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Abstract

In this work we investigate a technique for acceleratingveogence of adjoint—based opti-
mization of PDE systems based on a nonlinear change of \esiabthe control space. This
change of variables is accomplished in the differentidtentdiscretize approach by con-
structing the descent directions in a control space notpgpgal with the Hilbert structure.
We show how such descent directions can be computed in ddredvasgue and Besov
spaces, and argue that in the Besov space case determipatitascent directions can
be interpreted as nonlinear wavelet filtering of the adjdield. The freedom involved in
choosing parameters characterizing the spaces in whicsidlepest descent directions are
constructed can be leveraged to accelerate convergenderations. Our computational
examples involving state estimation problems for the 1Dafuwsto—Sivashinsky and 3D
Navier—Stokes equations indeed show significantly impitiqa&rformance of the proposed
method as compared to the standard approaches.

Key words: optimal control, adjoint equations, state estimationcpnalitioning,
computational fluid dynamics
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1 Introduction

Problems of optimal control of distributed systems arisenany areas of science
and engineering. Without loss of generality, in this inigetion we will focus on
problems motivated by applications in fluid mechanics such a

shape optimization in aerodynamics (see, e.g., [1,2]),
flow control for drag reduction, (see, e.g., [3,4]),
variational data assimilation in dynamic meteorology knoas 4DVAR (see,

e.g., [5]),
mixing enhancement (see, e.g., [6]).
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Denoting the state of the systame X, whereX is an infinite dimensional state
space, and the control varialape= U, where is a finite—dimensional or infinite—
dimensional control space, the governing system of padifédrential equations
(PDEs) can be expressed in a general fornG#s, @) = 0. Then the problem of
finding an optimal controlp,,; can be stated as PDE—constrained optimization in
the following way

yernin (v, 9) (1a)
subjectto G(v,) =0, (1b)

wherej : X x U — R is the cost functional representing mathematically the per
formance criterion we want to optimize. In principle, aféesuitable discretization,
problems of the type (1) can be solved using general methbt®wolinear Pro-
gramming (NLP), see, e.g., [7]. However, from the compotai point of view,
formulation (1) is not quite convenient when dealing witstdbuted systems, as
it requires simultaneous optimization over discretizasiof the state and control
spacesX and U, the first of which may have a very large dimension. In pragtic
in the presence of equality constraints only and subjecettam assumptions on
the functionG (v, @), we can writev = v(¢@) which allows us to define theduced
cost functional? (@) = j(v(9), ), so that (1) can be transformed to the equivalent
unconstrainedormulation

(rpr;i(gj (@) (2

The advantage of (2) as compared to (1) is that now optinoaatiust be per-
formed with respect to the control varialapeonly. Hereafter we will focus exclu-
sively on formulation (2) and, unless needed for clarity,witt drop the adjective
“reduced” when referring to the cost function&lg). The mathematical theory of
optimal control of PDE systems was developed initially bgns [8]; in the con-
text of problems arising in fluid mechanics it was furtherdastigated by Abergel
and Temam [9]. The state of the art of this area is surveyedhenntonograph
by Gunzburger [10]. There are two main paradigms relevarstoloing problem
(2): the “discretize—then—differentiate” approach skipess that the state variable
v and, if necessary, the control varialgpeare discretized first and then the opti-
mization problem is solved in the finite—dimensional seftion the other hand, in
the “differentiate—then—discretize” approach the optitp@onditions are derived
on the continuous (PDE) level and only then discretized arhded numerically.
While it is recognized that in general these two routes mag te different results
and there is an on—going debate as to the relative meriteaiih approaches [10],
in the present work we will adopt the “differentiate—theisetetize” methodology,
as in this context our approach is more straightforward tmauce.

There are aspects of optimal control problems in fluid memdsatihat make their
computational solution particularly challenging. Fir§adl, given the usual dimen-
sion of spatio—temporal discretization®f the state variable [tilde (™) will de-

note a discretized version of a variable, operator, or gpadech often involve as



many asO(10'%) degrees of freedom, it is impossible to store the linear aipes
acting onv as matrices. Therefore most existing NLP software packaggsnot be
used and “matrix—free” alternatives must be developed.adeer, complete Hes-
sian information is often unavailable and consequently tdai® method can rarely
be used. Consequently, one must employ quasi—Newton oiegtagpproaches and
in this investigation we focus on gradient-based methotle.rlecessary condition
characterizing the minimizeg, ; of the cost functionaf (@) is the vanishing of the
Gateaux differentiay’ : U x U — R, i.e.,

I (Qops @) =0, V¢ € 1, 3

where the Gateaux differential is defined #¢g, ¢) = Iimgﬂow (the
symbol £ means “equal to by definition”). In many applications, irdihg the
cases considered in the present work, the cost functipmalquadratic in both

v and @, however,v = v(¢@) is a nonlinear mapping, and therefore optimization
problem (2) will often be nonconvex. As a result, problem &y admit several
local minimizers and (3) will characterize such a local mirger ¢, ,; only. Given

a discretization of some initial gueéﬁo) = fpo an approximation of a minimizer
can be found using a gradient—based descent method of tkeadjéorm

oY ="+ a03@"), n=01,.., 4)

such that limy_.o fp(n) = Epopt, wheren is the iteration count. At every iteratiom

the descent directiov?lDN] is determined based on the gradid']Aﬁ of the cost
functional evaluated a])(n) and iterations are performed until a critical point is

reached, i.e., untiD?(¢"™) = 0 in some approximate sense. As will be shown
below, this gradient can be conveniently expressed usihgisos of a suitably—
defined adjoint system. Adopting different forms of the @per.2 we may recover
different variants of the gradient method such as the stafsscent method, the
conjugate gradient method, etc.

