
adopted here.

Alternatively, as shown in the finite element (FE) context [17], tangential vertex motions may be suppressed
partially by enforcing the incompressibility of the membrane as a local (rather than global) area constraint. This
approach also allows for diffusion of vertices; however, local enforcement of incompressibility can lead to severe
distortion of elements in the mesh, and therefore hinders the simulation of large vesicle deformations. Further-
more, local incompressibility does not completely suppress spurious modes, and though these degeneracies do
not prevent simulation of unforced vesicle equilibrium, they can lead to catastrophic numerical instabilities when
externally applied forces are introduced.

Notably, these issues may be avoided entirely through the development of meshless numerical methods for
membrane mechanics. Examples include, Ritz methods with global basis functions (e.g., spherical harmonics)
[3, 22, 23], phase-field methods [24, 25], and moving-least squares approximation [26]. Yet, these approaches are
not without their own limitations (e.g., aliasing, difficulty with application of external forces).

In this paper we propose a viscous regularization techniqueto stabilize tangential motions of nodes in a FE
membrane model while enforcing incompressibility as a global constraint. We demonstrate the computational
efficiency and effectiveness of this approach by comparing simulation times with and without regularization for
shape transitions previously computed in [17]. Secondly, we examine the efficiency gained by enforcing theglobal
constraints on membrane area and volume with an augmented Lagrangian approach instead of the previous penalty
approach. Lastly, we apply the regularization and constraint methods to the simulation of two membrane shape
change problems involving large deformations and the application of external forces. The first of these problems
is the simulation of the tether instability in a vesicle under tension between two opposing point forces; the second
is the simulation of separation and domain formation in a two-lipid-phase vesicle. In the latter we demonstrate
how the viscous regularization technique can be slightly modified to formulate anr-adaptive remeshing method,
wherein nodes “flow” on the surface of the vesicle in such a wayas to avoid element distortion.

The outline of this paper is as follows: Section 2 briefly introduces the FEM formulation for bilayer membrane
mechanics along with artificial viscosity mesh stabilization and augmented Lagrangian constraint enforcement;
Section 3 shows two applications: tether formation and lipid phase separation, based on the methods described in
Section 2; Section 4 concludes with discussions of results and future applications.
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2 Methods

2.1 Lipid bilayer mechanics and finite element approximation

We begin with a brief review of the mechanics of bilayer membranes and FEM approximation we use. For further
details, the reader is refer to the paper [17].

Figure 1: Geometry of a surface

Membrane kinematics. The bilayer membrane is described as a two-dimensional surfaceM embedded in
three-dimensional space (Fig.1), parameterized by curvilinear coordinates{s1, s2}, such that its position is given
by the mapx : R2 → R

3. With standard definitions from differential geometry [27,28] we can span the surface
tangent plane with both (covariant) basis vectorsaα = ∂x

∂sα ≡ x,α and dual (contravariant) basis vectorsaα

defined such thataα · aβ = δαβ . The covariant and contravariant surface metric tensors are then

aαβ = aα · aβ, and aαβ = aα · aβ , (1)

and the determinant of the covariant metric tensor will be denoted

a = det aαβ . (2)

The normal to the surface is
d ≡ a3 =

a1 × a2

|a1 × a2|
=

a1 × a2√
a

. (3)

The curvature tensorB is defined by its covariant components

bαβ = −d,α · aβ = d · x,αβ = d · aα,β. (4)

The mean curvature is one half of the trace of the curvature tensor

H =
1

2
bαα =

1

2
aαβbαβ = −1

2
aαβ(d,α · aβ) = −

1

2
aα · d,α (5)

(whereaαβ is the contravariant metric tensor, defined such thataαβaαβ = δαβ ), and the Gaussian curvature is the
determinant of the curvature tensor

K = detB = det bαβ. (6)

Lipid bilayer mechanics. We describe the energetics of the membrane by the Helfrich model [4], which as-
sumes a strain energy of the form

E[x] =

∫

M

1

2
KC(2H − C0)

2
√
ad2s+

∫

M

KGK
√
ad2s (7)
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whereKC is the bending modulus andKG is the Gaussian curvature modulus. By the Gauss-Bonnet theorem
[27], the integral of Gaussian curvature is a topological constant

∫

KG
K
√
ad2s = 4π(1 − g), with g being the

genus, i.e. the number of handles, and thus can be neglected.
The weak form of equilibrium for the membrane can be obtainedin general by the principle of virtual work,

and for the case of conservative loads by minimization of total potential energy. The later dictates that the total
potential energy by stationary with respect to any arbitrary admissible surface variationδx

δΠ ≡ δE − δW ext = 0. (8)

