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Abstract

Models for incompressible immiscible bifluid flows with surface tension are here
considered. Since Brackbill, Kothe and Zemach (J. Comput. Phys. 100, pp 335-
354, 1992) introduced the Continuum Surface Force (CSF) method, many methods
involved in interface tracking or capturing are based on this reference work. Particu-
larly, the surface tension term is discretized explicitly and therefore, a stability con-
dition is induced on the computational time step. This constraint on the time step
allows the containment of the amplification of capillary waves along the interface
and puts more emphasis on the terms linked with the density in the Navier-Stokes
equation (i. e. unsteady and inertia terms) rather than on the viscous terms. Indeed,
the viscosity does not appear, as a parameter, in this stability condition.

We propose a new stability condition which takes into account all fluid charac-
teristics (density and viscosity) and for which we present a theoretical estimation.
We detail the analysis which is based on a perturbation study - with capillary wave
- for which we use energy estimate on the induced perturbed velocity. We validate
our analysis and algorithms with numerical simulations of microfluidic flows using
a Level Set method, namely the exploration of different mixing dynamics inside
microdroplets.
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1 Introduction

Analysis and algorithms derived herein are the result of our interest in mod-
elling and numerically simulate bifluid flows in microfluidics. Over the last
decade, microfluidics has revolutionized our ability to manipulate and con-
trol flows in channels the width of a single human hair. The deeply affected
fluid behaviour, due to preponderance of surface tension and viscosity, is used
in applications ranging from biology and medicine to chemistry and mate-
rials processing. Among all applications of two fluids flows at low Reynolds
numbers, we are more particularly interested in the use of microdroplets. Cre-
ation and transport of droplets in microchannels are extensively described in
the literature both from theoretical and experimental point of view (e.g. see
[2,46,21]). Making the most of surface tension effects, flows of two immiscible
fluids in microdevices allow to create monodisperse emulsions where droplets
of the same size move through microchannels networks and are used as mi-
croreactors to study very fast chemical kinetics (of the order of a millisecond
[45]).

In this paper, we will thus consider models for immiscible bifluid flows with
surface tension. A vast amount of numerical methods has been developed
for modelling of such free surface flows. A standard classification first leads
to distinguish Lagrangian, Eulerian or mixed Lagrangian-Eulerian methods
regarding the modelling of the flow. In Lagrangian methods, a mesh element
always contains the same fluid particles and thus computational mesh moves
with the fluid. Conversely, Eulerian methods are based on a fixed mesh in
which the fluid cross the computational cells. A second distinction lies in
the modelling of the evolving interface which can be explicitly tracked along
trajectories of fluid particles, leading to so-called interface tracking methods ;
conversely, the interface can be implicitly tracked by embedding it in a globally
defined field variable such as viscosity, density or volume fraction, leading
to so-called interface capturing methods. Among the methods for simulating
moving interface we find VOF [14,38], Level Set [31], front tracking [55,54],
diffuse-interface [1,4,23] and lattice Boltzmann [7,12,16] methods, to name a
few.

Among models for surface tension, the Continuum Surface Force (CSF) for-
mulation introduced by Brackbill, Kothe and Zemach [5] has been widely and
fruitfully used in the literature : e.g. see [34,42] for VOF method or [49,26]
for Level Set method. The idea is to treat the surface tension as a body
force in the momentum equation. This force, distributed within a transition
zone, allows straightforward implementation of surface tension effect, even
when topological changes occur. We note that numerous studies has been
conducted to improve a drawback of this method, namely spurious currents
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(also known as parasitic currents) generated in the neighbourhood of the in-
terface. These spurious currents are unphysical vortex-like velocities. First ob-
served in Boltzmann interfacial methods, parasitic currents are also presented
by Lafaurie et al. in [24] where they suggested the alternative Continuum
Surface Stress (CSS) method. Then follow several approaches to tackle this
problem [35,32,53,34,41,52,26]. Their key ideas in suppressing parasitic cur-
rents, usually mentioned in this literature, are (i) improvement of curvature
computation, (ii) achievement of discrete balance between surface tension and
pressure gradient (iii) adaptive time integration scheme to tackle the stiffness
induced by surface tension [25]. In addition, a singular and very promising
work is developed by Jamet and coworkers [18]. It relies more on minimal
energy consideration and can eliminate parasitic currents down to machine
precision. Note, that this approach is applied in the context of diffuse inter-
face and second gradient method [17].

In [5], as in many later approaches based on CSF method, the surface tension
term is discretized explicitly and therefore, a stability condition is induced on
the computational time step. This constraint on the time step allows the con-
tainment of the amplification of capillary waves along the interface. Further-
more most of the aforementioned methods use the stability condition derived
in [5]. This stability condition puts more emphasis on the terms linked with
the density in the Navier-Stokes equation (i. e. unsteady and inertia terms)
rather than on the viscous terms. Indeed, the viscosity does not appear, as a
parameter, in this stability condition. In this paper, we propose a new stability
condition for which we present a theoretical estimation for flows with low and
medium Reynolds numbers. This stability condition involves the fluid density
as well as its viscosity. Besides, considering two regimes we can exhibit two
stability conditions which are more restrictive and such that one of them is
the condition proposed in [5] and the other is more suited for Stokes like flows.
Numerical validation is done using a Level Set method.

Level Set methods have been applied with great success in a broad range of
physical and image processing applications (see books [30] and [39]). The orig-
inal formulation [31], together with tools of the Level Set technology such as
(W)ENO schemes, TVD Runge-Kutta schemes [43,44,20,19] and PDE-based
redistanciation are used here to achieve accurate simulation of surface tension-
driven flows. We note that numerical studies of flows at micrometer scale had
already been conducted. In a series of papers, Yu, Sakai and Sethian [56–58]
perform abundant numerical simulations of ink-jet printing for both Newto-
nian and viscoelastic fluids ; in these applications, the Reynolds number is
rather high, namely 40 to 90. Shapiro and Drikakis [40] developed specific
methods for diffusion broadening in two- and three-dimensional microfluidic
channels. De Menech performed simulation of droplet breakup in a microfluidic
junction, with a phase field method [27]. Also concerning droplet formation,
Renardy used very recently the VOF-PROST method to study the effects of
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confinement and inertia on the production of droplets [33]. In this paper, we
will present numerical results for microflows with Reynolds number of order
one or less, showing different mixing dynamics inside the microdroplets which
are in good agreement with results reported in the literature.

The remainder of this paper is as follows. Section 2 is devoted to the presen-
tation of mathematical models used for the simulation of bifluid flows with
surface tension, adopting a CSF formulation. Section 3 then provides the de-
scription of the numerical resolution approach, discretizations and solvers. The
main result of this paper concerning the new numerical stability condition is
then derived in section 4. The analysis is based on a perturbation study -
with capillary wave - for which we use energy estimate on the induced per-
turbed velocity. We will show numerically that a degenerate version - of this
general stability condition - for Stokes like flows is better suited and discuss
this point in more details. We will see that stability issue described herein has
applications beyond the micrometre scale domain and, depending on fluids
properties, can be applied to metre scale flow simulations. Finally, in section
5, we present numerical results of microdroplets simulations.