We emphasize that, as shown in [11], PDE—constrained agdiinon problems with
guadratic cost functionals are often of the elliptic typé¢hia sense that the reduced
Hessian of the cost functional is an elliptic operator retgss of the specific type
of the PDE representing the constraint. It is also well kngwh?2] that for convex
problems the rate of convergence of gradient iterationgd4he discrete mini-
mizerfpopt depends on theondition numbegr of the (reduced) Hessian g(fp) in
the neighborhood of the minimizer. The condition numberrabierizes the local
ellipticity of the isocontours oﬁ(fp), l.e., whens 2 1 these isocontours are close
to spheres, whereas whens> 1, the isocontours are squashed in some directions
resulting in many iterations required in order to convem@é¢hie minimizer in (4).
Convergence of gradient iterations (4) can thus be acdeltktzy a suitable rescal-
ing of the independent variables, so that the condition remalb the problem is

reduced, a procedure known aconditioning The effect of preconditioning can



be represented as multiplication of the descent direcflaly in (4) by a precon-
ditioning operator (matrix}' chosen so that the condition number of the resulting
problem is reduced. Algebraic preconditioning stratedie determine the pre-
conditioner? by exploiting the algebraic structure of the descent dioeca[1].
On the other hand, operator preconditioning strategie$ {iedermine a contin-
uous preconditioning operat@r on the PDE level by analyzing properties of the
infinite—dimensional problem. An advantage of the lattgarapch is that the result-
ing improvements in the bounds on the condition numbersftea discretization—
independent. An example of the operator preconditionimg@ach is furnished by
the method of Sobolev gradients developed by Neubergenybiih derives the
preconditioning operators from the corresponding Sobalawns. In other words,
when using different Hilbert spacdg equipped with the inner products -),, as
the control spacél, Riesz’ theorem [16] guarantees existence of the corretipgn

gradients1” 7 € 9/ which are defined through the Riesz identity

I@¢)=0"1,¢)y.  Vyew. (5)

As will be shown below, different Hilbert (Sobolev) gradisrcan be computed
by applying alinear transformation to the adjoint field. An approach employing
Sobolev spaced P as the Hilbert spaces for gradient extraction was used with s
cess for solution of problems involving minimization of patials [17] and was
also employed in the context of PDE—constrained optinoreith [18]. A simple,
yet illuminating, example illustrating an application gderator preconditioning to
solution of a linear boundary value problem for an elliptREPis presented in Ap-
pendix A. The utility of different Hilbert space gradientsan area of mathematical
modelling was recently reviewed in [19]. Precondition&asth of the algebraic and
operator type, are also useful for solution of nonlinealybems, however, in such
situations the preconditioner is often allowed to vary frone iteration to another,
resulting in the so—calledariable preconditioning13,14]. This approach is related
to the variable metric method used for solution of systemsaflinear algebraic
equations [12]. As regards PDE—constrained optimizaddreuristically motivated
variable preconditioning approach was developed in [18gm it was proposed to
precondition the gradients by “focusing” them on a specditge of length—scales
which was modified during the iterations, thereby resultmgn effectively multi-
scale strategy.

The goal of the present paper is to propose and investigatere general precon-
ditioning approach for accelerating convergence of adjdiased optimization of
PDE systems. This method extends the concept of the Sobrdiegts by mak-
ing it possible to extract their counterparts in general &dmspaces not equipped
with the Hilbert structure. Since Riesz representationd®gs not apply in non—
Hilbert spaces, we employ a more general procedure to éxtrasteepest descent
directions in Banach spaces which follows the proposal firatle by Neuberger
in [15]. This procedure will involve aonlineartransformation of the adjoint field
equivalent to a nonlinear change of variables in iteratikecedure (4). Further-



more, by extracting the steepest descent directions in@ncaus family of nested
spaces we will allow this change of the metric to vary in tharse of iterations
(4). Our computational examples illustrating applicatadrthis strategy to solve
optimal control problems for two different PDE systems shamvantages of the
proposed approach with respect to traditional technigesrgued in [18] and as
is also well-known in the image processing literature (geg., [20]), extraction
of gradients in different functional spaces is in fact eqiewnt to applying different
filters to the adjoint field. Gradients extracted in Hilbert spacas loe regarded as
obtained via an application oflmear filter to the adjoint state and, for example, the
Sobolev gradients can be viewed as obtained via applicafisuitable low—pass
filters (defined in wavenumber space) to the adjoint field .[18the same spirit,
extraction of the steepest descent directions in geners@&aspaces not endowed
with a Hilbert structure can be regarded as application nbalinearfilter to the
adjoint field. In particular, as will be shown below, iderd#tion of directions of
the steepest descent in Besov spaces can be regarded aaowavelet filtering
of the adjoint field emphasizing itoherentpart [21], in contrast to the low—pass
filtering which emphasizes specific wavenumber componetiis o

The structure of the paper is as follows: in the next Sectienmtroduce our two
model PDE—constrained optimization problems, one fortedlasing the Kuramoto—
Sivashinsky equation in a one—dimensional (1D) periodimaio and the other
formulated using the Navier—Stokes system in a three—dsinaal (3D) channel
periodic in the streamwise and spanwise directions; in 8eattion we also show
how the Sobolev gradients of the relevant cost functionais lze identified from
solutions of the appropriate adjoint problems; in the failog Section we describe
how directions of the steepest descent in various Banaatesgaebesgue, Besov)
can be identified; in Section 4 we present computationalltedlustrating how
these descent directions can be used to accelerate conuergkthe iterative solu-
tion procedure; summary and conclusions are deferred todBes.

2 Model Optimal Control Problems

In this Section we set up two model PDE—constrained optioizgroblems whose
computational solution will be used to illustrate our nevpagach. In both cases
we are interested in solving a variational data assimitafimblem (4DVAR) [5],
wherein, given some incomplete and possibly noisy measemé&rof the system
evolution over the time windoyd, T], one seeks to determine the initial condition
(the control variablejp in such a way that the ensuing system evolution matches
the available measurements as well as possible. We forenthist problem for the
Kuramoto—Sivashinsky equation in a 1D periodic domain drehtthe Navier—
Stokes system in a 3D channel. These problems were intrddagdenchmarks
for adjoint—based optimization in [18] and [22], respeelyv An advantage of us-
ing such “synthetic” state estimation problems is that ia #insence of noise we



know the exact minimizer (which is the state used to gendreteneasurements)
and thus we can know whether the minimum actually found isll@c global.
Without the risk of confusion, in certain cases we will use #ame symbols to
denote analogous quantities in the statement of the ogtroiz problems for the
Kuramoto-Sivashinsky and Navier—Stokes equations ini@e2.1 and 2.2, re-
spectively.

2.1 State Reconstruction for the Kuramoto—Sivashinskatimu

The Kuramoto-Sivashinsky equation is chosen here, siisceolutions are en-
dowed with chaotic and multiscale behavior which makes ia#ractive model
for the Navier—Stokes system. For simplicity, we will cadesi this equation on a
periodic spatial domaif = (0, 2m) and a time interval0, T|

dU-+405u+K (B2u+udeu) =0, x€Q, te[0,T],
0lu(0,t) = d.u(2mt), te[0,T], i=0,...,3 (6)
u(x,0) =@, xe Q.