HereδE is the first variation of the membrane bending energy, andδW ext =
∫

M
fext · δx√a is virtual work done

by conservative external forcesfext. A straightforward calculation [17] gives the first variation of the total energy
as

δΠ =

∫

M

[
nα · δaα +mα · δd,α − fext · δx

]√
ads1ds2, (9)

where we have defined stress resultantsnα and moment resultantsmα as

nα = KC(2H − C0)a
αβd,β +KC

1

2
(2H − C0)

2aα mα = −KC(2H − C0)a
α. (10)

Enforcing constraints: augmented Lagrangian method. Admissibility requirements on trial functionsx and
variationsδx include the satisfaction of any active constraints, such asthe aforementioned constraints on total
surface area and enclosed volume. Here we will enforce theseconstraints with the augmented Lagrangian (AL)
approach (see, e.g., [29]). The AL method may be thought of asa hybrid between penalty and Lagrange multiplier
methods. The basic idea of AL is to solve iteratively for a Lagrange multiplier, computing multiplier updates
from a penalty term. To enforce constraints on both area and volume of a membrane, we establish a sequence of
modified energy funcitonals, thenth of these taking the the formIn = Π+ Icon, whereIcon is a constraint energy
term

Icon =
µV

2
(V − V̄ )2 − pnV +

µA

2
(A− Ā)2 + αnA.

Here Ā and V̄ are the specified surface area and enclosed volume of the membrane,µA andµV are penalty
parameters (large and positive), andαn andpn are tension and pressure multiplier estimates for thenth iteration.
Minimization of the modified energy (holding multiplier estimates fixed) yields

δIn = δΠ− pn+1δV + αn+1δA = 0,

wherepn+1 = pn − µV (Vn − V̄ ) andαn+1 = αn + µA(An − Ā) are the updated multiplier estimates. Iter-
ation of minimization followed by multiplier updates is continued until constraints are satisfied to within some
preselected tolerance, TOL, as shown below in Algorithm 1. In this way the modified energy converges to the
pure Lagrange-multiplier constrained functional, with the added benefit of avoiding the associated saddle-point
problem, retaining a minimization structure which is convenient for nonlinear optimization algorithms.

Whereas pure penalty methods require very large penalty parameters for accurate constraint enforcement, the
AL iterative updates can achieve accuracy with much smallerpenalty terms. In practice this is an important ad-
vantage, since when the penalty parametersµV andµA become large, numerical minimization becomes difficult
as the Hessian∇2E (or stiffness matrix) becomes quite ill conditioned near the minimizer. This property makes
minimization algorithms like quasi-Newton and conjugatedgradient perform poorly, as finding the search direc-
tions becomes difficult [29]. However, small penalty parameters can produce a large number of AL iterations for
convergence. Hence, it is common in practice to incrementally increase penalty parameters by some factor, FAC,
after each AL iteration process to achieve faster convergence. These penalty parameter updates are also included
in Algorithm 1.

Finite element approximation. A FE approximation is introduced by replacing the fieldx with the approxi-
mated fieldxh defined by

xh(s
1, s2) =

N∑

a=1

xaN
a(s1, s2) (11)
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Algorithm 1 Augmented Lagrangian method to enforce global area and volume constraints.

Initialize: p0, α0, µ0
V , µ0

A,
Set n=0
repeat

Minimize In = Π+ µV

2 (V − V̄ )2 − pnV + µA

2 (A− Ā)2 + αnA
Updates:
pn+1 = pn − µn

V (Vn − V̄ ) , αn+1 = αn + µn
A(An − Ā)

µn+1
V = µn

V × FAC , µn+1
A = µn

A × FAC
n← n+ 1

until |V n − V̄ | < TOL and |An − Ā| < TOL

where theNa(s1, s2), a = 1, . . . , N are shape functionsof the FE mesh, and their coefficients,xa are the
positions of the nodal control vertices. Introducing this approximation into the modified energy funcitonal upon
minimization leads to a set of discrete approximate equilibrium equations

f int
a + f con

a − fext
a = 0. (12)

Heref int
a are theinternalnodal forces due to bending of the membrane,

f int
a =

∫

M

[

nα · ∂aα

∂xa
+mα ·

(
∂d

∂xa

)

,α

]

√
ad2s; (13)

f con
a are theconstraintnodal forces due to the pressure and tension that are conjugate to the constrained volume

and area,

f con
a = −pn+1 ∂V

∂xa
+ αn+1 ∂A

∂xa
; (14)

andfext
a are theexternalnodal forces, due to the application of distributed loads onthe surface,

fext
a =

∫

M

fextNa
√
ad2s. (15)

Note that the integrands of the global expressions for internal and constraint forces are described in more explicit
detail in [17]. Following that work, we again employC1-conforming subdivision surface shape functions [30, 31]
along with second-order (three-point) Gaussian quadrature for the computation of element integrals.