2 Concerned models for bifluid flows

In this study, we consider flows of two immiscible fluids assumed to be vis-
cous and Newtonian. We further assume that the flow is isothermal and fluids
are incompressible and homogeneous. Densities and viscosities are thus con-
stant within each fluid. The governing equations can then be expressed by the
Navier-Stokes equation

ρ

(

∂u

∂t
+ u.∇u

)

−∇.(2ηDu) + ∇p = F ∀(t,x) ∈ R
+ × Ω, (1)

together with the incompressibility condition :

∇.u = 0 ∀(t,x) ∈ R
+ × Ω, (2)

where Ω is the 2D (or 3D) bounded fluid domain, u = (u, v) is the velocity
field, p the pressure, ρ the density, η the viscosity, F any body force (such
as gravitational acceleration or surface tension, as we will describe in the
following) and Du = (∇u + ∇Tu)/2.

Bearing in mind that we will present some microfluidic applications at the
end of this paper, we mention now that (1) reduces to Stokes equation when
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inertia influence can be neglected :

ρ
∂u

∂t
−∇.(2ηDu) + ∇p = F ∀(t,x) ∈ R

+ × Ω, (3)

Moving interfaces can be handled with the Level Set method - introduced
by Osher and Sethian in [31] (see also [30] and [39]) - and we use here the
approach of Sussman, Smereka and Osher [49] for incompressible two-phase
flows. The interface between the two fluids is thus captured by advecting the
Level Set function φ with the flow velocity u :

∂φ

∂t
+ u.∇φ = 0 ∀(t,x) ∈ R

+ × Ω, (4)

where φ has to be thought as a signed distance function. Affecting the subscript
1 and 2 to all quantities related respectively to fluid 1 or fluid 2, the Level Set
function is, for instance, such that :

φ



























< 0 in fluid 1

= 0 on the interface

> 0 in fluid 2

(5)

Hence (1) is a single fluid continuum model for the flow with variable density
and viscosity given respectively by :

ρ= ρ1 + (ρ2 − ρ1)H(φ) (6)

η = η1 + (η2 − η1)H(φ) (7)

where H is the Heaviside function.

Being here dedicated to flows where surface tension is preponderant, we will
assume in the following that gravitational acceleration is negligible and thus,
the body force F is restricted to surface tension. In this sharp-interface ap-
proach, we further assume that surface tension is constant along the interface
and we adopt the Level Set version of the CSF method to write the surface
tension force Fσ as :

Fσ = σκδ(φ)n (8)

where σ is the surface tension coefficient, n is the unit normal to the interface, κ
is the curvature of the interface and δ(φ) is the Dirac delta function localized on
the interface. This formulation of the surface tension has been used by Unverdi
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and Tryggvason [55] and Brackbill, Kothe and Zemach [5]. This complete
Level Set formulation with the Navier-Stokes equations for two-fluids flows
was derived by Chang, Hou, Merriman and Osher [6] and later used in many
other works (Sussman et al. [48,47], Olsson and Kreiss [29], Marchandise et
al. [26], to new a few).

In a Level Set framework, the unit normal to the interface is classically ob-
tained via φ :

n =
∇φ

|∇φ|

∣

∣

∣

∣

∣

φ=0

(9)

as well as the mean-curvature of the interface :

κ = ∇.

(

∇φ

|∇φ|

)
∣

∣

∣

∣

∣

φ=0

(10)

3 Numerical resolution approach

In this section, we describe the general procedure, discretizations of the model
and flow solver used to compute evolving interfaces for bifluid flows.

3.1 General procedure

In the following, we will consider geometry in two dimensions for ease of
presentation. The 3D approach follows the same philosophy. The algorithm is
as follows :

(1) Initialize a Level Set function φ to represent the interface and update
physical quantities η and ρ.

(2) Compute the unit normal n and the curvature κ.
(3) Solve the Navier-Stokes equation for (u, p).
(4) Update φ by solving the transport equation associated to u.
(5) Eventually, apply redistanciation procedure on φ, if needed.
(6) Iterate (2)-(5) for each step of the time discretization

Step (5) has been introduced in Level Set methods in order to improve mass
conservation which is a drawback often mentioned in the literature. Mulder,
Osher and Sethian [28] showed that taking φ as a signed distance function
improve the accuracy of the method. Moreover, Chopp [8] went a step further
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introducing the concept of redistanciation : to achieve more accurate compu-
tation, φ should remain a signed distance function along iterations and thus
should be periodically reinitialized ; here several approaches exist : on the one
hand, reinitialization is applied at each time step, on the other hand, period-
icity is strictly greater than one iteration (e.g. 10 iterations).

3.2 Discretizations

A first order discretization is used for evolving the equations in time. The
superscripts n and n + 1 represent respectively the current and next time
level. Following the algorithm presented in the last section, we have current
un and φn which, by solving Navier-Stokes equation, gives (un+1, pn+1) ; we
can then solve transport equation for φn+1. To sum up :

ρn

(

un+1 − un

∆t
+ un.∇un

)

−∇.(2ηnDun+1) + ∇pn+1 = σκnδ(φn)n (11)

∇.un+1 = 0 (12)

φn+1 − φn

∆t
+ un+1.∇φn = 0 (13)

where ∆t is the computational time step. We would like to make several com-
ments here. First, the surface tension term is discretized explicitly which im-
plies a specific numerical stability condition as we will see in the following
section. Second, one can also use higher order discretizations in time but this
does not change the core result proposed in this paper. Finally, in our code,
we can use TVD Runge-Kutta scheme in time of order 2 or 3 for the transport
equation (following Shu and Osher [43]).

For spatial discretization of (11)-(12), we use a finite-volume method on a
staggered grid as in the Marker and Cell (MAC) method of Harlow and Welch
[13].

Concerning the surface tension term σκδ(φ)n = σ∇.n ∇H(φ), we use a mol-
lified Heaviside function on few cells (e.g. 3) and a central scheme to approx-
imate the curvature ∇.n = ∇. ∇φ

|∇φ|
. Note that, for a slightly improvement of

numerical results, we prefer to approximate the curvature ∇. ∇φ̃

|∇φ̃|
where φ̃ is a

five-point average of φ.

The transport equation (13) is discretized with a WENO5 scheme [19].

For the redistanciation of the function φ, we use a reinitialization equation
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which is discretized by the method of Russo and Smereka [36].

3.3 Flow solver

In order to solve (11)-(12) for (un+1, pn+1), we use an augmented Lagrangian
method (see e.g. [50,9,11]).

