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Abstract

As two-dimensional fluid shells, lipid bilayer membranesise bending and stretching but are unable to
sustain shear stresses. This property gives membraneiiliheta adopt dramatic shape changes. In this paper,
a finite element model is developed to study static equilibrmechanics of membranes. In particular, a viscous
regularization method is proposed to stabilize tangent&sh deformations and improve the convergence rate of
nonlinear solvers. The Augmented Lagrangian method is tesedforce global constraints on area and volume
during membrane deformations. As a validation of the metlegdilibrium shapes for a shape-phase diagram
of lipid bilayer vesicle are calculated. These numericahtéques are also shown to be useful for simulations
of three-dimensional large-deformation problems: thenftion of tethers (long tube-like exetensions); and
Ginzburg-Landau phase separation of a two-lipid-compbwuesicle. To deal with the large mesh distortions of
the two-phase model, modification of vicous regularizaitsoexplored to achieve r-adaptive mesh optimization.

1 Introduction

Lipid membranes are a critical part of life because theyesassa barrier to separate the contents of the cell from
the external world. Lipid molecules are composed of a hykitapheadgroup and two hydrophobic hydrocarbon
chainslﬂl], and will form a bilayer structure spontaneoushthe hydrophobic effect when introduced into water
in sufficient concentration. Though the cell membrane hasernomplex structure, being littered with all kinds
of proteins that serve as selective receptors, channelamps, in this paper we will focus on closed spherical
pure lipid bilayer membranes, i.e., vesicles.

Common experience reveals that it is much easier to bendhgtaie than to stretch it (a good example is
a sheet of paper). This is also true for lipid bilayer membgarexcept that there’s no shear force because of
the fluid property of membranes. The mechanical energy gfid bilayer has three major contributors: bend-
ing (curvature) of each monolayer; area or in-plane exganand contraction of each monolayer; and osmotic
pressure. Because the last two energy scales are much tlhagethe first one (by several orders of magnitude)
[Iﬂ], they effectively place constraints on the total suefacea and enclosed volume of the bilayer membrane on
experimental time scales (up to at least one hour). Thusnghanically interesting energy arises from bending
of the membrane.

Canhamﬁb], Helfrich|__[|4] and Evans [5] pioneered the devalept of the lowest-order bending energy theory,
often referred to as the spontaneous curvature model, inhadmergy is a quadratic function of the principle
curvatures and the intrinsic @pontaneousurvature of the surface. Incremental improvements tortroslel
include the bilayer couple modél [, 7], which imposes thedh@onstraint on the area difference of the two
monolayers, and the area-difference-elasticity (ADE) ei¢é, [9,/10], which adds a non-local curvature energy
term representing an elastic penalty on the area difference

The equations of equilibrium for the spontaneous curvatuodel, first calculated by Jenki 12], are
difficult to solve being highly nonlinear fourth-order PDE%he most common approach to modeling membrane
mechanics numerically has been to discretize a vesiclaseiify a triangle mesh, and approximate the curvature
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along mesh edges with finite-difference (FD) operatorsrtitafrom some suitable initial shape, the FD ap-
proximation of curvature energy can be summed on the triatign, and an adjacent local minimum then can be
found by downhill minimization (often via a conjugate greuti algorithm)ﬂﬂG]. Another mesh-based
approach, the finite element method (FEM), was also recaptbjied to the study of membrane mechanics by
Feng and KIuglE?], using'*-conforming triangular subdivision-surfaces elementproximate the membrane
curvature energy.

One feature shared in common among these mesh-based mistiloelseed for stabilization of mesh vertex
motions tangential to the discretized surface. This issisesias a fundamental consequence of the use of a mesh
for explicit coordinate parameterization of the geomefrg filuid membrane having no physically meaningful ref-
erence configuration. As pointed out previously [@. , the dependence of the curvature energy functional
on the surface position map is invariant upon changes impetexization. Physically this implies that in-plane
dilatational and shear modes of mesh deformation carry Boggrecost, and therefore, no stiffness. The addition
of an artificial in-plane stiffness, for example by placingd#ean springs along the edges of a triangular mesh
[@] does indeed stabilize these motions, but in doing so etignges the physics, yielding a model for a poly-
merized (rather than fluid) membrane. In order to allow foidflike diffusion of membrane vertices, a number
of researchers have usedynamic triangulatiorapproach, wherein the edge connecting a pair of adjacenttri
gles along one of the diagonals between the four associattidas is swapped for the other diagonal. Within a
Monte Carlo simulation framework this method yields meguoase vertex displacements that are consistent with
microscopic diﬁusion@O], and this approach has been shmproduce an effective viscosity that increases as
the edge swapping rate decreases [21]. However, it is unalleather the dynamic triangulation approach can
enable unphysical in-plane forces to fully relax to zero ireeo-temperaturenergy minimization context as is
adopted here.