2.2 Viscous regularization of tangential mesh deformation

In the curvature model, the energy is determined by the mean curvature which is a parameterization-independent
property of the surface shape, and thus is not sensitive to in-plane dilatational or shearing deformations of the
surface FE mesh. Much like physical lipid molecules, FE nodes can flow freely on the deformed surface. As
discussed in [17], this fact is manifested in the appearanceof degenerate, zero-stiffness, zero-energy modes. Here
we discuss the implementation of an artificial viscosity method designed to numerically eliminate these degenerate
modes.

For solid shells having both reference and deformed configurations, in-plane deformations (dilatation and
shearing) can thus be expressed locally in terms of first derivatives of the surface position maps of these two
configurations. In curvature model,a well-defined reference configuration does not exist since the energy is only
related to the deformed shape. The basic ingredients for stabilization of these tangential modes are the introduc-
tion of a reference configuration and an energy term elastically penalizing in-plane deformation away from this
reference state. However, to retain the physics of the original model, the addition of any in-plane elastic energy
must result in a variational problem possessing the same minimizing solution as the original problem. In other
words, the artificial in-plane energy must attain a value of zero when the entire model is in equilibrium. To de-
sign an algorithm that achieves these goals, we define a sequence of variational problems, minimizing a modified
energy functional

In = Π[x] + Icon[x] + I reg[x;Xn] (16)
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where the reference configurationXn for thenth iteration is the deformed solutionxn−1 of the previous iteration.
The form of the regularization energyI reg[x;X] can be chosen such that it vanishes whenx = X, to ensure that
solutionsxn converge to minimizers of the original unregularized problem with increasingn. This regularization
method is outlined below in Algorithm 2.

Algorithm 2 Viscous regularization via reference updates.

SetX0 = initial shape.
Setn = 0
repeat

Minimize In = Π[x] + Icon[x] + I reg[x;Xn] → solution,xn

Update reference: setXn+1 = xn

n← n+ 1
until I reg[xn;Xn] < TOL

Qualitatively, assignment of the reference configuration for each iteration to be the current configuration of the
previous iteration results in a type of algorithmic viscosity, producing forces that resist the motion of nodes away
from their position at each previous iteration. The quantitative details of this viscosity depend on the particular
form chosen for the in-plane regularization energy,I reg. Here we give two example forms, the first derived from
planar continuum elasticity theory and the second representing the mesh as a network of viscous dashpot elements.

Continuum elastic regularization energy. Here we treat the in-plane deformation response for each regulariza-
tion iteration as that of a two-dimensional solid membrane.This local response can be modeled via a hyperelastic
strain energy density,w(F), which is a function of the surface deformation gradient

F = aα ⊗Aα, (17)

whereAα are the dual basis vectors on the reference surface, i.e.,Aα ·Aβ = δαβ , whereAα = Xn
,α. Thus the

regularization energy becomes

I reg[x;Xn] =

∫

M

w(F)
√
Ad2s. (18)

To preserve objectivity, the strain energy is a function ofF through implicit dependence on the invariants of
the surface-Right-Cauchy-Green deformation tensorC = F

T · F = aαβA
α ⊗Aβ [32]. AsC is a rank-2 tensor,

the two non-zero principal invariants are

I1 = tr(C) = āαβaαβ (19a)

I2 =
1

2
{[tr(C)]2 − tr(C2)} = 1

2
{(āαβaαβ)2 − āαµāβνaαβaµν} ≡ J2. (19b)

The strain energy density is thus a function of these two invariants

w(F) = w(I1, I2).

As a specific example, consider a strain energy function thatdecouples the dilatational, and shear responses, as
used by Evans and Skalak [33] to model the red blood cell cytoskeleton

w =
k

2
(J − 1)2

︸ ︷︷ ︸

area change

+µ

(
tr(C)

2J
− 1

)

︸ ︷︷ ︸

shear

.

Herek andµ are stretching and shear moduli, respectively. It should becarefully noted that although we follow
here the formalism of solid mechanics, the reference configurationXn is not permanent as for a solid; rather the
reference configuration is iteratively updated so that the resulting stresses may relax to zero.
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Dashpot regularization energy. The viscous character of our proposed scheme is much more obvious when we
compose the regularization energy of contributions from Hookean springs placed along all element edges, namely,

I reg =
∑

edgeab

k

2
(ℓab − Lab)

2, (20)

whereℓab = |xa−xb| andLab = |Xn
a −Xn

b | are the lengths of the edge connecting mesh verticesa andb in the
deformed and current configurations, respectively. Differentiating this energy, the corresponding force on a node
a from the spring connecting it along an edge to nodeb can be obtained as

fab = k(ℓab − Lab)nab

wherenab is the unit vector pointing from nodea to nodeb. Recalling that the reference configuration for thenth
iteration is the same as the deformed configuration of then − 1th iteration, the magnitude of this force can also
be written as

fab = k(ℓnab − ℓn−1
ab ).