This algorithm consists in solving Navier-Stokes with an iterative method
in order to converge towards a solution which satisfies the incompressibility
constraint. To this end, we denote in a natural way (uk+1, pk+1) and (uk, pk)
the variables of this iterative process. We proceed as follows :

(1) Initialize (u0, p0) (e.g. solving Stokes equation)
(2) Solve the following linear system for uk+1 :

ρ

∆t
uk+1 −∇.(2ηDuk+1) + θ1∇ (∇.uk+1) =

ρ

∆t
un − ρun.∇un + σκnδ(φn)n−∇pk (14)

(3) Update the pressure pk+1 via

pk+1 = pk − θ2∇.uk+1 (15)

(4) Iterate (2)-(3) until convergence
(e.g. when |pk+1 − pk| < ζ or |∇.uk+1| < ζ)

(5) Finally, assign (un+1, pn+1) = (uk+1, pk+1)

where θ1 and θ2 are numerical coefficients of the augmented Lagrangian and ζ
is the desired convergence criteria. In our computations, we take θ1 = θ2 = 1.
Remark that the initialization step (1) can be done as follows, depending on
your current status in the global evolution computation :

• if the initial physical time step of the simulation must be computed, and one
does not have any “natural” initial guess neither for (u0, p0) and thus nor
for (u0, p0), one can compute the solution of the stationary Stokes equation.
To this end, it suffices to apply the above algorithm with any initial (u0, p0)
(e.g. (u0, p0) = (1;1)) and imposing ρ = 0. At convergence, obtained solu-
tion is an ad hoc candidate (u0, p0) for initializing unsteady Navier-Stokes
computation

• if several iterations are already computed, one could simply assign (u0, p0)
= (un, pn)

In microfluidic applications of this paper, where a Stokes model is used for
the flow, this augmented Lagrangian algorithm converges in 4 or 5 iterations
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to the solution such that the vanishing-divergence constraint is verified at the
order of the divergence approximation, say at the second order.

4 Stability condition and the role of surface tension

Formulation (11)-(12)-(13) classically induces a numerical stability condition
on the time step. First, the time step must obey the CFL condition due to
the convective terms of Navier-Stokes and transport equation. Second, the
explicit discretization of the surface tension term induces another restriction
on the time step. This constraint on the time step allows the containment of
the amplification of capillary waves along the interface.

Most of methods based on the CSF formulation use the surface tension-induced
stability condition derived in the seminal work of Brackbill et al. [5] and other
derivations also leads to similar conditions (e.g. see [22]).

In this section, we derive a new stability condition induced by surface tension
for flows with low and medium Reynolds numbers.

4.1 Stability analysis

Proposition 1 Assume that (1) (2) is discretized in time by an explicit dis-
cretization of the surface tension term and that (4) is discretized by a stable
explicit scheme. Then, for sufficiently small Reynolds numbers, a numerical
scheme, associated to such a time discretization and all space discretizations,
is stable under the condition

∆t ≤ min (∆tc, ∆tσ) , with (16)

∆tc = c0‖u‖−1
L∞(Ω)∆x and (17)

∆tσ = ∆tσ(ρ, η) =
1

2

(

c2
η

σ
∆x +

√

(c2
η

σ
∆x)2 + 4c1

ρ

σ
∆x3

)

(18)

where ∆t is the time step, ∆x is the space step of the discretization, and c0,
c1, c2 do not depend on the physical and discretization data of the problem.

Remark 2 In this proposition, the restriction on the Reynolds number holds
only because of the nonlinear term in Navier-Stokes equations. This restriction
corresponds to an assumption of laminar flows.
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Remark 3 Note that, as shown in (18), the time step ∆tσ depends on the
density and the viscosity. The capillary time step derived in [5] verifies

∆tBKZ ∼
√

ρ

σ
∆x3 ∼ ∆tσ(ρ, 0). (19)

The capillary time step related to Stokes equation (when neglecting inertia
phenomena)

∆tSTK ∼ η

σ
∆x ∼ ∆tσ(0, η). (20)

Finally, we remark that the capillary time step ∆tσ is the less restrictive, since

∆tσ ≥ ∆tSTK and ∆tσ ≥ ∆tBKZ . (21)

Proposition 1 then shows numerical stability under the well known condition

∆t ≤ min(∆tc, ∆tBKZ). (22)

Moreover, this proposition also shows numerical stability under the condition

∆t ≤ min(∆tc, ∆tSTK). (23)

We will particularly focus on numerical validation of (23) in following section
4.2 and then discuss and compare all these conditions in section 4.3.

We note that the following derivation is not, in a strict sense, a mathematical
proof since two relevant physical assumptions on the Navier-Stokes solutions
are introduced step by step in the derivation. Actually, these assumptions allow
to complete the mathematical derivation of inequality verified by a “capillary
velocity” (which will be precised below) and are thus useful for numerical anal-
ysis of the time step constraint. Apart from these two relevant assumptions
the whole derivation consists in rigorous mathematical analysis.

DERIVATION.

First, convection terms imply the constraint ∆t ≤ c0‖u‖−1
L∞(Ω)∆x which is the

classical CFL condition where c0 depends on the choice of the scheme to dis-
cretize the transport equation (4).

Second, the condition involving ∆t ≤ ∆tσ avoids the oscillation phenomena
of the interface due to surface tension and this condition is the main objective
of the present derivation. Let us begin by outlining how we proceed :
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u pert

asymptotic interface

perturbed interface

δ

L

Fig. 1. A perturbed interface (of amplitude δ and wavelength L) and induced velocity

(1) When (11)-(12)-(13) is solved numerically, some small consistent numeri-
cal errors lead to some equally small perturbations of the interface shape
which in turn induce a perturbation velocity, also called capillary velocity
since it is due to surface tension (see Figure 1).

(2) In order for the explicit discretization (11) to be stable with respect to
surface tension influence, one needs to choose a sufficiently small time
step so that the displacement (during the time step) of the interface is
smaller than the size δ of the perturbation of the interface (see Figure 1),
i.e. :

∆tσ ≤ δ

‖w‖ (24)

where ‖w‖ is the norm of the perturbed velocity (which will be defined
in the following) induced by surface tension.

(3) In order to find the stability condition, we thus need to find a refined
bound on velocity with respect to the perturbation of the interface : this
is the key point of the analysis and the new contribution compared to
previous heuristics.

In order to gauge the extent of this perturbed velocity, we perform the analysis
on the continuous problem instead of the discrete problem. For that, we assume
that the numerical scheme approximates consistently the continuous problem.

We consider a smooth interface Γ0(t), at a time t, and assume it is parametrized
as :

Γ0(t) = {(xΓ0
(s); yΓ0

(s)) ∈ R
2/s ∈ [−1; 1)} (25)

Let then f be a C2 function with supp(f) ⊂ [−1; 1] such that ‖f‖C0 = 1 and
‖f‖C2 = O(1). We consider the following perturbation of Γ0(t) :

Γ(t) =
{(

xΓ0
(s); yΓ0

(s) + δf
(

s

L

))

∈ R
2/s ∈ [−1; 1)

}

(26)

where δ and L are respectively the amplitude and the wavelength of a small
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perturbation. We will see that we are concerned with small wavelength L,
which generates high curvatures variations and, in turn, high local velocities.
The limitation on time step is such that the numerical scheme has to predict
an interface Γ(t + ∆t) with a smaller perturbation than the one of Γ(t). The
same analysis can then be performed when considering a perturbation of the
velocity instead of a perturbation of the interface.

Let us recall that in the Level Set framework, a regularization of Dirac delta
function (∇H(φ)) is obtained by considering Hε instead of H , where Hε is a
smooth increasing function and approximates the Heaviside function as ε goes
to zero, suppH ′

ε ⊂ (−ε; ε), ‖H ′
ε‖∞ ≤ 2

ε
.