Alternatively, as shown in the finite element (FE) cont@][langential vertex motions may be suppressed
partially by enforcing the incompressibility of the memibeaas a local (rather than global) area constraint. This
approach also allows for diffusion of vertices; howevetaleenforcement of incompressibility can lead to severe
distortion of elements in the mesh, and therefore hindersitmulation of large vesicle deformations. Further-
more, local incompressibility does not completely supprgsurious modes, and though these degeneracies do
not prevent simulation of unforced vesicle equilibriungytttan lead to catastrophic numerical instabilities when
externally applied forces are introduced.

Notably, these issues may be avoided entirely through tkielolement of meshless numerical methods for
membrane mechanics. Examples include, Ritz methods wathajbasis functions (e.g., spherical harmonics)
[E,@,lzﬁ], phase-field methoé__[ﬁ] 25], and moving-leqsases approximatioﬂlzG]. Yet, these approaches are
not without their own limitations (e.g., aliasing, difficylwith application of external forces).

In this paper we propose a viscous regularization techrigsabilize tangential motions of nodes in a FE
membrane model while enforcing incompressibility as a glalmnstraint. We demonstrate the computational
efficiency and effectiveness of this approach by comparimglgtion times with and without regularization for
shape transitions previously computed.in [17]. Seconddexamine the efficiency gained by enforcingdgihebal
constraints on membrane area and volume with an augmenggdngian approach instead of the previous penalty
approach. Lastly, we apply the regularization and constraethods to the simulation of two membrane shape
change problems involving large deformations and the agftin of external forces. The first of these problems
is the simulation of the tether instability in a vesicle unmsion between two opposing point forces; the second
is the simulation of separation and domain formation in a-liwin-phase vesicle. In the latter we demonstrate
how the viscous regularization technique can be slightigified to formulate am-adaptive remeshing method,
wherein nodes “flow” on the surface of the vesicle in such a asfo avoid element distortion.

The outline of this paper is as follows: Section 2 briefly@umnces the FEM formulation for bilayer membrane
mechanics along with artificial viscosity mesh stabiliaatand augmented Lagrangian constraint enforcement;
Section 3 shows two applications: tether formation andllggiase separation, based on the methods described in
Section 2; Section 4 concludes with discussions of resalid@ture applications.



2 Methods

2.1 Lipid bilayer mechanics and finite element approximatiom

We begin with a brief review of the mechanics of bilayer meanas and FEM approximation we use. For further
details, the reader is refer to the pa@ [17].

Figure 1: Geometry of a surface

Membrane kinematics. The bilayer membrane is described as a two-dimensionahceif1 embedded in
three-dimensional space (Fiy.1), parameterized by é¢nedt coordinate$s!, s?}, such that its position is given
by the mape : R? — R3. With standard definitions from differential geome [ﬁ,] we can span the surface
tangent plane with both (covariant) basis vectars = aaTma = z , and dual (contravariant) basis vectar$

defined such that® - a3 = &3. The covariant and contravariant surface metric tenserthan
Uop = Qo -ag, and a*? =a®-a’, (1)

and the determinant of the covariant metric tensor will beoded

a = det ang. (2)
The normal to the surface is
d_a_alxag_alxag (3)
= 3 — —
|(11 X 112| \/E

The curvature tensdB is defined by its covariant components
bag = —d_’a -ag :d-m7a5 :d~aa75. (4)
The mean curvature is one half of the trace of the curvatumsote
1 1 1 1
H=3b; = §aaﬂbaﬂ = —?ﬂﬂ(d,a rag) = —5a% d, (5)
(wherea®” is the contravariant metric tensor, defined such téu.s = %), and the Gaussian curvature is the

determinant of the curvature tensor
K = det B = det byg. (6)

Lipid bilayer mechanics. We describe the energetics of the membrane by the HeIfricxHHIT@], which as-
sumes a strain energy of the form

Elx] = /M %/Cc(QH —Co)*Vad?®s + /M KaK+ad?s (7)



whereC¢ is the bending modulus and. is the Gaussian curvature modulus. By the Gauss-Bonneteimeo
[Iﬂ], the integral of Gaussian curvature is a topologicaiatantf,cc K\/ad?s = 47(1 — g), with g being the
genus, i.e. the number of handles, and thus can be neglected.

The weak form of equilibrium for the membrane can be obtainegeneral by the principle of virtual work,
and for the case of conservative loads by minimization altpotential energy. The later dictates that the total
potential energy by stationary with respect to any arbjtesimissible surface variatiane

STl =6F — sW™ = 0. (8)
Hered E is the first variation of the membrane bending energy, &hd* = fM f&. §x/a is virtual work done

by conservative external forcgl§*'. A straightforward caIcuIatiorﬂi?] gives the first vara@tiof the total energy
as

Ol = / [n® - baq + m® - 6d o — f& 6x] Vads'ds®, 9)
M
where we have defined stress resultatftsand moment resultaniga® as

1
n® = K¢ (2H — Cp)a*Pd g + Kog(2H - Co)?a®  m® = —-Kc(2H — Cp)a®. (10)

Enforcing constraints: augmented Lagrangian method. Admissibility requirements on trial functionsand
variationsdx include the satisfaction of any active constraints, sucthasaforementioned constraints on total
surface area and enclosed volume. Here we will enforce ttms&traints with the augmented Lagrangian (AL)
approach (see, e.d:[29]). The AL method may be thought afadrid between penalty and Lagrange multiplier
methods. The basic idea of AL is to solve iteratively for a taagge multiplier, computing multiplier updates
from a penalty term. To enforce constraints on both area ahdne of a membrane, we establish a sequence of
modified energy funcitonals, theth of these taking the the forifi = IT+ 7°°", wherel®"is a constraint energy
term

1" = MTV(V ~V)2—p"V + MTA(A — A +a"A.