Out of many different ways in which the coefficients of the Emoto—Sivashinsky
equation may be scaled, we follow here the approach propwsB]. In our
computations we will set = 4000 which will result in 23—24 coherent structures
(“bumps”) present in the domain. A solution of system (6)ibking a characteris-
tic spatio—temporal pattern is shown in Fig. 1 (the numénwuethod used to obtain
this solution is described further below). We refer the exad [18] for further de-
tails related to the Kuramoto—Sivashinsky as a model probte adjoint—based
optimization.

Given incomplete (and possibly noisy) measuremgatsH Uact € 9, whereugg(-,t) €
X are states at the actual system trajectory&hdx — 9 is an observation opera-
tor with 9 the space of measurements, our optimization problem dsnsiSnding
an initial conditiong,p in (6) which minimizes the following cost functional

VO %/OT[HU(@ —y)?dr. (7)

Consistently with the properties of system (6) [24], we wiflsume thap € U =
L2(Q). SinceJ depends on the control varialipamplicitly through state equation
(6), expression (7) represents in fact a reduced cost fomati We will assume that
the observation operatok/ has the form of projection of the stateon a set of
cosine modes with the wavenumbers in some'\set.e.,

2n
HEYS B, where Bz H/O cogrx')z(xX)dX | cogrx). (8)

re/\r



0 w2 3n/2 2r

Fig. 1. Dynamics of the Kuramoto—Sivashinsky systemkfes 4 - 10°: (a) initial condi-
tion @ (chosen on the chaotic attractor of the system), and (bjcsterhporal evolution of
the system [visualized are the zero (solid), several pas{tlotted) and negative (dashed)

isocontours ofl in the space—time plane].

The Gateaux differential of (7) is given by

T r2n
]’((P;d)Z/O/O (Hu—y)HU dxdt, 9)

where the perturbation’(@; ¢f) satisfies the Kuramoto—Sivashinsky equation lin-
earized around the statgg), i.e.,

LU 29U 493U+ K [02U +uded + (Bxu) U] =0, x€Q, t€[0,T],
olu'(0,t) = dlu'(2m t), te[0,T], i=0,...,3
xeQ,

u'(x,0) = ¢, 10

with the operator : X — X™* understood in the weak sensg’(is the space dual
to X). Relation (9) can now be transformed to a form consistett (&) by intro-
ducing an adjoint operatat® : X — X* and the corresponding adjoint statec X

via the following identity
* / _ *ok o
<u ,Lu >XXX* = <L u*,u >XXX* +b, (11

where(-,-) x«x+ represents the duality pairing between the spatemsd its dual
X*,i.e., givenzy € X andz € X*, (z1,22) xrx+ 2 fo & z122dtdx Using integra-



tion by parts and the definition af in (10), we obtain

LU 2 —u* 4 493u* +K (2u" —udku®), and (12)
t=T

21
b= {/ u* u’dx} .
0 t=0

We remark thab does not contain any boundary terms (resulting from intisgna
by parts), since all of them vanish due to periodicity. Defghan adjoint system as

L'u=H"(Hu-y), xeQ, tel0,T],
olu*(0,t) = dlu*(2mt), tel[0,T], i=0,...,3 (13)
u*(x,T) =0, xXeQ,

and using (10), (11) and (12) we can now express Gateausreliffial (9) in the
desired form (5), namely

J(@d) = /OZHU*

t:o(p(dx (14)

Thus, this differential (i.e., the sensitivity of the coahttional 7 with respect to
perturbationsp’ of the initial condition) can be expressed using the sofutibad-
joint system (13). Physically, the adjoint field evaluatedhie part of the domain
Q x [0, T] where the control is defined represents the sensitivity ef fimctional
(7) to the control variable. In the present problem, thistomrvariable is the un-
known initial condition which we seek to reconstruct.

Relationship (14) can now be employed to extract the gradezjuired in descent
optimization algorithm (4). Sinc@l = L»(0, 2m) is equipped with the inner product
(21,2)1, = foznzlzzdxfor 21,2 € L»(0,2m), we immediately obtain

21
I (¢ @) :/0 U*\tzocp(dx: (DLZJ,(F{)LZ = 025 = u*‘t:O' (15)

Despite its simplicity, this is often not an optimal choies, it may result in poor
scaling of the corresponding discrete optimization problBor reasons explained
hereafter (see also [15,18]), in many cases it is benefigialxtract gradients in
Sobolev spaces, for instance in the spidé@) (0, 2m) equipped with the inner prod-
uct

1

21
(21,22) ) = i /0 (2122 +1%(0xz1) (x22)] dIx, (16)

wherel is an adjustable length—scale parameter (in contrast,ghees (0, 2m)
does not possess any adjustable parameters). Identifigatig ¢') = (DHM)J, @) 1)
[cf. (B)] yields, after integration by parts, the gradi@ﬁl“)] defined as the solu-



tion of the following boundary value problem for the Helmtzodquation

1 2321HM ;=
rrprEET -] o xe0 (17)
0+ 7(0) = oH*" 3 (2m.

Thus, the Sobolev space gradiéﬁtl(')] is obtained by applying the inverse Helmholtz
operator to the “classicall, gradient. Interestingly, when regarded in Fourier
space, the inverse Helmholtz operator is equivalent to a-p@ss filter with the
cut—off given by the inverse of the length—scalparameterizing inner product
(16). Consequently, extracting gradients in the Sobolecspvith the inner prod-
uct given by (16) has the effect of de—emphasizing compengith characteristic
length—scales smaller thdn As was shown in [18], adjusting this length—scale
in the course of the iterative solution of an optimizatiomlgem can accelerate
convergence of iterations. For example, starting widirge and then gradually de-
creasing it to zero results in a multiscale procedure targdirst the large—scale
structures and then gradually homing in on the smaller scaeponents of the

.~ . | . .
solution @pt (We note that lim_q 0H*" 9 — Ol2g) . This technique can thus be
regarded as a combination of operator preconditioning thighvariable metric ap-
proach mentioned in Introduction. Finally, we emphasiz ttue to the inclusion

H10)(0,2m) ¢ Lp(0,2m) [25], 0" 7 does represent an acceptable descent direc-
tion for problem (6) as regards smoothness.