Let us define κ0(x, y) (resp. κ(x, y)), the curvature of Γ0 (resp. Γ) at a point
(x, y) ∈ R

2. Both curvatures κ0 and κ are useful in an ε−neighbourhood
of Γ0 and Γ when the Dirac delta function on the interface is ε−regularized.
Nevertheless, in order to simplify the analysis and to estimate the source term,
the curvatures are extended on the full domain in such a way that

‖∇κ0‖L∞(Ω) = ‖∂sκ0‖L∞(Γ0), ‖∇κ‖L∞(Ω) = ‖∂sκ‖L∞(Γ) (27)

where ∂s denotes the tangential derivative along Γ or Γ0.

Let us recall the so-called standard pressure shift that we use in order to
reformulate source term (8) of Navier-Stokes equation (1), namely σκ∇Hε(φ).
By the chain rule we have

κ∇Hε(φ) = ∇(κHε(φ)) − (∇κ)Hε(φ). (28)

Thus

ρ(∂tu + u.∇u) −∇.(2ηDu) + ∇p = σκ∇Hε(φ) (29)

can be rewritten as (σ being constant):

ρ(∂tu + u.∇u) −∇.(2ηDu) + ∇p = ∇(σκHε(φ)) − σ(∇κ)Hε(φ) (30)

where pure gradient term ∇(σκHε(φ)) can then be included to pressure term
so that :

ρ(∂tu + u.∇u) −∇.(2ηDu) + ∇(p − σκHε(φ)) = −σ(∇κ)Hε(φ) (31)

Finally, we made the following change of variable (keeping the same notation)
p−σκHε(φ) → p also known as pressure shift. The reformulated Navier-Stokes
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equation becomes :

ρ(∂tu + u.∇u) −∇.(2ηDu) + ∇p = −σ(∇κ)Hε(φ) (32)

We can now begin to find a bound on the perturbed velocity. To do so, we
write equation (32) associated to both interfaces Γ0 and Γ. We denote u the
velocity field associated to the interface Γ0 and verifying











ρ(∂tu + u.∇u) −∇.(2ηDu) + ∇p0 = −σ(∇κ0)Hε(φ0)

∇.(u) = 0
(33)

and v the velocity field associated to the interface Γ and verifying










ρ(∂tv + v.∇v) −∇.(2ηDv) + ∇p = −σ(∇κ)Hε(φ)

∇.(v) = 0
(34)

We then denote w = v − u and take the difference (34)-(33) to obtain (as-
suming ρ and η are constant and denoting q = p − p0) :

∇.(w) = 0 (35)

ρ∂tw −∇.(2ηDw) + ρv.∇w + ρw.∇u + ∇q =

−σ[∇(κ − κ0)]Hε(φ) − σ[∇κ0][Hε(φ) − Hε(φ0)] (36)

One can show that right-hand side terms verify following inequalities :

‖[∇(κ − κ0)]Hε(φ)‖L∞(Ω) ≤ c
δ

L3
(37)

‖[∇κ0][Hε(φ) − Hε(φ0)]‖L∞(Ω) ≤ ‖∂sκ0‖L∞(Γ0)
cδ

ε
, (38)

the source term of (36), denoted g below, is then bounded at time t = 0, in
L∞(R2) norm by :

‖g(0)‖L∞(Ω) ≤ cσ

(

δ

L3
+ ‖∂sκ0‖L∞(Γ0)

δ

ε

)

(39)

where c does not depend on δ, L, ε and σ. We note that the inequality involving
ε is not optimal when ε goes to zero, but we will see that it is sufficient for
the analysis with ε ∼ ∆x.
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We will now perform a so called L2 energy estimate of (36) [51]. It consists
in multiplying equation (36) by w and integrating resulting equation over
Ω. Taking into account that w is divergence free, the pressure gradient term
vanishes ; then by use of definition of L2(Ω)-norm, Green theorem and Cauchy-
Schwarz inequality, it reads :

ρ

2

d

dt
‖w‖2

L2(Ω) + η‖∇w‖2
L2(Ω) ≤ ‖g‖L2(Ω)‖w‖L2(Ω) + ρ‖∇u‖L∞(Ω)‖w‖2

L2(Ω)(40)

After this mathematically rigorous analysis, we decide to introduce

Assumption 4 which is the first assumption of this derivation, namely

‖∇w‖L2(Ω) ∼
1

L
‖w‖L2(Ω) (41)

i.e. a source term induces a velocity perturbation which is essentially of the
same wavelength L.

Note that this assumption is numerically verified as it can be seen for instance
on Figure 4 (where vortex size is of same order of the interface perturbation’s
wavelength). Furthermore, a rigorous justification of (41) is probably a work
of its own, even for the Stokes equation.

Thanks to (41), there exists a constant C such that

ρ

2

d

dt
‖w‖2

L2(Ω) +
(

Cη

L2
− ρ‖∇u‖L∞(Ω)

)

‖w‖2
L2(Ω) ≤

L2

Cη
‖g‖2

L2(Ω). (42)

Note that, because (41) is not an equality, we only know that C is of order
one but its value is not known exactly. This plays a role in the fact that it will
not be possible to predict an exact value of c2. This will be discussed later.

To continue the derivation, we now introduce

Assumption 5 which is second and last assumption of this derivation, namely

ρ‖∇u‖L∞(Ω) ≤
Cη

2L2
, (43)

which is true for sufficiently low Reynolds numbers.

Then, the end of the derivation is completely mathematically rigorous and re-
lies on standard mathematical analysis tools for partial differential equations.
By plugging (43) into (42) and using Gronwall’s lemma we get :
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‖w(t)‖2
L2(Ω) ≤‖w(0)‖2

L2(Ω) exp(− Cη

ρL2
t)

+ (1 − exp(− Cη

ρL2
t))

L4

C2η2
sup

s∈(0,t)
‖g(s)‖2

L2(Ω). (44)

If we consider that the initial velocity is not perturbed, w(0) = 0 and the
source term g is maximal for t = 0, finally

‖w(t)‖L2(Ω) ≤ (1 − exp(− Cη

ρL2
t))

L2

Cη
‖g(0)‖L2(Ω), ∀t > 0. (45)

Using again the profile of the solution (as in assumption (41)) and the surface
tension term , we have

‖w‖L2(Ω) ∼ L′ ‖w‖L∞(Ω)

‖g‖L2(Ω) ∼ L′ ‖g‖L∞(Ω)

(46)

Assumptions (46) and inequality (45) yield

‖w(t)‖L∞(Ω) ≤ (1 − exp(− Cη

ρL2
t))

L2

Cη
‖g(0)‖L∞(Ω), ∀t > 0. (47)

Considering a time discretization of (36) with an implicit discretization of the
diffusive term and an explicit discretization of the source term, discrete analog
of (47) on a time step ∆t is

‖w(∆t)‖L∞(Ω) ≤
∆t

ρ L2

Cη
+ ∆t

L2

Cη
‖g(0)‖L∞(Ω), ∀t > 0. (48)

As mentioned in the previous outline (on page 11), we can now, with (24),
determine an inequality verified by the capillary time step ∆tσ. If the dis-
placement of the interface is larger than 2δ, perturbations are amplified and
oscillates. Finally, with (24)-(39)-(48) combined, we can write the stability
condition by saying that the oscillations are removed if

∆tσ =
δ

‖w(∆tσ)‖L∞(Ω)

≤ c
ρ L2

Cη
+ ∆tσ

∆tσ

η

σ

L

1 + ‖∂sκ0‖L∞(Γ0)
L3

ε

. (49)

As the wavelength L is upper bounded, this condition is restrictive for the
smaller admissible wavelength in the numerical process. We are then concerned
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with L ∼ ∆x, which gives

∆t2σ ≤ c2
η

σ
∆x∆tσ + c1

ρ

σ
∆x3, (50)

with c1, c2 two positive constants independent of physical and numerical pa-
rameters. We finally obtain (18) which completes the derivation in the case
where we consider that initial velocity is not perturbed.