This is easily identified as the backward-Euler time-discretization of the force-velocity relation for a viscous
dashpot

fab = k
∂ℓab
∂t

,

Thus, iterative reference updates of the formXn = xn−1 have the effect of converting a network of springs into
a network of dashpots, clearly revealing the viscous character of the regularization scheme.

We have numerically implemented both the continuum elasticand dashpot regularization described here, and
although both forms are effective in practice we have preferred the dashpot approach for its simplicity, efficiency,
and robustness. The remainder of the paper focuses on the useof this second approach, demonstrating its effec-
tiveness in application.

3 Applications

3.1 Shape vs. reduced volume

Even in the absence of any externally applied loads, the two constraints on area and volume cause vesicles to
transition among a variety of interesting equilibrium shapes. Here some of the calculations performed in [17] of
the equilibrium shapes for different reduced volumes are repeated, as a first demonstration of the effectiveness of
viscous regularization.

Reduced volumeν is a geometrical quantity defined as

ν =
V

(4π/3)R0
3
, (21)

whereR0 =
√

A/4π is the radius of a sphere with the areaA of the vesicle. Reduced volume is then written as

ν =
6
√
πV

A3/2
. (22)

The reduced volume is the ratio of the current volume of the vesicle and the maximum volume that the current
total area of vesicle can ensphere. For a spherical vesicle,the reduced volumeν = 1; a vesicle of any other shape
has0 < ν < 1.

To compute the following results, the spontaneous curvature model is used withC0 = 0. The modified
energy is computed with loop subdivision shell elements andsecond-order (three-point) Gaussian quadrature, and
minimized with the quasi-newton L-BFGS-B solver [34, 35, 36].
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Computational cost with and without the viscous regularization

kR2/KC Total iterations (initial shape→ ν = 0.9) Total iterations (ν = 0.9→ 0.8)
0 35,950 603,858

0.5 2,304 287,825
1 1,821 9,482
10 2,122 12,480
100 4,776 79,038

Table 1: Viscous regularization improves the convergence rate of L-BFGS-B minimization. The first row
kR2/KC = 0, shows the results without the viscous regularization, which are identical to the approach used
in [17]. (k: spring constant;R: average radius of the vesicle;KC : bending modulus.)

Viscous regularization. As a first assessment of the benefit of regularization, results are compared with the
simulations done in [17], in which local area and global volume constraints were performed by penalty method
instead of AL method. First, the same calculation of [17] is repeated; then the viscous regularization is added,
with same kind of constraints (local area and global volume constraint) and penalty parameters (µA = 104R2/KC

for local area constraint andµA = 5× 104R2/KC for global volume constraint).
The calculation starts from an initial ellipsoid shape which has a reduced volumeν = 0.914 (Fig. 2). In

the calculation, the area is fixed at its initial value and thevolume is reduced in order to satisfy the constraint
on ν. For each simulation, violation of the volume constraint subjects the vesicle to a large pressure according
to the penalty term in the functional. The energy is then relaxed by L-BFGS-B minimization and result in the
equilibrium shapes. The iteration of of reference updates in Algorithm 2 is continued until the regularization
energy is sufficiently small,I reg/I < 10−5. In all the simulations, the same mesh, made up of 642 vertex nodes
and 1280 elements, is used.

The resulting equilibrium shapes forν = 0.9 andν = 0.8 are shown in Fig. 2. Starting from the initial
shape, the equilibrium shape forν = 0.9 is computed by minimizing the energy; then from the resulting ν = 0.9
shape, settingν = 0.8, the equilibrium shape forν = 0.8 is computed. The computational cost with and
without the viscous regularization is listed in Table 1. As can be seen, the convergence rate is highly improved
(almost two orders of magnitude faster) with the viscous regularization while the resulting shapes are equivalent.
For different choices of spring constantk, the computational cost also varies. The computational cost has two
contributions: one is the iteration number for each minimization; the other is the number of reference updates
required to satisfy the convergence criterionI reg/I < 10−5. These both depend onk. For each minimization, the
largerk is, the smaller the iteration number will be. While for the number of reference updates, it is opposite:
the largerk is, the more reference updates needed. For example, to get the equilibrium shapeν = 0.9 from the
initial shape,kR2/KC=1 requires 2 reference updates, each of which costs≈ 1000 iterations for minimization;
while for kR2/KC=100, there are 20 reference updates each costing≈ 250 minimization iterations. In this case
kR2/KC=1 works the best, but the optimalk depends on the specific problem. In the later sections on tether
formation, a much largerk (kR2/KC=1000) is used.