In the present work the state and adjoint systems are botledoh the well-
resolved setting (on 512 grid points) using a dealiased qussppectral Fourier—
Galerkin method. Time advancement is performed using an Bi&me on the
nonlinear term in (6) and the teradyu* in (13), and thé method with@ =5/8 on

the linear terms (see [26]).

2.2 State Reconstruction for the Navier—Stokes Equation

As our second model we consider a viscous incompressibleiflaxchannef) £
(0,L1) x (—=1,1) x (0,L3) periodic in the streamwise and spanwise directirns
andxs, and bounded in the directioa (Fig. 2a). The quantities defined at the wall,
i.e., forxo = +1, will be distinguished by the subscriptv®. Defining the state

u
vector agg = , Whereu = [up up U3]T is the velocity vector field ang is the
p



(@) (b)

Fig. 2. Turbulent flow in a channel &g = 100: (a) configuration and (b) visualization of
near—wall coherent structures (courtesy of T. Bewley).

pressure field, the system evolution is governed by the MaStekes system

Ju .
A(q) = E+(U.D)U+Dp—vAu _ Pxi inQx (0.T]:
O-u 0 (18)
u=ao att =0;
Ulw="0 onoqQ,

whereP is the pressure gradient adjusted to maintain a constarg flixsand®

is the initial condition. Consistently with the propertiesystem (18) [24], we
will assume thath € U = L(Q). In the present investigation the statavill be
estimated based on information about skin friction andguesfluctuations at the
wall (i.e., forx = 4+1) which are a signature of the near—wall coherent strusture
(Fig. 2b, see also [22] for a discussion concerning the cetepkss of this set of
measurements). We define first a wall measurement vactofm; m, mg] ", where
m £ %\W, mp = plw, andmg = %M, distributed in time over an assimilation
window [0, T] and in space over the channel walls for an “actual” chanrai~fl
system ( is defined as an inward—facing normal). Solution of our sésténation
problem is obtained as the minimization of a functiof&p) which represents
mathematically the “misfit” of the measurements in the dctumal reconstructed
systems

](CD):%/OT[&

where the coefficientg, ¢», /3, and the norm| - | are defined appropriately to
measure the deviation of the model system from the measutsroé the actual
flow on the channel walls at, = +1. Note that/, is proportional to the square
of the (constant) fluid densitg?, and¢; and/s are proportional to the square of
the (constant) fluid viscosity?, in order to make (19) dimensionally consistent. In

6U3 2

2 2
- = Lo||p— 14
an m1W+2p ”12W+3an ms

] dt,  (19)

w
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the present work we will consider the case in whichnorms are used such that
112 = [, f2dS The Gateaux differential of (19) is given by

J(P; @) //[El %—m aiJrEz(p mz>p+€ (6__m3>0u3} dSdt

6n 0 0
(20)
u/
where the equation governing the perturbation vegtet g (®; ') = / satis-
Y
fies the Navier—Stokes system linearized around the gtate, i.e.,
oo +(u-0O)u' + (U -O)u+0p' —vAu
L) =| ot = inQ x (0,T];
O-u 0
u'=a att =0;
ulw=0 onoQ.

(21)
Here again the operatat : X — X™ is to be understood in the weak sense. Re-
lation (20) can now be transformed to a form consistent wigsRidentity (5) by
introducing an adjoint operatat* : X — X* and the corresponding adjoint state
g" € X via the following identity

<q*,Lq/>X><X* - <L*q*’q/>xw(* +b, (22)

where(-,-) x«x+ represents the duality pairing between the spacemsd its dual
X*, i.e., givenzy € X andzy € X*, (21, 22) xxx+ = fOT Jo 21 -22dQdt. Using inte-
gration by parts and the definition afin (21), we obtain

ou*

i __D* D*T_D*_A*
L*q*: ot U[U—l—(U)] p vAau-,

—0-u*
b:/Q<u]ku’j>):ZdQ—/oT/an [p*u’j—i—u]-kp’-l—u?‘(u,-ui’-l—u’jui)— ( g;l ,gu ﬂdet

Defining the adjoint system as

Lq" =0 inQ x[0,T);
u =0 att =T;
N _,1l/0u )
409 £1.x6) = (G~ m). (23)
Us(X1,£1,X3) = erTg(p— mg>, onoqQ,
% . 1 /du3
Uz(X1, £1,X3) = 53; <ﬁ mS) '

11



u*

whereq* = , and using (21) and (22) we can now express Gateaux diffaten
p*

(20) in a desired form consistent with (5)

/
oo, (24)

]’(tD;CD’):/u*

Q

Thus, this differential (i.e., the sensitivity of the coghttional 7 with respect to
perturbationsd’ of the initial condition) can be expressed using the sotutd
adjoint system (23). Relationship (24) can now be emplogeektract the gradi-
ent required in descent optimization algorithm (4). Sifi¢e= L»(Q) is equipped
with the inner productzs, z0) , = Joz1-22dQ for 21,2, € L(Q), we immediately
obtain

7(0: @) = /Qu*}tzotb’dQ = (O2g,0), =029 =u_,. (25

As already discussed in Section 2.1, identifyii¢d; ') with anH(!) inner prod-
uct defined agz1,22) 11, = ﬁfg [(z0)i (2)i +12(0x; (22)i) (0x; (22)i)] dQ with
implied summation for repeated indices, i.e.,

7(®; @) = (DHl(I)],q)/)Hl(l), (26)
then integrating by parts and using the boundary condiﬂ]ﬁ#g)]\w =0, the gra-

dientDHm)] is obtained as the solution of the following boundary valuabpem
for the Helmholtz equation

1j|2 1-12a] (0" 7) =], inQ
DHl(l)]‘W: 0. (27)

0 o
077" 7 periodic inx; andxs.

The length—scalé plays here the same role as discussed in Section 2.1 and the
same comments apply as regards variable metric operatoomuéioning.

We will study the case with the Reynolds numBe = 100. Both Navier—Stokes
system (18) and adjoint system (23) are solved numericallly & method com-
bining a finite—difference discretization on a nonuniforndgn the wall-normal
directionx, with spectral discretization in the periodic directionsandxs. Time—
advancement is carried out applying the RK3 method to thémear terms in (18)
and the termu - [Ou* + (Ou*)T] in (23), and the Crank—Nicolson method to the
remaining terms. Further details concerning this numeénoathod together with
benchmark computations are presented in [3].