If we consider a perturbation (with a given wavelength L) of the initial velocity,
w(0) 6= 0, instead of a perturbation of the interface, the interface is deformed
with the same wavelength. The same analysis can be performed starting from
(44). The maximal value of g is reached for a positive time, corresponding to
a maximal value of the amplitude of the deformation on the interface.

�

The goal of the next two subsections is, first, to validate from a numerical
point of view the stability condition (23) and, second, to discuss features linked
with this derivation and compare it with previous heuristics described in the
literature. Even if the condition induced by (18) is the less restrictive one,
condition (23) is a pertinent sufficient stability condition when considering
flows driven by capillary instability. This point will also be discussed in the
following subsection.

4.2 Numerical confirmation of the stability condition

We now present numerical simulations which validate the stability condition

∆tSTK = c2
η

σ
∆x. (51)

This time step is smaller than ∆tσ but is close when the inertia phenomena are
small. Microfluidics is a typical example of such flows where surface tension is
preponderant, and thus, unconfined droplets have a near circular shape which
translates in straight channels, when the flow velocity is low. We will use this
framework in order to simulate these kind of physically stable interfaces and
will show that constant c2 exhibited in our derivation exists. Namely, there
exists a threshold value for c2 such that if c2 is chosen under this threshold
(resp. above) the simulation becomes numerically stable (resp. unstable).

We perform numerical simulations in two dimensions taking the parameters in
such a way we simulate microflows. Namely, we consider a rectangular chan-
nel with a section of 120.10−6 m. The maximum of injection velocity is 9.10−2
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m/s. Viscosity and density are equal in both fluid : η1 = η2 = 2.10−2 and
ρ1 = ρ2 = 10−8. Surface tension is σ = 3.10−2. Discretization in space is such
that there are 36 cells in the section and 80 cells in the direction of the channel.

Note that with these parameters, we take, on purpose, a vanishing density in
such a way that stability condition (51) is (i) in the order 105 times greater
than condition proposed by Brackbill et al. and (ii) more restrictive than CFL
condition. The latter is classically expected, contrary to (i). This will be fur-
ther discussed in the next subsection.

We point out the quality of numerical simulations through viewing the veloc-
ity field in the frame of moving interface. We consider droplets moving in a
straight channel, where the droplet’s shape has to converge to an asymptotic
shape so that the velocity field in the drop frame of reference is tangential to
the interface. Details on how to exhibit the drop frame of reference are given
in Appendix A.

As a first test case, we take as initial condition an interface which is ellipsoidal
such that it converges to a near circular droplet shape (with diameter equal
to 2/3 of channel section) under the mentioned flow conditions. This initial
state is shown on the left of Figure 2. An asymptotic stable shape is obtained
in finite time and shown on the right of Figure 2. In this test, c2 = 8. The
numerical simulation remains stable for all computational time and one can
observe that the asymptotic shape is reached since streamlines in the droplet’s
frame of reference are tangent to the interface.

Fig. 2. Left : initial state of simulation. Right : asymptotic state of the droplet. The
interface is represented by a thick black line and the velocity field in the droplet’s
frame of reference is represented by blue arrows. Note that the arrows’ scale of the
right is 10 times the one on the left. On the right, streamlines are added with black
thin arrowed lines and show that the asymptotic state has been reached. Here c2 =
8.

Such snapshot is always obtained for values of c2 such that : c2 ≤ 8 ; this is
the threshold above which simulations become unstable. As a matter of fact,
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if we run the same simulation with c2 = 9, the interface first converges toward
the asymptotic shape and then becomes unstable. On the left of Figure 3, we
see the same initial state presented on the left of Figure 2 except that we use
the arrow scale of the right of Figure 2 ; this allows to have an idea of the
scaling change. On the right of Figure 3, the snapshot at the same time of
the right of Figure 2 is shown and clearly exhibits the numerical instabilities
due to the violation of our condition. When looking at the evolution of this
interface, we see that it oscillates around the asymptotic with an amplitude
growing with time, leading to inconsistent results and eventually a break of
the simulation. Such parasitic currents do not have to be confused with the
ones discussed in the introduction which are of greater size and which do not
diminish with mesh refinement.

Fig. 3. Left : initial state of simulation. Right : asymptotic state of the droplet. The
interface is represented by a thick black line and the velocity field in the droplet’s
frame of reference is represented by blue arrows. Note that the arrows’ scale is the
same on the left and on the right, as well as on the right of Figure 2. There, we can
clearly see that the simulation is unstable with parasitic currents near the interface.
The asymptotic state is never reached and oscillations of both velocity field and
interface grow along time and can induce a break of the simulation. Here c2 = 9.

Note that we also perform same simulations which show that this threshold
value c2 = 8 is unchanged under mesh refinement, which numerically proves the
independence of c2 with respect to the mesh size, as shown in our derivation.
In the same manner, this threshold is independent of η and σ. Furthermore,
if ρ is increased this value of c2 also leads to numerically stable simulations as
it is predicted by the analysis. For large ρ, note that the stability condition
induced by (20) is not optimal and can be relaxed to the one induced by (18).

With our computation of curvature, the critical value to develop instabilities
is around c2 = 8. For such a value, instabilities are very long to develop or to
decrease (for c2 slightly under 8). The good choice for the constant is then c2

= 4 according to our analysis. As a matter of fact, the value c2 = 8 is close
to the value ensuring symmetric oscillations, along the time, of the interface
when oscillations have a wavelength of the same order as the mesh size. Then,
the constant c2 = 4 (half of 8) is the biggest value ensuring no oscillations of
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perturbed interface. For c2 between 4 and 8, oscillations of small wavelength
occurs but are damped. Note that the constant c2 is dependent on the way of
computation of the numerical curvature ; this will be discussed in the following
subsection.

Then, we describe two other tests which show the independence of the thresh-
old with respect to the wavelength of the perturbation.

The second test is the same as the first one except that we change the initial
interface at t = 0 by taking a circle (whose diameter is equal to 2/3 of the
channel section) perturbed with a cosine of amplitude ∆x and wavelength
λ5 = 2πrc/5, where rc is the radius of the circle (cf. snapshot on the left of
Figure 4). As shown on Figure 4, with c2 = 4, the initial interface converges to
previously mentioned asymptotic interface and remains stable by translating
in the channel for all simulation time.

Fig. 4. Evolution of an initial interface (on the left) perturbed with a cosine of
amplitude ∆x and wavelength λ5, with c2 = 4 (To be compared with Figure 5). The
code is able to converge to the asymptotic shape which translates in the channel. The
interface is represented by a thick black line and the velocity field in the droplet’s
frame of reference is represented by blue arrows. Note that the arrows’ scale of the
right is 10 times the one on the left and middle pictures. On the right, streamlines
are added with black thin arrowed lines and show that the asymptotic state is
reached.