Here A and V' are the specified surface area and enclosed volume of the raee)p4 and iy are penalty
parameters (large and positive), aftlandp™ are tension and pressure multiplier estimates fonthdteration.
Minimization of the modified energy (holding multiplier @sttes fixed) yields

SI™ = 6TL — p" oV + a"t6A =0,

wherep™*! = p" — uy(V,, — V) anda™™ = o™ 4 pa(A, — A) are the updated multiplier estimates. Iter-
ation of minimization followed by multiplier updates is dorued until constraints are satisfied to within some
preselected tolerance, TOL, as shown below in Algorifimrithis way the modified energy converges to the
pure Lagrange-multiplier constrained functional, witle tdded benefit of avoiding the associated saddle-point
problem, retaining a minimization structure which is cameat for nonlinear optimization algorithms.

Whereas pure penalty methods require very large penalanpeters for accurate constraint enforcement, the
AL iterative updates can achieve accuracy with much smpb@alty terms. In practice this is an important ad-
vantage, since when the penalty parametgrand. 4 become large, numerical minimization becomes difficult
as the HessiaW2FE (or stiffness matrix) becomes quite ill conditioned near thinimizer. This property makes
minimization algorithms like quasi-Newton and conjugageadient perform poorly, as finding the search direc-
tions becomes diﬁicul@Q]. However, small penalty partanecan produce a large number of AL iterations for
convergence. Hence, it is common in practice to incremigritedrease penalty parameters by some factor, FAC,
after each AL iteration process to achieve faster convexgenhese penalty parameter updates are also included
in Algorithm[1.

Finite element approximation. A FE approximation is introduced by replacing the fialdvith the approxi-
mated fielde;, defined by
N
xp (st s%) = Z x,N(s', s%) (11)

a=1



Algorithm 1 Augmented Lagrangian method to enforce global area andnestonstraints.

Initialize: p°, o, ul-, 1Y%,
Set n=0
repeat
Minimize I™ =TT 4 &-(V — V)2 —p"V + La(A - A)? +anA
Updates:
pn+1:pn_ur‘z/(vn_f/), an—Q—l:an_i_luZ(An_A)
wyth = x FAC, it =y x FAC
n<n+1
until  |[V" —V|<TOL and |A" — A| < TOL

where theN¢(s!,s?), a = 1,..., N areshape function®f the FE mesh, and their coefficients, are the
positions of the nodal control vertices. Introducing thigeximation into the modified energy funcitonal upon
minimization leads to a set of discrete approximate equilib equations

fint + fcon _ fext —0. (12)
Here f" are theinternal nodal forces due to bending of the membrane,
£ =/ lna Dl e ( od ) ] Vad®s; (13)
M 8-’13a 8-’13(1 a

fe are theconstraintnodal forces due to the pressure and tension that are cdejtggtihe constrained volume

and area,
n+18_v +an+1%.

con _ 14
fa " 9z, (14)
and £ are theexternalnodal forces, due to the application of distributed loadshensurface,
fsxt — / fEXtNa\/adQS. (15)
M

Note that the integrands of the global expressions formatieand constraint forces are described in more explicit
detail in ]. Following that work, we again empl@y* -conforming subdivision surface shape functions$ Eb 31]
along with second-order (three-point) Gaussian quadzdturthe computation of element integrals.

2.2 Viscous regularization of tangential mesh deformation

In the curvature model, the energy is determined by the meamture which is a parameterization-independent
property of the surface shape, and thus is not sensitive-ptaime dilatational or shearing deformations of the
surface FE mesh. Much like physical lipid molecules, FE sockn flow freely on the deformed surface. As
discussed iHIJl?], this fact is manifested in the appearahdegenerate, zero-stiffness, zero-energy modes. Here
we discuss the implementation of an artificial viscositymoetdesigned to numerically eliminate these degenerate
modes.

For solid shells having both reference and deformed cordtgurs, in-plane deformations (dilatation and
shearing) can thus be expressed locally in terms of firsvagres of the surface position maps of these two
configurations. In curvature model,a well-defined refeestunfiguration does not exist since the energy is only
related to the deformed shape. The basic ingredients foiligttion of these tangential modes are the introduc-
tion of a reference configuration and an energy term eldstipanalizing in-plane deformation away from this
reference state. However, to retain the physics of themalgnodel, the addition of any in-plane elastic energy
must result in a variational problem possessing the samamziimg solution as the original problem. In other
words, the artificial in-plane energy must attain a valueesbavhen the entire model is in equilibrium. To de-
sign an algorithm that achieves these goals, we define asegoévariational problems, minimizing a modified
energy functional

I" =[zx] + I°7x] + I™Yx; X"] (16)



where the reference configuratidfi* for thenth iteration is the deformed solutiasf? ! of the previous iteration.
The form of the regularization enerd{9x; X | can be chosen such that it vanishes wirea X, to ensure that
solutionsz™ converge to minimizers of the original unregularized pesbhith increasing.. This regularization
method is outlined below in Algorithfd 2.