Augmented Lagrangian constraint enforcement. From the results described above, viscous regularization is
shown to be able to heavily lower the computational cost whena penalty method is used to enforce the constraints
on area and volume. However, regularization also eliminates the need forlocal enforcement of incompressibility.
Global constraints on area and volume can be easily implemented viathe augmented Lagrangian (AL) method
which is more efficient than the previous penalty method. Here, the shape change from the initial ellipsoid shape
to the equilibrium shape ofν = 0.9 is used to compare the penalty method with the AL method. In this test
global area and global volume constraints are carried out first by the penalty method with a range of penalty
parameters, and secondly with the AL method. Viscous regularization is used for both the penalty method and
the AL method. Iteration of reference updates is continued until the regularization energy is sufficiently small,
I reg/I < 2.0× 10−5.

The regularization spring constantk is set to bek = 10KC/R
2, whereR is the average radius of the vesicle

andKC is the bending modulus. For the AL method, the penalty parameters are initialized to be a fairly small
number (µV = 104, µA = 104), and are then increased by a factor of 2 for each of the following minimizations.
The minimization continues until the constraints on area and volume are satisfied to within a tolerance and the

8



(a) Initial shape,ν = 0.914 (not in equilibrium)

(b) ν = 0.9 without regularization. (c) ν = 0.9 with regularization.

(d) ν = 0.8 without regularization. (e) ν = 0.9 with regularization.

Figure 2: Limit surfaces and control meshes of equilibrium shapes forν = 0.9 andν = 0.8.

regularization energy is sufficiently small. Viscous regularization reference updates are included with AL mul-
tiplier updates in a single iteration loop. This hybrid regularization-AL algorithm, shown in Algorithm 3, is a
combination of separate Algorithms 1 and 2.

As the Table 2 shows, the AL method reduces the computationalcost significantly. This is especially true
when high accuracy of the constraints is desired, in which case the penalty method requires extremely large
parameters, which lead to conditioning problems that impede convergence of the nonlinear solver. Indeed, for
penalty parameter> 108, L-BFGS-B iterations diverge. In contrast, for the AL method to achieve high accuracy
penalty parameters need not be very large [29].

3.2 Tether formation

A point-force acting on lipid membranes can pull out a long narrow tube commonly called a tether. This can
be done by using micropipettes [e.g., 23], optical tweezers[e.g., 37], or even growing microtubules inside the
vesicle [37]. The mechanical reason for formation of tethers lies in the lack of shearing modulus for membranes.
Elongating in one direction and contracting in the other to such a spectacular way like tethers mechanically means
extremely large shear deformations [38, 39, 40, 41].

Since tether simulation involves very large deformations,the triangles in the finite element mesh are subject to
severe distortions. In practice, as elements become more distorted, the zero-energy tangential modes can actually
become numerically unstable (Fig. 3). Viscous regularization has to be added in order to suppress these zero-
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Algorithm 3 Hybrid algorithm combining AL constraint enforcement withviscous regularization.

Initialize: p0, α0, µ0
V , µ0

A,X0 = initial shape,̄ν = 0.9 (the specified reduced volume).
Setn = 0
repeat

Minimize In = Π[x] + µV

2 (V − V̄ )2 − pnV + µA

2 (A− Ā)2 + αnA+ I reg[x;Xn]
→ solution,xn

Update reference: setXn+1 = xn

if |νn − ν̄|/ν̄ > TOL1 then
AL Updates:
pn+1 = pn − µn

V (Vn − V̄ ) , αn+1 = αn + µn
A(An − Ā)

µn+1
V = µn

V × FAC , µn+1
A = µn

A × FAC
end if
n← n+ 1

until |νn − ν̄|/ν̄ < TOL1 andI reg[xn;Xn] < TOL2

Penalty method vs. AL method

Accuracy|ν − 0.9|/0.9 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

Penalty parameter 104 105 106 107 108 n/a n/a n/a n/a
Iterations (penalty method) 379 436 1032 3455 9231 n/a n/a n/a n/a
Iterations (AL method) 366 425 500 515 616 743 916 981 1201

Table 2: Computational cost of the penalty method and the AL method. To achieve the same accuracy, the AL
method requires fewer total iterations compared to the penalty method. More importantly, for extremely high
accuracy (< 10−7), the L-BFGS-B minimization diverges with the penalty method, while the AL method still
converges.

energy modes. Furthermore, the critical force to pull out a tether is very sensitive to pressure and surface tension.
Numerically, this necessitates highly accurate enforcement of the volume and area constraints. For a penalty
method this implies very large penalty parameters, which lead to conditioning problems (e.g., Table 2). For this
reason, here the augmented Lagrangian method is applied.