On the contrary, if c2 = 10 is chosen, the same initial interface first converges
to the circular asymptotic shape but then begins to destabilize with spurious
velocities : capillary instabilities grows with time and are not controlled, as
it can be seen on Figure 5 where all snapshots are taken at same times as in
Figure 4.

The third test case is the same as the second one except for a change in the
wavelength of the perturbation by taking λ20 = 2πrc/20. Again we observe
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Fig. 5. Evolution of an initial interface (on the left) perturbed with a cosine of
amplitude ∆x and wavelength λ5, with c2 = 10 (To be compared with Figure 4).
The code does not converge to the asymptotic shape. The interface is represented by
a thick black line and the velocity field in droplet’s frame of reference is represented
by blue arrows. Note that the arrows’ scale of the right is 10 times the one on the left
and middle pictures. Spurious velocities, induced by violation of stability condition
linked to surface tension, appear on the right.

the same behaviour when running the code with c2 = 4 and c2 = 10. Figure
6 shows, on the left, the initial condition and associated velocity field, and on
the middle and the right, convergence of interface to asymptotic shape : the
computation is stable with c2 = 4.

Fig. 6. Evolution of an initial interface (on the left) perturbed with a cosine of
amplitude ∆x and wavelength λ20, with c2 = 4 (To be compared with Figure 7).
The code is able to converge to the asymptotic shape which translates in the channel.
The interface is represented by a thick black line and the velocity field in droplet’s
frame of reference is represented by blue arrows. Note that the arrows’ scale of the
right is 10 times the one on the left and middle pictures. On the right, streamlines
are added with black thin arrowed lines and show asymptotic state is reached.

Conversely, Figure 7 shows that if c2 = 10 is chosen, simulation always exhibits
spurious currents originating from the interface : the code is not able to damp
the oscillations induced by surface tension.

On Figures 5 and 7 where at initial condition long (λ5 = 4λ20) and moderate
(λ20 = 3∆x) wavelength are introduced, we see that code is able to damp
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Fig. 7. Evolution of an initial interface (on the left) perturbed with a cosine of
amplitude ∆x and wavelength λ20, with c2 = 10 (To be compared with Figure 6).
The code does not converge to the asymptotic shape. The interface is represented by
a thick black line and the velocity field in droplet’s frame of reference is represented
by blue arrows. Note that the arrows’ scale is the same for the three snapshots.

associated oscillations to a certain level (see snapshot in the middle of Figures 5
and 7) but then, the resulting perturbations – which have a wavelength of order
∆x – develop and for c2 = 10, they grow and are not controlled by the code (see
snapshot on the right of Figure 5 and 7). Note furthermore that the minimal
wavelength which can be computed by the code is theoretically

√
2∆x. And

by the way, we see that with c2 = 10 the code is able to damp oscillations
with wavelength greater than 3∆x but can not damp smaller wavelengths of
order ∆x. Conversely, with an appropriate value of c2 (i.e. c2 ≤ 8), the code
is able to damp all oscillations of the interface induced by surface tension.

It must be noted that for both kind of perturbation (wavelength λ5 and λ20)
the threshold value for c2 is still c2 = 8. Thus, and again as a forgone conclu-
sion, thanks to the previous derivation, c2 is independent of the wavelength of
the perturbation.

4.3 Discussion and remarks

We would like to make several comments here about the stability condition
derived above and compare it to previous capillary stability conditions.

The stability constraint (20) can be very restrictive in applications where the
velocity of the flow is very low compared to σ

η
. As mention by Brackbill et al.

[5], it would be interesting to achieve an implicit discretization of the surface
tension term, in order to remove this constraint. Due to the highly non-linear
coupling induced by φ in (1)-(2)-(4), implicit treatment of surface tension is
not an easy task. A step in this direction was recently performed by Hysing
in [15] where he proposed a semi-implicit discretization of the surface tension
term (see also preceding works of Bänsch [3]).
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The present derivation of the stability condition shows that if the curvature
is regularized (for instance, via an interpolation procedure as it is the case in
several methods) then the capillary time step ∆tσ is increased. As a matter
of fact, perturbations of the interface with a small wavelength L and a small
amplitude δ are modified by a smoothing effect leading to a smaller amplitude
δ and a larger wavelength L. Following the derivation of Proposition 1, the
perturbed velocity w is lower. This thus leads to a relaxation of the time step
constraint. For this reason, the constant c2 is not universal since it depends
on how curvature is computed. To summarize on quantification of c2, one has
to figure out that taking into account present derivation :

• c2 is of order one (this has also been shown numerically) for a computed
curvature assumed to lead to the worst case ;

• thus, if numerical method leads to smoothed curvature, c2 can be of an order
greater than one ;

• and, because of assumption 4 which is not an equality, it is not possible to
give an exact value of c2 by algebra and taking into account formula used
to compute curvature.

In the next two subsubsections, we point out previous derivations of capillary
stability conditions and compare them with respect to linked flow character-
istics.

4.3.1 Comparison with previous heuristics

To our knowledge, the first derivation of a stability condition induced by
surface tension forces is given in [5]. Different from the one derived here, this
capillary stability condition is :

∆tBKZ ∼
√

ρ

σ
∆x3/2 (52)

The derivation of (52) puts more emphasis on the terms linked with the density
in the Navier-Stokes equation (i. e. unsteady and inertia terms) rather than
on the viscous terms. Indeed, the viscosity does not appear, as a parameter,
in this stability condition.

The same stability condition as (52) is given in [22] with a heuristic based on
an estimate of the capillary velocity. Nevertheless the estimate of this velocity
takes into account an equation on velocity reduced to

ρ
∂u

∂t
∼ σκδ(φ)n (53)
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leading to the following estimate (argued on dimensional grounds) of discrete
capillary velocity

uBKZ ∼ σ

ρ

∆tσ
∆x2

. (54)

Note that in the present paper, full Navier-Stokes equations are taken into ac-
count and we perform as far as we can rigorous mathematical analysis which is
then completed by two relevant physical assumptions (for which rigorous proof
is arguably beyond the scope of this paper) and allows to derive a different
capillary velocity :

uσ ∼ σ

ρ∆x2 + c∆tση
∆tσ (55)

This reduces to a stronger velocity for Stokes equation (ρ = 0)

uSTK ∼ σ

η
(56)

Then, estimations of capillary velocity are plugged in a CFL-like stability
condition, i.e.

∆t∗ =
∆x

u∗
. (57)

Consequently, three stability conditions induced by surface tension can be
obtained :

• (52) if velocity (54) is used
• or (18) if velocity (55) is used.
• or (20) if velocity (56) is used.

For low Reynolds, the time step (20) is close to (18) and has been validated
in section 4.2, we discuss below a comparison of (52) and (20) with respect to
flow characteristics.

4.3.2 Time steps associated to various flow regimes

In order to compare two previously mentioned capillary time steps, let us
recall that ∆tc is the classical CFL time step, ∆tBKZ is the time step derived
in [5], ∆tSTK the time step derived here with ρ = 0, and let us associate the
corresponding velocities:

23



∆tc ∼
1

‖u‖L∞(Ω)
∆x (58)

∆tBKZ ∼
√

ρ

σ
∆x3/2 :=

1

uBKZ
∆x, (59)

∆tSTK ∼ η

σ
∆x :=

1

uSTK
∆x. (60)

Remark that capillary velocities verify uSTK = σ
η

and uBKZ =
√

N
Re

√

‖u‖L∞(Ω)uSTK ,
where N is the number of mesh cells in the direction of the characteristic length
(e.g. channel’s diameter).