Algorithm 2 Viscous regularization via reference updates.

Set XY = initial shape.

Setn =0

repeat
Minimize I = [x] + [°"x] + ["*Yx; X"] —  solution,z™
Update reference: sgf"+! =
n<+<n-+1

until 7'*9[z™; X"] < TOL

Qualitatively, assignment of the reference configurat@mrefich iteration to be the current configuration of the
previous iteration results in a type of algorithmic vis¢pgdroducing forces that resist the motion of nodes away
from their position at each previous iteration. The quatitie details of this viscosity depend on the particular
form chosen for the in-plane regularization ene§£. Here we give two example forms, the first derived from
planar continuum elasticity theory and the second reptiggtihhe mesh as a network of viscous dashpot elements.

Continuum elastic regularization energy. Here we treat the in-plane deformation response for eachaega-
tion iteration as that of a two-dimensional solid membrartés local response can be modeled via a hyperelastic
strain energy densityy(F'), which is a function of the surface deformation gradient

F=a,® A" (17)

where A* are the dual basis vectors on the reference surfacedice:, Ag = 65, whereA,, = X7, Thus the
regularization energy becomes

%9 X] = / w(F)VAds. (18)

M

To preserve objectivity, the strain energy is a functioahrough implicit dependence on the invariants of
the surface-Right-Cauchy-Green deformation teget FT - F = a,5A% @ AP [é]. As C is a rank-2 tensor,
the two non-zero principal invariants are

I =tr(C) = aPanp (19a)

I, = S{RA(C) ~t(C?)} = 5{(a % a0s)? — 0™ a™ ausa} = I (19b)
The strain energy density is thus a function of these tworiavgés
w(F) = w(ly, I2).

As a specific example, consider a strain energy functiondbabuples the dilatational, and shear responses, as
used by Evans and Skaldk [33] to model the red blood cell keteton

w = E(J—1)2+u(tr(c) —1>.

2 2J

area change shear

Herek andy are stretching and shear moduli, respectively. It shouldavefully noted that although we follow
here the formalism of solid mechanics, the reference cordtgan X is not permanent as for a solid; rather the
reference configuration is iteratively updated so that #selting stresses may relax to zero.



Dashpot regularization energy. The viscous character of our proposed scheme is much moieuswhen we
compose the regularization energy of contributions fromké@n springs placed along all element edges, namely,

k
re= %" 5 (e = Lab)?, (20)

edgeab

wherel,;, = |z, — zp| andL,;, = | X — X'| are the lengths of the edge connecting mesh vertigeslb in the
deformed and current configurations, respectively. Déffeiating this energy, the corresponding force on a node
a from the spring connecting it along an edge to nbdan be obtained as

fab = k(éab - Lab)nab

wheren,;, is the unit vector pointing from nodeto nodeb. Recalling that the reference configuration for tiik
iteration is the same as the deformed configuration ofithelth iteration, the magnitude of this force can also
be written as

fav = k(la, — Loy ).

This is easily identified as the backward-Euler time-disza¢ion of the force-velocity relation for a viscous

dashpot
o aZab
fab - kWa

Thus, iterative reference updates of the fakitt = =~ ! have the effect of converting a network of springs into
a network of dashpots, clearly revealing the viscous cherad the regularization scheme.

We have numerically implemented both the continuum elastit dashpot regularization described here, and
although both forms are effective in practice we have pretkthe dashpot approach for its simplicity, efficiency,
and robustness. The remainder of the paper focuses on tluf thés second approach, demonstrating its effec-
tiveness in application.

3 Applications

3.1 Shape vs. reduced volume

Even in the absence of any externally applied loads, the tmstcaints on area and volume cause vesicles to
transition among a variety of interesting equilibrium sbapHere some of the calculations performem [17] of
the equilibrium shapes for different reduced volumes gpeaed, as a first demonstration of the effectiveness of
viscous regularization.

Reduced volume is a geometrical quantity defined as

Vv
V= GBI @)

whereR, = \/A/4x is the radius of a sphere with the aréaf the vesicle. Reduced volume is then written as

67V
v= %. (22)

The reduced volume is the ratio of the current volume of theclke and the maximum volume that the current
total area of vesicle can ensphere. For a spherical vetidleeduced volume = 1; a vesicle of any other shape
hasO < v < 1.