Figure 3: The equilibrium shape of a vesicle of reduced volume ν = 0.9 with external forces (≈ 1 pN) applied
at the two ends (forces not shown), mesh without (left figure)and with (right figure) the viscous regularization.
Note that the unstabilized mesh is subject to element distortion even at small applied load.

Starting from an initial equilibrium shape (prolate), tether development is simulated by incrementally displac-
ing nodes at the tips of the vesicle, and performing energy minimization resulting in the equilibrium tethered
shapes for each extension. However, even with the viscous regularization, the mesh can still be distorted by the
dramatic deformations experienced at larger extensions. Therefore, re-meshing is performed at intervals of the
extension. Fig. 4 shows snapshots from a typical simulationfor reduced volumeν = 0.9.
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Figure 4: The tethering of a vesicle starting from a prolate of reduced volumeν = 0.9. Left: limit surfaces of
equilibrium shapes; right: control meshes. Number of nodesand elements: (a) 4202 nodes, 8400 elements; (b) &
(c) 4682 nodes, 9360 elements; (d) 6202 nodes, 12400 elements; (e) & (f) 8682 nodes, 17360 elements. End to
end distance: (a) 6.8µm, (b) 8.2µm, (c) 9.2µm, (d) 10.2µm, (e) 11.6µm, and (f) 12.8µm
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Force vs. end-to-end distance

End-to-end distance (µm) 6.8 8.2 9.2 10.2 11.6 12.8
Computed tether radius (µm) n/a n/a 0.20 0.165 0.140 0.105
Computed force (pN) 0 1.41 1.76 2.14 2.72 3.68
Analytical estimated force (pN) n/a n/a 1.88 2.29 2.69 3.59
Computed tension (pN/µm) 0.05 0.43 0.71 0.98 1.60 2.93
Analytical estimated tension (pN/µm) n/a n/a 0.75 1.10 1.53 2.72

Table 3: Computed and analytical estimated forces for each tethered shape. For the shape in Fig. 4(c), the
computed tether radius is not uniform along the extension direction, andr = 0.20µm is an estimate. As noted in
the text a bending modulus ofKC = 15KbT is used for all calculations.

Applied forces. The reaction forces conjugate to specified end displacements can also be calculated by simply
adding up all internal forces of the fixed nodes (Eq. 13). The force vs. end-to-end distance results for the vesicles
in Fig. 4 are shown in Table 3, withr the radius of the tethers (µm) and bending modulusKC = 15KbT [37].
Although an exact analytical solution for the force-extension relation is not possible, a simple analytical estimate
[39] is used to compare with the computed results from the simulation. The estimate assumes that the thin tube
(tether) is pulled out from a sphere, and the sphere remain unchanged during the pulling (Fig. 5). The analytical
estimated force and surface tension are given as [39]:

F = 2πKC/r, (23)

and the surface tension
α = 0.5KC/r

2, (24)

Figure 5: Schematic of the tethered shape

As Table 3 shows, for well developed tethered shapes (end-to-end distance 11.6 and 12.8µm, vesicle (e) and
(f) in Fig. 4), the computed results and analytical estimations are very close. It is a notable advantage that the
present simulation framework is also capable of force-extension calculations for shapes that are not as simple
as the schematic in Fig.5. Although the present example is infact axisymmetric, the algorithms are fully three-
dimensional and can be applied to loadings and shapes lacking symmetry.

3.3 Lipid Phase Separation

Membranes formed from different lipids can separate into distinct domains (phases) according to their chemical
properties, leading to the formation of buds [42, 43]. Baumgart et al. [44] found that their experiments are in good
agreement with line tension theory [45, 46, 47], which treats domain interfaces as discrete with an interface energy
proportional to their length. An alternative, smooth-interface approach, based on traditional Ginzburg-Landau
(GL) theory [48, 49] can be used to also model phase separation [50, 51, 52, 53, 54]. One major drawback of the
line tension model is that it requires the system to be pre-phase-separated into well-defined domains, preventing
the consideration of composition dynamics.