When the capillary velocity uSTK is high compared to the flow velocities (due
to low injection), the stability condition induced by time step (60) is restrictive,
but when the Reynolds number is small,

Re ≪ N
‖u‖L∞(Ω)

uSTK
, (61)

the time step (59) is even smaller. In the previous paragraph, we have seen
that our stability condition suffices for stable simulations and is close to (18).

For sufficiently high Reynolds,

Re ≫ N
‖u‖L∞(Ω)

uSTK

, (62)

the time step (59) is less restrictive than the time step (60). In such regimes,
inertia phenomena are preponderant, the stability condition (60) (optimal only
for low Reynolds) has then to be replaced by (18) which is close to (59) when
viscosity vanishes. Nevertheless, for such regimes (Re → ∞), it is not clear
that we are concerned with capillary instabilities because of turbulent flows
inducing physical instabilities of the interface. It becomes difficult to distin-
guish numerical and physical instabilities of the interface.

To conclude this section, we return to the well known time step (19),

∆tBKZ =

√

c1
ρ

σ
∆x3 (63)
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where c1 can be numerically calibrated on the system

ρ∂u

∂t
+ ∇p = σκδ(φ)n,

∇.u = 0,

∂φ
∂t

+ u.∇φ = 0.

(64)

The constants c2 and c1 being known, it is then possible to compute the less
restrictive time step ∆tσ induced by (18). Nevertheless, since

max(∆tSTK , ∆tBKZ) ≤ ∆tσ ≤ 1 +
√

5

2
max(∆tSTK , ∆tBKZ), (65)

for all regimes, ∆tσ is always equal to

∆tσ = α max(∆tSTK , ∆tBKZ). (66)

with 1 ≤ α ≤ 1.62. Consequently, the two time steps ∆tSTK , ∆tBKZ are the
two main quantities to determine a pertinent stability condition by taking the
maximum of these two values.

For microfluidic applications, small dimensions lead to low inertia phenomena,
the maximal value of ∆tSTK and ∆tBKZ is ∆tSTK .

5 Microfluidic applications

Due to preponderant effect of surface tension, flows of two immiscible fluids
in microdevices allow to create monodisperse emulsions where droplets of the
same size moves through microchannels networks and are used as microreac-
tors to study very fast chemical kinetics.
In this section, we show numerical simulations of such microdroplets obtained
with the Level Set method described previously together with the new stability
condition. As we are interested in the mixing dynamics inside microdroplets,
we essentially present velocity fields and streamlines in the drop frame of ref-
erence, for moving interface with stabilized shape (see Appendix A). We note
that in microflows, due to confinement, 3D effects have to be considered in
order to obtain a full description of the flow. Nonetheless, we will see that
2D simulations are a first step allowing to have a qualitative description of
mixing dynamics which is in good agreement with physical experiments. In
all the following Figures presenting numerical simulations, droplets move from
top to bottom.
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We begin by presenting an unconfined droplet in a microchannel on Figure 8.
The droplet (in black) is plotted together with the global velocity field and a
perfect circle (in red) in order to show the accuracy of the method and the
influence of surface tension : even if the curvature is a small perturbation of a
circle, the velocity field is noticeably modified. On Figure 9, we also present the

Fig. 8. Unconfined microdroplet (black line) together with the associated global
velocity field (blue arrows) and a perfect circle (red line).

associated velocity field in the drop frame of reference and some streamlines
which reveal the mixing dynamics inside the droplet.

Fig. 9. Same unconfined microdroplet (black line) of Figure 8 together with the
velocity field in the drop frame of reference (blue arrows) and some streamlines (in
arrowed-line).

We then proposed a snapshot series of confined microdroplets. For all simu-
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lations, we used 36 cells to discretize the channel section. We checked that
results are invariant under mesh refinement, which shows that computations
are fully converged. We consider two sizes of droplets. One, which will be
called the “small” droplet has a width of the order of the channel width D,
namely D = 120 micrometers and a length of order 1.3D. The other, which
will be called the “big” droplet has a width of the order of the channel width
D and a length of order 2D. Injection velocity in the channel is uin = 0.2 m/s.
Droplet viscosity is 2.10−2 kg/(ms) and viscosity of the continuous fluid is
4.10−2 kg/(ms). Surface tension coefficient is σ = 3.10−2 N/m. These data are
referred to below as the “reference data”. The small droplet is shown on Fig-
ure 10 with the velocity field and streamlines in the drop frame of reference,
whereas the big droplet is shown on Figure 11.

Comparison of Figures 9, 10, 11 shows the modification of mixing dynamics
induced by confinement and droplet volume. It appears that in every case
there is a major mixing zone in the center of the droplet and two smaller
zones, in the front and at the back of the droplet where the fluid is trapped.
This has been observed both experimentally and numerically [10,37], by using
passive tracers or dye inside the droplets. Figure 12 is a snapshot of a movie of
physical experiment [10] of evolving microdroplets with passive tracers inside.
The movie shows the motion of tracers along streamlines of the type of Figure
10 and also that some tracers are trapped at the back of the droplet, as it
can be seen on Figure 12. Another physical experiment [10], emphasizing the
presence of a zone in the front of the droplet which is not concerned by the flow
at the center of the droplet (also referred as “dead zone” in the microdroplet
community) is presented on Figure 13. In this experiment, dye is injected in
the droplet and a chemical reaction occurs inside the droplet leading to a
visual disappearance of the dye, when the droplets is transported along the
channel (from left to right). We do not insist here on this reaction but on the
mixing dynamics which can be observed inside the droplet. We see that dye
does not propagate in the front of the droplet but is mainly carried along the
central mixing zone (see the central droplet in Figure 13). This is an evidence
of autonomous recirculation zone, in the front of the droplet, which does not
exchange fluid with the center of the droplet.

Dynamics change due to viscosity switch between the two fluids is shown on
Figure 14, which can be compared with Figure 10.

The effect of a change of injection velocity is shown on Figures 15 and 16
where injection velocity is set to uin = 0.1 m/s. Again droplet’s shape is
modified together with mixing dynamics inside. Increasing again the role of
surface tension by lowering injection velocity to uin = 0.05 m/s has the effect
shown on Figures 17 and 18. Comparing Figures 10/11, 15/16 and 17/18, we
see that the increase of surface tension effect naturally induces more spherical
interface at the front and the back of the droplet.

27



The viscosity ratio between the droplet and the carrying fluid is also responsi-
ble for various mixing dynamics inside the droplet. Figures 19 and 20 show the
results of simulations where viscosities are modified as follows : droplet viscos-
ity is 2.10−3 kg/(ms) and viscosity of the continuous fluid is 2.10−2 kg/(ms),
namely a viscosity ratio of 10 which arises in microfluidic applications. Com-
paring these figures with the references simulations, it appears that increase
of viscosity ratio induces a strengthening of recirculation in the front and at
the back of the droplet together with a backward motion of the core of central
recirculation due to viscous coupling.