To compute the following results, the spontaneous cureattiodel is used witly, = 0. The modified
energy is computed with loop subdivision shell elementssamwdnd-order (three-point) Gaussian quadrature, and
minimized with the quasi-newton L-BFGS-B solver|[34] 35].36



Computational cost with and without the viscous reguldidra

kR? /K¢ | Total iterations (initial shapes> v = 0.9) | Total iterations ¢ = 0.9 — 0.8)
0 35,950 603,858
0.5 2,304 287,825
1 1,821 9,482
10 2,122 12,480
100 4,776 79,038

Table 1. Viscous regularization improves the convergemte of L-BFGS-B minimization. The first row
ER?/Kc = 0, shows the results without the viscous regularization civire identical to the approach used
in [17]. (k: spring constantR: average radius of the vesicle;: bending modulus.)

Viscous regularization. As a first assessment of the benefit of regularization, resutt compared with the
simulations done idﬂ?], in which local area and global vo&iconstraints were performed by penalty method
instead of AL method. First, the same calculation of [17]epeated; then the viscous regularization is added,
with same kind of constraints (local area and global voluorestraint) and penalty parametensi(= 10*R? /K¢

for local area constraint ands, = 5 x 10*R? /K¢ for global volume constraint).

The calculation starts from an initial ellipsoid shape whias a reduced volume = 0.914 (Fig. [2). In
the calculation, the area is fixed at its initial value andvbkRime is reduced in order to satisfy the constraint
onv. For each simulation, violation of the volume constrairtjeats the vesicle to a large pressure according
to the penalty term in the functional. The energy is thenxedaby L-BFGS-B minimization and result in the
equilibrium shapes. The iteration of of reference updatealgorithm[2 is continued until the regularization
energy is sufficiently small[™9/7 < 10~°. In all the simulations, the same mesh, made up of 642 veddrs
and 1280 elements, is used.

The resulting equilibrium shapes for= 0.9 andv = 0.8 are shown in Fig[]2. Starting from the initial
shape, the equilibrium shape for= 0.9 is computed by minimizing the energy; then from the resgltin= 0.9
shape, settingg = 0.8, the equilibrium shape for = 0.8 is computed. The computational cost with and
without the viscous regularization is listed in Table 1. Ande seen, the convergence rate is highly improved
(almost two orders of magnitude faster) with the viscousit@ggzation while the resulting shapes are equivalent.
For different choices of spring constaintthe computational cost also varies. The computationdl ltas two
contributions: one is the iteration number for each minatian; the other is the number of reference updates
required to satisfy the convergence criterit?¥/I < 10~5. These both depend dn For each minimization, the
largerk is, the smaller the iteration number will be. While for thenther of reference updates, it is opposite:
the largerk is, the more reference updates needed. For example, toggetjthlibrium shape = 0.9 from the
initial shape kR?/Kc=1 requires 2 reference updates, each of which cest§00 iterations for minimization;
while for kR? /K =100, there are 20 reference updates each costiBg0 minimization iterations. In this case
kR?/Kc=1 works the best, but the optimaldepends on the specific problem. In the later sections oerteth
formation, a much largek (kR? /K-=1000) is used.

Augmented Lagrangian constraint enforcement. From the results described above, viscous regularizagion i
shown to be able to heavily lower the computational cost wehpenalty method is used to enforce the constraints
on area and volume. However, regularization also elimgtite need folocal enforcement of incompressibility.
Global constraints on area and volume can be easily implementetth@iaugmented Lagrangian (AL) method
which is more efficient than the previous penalty method.elHtire shape change from the initial ellipsoid shape
to the equilibrium shape of = 0.9 is used to compare the penalty method with the AL method. i tdst
global area and global volume constraints are carried asttlfiy the penalty method with a range of penalty
parameters, and secondly with the AL method. Viscous regaldon is used for both the penalty method and
the AL method. lIteration of reference updates is continuetd the regularization energy is sufficiently small,
I'®9/T < 2.0 x 107°.

The regularization spring constaints set to bek = 10K/ R?, whereR is the average radius of the vesicle
and/C¢ is the bending modulus. For the AL method, the penalty patarmare initialized to be a fairly small
number {1y = 10%, 14 = 10%), and are then increased by a factor of 2 for each of the fafigwninimizations.
The minimization continues until the constraints on areé\@alume are satisfied to within a tolerance and the



(a) Initial shapey = 0.914 (not in equilibrium)

(b) v = 0.9 without regularization. (c) v = 0.9 with regularization.

(d) v = 0.8 without regularization. (e) v = 0.9 with regularization.

Figure 2: Limit surfaces and control meshes of equilibridmragges forr = 0.9 andv = 0.8.

regularization energy is sufficiently small. Viscous regidation reference updates are included with AL mul-
tiplier updates in a single iteration loop. This hybrid rigization-AL algorithm, shown in Algorithrhl3, is a
combination of separate Algorithiiak 1 ddd 2.

As the Tabld R shows, the AL method reduces the computatmsilsignificantly. This is especially true
when high accuracy of the constraints is desired, in whicdedhe penalty method requires extremely large
parameters, which lead to conditioning problems that inepg@hvergence of the nonlinear solver. Indeed, for
penalty parametes 108, L-BFGS-B iterations diverge. In contrast, for the AL medio achieve high accuracy
penalty parameters need not be very IaEﬂe [29].