12



3 Gradient Extraction in Banach Spaces

In this Section we show how steepest descent directionseatehtified in general
Banach spaces not equipped with the Hilbert structure.ifleswas introduced by
Neuberger [15] in the context of numerical solution of dirpmblems for PDEs.
As regards adjoint—based solution of inverse problems i $ similar ideas were
discussed in [27,28]. We will assume that the Banach spacerntfols i is reflex-
ive, i.e., U™ = U. Fixing @, the Gateaux differential’(¢,-) can be regarded as
a bounded linear functional ofi, i.e., 7'(@,-) : U — R. As such, the Gateaux
differential admits the representation

I (gg) = <Dﬂ7,(d>u* : (28)

xUu

whered%7 e «*, i.e., the gradienfl” 7 is an element of the dual spa¢é and
(*+*) ¢ denotes the duality pairing of the spac@sand 1%, i.e., forzy € U

andz € U*, <zl,22>(u*xu £ Jo Z122dx. We emphasize that the Riesz theorem and
inner—product representation (5) are not applicable inpifesent case whetl is
nota Hilbert space. In many important situations the dual sfgaces “larger” than

the primal spacel, i.e., U C U*, in which case the gradient” 4 may not belong

to the control spaceél and therefore could not be used to update the control in
(4). The reason is that, ifi%7 ¢ €, the gradient1®”7 may not meet the regular-
ity (smoothness), integrability, etc., conditions reqdifor well-posedness of the
original problemG(v,@) = 0. In the computational setting this may become ap-
parent in the form of small-scale oscillations and/or slagties appearing in the
gradient as the numerical resolution is refined. Thus, inreeg® case an accept-
able steepest descent direction, denoted Hefe may not be identified with the
negative gradient and must be therefore determined in erdift way. As shown in
[15,27], this can be done definirg 7 to be the unit—-norm element of the spade
which minimizes expression (28). In other words, we poséuta findDJ as the
solution of the following constrained minimization probie

Q)]:argmiq‘{,uﬂ:l<ﬂﬂj,8> (29)

wxu

which can be transformed to the more convenient unconstidiorm
DJ = argmin, <D‘”] 3> +E||19||p = argminy. ¢, F (9) (30)
eu ’ wxu P u eu ’

wherep is a positive integer chosen to make the resulting expressiapler,uis

the Lagrange multiplier angt : U — R is the Lagrange functional. This problem
can be solved by examining the first—order optimality candg for #. Thus, the
steepest descent directiaDy is characterized by the vanishing of the Gateaux
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differential of (30), i.e.,

/ .q/\ __ u ! _
Vyey F(D:9)=(0%F(D2),¥) =0, (31)
whereO%F : ¢4 — U* and ¥’ is the Gateaux differential of the Lagrange func-
tional . Thus, we obtain

OYF(DJ)=0 inU* (32)

as an equation characterizing the descent directigre U. Depending on the ex-
pression for the norni - || ¢;, equation (32) may be of algebraic or differential type.
Specific examples will be analyzed in Sections 3.1 and 3.2n¥%e that the map-
ping0% ¥ : ¢ — U* is nonlinear, hence determination of the descent diredtion
a Banach space involveshanlineartransformation of the adjoint variable. In or-
der to distinguish them from the gradidny, we will refer to D7 as the Lebesgue,
Besov, etc., descent directions depending on the choiceeofuinction spacei.
On the other hand, when the control spadedoes possess the Hilbert structure,
i.e., U= Y, then after settingp = 2, (31) becomes

<Dq/]’8>q/*xq/+g<’9”9>q/

DJ = argmingcq , (33)

and, using the now applicable Riesz representation (5)magity condition (31)
becomes

(339

Transforming (34) using integration by parts we obtain esgions such as (17)
and (27). Thus, we conclude that gradient extraction in éttllspaces is in fact a
particular case of the generic procedure developed in tkisstigation.

q/*xq/Jr”(Dq/]’S/)q/: (D%[ﬁ/)q/:o' (34)

Identification of descent directions in Banach spaces herefibre the effect of a
nonlinearchange of variables in the optimization problem. Hencegigiax Gateaux
differential 7' (¢, ), there is a distinct direction of the steepest descent &sdc
with every reflexive Banach spaée¢assumed to contaigl and, if the optimization
problem is convex, these descent directions will ultimatead to the same min-
imizer, but the length of the path may be different in différepaces. Obviously,
now the important question is how these spaces should begho®rder to yield
a small number of iterations in (4). A mathematically rigos@nswer can be given
in the case of rather simple problems only, such as the omesied in Appendix
A. In the case of more realistic problems, such as the onesdnted in Sections
2.1 and 2.2, to the author’s best knowledge mathematicadlgige results are un-
available and good choices of the spaces can only be made yopfwaumerical
experimentation. In this sense the proposed approach ceegheled as heuristic.
However, from the point of view of many practical optimizatiproblems this is
acceptable, because such optimization problems are afteedsrepeatedly using
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different input data. This is the case, for example, of théati@nal data assimila-
tion performed on regular basis in order to provide initiahditions for the ensuing
weather forecasts (in fact, our model PDE optimization fgois from Sections 2.1
and 2.2 were devised to mimic 4DVAR).

As regards identification of descent directions, we will sidier families of Banach
spaces parametrized by one, or more, continuous paranstetsas, for example,
an integrability or differentiability index. In the spif the variable metric method,
during iterations we will gradually modify the Banach spatevhich the descent
directions are identified by changing values of these patersdn order to ensure
that the underlying PDE problem remains well-posed at eiergtion, it is nec-
essary that all of these spaces be contained.ihus, we will begin the iterations
by first constraining the iterates to some “small” subspat® of 7 which will
then “grow” until it becomes numerically indistinguishaldtom . Thus, if e.g.,
1 = Ly, the intermediate spacds™ must ultimately approach the spdcg The
family of spaces used for construction of the descent doestcan thus be ordered
as follows

a9 cuVc...cuMc...cu, (35)

where 11" is the Banach space used at theh iteration. In general, the prob-
lem of finding a continuous family of function spaces linkitvgp given function
spaces is the focus of an area of the functional analysis Rrasithe interpolation
theory [25,29]. There are many profound results in this dnesvever for our pur-
poses here we will only use some fundamental facts conagthanfamilies of the
Lebesgue, Sobolev and Besov spaces. In the remaining pénis 8ection we will
show how the steepest descent directions for the modelgrabirom Sections 2.1
and 2.2 can be obtained in the Lebesgue and Besov spaces. iVhemase of
general Sobolev spaces, because it ultimately producetisesmilar to the other
two cases. The mathematical theory concerning determimatidescent directions
in general Sobolev spaces was discussed in [15]. We onlyiomemere that the cor-
responding descent directions are determined by equdtamslly similar to (17),
but with the Laplace operator replaced with the nonlinedraplacian.