Here a GL model for a multi-component bilayer with two different lipids in equilibrium is formulated, assum-
ing that the vesicle is composed of a mixture of two lipids denotedA andB. In general, these two lipid types
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Figure 6: Double-well normalized GL energyψ(c) = 16c2(c − 1)2 used to model phase segregation in a two-
component lipid system.

may have different constitutive properties, as modeled by separate constitutive parameters:{K(A)
C ,K(A)

G , C
(A)
0 }

for lipid A, and{K(B)
C ,K(B)

G , C
(B)
0 } for lipid B.

Let the local concentrations of the two lipids be described by the concentration parametersc(A), c(B) ∈ [0, 1]
with c(A) + c(B) = 1. The local lipid concentration at points = (s1, s2) can then be described by an order-
parameter fieldc(s) ≡ c(A), which is referred to as the concentration field or phase field. The local constitutive
properties of the membrane can then be modeled as functions of the phase field with convex combinations of the
pure phase parameters:

KC = cK(A)
C + (1− c)K(B)

C (25a)

KG = cK(A)
G + (1− c)K(B)

G (25b)

C0 = cC
(A)
0 + (1 − c)C(B)

0 (25c)

Thus rewriting the strain energy including explicit dependence of fields on surface position,

E =

∫

M

{
1

2
KC(s)[2H(s)− C0(s)]

2 +KG(s)K(s)

}√
ad2s (26)

where explicit dependence of the mechanical properties on surface coordinatess has been noted as a reminder of
the heterogeneity of the system.

The mechanics of the membrane are then dependent on both the shape of the vesicle and the lipid compo-
sition. Minimization of the total potential energy now yields two sets of Euler-Lagrange equations, one being
the equilibrium equations related to variations in the shape δx, and the other being a phase equilibrium equation
related to variations in the concentrationδc.

One further modification to the energy functional is needed to build into the model of the physics of phases
separation [49].

I = E +

∫

M

∆E[ψ(c) + ǫ2|∇c|2]
√
ad2s. (27)

Here the normalized GL energyψ(c) is a double-well potential such as

ψ(c) = 16c2(c− 1)2

(see Fig. 6) which is minimized when the concentrationc takes a value of either 0 or 1, corresponding to local
lipid concentration of either pure typeA or pure typeB. The parameter∆E scales the height of the barrier
between the two minima ofψ(c), and controls the energy cost of a domain interface. The second addition to the
energy describes short-range cooperativity between neighboring lipids. The parameterǫ is essentially a length
scale which will determine the width of the region of transition between phases. Asǫ decreases to zero, this
region will limit to a curve where the concentration gradient can be non-zero. Inclusion of this penalty term in the
energy will then produce the effect of a diffuse line tensionin the transition between regions of pure phases.

In Baumgart’s experiment [42, 44], bending modulusKC ≈ 10−19J , line tensionσ ≈ 10−12N , and the
radius of the vesicleR ≈ 10µm. Two vesicles from [44] are simulated: one with reduced volumeν = 0.98,
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phaseB area fractionxB = (1/A)
∫
cdA = 0.89; the otherν = 0.76, xB = (1/A)

∫
cdA = 0.56, starting from

the original spherical shape with two separate domains (Fig. 2A and 2G in [44]). For the first one (ν = 0.98), the
simulation captured the small cap seen in the experiment (Fig. 7).

But for ν = 0.76, the mesh around the interface is distorted (Fig. 8 (a)). Because the simulation starts
from a sphere with roughly equilateral triangle elements, the shape change of vesicle causes the elements in
the interface region to contract severely in the circumferential direction. This Element distortion needs to be
suppressed because it can lead to inaccuracy and instability of the finite element simulation.

In order to get a good mesh after the deformation, the elements near the interface need to contract in all
directions so that they remain equilateral, resulting in a greaterdensityof elements than other parts of the vesicle.
To tackle such large deformations, remeshing strategies are often needed. The viscous regularization introduced
in section 2.2 makes an r-adaptive remeshing possible, since reference configuration can be arbitrarily formulated
to reposition the nodes of the mesh. Here, a slight modification of the dashpot regularization method is proposed
with a reference updating strategy that drives elements toward equilateral shape.

Given an element of the mesh at regularization iterationn − 1 with areaAn−1, r-adaptive regularization at
stepn is defined by placing springs on the three edges all of the samereference length

ℓ̄n−1 = 2

√

An−1√
3
,

i.e., the length of a side of an equilateral triangle of the same areaAn−1. Thus the regularization energy term for
each triangle is written as

En =
k

2

3∑

i=1

(ℓin − ℓ̄n−1)
2, (28)

where theℓi are the lengths of the element edges.
In principle this regularization energy could be applied toevery element in a mesh. However, in practice these

iterative updates are slow to converge to a fully relaxed state (with zero regularization energy), and depending on
the regularization constantk the method can get stuck in a state with finite energy stored inthe springs. Hence,
this “equilateral” form of the dashpot regularization is only applied selectively to poorly shape elements, all the
other elements with the standard viscous regularization. Ashape-criteriaγ is then formulated to calculate different
spring energy for different elements,

γ =
3∑

i=1

(ℓi − ℓ̄)2
ℓ̄2

.