3.2 Tether formation

A point-force acting on lipid membranes can pull out a longroa tube commonly called a tether. This can
be done by using micropipettes [e.la 23], optical tweekeg;,@], or even growing microtubules inside the
vesicle EV]. The mechanical reason for formation of tetHiexs in the lack of shearing modulus for membranes.
Elongating in one direction and contracting in the otherutchsa spectacular way like tethers mechanically means
extremely large shear deformatioiﬁ][, B_g@ 41].

Since tether simulation involves very large deformatidims triangles in the finite element mesh are subject to
severe distortions. In practice, as elements become mst@i@id, the zero-energy tangential modes can actually
become numerically unstable (Figl 3). Viscous regulaidrahas to be added in order to suppress these zero-



Algorithm 3 Hybrid algorithm combining AL constraint enforcement witiscous regularization.
Initialize: p°, o, uf,, 1%, X° = initial shape7 = 0.9 (the specified reduced volume).
Setn =0
repeat

Minimize I" = Tl[z] + &5 (V = V)2 — p"V + L4 (A — A)2 + a" A + I"9[x; X "]
—  solution,z™
Update reference: sgf"+! =
if v, — |/ > TOL, then
AL Updates:
PP =" =y (Vi = V), @t =al (A — A)
;/‘}H = ui, x FAC, MZH = u" x FAC

n<—n+1
until |v, — |/v < TOL; andI™9x™; X"] < TOL,

Penalty method vs. AL method
Accuracy|r — 0.9]/0.9 w2f102]10*[10°[10°%[107]10°%]10°°]10°1°
Penalty parameter 10* | 10° | 10° | 107 | 10® nfa | nla | nla n/a
Iterations (penalty method) 379 | 436 | 1032 | 3455| 9231 | n/a n/a n/a n/a
Iterations (AL method) 366 | 425 | 500 | 515 | 616 | 743 | 916 | 981 | 1201

Table 2: Computational cost of the penalty method and the A&thad. To achieve the same accuracy, the AL
method requires fewer total iterations compared to the Ipengethod. More importantly, for extremely high
accuracy € 1077), the L-BFGS-B minimization diverges with the penalty mmdhwhile the AL method still
converges.

energy modes. Furthermore, the critical force to pull owthdr is very sensitive to pressure and surface tension.
Numerically, this necessitates highly accurate enforecgroéthe volume and area constraints. For a penalty
method this implies very large penalty parameters, whial k& conditioning problems (e.g., Table 2). For this
reason, here the augmented Lagrangian method is applied.

Figure 3: The equilibrium shape of a vesicle of reduced vawm= 0.9 with external forces£ 1 pN) applied
at the two ends (forces not shown), mesh without (left figare) with (right figure) the viscous regularization.
Note that the unstabilized mesh is subject to element distoeven at small applied load.

Starting from an initial equilibrium shape (prolate), tetllevelopment is simulated by incrementally displac-
ing nodes at the tips of the vesicle, and performing energyimization resulting in the equilibrium tethered
shapes for each extension. However, even with the viscaudangzation, the mesh can still be distorted by the
dramatic deformations experienced at larger extensiohgrefore, re-meshing is performed at intervals of the
extension. Figl4 shows snapshots from a typical simuldtoreduced volume = 0.9.
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Figure 4: The tethering of a vesicle starting from a proldteeduced volumes = 0.9. Left: limit surfaces of
equilibrium shapes; right: control meshes. Number of n@hebelements: (a) 4202 nodes, 8400 elements; (b) &
(c) 4682 nodes, 9360 elements; (d) 6202 nodes, 12400 elsnfeh& (f) 8682 nodes, 17360 elements. End to

end distance: (a) 6:8n, (b) 8.2um, (c) 9.2um, (d) 10.2um, (e) 11.6:m, and (f) 12.&m
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Force vs. end-to-end distance

End-to-end distanceu(n) 6.8 | 82| 92| 10.2 | 116 | 12.8
Computed tether radiugin) nfa | n/a | 0.20| 0.165| 0.140| 0.105
Computed force (pN) 0 | 141 1.76| 2.14 | 2.72 | 3.68
Analytical estimated force (pN) nfa | nla| 1.88| 229 | 2.69 | 3.59
Computed tension (pNm) 0.05] 0.43| 0.71| 0.98 | 1.60 | 2.93
Analytical estimated tension (ppm) | n/a | n/a | 0.75| 1.10 | 1.53 | 2.72

Table 3: Computed and analytical estimated forces for eettfeted shape. For the shape in Hig. 4(c), the
computed tether radius is not uniform along the extensicgction, and- = 0.20um is an estimate. As noted in
the text a bending modulus &fc = 15K,T is used for all calculations.