3.1 Identification of the Steepest Descent Directions il g#iesgue Spaceg(Q)

3.1.1 Optimization Problem for the Kuramoto—Sivashingjsten

In this Section we characterize the directions of the stetegescent in the space
Lq(Q), characterized by one free paramefey (1, ), for the optimization problem
introduced in Section 2.1. The normlig(Q) is given by

2n 1/p
Julug = ( " uPax) 38)
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and the restriction on the indexis related to the requirement of reflexivity, i.e.,
[Lq(Q)]** = Lqg(Q), which does not hold fog = 1 andg = « [25]. We also note that
for 1 < q < « expressions for the norms Iy (Q) are differentiable. Furthermore,
sincelq (Q) C Lg,(Q) for g1 > qgp, the family of spacesy(Q) with the index
g decreasing from somg, to 2 forms a hierarchy of the type (35) whete= L.
Following the procedure outlined at the beginning of thistida, we determine the
steepest descent direction in the sphggQ) as the solution of the minimization
problem

Plag = argmif]\8|\Lq:1<D],3> (37)

L xLq
whereLq (Q) = [Lq(Q)]* with & + ¢ = 1 s the dual space with respectltg(Q).
Introducing the Lagrange multipligxt and converting (37) to the corresponding
unconstrained formulation we obtain

p
a9 =argmin, {<D],8> +EH~8 }
Lyxlg Pl 1L, (38)
o [ (v 9P| g
—argmin, [ (ur|_o+Elo[") ax
The first—order optimality condition for (38) yields
el L o972 o/
Vorelq@) /O w|  +nuptag|pteg|" ) 9ax=0 (39)
which, given the arbitrariness 8f, is equivalent to the relationship
-2
@qu‘a)qu‘q Yl ina (40)
Mo lt=0
Thus, the steepest descent directiohd(€Q) is
e —%lu*\t_ , q— even
prag — (41)

N 11
—sgn(u }I:O) q,lll—i “*‘t:o , g— odd

We reiterate that wheg # 2 the steepest descent directiorLig(Q) is obtained by
applying anonlineartransformation to the adjoint field*|;—o. In the special case
g = 2 we immediately obtain

Dh2g = —%.\fk‘t_o = Oty (42)

which coincides with the “classical” Hilbert space expressbtained in Section
2.1. We emphasize that a Lebesgue descent direddorf can be computed by
evaluating algebraic expressions (41) at every point indibainQ and there is
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no need to solve a system of equations. As regards the constemich serves
as the Lagrange multiplier in the unconstrained formufaii88), it is chosen to
normalizeDa7 to unit norm, i.e. || D7 ||, = 1. Finally, we comment that in the
non—-reflexive caseg|= 1 andg = «) the above procedure does not yield mean-
ingful results.

3.1.2 Optimization Problem for the Navier—Stokes System

In this Section we characterize the direction of the steegpescent in the space
L4(Q), characterized by one free parameatet (1, ), for the optimization prob-
lem introduced in Section 2.2. The,(Q) norm of a vector-valued field : Q — R3

is given by
1/a
Jull, = ( [ Jusae) “3)

where|u| = |/u? +u3+u3. Comparing with the case considered in Section 3.1.1
now the situation is more complicated, because the dinectithe steepest descent
is avector fieldwhich must satisfy the additional condition of incompresdgy.
Following the procedure outlined at the beginning of thistida, we determine the
steepest descent direction in the sphgeQ) as the solution of the minimization
problem

Q)Lq] - argm”‘”eHLq:l 0.e=0 <|:|], O> (44)

Lq* ><|_q

Introducing two Lagrange multiplieng andn, and converting (44) to the corre-
sponding unconstrained formulation we obtain

D09 —argmin, {<D],O>Lq*xl_q+%HOHEq-l—/Qr](D.O)dQ]
:argmirb/g (u*t

where we used integration by parts to transform the divezgearm and chose the
boundary condition for the Lagrange multiplier%W = 0, which annihilated the
boundary term arising from this transformation. The firstdey optimality condi-
tion for (45) yields

VoreLq(@) /Q<U*t

(45)

:o-e+g‘e)q—e-mn) dQ,

q-2
7O+u@qu‘@qu‘ _ Dr]) .@dQ=0 (46)
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which, given the arbitrariness &, is equivalent to the following algebro—differential
system

( —2
DUag|ptag|" :—5U*\tzo+Dn, XeQ
Lqq]2 L
AN = D‘Q)q]) . plag, xeQ (47)
on|
="

where the second (Poisson) equation is obtained by appllyendivergence opera-
tor to the first equation and then using the incompressyitinditiond- (D7) =
0. We note that in the special cage= 2 we haven = 0 and (47) reduces to
Oteg = _ﬁ”*‘t:o [cf. (25)]. As before, the Lagrange multipligris adjusted in
order to normalizeD'a7 to the unitL4(Q) norm, i.e., Q)'-QJHLq = 1. We remark

that the procedure described above is closely related téigimholtz—\Weyl de-
composition which is a generalization of the Helmholtz—gediecomposition to
the spaces 4(Q) [30]. We emphasize that, in contrast to the 1D case wherenthe i
compressibility condition was not present [cf. (41)], nessldem (47) is nonlocal
and therefore after discretization yields a fully coupledimear system. We solve
this system using an iterative splitting method which camkiNewton’s method
with globalization [31] applied to the first equation (withfrozen during an iter-
ation) with a standard Poisson solver applied to the secgundt®n in (47). For
modest values af convergence usually occurs within a few dozens of iteration