We also present a third droplet shape with width of the order of the channel
width D and a length of order 2.5D. We use reference data with two injection
velocities uin = 0.2 m/s (Figure 21) and uin = 0.02 m/s (Figure 22). We see
that increasing influence of surface tension between Figures 21 and 22 leads to
a more marked recirculation zone in the front of the droplet. This is shown by
streamlines of Figure 22 : the second marked recirculation zone at the front of
the droplet induces a decreased volume of the central mixing zone, compared
to Figure 21.

Thus, using algorithms described in this paper, we can explore mixing dy-
namics inside microdroplets. This can help in the design of microflows con-
figurations with microdroplets achieving the flow control needed in practical
applications.

Fig. 10. Small droplet (black line) with the velocity field in the drop frame of
reference (blue arrows) and some streamlines (in arrowed-line) ; reference data.
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Fig. 11. Big droplet (black line) with the velocity field in the drop frame of reference
(blue arrows) and some streamlines (in arrowed-line) ; reference data.
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Fig. 12. A snapshot of a physical experiment [10] : two moving microdroplets (from
right to left) with passive tracers inside (small dark points) ; the movie from which
is extracted this photograph shows that some tracers moves along streamlines of the
type of Figure 10 and also that some tracers are trapped at the back of the droplet.

Fig. 13. Another snapshot of a physical experiment [10] : three moving microdroplets
(from left to right) with dye inside (dark color) ; the movie from which is extracted
this photograph shows that dye is mainly carried along the central mixing zone and
does not propagate in the front of the droplet.

Fig. 14. Small droplet (black line) with the velocity field in the drop frame of ref-
erence (blue arrows) and some streamlines (in arrowed-line) ; reference data except
that viscosities inside and outside the droplet are switched
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Fig. 15. Small droplet (black line) with the velocity field in the drop frame of
reference (blue arrows) and some streamlines (in arrowed-line) ; reference data but
for uin = 0.1 m/s

Fig. 16. Big droplet (black line) with the velocity field in the drop frame of reference
(blue arrows) and some streamlines (in arrowed-line) ; reference data but for uin =
0.1 m/s
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Fig. 17. Small droplet (black line) with the velocity field in the drop frame of
reference (blue arrows) and some streamlines (in arrowed-line) ; reference data but
for uin = 0.05 m/s

Fig. 18. Big droplet (black line) with the velocity field in the drop frame of reference
(blue arrows) and some streamlines (in arrowed-line) ; reference data but for uin =
0.05 m/s
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Fig. 19. Small droplet (black line) with the velocity field in the drop frame of
reference (blue arrows) and some streamlines (in arrowed-line) ; reference data but
for viscosity ratio (see text)

Fig. 20. Big droplet (black line) with the velocity field in the drop frame of refer-
ence (blue arrows) and some streamlines (in arrowed-line) ; reference data but for
viscosity ratio (see text)
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Fig. 21. Big droplet (black line) with the velocity field in the drop frame of refer-
ence (blue arrows) and some streamlines (in arrowed-line) ; reference data but for
droplet’s length of 2.5D

Fig. 22. Big droplet (black line) with the velocity field in the drop frame of refer-
ence (blue arrows) and some streamlines (in arrowed-line) ; reference data but for
droplet’s length of 2.5D and uin = 0.02 m/s

34



6 Conclusion

In this paper, we derived a new stability condition induced by the explicit
discretization of the surface tension term in incompressible bifluid models
adopting CSF method. This new stability condition is adapted for the whole
Reynolds numbers and degenerates to the stability condition of Brackbill et
al. for low viscosities (leading to high Reynolds numbers). Moreover, in the
case of low densities or small domain (leading to low Reynolds), our stabil-
ity condition degenerates to a condition which involves viscosity instead of
density and is better suited for such flows. This latter condition was vali-
dated by a numerical study and if it is transgressed, parasitic currents can
occur near the interface. To sum up it appears this general stability condi-
tion is practically equivalent to take the maximum of these two previous time
steps : this maximum allows to pick up the appropriate condition with respect
to the associated regime (high or low Reynolds numbers). A numerical code
was developed based on essential tools of the Level Set technology, namely
WENO5 schemes, TVD Runge-Kutta schemes and PDE based redistancia-
tion were used to achieve accurate simulations of surface tension-driven flows.
In a staggered grid framework, we used an augmented Lagrangian method to
solve incompressible Navier-Stokes equation.

We validated the new stability condition by simulating microflows and ex-
ploring various mixing dynamics inside microdroplets. This is the first such
demonstration we are aware of in the context of numerical simulation of mov-
ing microdroplets in straight microchannels, where mixing dynamics depen-
dence on confinement, droplet volume, injection velocity and viscosity ratio
is studied. Our numerical results are in good agreement with physical experi-
ments and available results of the literature.
Algorithms developed in this paper allow for simulations which can help in the
design of microflows configurations with microdroplets achieving the flow con-
trol needed in practical applications. In future work, we will study 3D effects
on microdroplets dynamics with a 3D code.
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A Velocity in the drop frame of reference

In microfluidics, due to surface tension, interfaces converge quickly towards
stationary shape. In this section, we describe a method for microflows in
straight channels which makes the most of the stationary shapes of the in-
terfaces. By working in the drop frame of reference, the normal velocity van-
ishes at droplet shape equilibrium. Small normal velocity is the criterion of
stabilized asymptotic shape. Then, in a straight channel, the global flow is the
superposition of the velocity in the droplet frame of reference and the constant
translation velocity of the droplet.

To compute such a decomposition, we thus need to define this latter scalar
droplet velocity. This velocity has a meaning as soon as the shape of the
droplet is stabilized and then there exist a scalar ud such that

u = udU + v, v · n = 0 on Γ0, (A.1)

where U is a ”unitary” flow parallel to the wall in a regular channel. Then
the droplet moves with the global velocity udU and the velocity in the drop
frame of reference is v.

In the general case, with stabilized or destabilized droplet shape, we define
the local droplet’s velocity on the fluid interface where U · n 6= 0 as

uloc
d =

u · n
U · n on Γ0. (A.2)

We then define the droplet’s velocity ud as the mean value of local droplet
velocities, where U · n is far from zero. When the local droplet velocities are
close to be identical along Γ0, the normal global velocity, u · n, verifies, by
virtue of definition (A.2),

u · n = udU · n on Γ0. (A.3)

It follows that definition (A.1) is fulfilled, in particular, v ·n = 0 on Γ0. We are
then concerned with a stabilized interface Γ0 moving with the scalar velocity ud

along the channel direction. Criteria of a stabilized interface are the smallness
of quantity v · n or (and it is equivalent) uniform local velocities in the sense
of (A.2). In our code, we use this latter criterion in order to avoid useless
iterations.

There are several advantages in determining ud. First, knowing ud allows to
plot the velocity in the droplet frame of reference v and to analyse the mixing
dynamics inside the droplet. Second, when the goal is only to analyse the
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velocity field in the drop frame of reference for a simple channel, it is not
necessary to follow the displacement of the droplet. We then transport the
interface only with velocity v instead of udU+v and we can use a small channel
containing the droplet to reduce the numerical cost. As a matter of fact, by
working in the drop frame of reference, the droplet does not translate and its
shape converges to the stabilized shape. Third, this static asymptotic allows
a better convergence of the droplet’s shape and velocity field. In particular,
the computations of viscosity and curvature do not change asymptotically on
the grid.
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