Applied forces. The reaction forces conjugate to specified end displacenvamtalso be calculated by simply
adding up all internal forces of the fixed nodes (Ed. 13). Tdred vs. end-to-end distance results for the vesicles
in Fig. [4 are shown in Tablg 3, with the radius of the tetherg(n) and bending modulu§c = 15K,T [@].
Although an exact analytical solution for the force-extenselation is not possible, a simple analytical estimate
[@] is used to compare with the computed results from theuksition. The estimate assumes that the thin tube
(tether) is pulled out from a sphere, and the iﬂwere remaihamged during the pulling (Figl 5). The analytical

estimated force and surface tension are given as [39]:
F =27K¢a/r, (23)
and the surface tension
a=0.5Kc/r?, (24)
R
]" l 2]’ F
— ) —
I T !
L

Figure 5: Schematic of the tethered shape

As Table 3 shows, for well developed tethered shapes (ewtdalistance 11.6 and 12.8n, vesicle (e) and
(f) in Fig. M), the computed results and analytical estioraiare very close. It is a notable advantage that the
present simulation framework is also capable of forcefesitsn calculations for shapes that are not as simple
as the schematic in Fid.5. Although the present examplefacinaxisymmetric, the algorithms are fully three-
dimensional and can be applied to loadings and shapes taskinmetry.

3.3 Lipid Phase Separation

Membranes formed from different lipids can separate ingtimct domains (phases) according to their chemical
properties, leading to the formation of budsl [@ 43]. Baamgt al. I[Zh] found that their experiments are in good
agreement with line tension theo&[@ 46, 47], which setmain interfaces as discrete with an interface energy
proportional to their length. An alternative, smooth-ifdee approach, based on traditional Ginzburg-Landau
(GL) theory ] can be used to also model phase separfiiyl5: Eﬁq. One major drawback of the
line tension model is that it requires the system to be presefseparated into well-defined domains, preventing
the consideration of composition dynamics.

Here a GL model for a multi-component bilayer with two diet lipids in equilibrium is formulated, assum-
ing that the vesicle is composed of a mixture of two lipidsated A and B. In general, these two lipid types

12
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Figure 6: Double-well normalized GL energy(c) = 16¢(c — 1)? used to model phase segregation in a two-
component lipid system.

may have different constitutive properties, as modeleddpagate constitutive parametel{f(CA), IC(GA), CSA)}
for lipid A, and{K", K, c{P’} for lipid B.

Let the local concentrations of the two lipids be describgthie concentration parametefg?), (%) € [0, 1]
with ¢4 + ¢(B) = 1. The local lipid concentration at poist= (s', s?) can then be described by an order-
parameter field(s) = ¢V, which is referred to as the concentration field or phase.fi€le local constitutive
properties of the membrane can then be modeled as functidhs phase field with convex combinations of the
pure phase parameters:

Ko =ckS) 4+ (1 -k (252)
Ka=ckS) + (1 -k (25b)
Co=cCSM + (1 =e)cf? (25c¢)

Thus rewriting the strain energy including explicit depende of fields on surface position,

p= [ {ircope - o +KaeiK(s) | vats (26)
M

where explicit dependence of the mechanical propertiesidace coordinateshas been noted as a reminder of
the heterogeneity of the system.

The mechanics of the membrane are then dependent on bothéape of the vesicle and the lipid compo-
sition. Minimization of the total potential energy now ydsltwo sets of Euler-Lagrange equations, one being
the equilibrium equations related to variations in the ghag and the other being a phase equilibrium equation
related to variations in the concentrati@n

One further maodification to the energy functional is needebuild into the model of the physics of phases
separatior‘@g].

I=E+ / AE[Y(c) + €|Ve|*|ad?s. (27)
M
Here the normalized GL energy(c) is a double-well potential such as
Y(c) = 16¢*(c — 1)*

(see Fig[B) which is minimized when the concentraiidakes a value of either 0 or 1, corresponding to local
lipid concentration of either pure typé or pure typeB. The parameteAFE scales the height of the barrier
between the two minima af(c), and controls the energy cost of a domain interface. Therskaddition to the
energy describes short-range cooperativity between heigtyg lipids. The parameteris essentially a length
scale which will determine the width of the region of traimitbetween phases. Asdecreases to zero, this
region will limit to a curve where the concentration gradiean be non-zero. Inclusion of this penalty term in the
energy will then produce the effect of a diffuse line tensiothe transition between regions of pure phases.

In Baumgart's experimenk [42, 4], bending modults ~ 10~'9J, line tensions ~ 102N, and the
radius of the vesicld? ~ 10um. Two vesicles from|E4] are simulated: one with reduced rdw = 0.98,
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phaseB area fractionzg = (1/A) [ cdA = 0.89; the other = 0.76, x5 = (1/A) [ ecdA = 0.56, starting from
the original spherical shape with two separate domains @gnd 2G in @4]). For the first one/(= 0.98), the
simulation captured the small cap seen in the experimegt[{i

But for v = 0.76, the mesh around the interface is distorted (Hijj. 8 (a)). aBse the simulation starts
from a sphere with roughly equilateral triangle elemerttg, $hape change of vesicle causes the elements in
the interface region to contract severely in the circumféat direction. This Element distortion needs to be
suppressed because it can lead to inaccuracy and instalbitiie finite element simulation.