Using this measure of shape quality, the regularization energy is defined for each triangle by

En =

{
k
2

∑3
i=1(ℓ

i
n − ℓ̄n−1)

2, γ large,
k
2

∑3
i=1(ℓ

i
n − ℓin−1)

2, γ small.

In other words, ifγ is large (say,γ > 1) for an element, it has poor shape and r-adaptive regularization is used
on that element; ifγ is small enough, reference lengths are updated from the deformed lengths of the previous
iteration as for the dashpot model described earlier. The addition of r-adaptive regularization has the effect of
moving the nodes around on the membrane surface. In the present example of a phase-separated vesicle, this
results in a finer mesh near the interface area than elsewhere(Fig. 8 (b)). For reduced volumeν = 0.76, the
simulated result is shown in Fig. 7 to compare with the experimental result.

4 Conclusions

In this paper a framework for three-dimensional analysis ofmechanics of lipid bilayer membranes is presented,
based on the finite element method. Particular interest is focused on large deformation problems: tether formation
(Sec. 3.2) and phase separation (Sec. 3.3).

The primary difficulty faced in FE simulation of fluid membranes is the presense of mesh instabilities linked
to the parameterization-independent nature of fluid surfaces. Curvature models of vesicle mechanics depend

14



(a) Simulation (b) Experiment (Fig. 2G from [44])

(c) Simulation (d) Experiment (Fig. 2A from [44])

Figure 7: Comparison of simulation and experiment for two component lipid phase separation. (a) & (b) have
reduced volumeν = 0.98 and global concentrationxB = 0.98. (c) & (d) haveν = 0.76 andxB = 0.56. Phase
A (c = 0) is colored blue; phaseB (c = 1) is colored red. Scale bars are5µm. Experimental images are taken
from the work of Baumgart et al. [44].
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(a) standard dashpot regularization (b) r-adaptive regularization

Figure 8: r-adaptive regularization helps elements perform well in the interface (ν = 0.76).

only on current shape, and thus is not sensitive to in-plane (stretching and shearing) deformations of the surface
FE mesh. Here a viscous regularization method is thus introduced to regularize tangential mesh deformations.
In this method artificial reference configurations and corresponding in-plane energies are added to stabilize the
tangential deformations; reference updates are designed so that artificial energy converges to zero in order to retain
the physics of the original model.

Regulariztion of tangential mesh deformations eliminatesthe need for local enforcement of membrane in-
compressibility [17], providing a more convenient settingfor augmented Lagrangian (AL) enforcement of global
constraints on area and volume. The AL method can achieve higher accuracy with lower computational cost,
compared to the penalty method.

Large deformation problems can be very sensitive to mesh quality. Because of the physical meaninglessness
of the reference configurations in the simulation, r-adaptive remeshing is easy to achieve in the context of viscous
regularization, simply choosing a reference updating strategy which will reposition the nodes to get a better quality
mesh.

One promising direction for future work is to combine viscous regularization and r-adaptive remeshing with
the dynamic triangulation approach [18], in which the edge of a pair of triangles swaps to form less distorted
triangle elements instantly. This could be a powerful approach, speeding up the otherwise slow movements of
nodes driven by the viscous regularization. Also, the success of r-adaptive regularization relies to some degree on
the quality of the starting mesh. If there are too many badly shaped element and the shape criteriaγ tolerance is
chosen to be too small, the mesh can sometimes lock with non-zero regularization energy, resulting in physically
wrong shapes of vesicles. Dynamic triangulation could aleviate such locking. Lastly a r-adaptive regularized
dynamic triangulation strategy could avoid the need for global remeshing in large deformation problems such as
the tether simulations in Sec. 3.2.

Although the problems simulated in this paper are all axisymmetric, the model is really designed for fully
three-dimensional calculations, and can thus deal with arbitrary geometries and loads. For example future ap-
plications such as mechanics of organelles like mitochondria [55] and endoplasmic reticulum (ER) [56], with
incredibly complex shapes may provide exciting opportunities for future study with these methods.
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[22] V. Heinrich, S. Saša, and B.Žekš. Nonaxisymmetric vesicle shapes in a generalized bilayer-couple model
and the transition between oblate and prolate axisymmetricshapes.Phys. Rev. E, 48(4):3112–3123, 1993.
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