3.2 Identification of the Steepest Descent Directions irBixsov SpacesB(Q)

In this Section we characterize the steepest descentidinedn the Besov space
Baq(Q) characterized by three adjustable parametgngandqg. We will consider
the parameter ranges> 0 andp, q > 2, for which we have}, ,(Q) C L2(Q) [25],
so that such Besov spaces can form a hierarchy such as (3b)uvit Lo(Q).
Besov spaces arise as a result of interpolation between&otpaces with differ-
ent integer smoothness, therefore they appear to be goatidedes for the vari-
able metric approach developed in this investigation. Wplamsize that, since the
spaced ¢(Q) and Bqu are not equivalent, the Lebesgue descent directionaatre
special cases of the Besov descent directions. In orderdiol avfficulties related
to the additional condition of incompressibility in the easf vector fields, we de-
rive the steepest descent directions only for the optinungiroblem introduced in
Section 2.1. From the computational point of view, the mosienient expression
for the norm of an element of a Besov space is given in termswéwelet de-
composition of that element. Defining an orthogonal wawplstich that if we set
W j(X) 2 25 (2 — j) to be the scaled (by?3 and translated (by2~¥) dilates (by
24 of the original mother wavelap, then{yx j }x jez forms an orthogonal basis
for L>(R). In an analogous manner we define the scaling fundtiassociated with
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| yielding the functiong, j(X) = 2'5¢(2kx— i), such that the s€ty j } jez is for

a fixedk orthonormal inL(R). When working on a periodic domaf®, rather than
in R, we need to consider suitably periodized wavelets andregélinctions with
nonnegative scalds> 0 only and shifts defined such that sugg j N Q # 0. For

a specific value ok we will assume allowable shiftse {0, ..., Ng} with Ny de-

pending on the particular wavelet used. We will also assuraewhenk = 0, the
only shift possible ig = 0. Defining the expansion coefficients as

21

ao= [ 20)poo(x dx. (48a)
21

Bui= [ 20Wci00dx k=01... j=0..N¢  (48D)

a functionz € L, (0, 2m) can be represented as

o Ny

z=aodoo+ B jWk j- (49)
o%o.0 kzoj; kW |

For further details concerning wavelets and the multinesoh analysis we refer
the reader to the monographs [32,33]. With these definitiangequivalent) norm
in the Besov spacBaq can be expressed as [25]

q
HZHg = |ao|94 Z 2kps+l/2 1/p) ]Z‘ i|P]P. (50)

Roughly speaking, functions in the spd&,(Q) haves derivatives inL(Q) with
the additional parametay providing a finer gradation in smoothness. Following
the procedure outlined at the beginning of this Section, atermine the steepest
descent direction in the spaBg ,(Q) as the solution of the minimization problem

DBa 7 = argmi (09,9 51
.7 g |r“-3HB%1q_l< ]7 >Bp*sq*><B?)7q’ ( )

WhereB_s* = [B} ol With 1* + 5 = 1l is the dual space with respect8g ;. Intro-

ducing the Lagrange multlplleuand converting (51) to the corresponding uncon-

strained formulation we obtain

e s [ (019),.._, + 4o, ]

o Ny

000+ H Z)Vk,j Bk j (52)

k=0]j

H Kp(s+1/2—1/p) Nk
+ =< (Jag|+ (2P
CI{< 0 go[ i=

= argmir
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where the following wavelet representations were empldgethe gradiently =

00000+ Ti03 [XoVk Wk j and the elemert = aodoo+ Ti o3 0Bk Wk j- The
first—order optimality condition for (52) yields

-2
Vager, By elp(la) 2[00+H|0(0|q 0(0]0(6
]

oo Ny a_q (53)
+ 3 > Ve RSP (S 1B P) o B PP | B = O,
kZoJ': [ j (Z| k| ) B | kl] K,

whereag and{[3, j}k,jeZ are the wavelet expansion coefficients of the perturbation
elementd’. Given the arbitrariness &, (53) is equivalent to the following infinite
system of algebraic equations

}.J.|CXo|q_2(Xo = —0p, j=1,...,N;, (54a)

N q_
uqqu(wl/zl/p)(%‘gk”p)p 1‘Bk7j|972[3k7j =—Ykj, k=0,...,0.  (54Db)
|=

We note that in the special cape= q system (54b) uncouples. When# g we can
solve system (54) by first truncating it at the number of Isv@insistent with the
spatial discretization (hefg,ax= 109, 1024= 10) and using Newton’s method with
globalization [31] to solve the resulting nonlinear algabrsystem. As a matter of
fact, since system (54b) decouples for different valueds, dfewton’s method can
be used independently for every valuekathich reduces the size of the linear alge-
braic problems that need to be solved at every iteration udnaitigates attendant
problems with conditioning. In our computations reportadSiection 4.1 wavelet
decompositions were computed using the “symmlet” waveléh WO vanishing
moments. This was done with the help of the MATLAB toolbwvel ab [34].
For modest values of the differen@e— q this approach leads to quite rapid con-
vergence. We also emphasize that, because of the relafsristtween the Besov
norms and wavelet decompositions [cf. (50)], determimatbBesov descent di-
rections is in fact equivalent to nonlinear wavelet filtgrapplied to the adjoint field
as defined by (54) (the filtering is nonlinear, because madibos of the wavelet
coefficients depend on the coefficients themselves). Thigwigfore analogous to
determination of gradients in the Hilbert—Sobolev spddéd)(Q) which can in
turn be interpreted as low—pass Fourier filtering appliedhi® adjoint field (see
Section 2.1). While the linear Fourier filtering modifies quonents based on their
wavenumbers only, the wavelet filtering does so based onr#ative “coherence”
[21]. Finally, we remark that the utility of wavelet decongitions for computation
of Besov descent directions was first recognized in the inpageessing literature
[20,35].
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4 Computational Results

In this Section we illustrate the utility of the proposed aggrh by comparing its
performance to the standard approach based onthadH?* gradients. We do this
for the two model problems introduced in Sections 2.1 andPh2 actual compu-
tational complexity of a state estimation problem dependseveral factors, such
as the quality of the initial guess, length of the assinolatvindow, importance
of nonlinear effects and the rank of the observation oper#toorder to exhibit
more clearly the potential of the proposed method, in botld@h@roblems we
will choose these parameters in such a way as to make theesti@teation prob-
lem quite hard and therefore practically unsolvable usihgdtandard methods, in
which case the iterations either get stuck in local minintdake excessively long
to converge. In both cases iterations (4) are carried ongubie Polak—Ribiere ver-
sion of the conjugate gradient (CG) method [7]. The “momenitterm in the CG
method is calculated using the standbgdnner product and is reset to zero every
20 iterations. Line minimization of the cost functional mdpthe descent direction
is performed at every iteration using Brendt's method [36].