In order to get a good mesh after the deformation, the elesnasdir the interface need to contract in all
directions so that they remain equilateral, resulting imeaterdensityof elements than other parts of the vesicle.
To tackle such large deformations, remeshing strategeesféen needed. The viscous regularization introduced
in sectiorf 2.2 makes an r-adaptive remeshing possibles s@ference configuration can be arbitrarily formulated
to reposition the nodes of the mesh. Here, a slight modifinaif the dashpot regularization method is proposed
with a reference updating strategy that drives elementardequilateral shape.

Given an element of the mesh at regularization iteration 1 with areaA,, 1, r-adaptive regularization at
stepn is defined by placing springs on the three edges all of the safeeence length

Vi Anfl
Oy =2, 2021
1 \/g

i.e., the length of a side of an equilateral triangle of thesaread,,_;. Thus the regularization energy term for
each triangle is written as

3
En = Z(gil - Z71—1)27 (28)
i=1

where the/’ are the lengths of the element edges.

In principle this regularization energy could be applieévery element in a mesh. However, in practice these
iterative updates are slow to converge to a fully relaxetbgtaith zero regularization energy), and depending on
the regularization constaitthe method can get stuck in a state with finite energy storéldeirsprings. Hence,
this “equilateral” form of the dashpot regularization idyapplied selectively to poorly shape elements, all the
other elements with the standard viscous regularizaticshajpe-criterig is then formulated to calculate different
spring energy for different elements,

’7:

2

Using this measure of shape quality, the regularizationgsnis defined for each triangle by

B — b (0 —Tn)?, 7 large
! % Zle(ﬁil - 62—1)27 ~ small

In other words, ify is large (say;y > 1) for an element, it has poor shape and r-adaptive regutamzes used

on that element; ify is small enough, reference lengths are updated from therdetblengths of the previous
iteration as for the dashpot model described earlier. Thiitiad of r-adaptive regularization has the effect of
moving the nodes around on the membrane surface. In thenpresample of a phase-separated vesicle, this
results in a finer mesh near the interface area than elseWfRigreld (b)). For reduced volume = 0.76, the
simulated result is shown in Figl 7 to compare with the experital result.

(-0

1

4 Conclusions

In this paper a framework for three-dimensional analysimethanics of lipid bilayer membranes is presented,
based on the finite element method. Particular interestissied on large deformation problems: tether formation
(Sec[3.P) and phase separation (§&d. 3.3).

The primary difficulty faced in FE simulation of fluid membesis the presense of mesh instabilities linked
to the parameterization-independent nature of fluid segacCurvature models of vesicle mechanics depend
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(a) Simulation (b) Experiment (Fig. 2G from _[44])

(c) Simulation (d) Experiment (Fig. 2A from [44])

Figure 7: Comparison of simulation and experiment for twmponent lipid phase separation. (a) & (b) have
reduced volume = (.98 and global concentratiang = 0.98. (c) & (d) haver = 0.76 andzp = 0.56. Phase
A (¢ = 0) is colored blue; phasB (c = 1) is colored red. Scale bars &gm. Experimental images are taken

from the work of Baumgart et al. [44].
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(a) standard dashpot regularization (b) r-adaptive regularization

Figure 8: r-adaptive regularization helps elements perfaell in the interfacey = 0.76).

only on current shape, and thus is not sensitive to in-platret¢hing and shearing) deformations of the surface
FE mesh. Here a viscous regularization method is thus intred to regularize tangential mesh deformations.
In this method artificial reference configurations and cgpoading in-plane energies are added to stabilize the
tangential deformations; reference updates are desigrtbadsartificial energy converges to zero in order to retain
the physics of the original model.

Regulariztion of tangential mesh deformations eliminatesneed for local enforcement of membrane in-
compressibility], providing a more convenient settingaugmented Lagrangian (AL) enforcement of global
constraints on area and volume. The AL method can achieveehigccuracy with lower computational cost,
compared to the penalty method.

Large deformation problems can be very sensitive to meslitgjuBecause of the physical meaninglessness
of the reference configurations in the simulation, r-adaatemeshing is easy to achieve in the context of viscous
regularization, simply choosing a reference updatindesgsawhich will reposition the nodes to get a better quality
mesh.

One promising direction for future work is to combine vissaegularization and r-adaptive remeshing with
the dynamic triangulation approadh__|[18], in which the edfe pair of triangles swaps to form less distorted
triangle elements instantly. This could be a powerful apphg speeding up the otherwise slow movements of
nodes driven by the viscous regularization. Also, the sseoér-adaptive regularization relies to some degree on
the quality of the starting mesh. If there are too many baldaped element and the shape criteri@lerance is
chosen to be too small, the mesh can sometimes lock with aomregularization energy, resulting in physically
wrong shapes of vesicles. Dynamic triangulation couldiatevsuch locking. Lastly a r-adaptive regularized
dynamic triangulation strategy could avoid the need fobglaemeshing in large deformation problems such as
the tether simulations in Sec. B.2.

Although the problems simulated in this paper are all axisytric, the model is really designed for fully
three-dimensional calculations, and can thus deal witftrarlp geometries and loads. For example future ap-
plications such as mechanics of organelles like mitochi ] and endoplasmic reticulum (ERI[SG], with
incredibly complex shapes may provide exciting opportasitor future study with these methods.
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