4.1 Results Concerning State Reconstruction for the Kutar®ivashinsky Equa-
tion

The problem set—up is the same as the problem investigatfBini.e., A\, =
{1,...,50} in (8) and the initial guess ig® = 0, except that now we use a longer
assimilation window0, T] with T = 5- 10~ corresponding to 500 time steps. As
our computational experience shows, this is enough to ntekeptimization prob-
lem significantly more difficult than for 300 time steps whiehs the case studied
in [18]. Solution of this state estimation problem was afésd using the Lebesgue
and Besov descent directions in addition to the classigahdH?! gradients. Con-
sistently with hierarchy (35), the parametéfs s,, pn and g, characterizing the
spacesHn), Ly, andBf , at then-th iteration are changing according to the
expressions ’

In=lowy ™", S = Sous ', (55)

Pn =2+ (po—2)wyp", On =2+ (G0 — 2)wg ",
wherelg, S, po anddp are the starting values anag, ws, Wp andwy are suitably
chosen decrease parameters, all greater than unity. Weasmplthat with these
choices of the parameters the spatf$", Lq,, andBj , become fom — e
numerically indistinguishable from the spakte. Below we summarize the best
results obtained with each type of the descent directiar aftather modest amount
of computational tests performed to find good values of tharpaterdg, S, po,

Jo, W, Ws, Wp andwy. These parameter values are collected in Table 1.
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Fig. 3. Descent directions identified at the first iterationthe spaces (al2(Q), (b)
H02)(Q), (c) L1o(Q) and (d)B}(Q). For the sake of clarity, only half of the domain
Q is shown.
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CASE| lp @ s s po Wp Co Wy
L, |— — — — — — — —
H! |02 105 — — — — — —
ly | — — — — — — 10 2
BS | — — 1 1.1 7 11 5 11

Table 1

Parameters characterizing the descent directions inreiffefunction spaces employed to
solve the optimization problem from Section 2.1 [cf. (59)he number of non—blank en-
tries in each line is equal to the number of adjustable paterme the corresponding case.

10—5 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
n

Fig. 4. Decrease of cost functional (7) as a function of theation count in the following
cases (cf. Table 1): (solid),, (dotted)H?, (dashed).q and (dash—dotted}} .

We begin the presentation of the results by showing in Fige3iescent directions
obtained at the first iteration in the different cases listedable 2.1. We note
that while the shape of thel! gradient appears quite close to the shape of the
L> gradient, the shapes of thg and Bsp7OI descent directions differ from it quite
significantly. Next in Fig. 4 we present the histories of tlstcfunctional? (¢™)
during iterations in the four casés, H1, Lq andB%vq. We note that the iterates in
the case$, andH?! get stuck in local minima. On the other hand, in the cdses
and Bfg,’q we observe what appears to be convergence to a global minjarusin
the caserg,’q this convergence occurs quite rapidly. These findings am@lorated
by the results shown in Fig. 5 where we present distributibtihe reconstruction
error measures

s Gi(t, @M ) — e (t)]]
[ Gact(t) ||x

defined within the assimilation windo{@, T] at the end of the iterations (i.e., for
N=Nmay. The normg| - || x, wherex =H~1, L,, H1, are defined using the Parceval
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(©

Fig. 5. Distribution of the reconstruction error measuras%y-1, (b) Z.,, and (c) E4:
[cf. (56)] within the assimilation windoy0, T| at the end of the iterations for the following
cases (cf. Table 1): (solid), (dotted)H?, (dashed)q and (dash—dotted; .
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CASE | g W o Wy
L, |— — — —
H? 01 1001 — —
Ly |— — 3 1001

Table 2

Parameters characterizing the descent directions inréiffunction spaces employed to
solve the optimization problem from Section 2.2 [cf. (59)he number of hon—blank en-
tries in each line is equal to the number of adjustable parensién the corresponding case.

identity and denotingythe Fourier transform af(x) as
12152 S K2 1252 S 1252 Y KaP 67)
K=1 K=0 K=0

These norms are defined here in Fourier space in order to esizghthe fact that
(56) measures the accuracy of reconstruction at, respdgtiarge, intermediate
and small scales [18]. We observe that by far the best recatistn with regard to
all three metrics is obtained in the cases, respecti@m, andLq. We emphasize
that in theB} , case a significant reduction of the cost functional was abthafter
much fewer iterations. Clearly, the poorest reconstructias obtained in the case
HL.

4.2 Results Concerning State Reconstruction for the NaSiekes System

The problem set-up is the same as in [22], i.e., the initi@sg© is taken as
the mean flow and the assimilation wind¢®; T| has the length of 100 viscous
time unitst™ corresponding to 330 time steps. As already pointed out2h fhis
combination of parameters makes the present state essimatbblem very chal-
lenging. Solution of this problem is attempted using Leloesdescent directions
introduced in Section 3.1.2, in addition to the classldalandL » gradients. The
parameters, andqn characterizing the spacks, (Q) andH(n) (Q) at then-th it-
eration change according to expressions (55). Below we sammathe best results
obtained with each type of the descent direction after aerattodest amount of
computational tests performed to find good values of thematersly, go, w and
wyg. These parameter values are collected in Table 2.

We begin the presentation of the results by showing in Fighethistories of the

functional](ﬁb(n)) during iterations in the three cases, H! andL 4. We note that,
while the decrease of is in all cases rather slow, it is clearly the fastest inlthe
case and the slowest in the case. Next in Fig. 7 we present distribution of the
error norm

196, 3°°) — aet(0) I,

[Vact(t)]|L,

T, (t) = ) (58)
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0 50 100 150 200 250 300 350 400 450 500
n

Fig. 6. Decrease of cost functional (19) as a function oftiation countiin the following
cases (cf. Table 2): (solid),, (dotted)H* and (dashedl. .
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0.2 .

0.1F .
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Fig. 7. Distribution of the reconstruction error measte [cf. (58)] within the assimila-
tion window [0, T| aftern = 500 iterations in the following cases (cf. Table 2): (solig)
(dotted)H?! and (dashed). 4.

within the assimilation windovi0, T| aftern = 500 iterations [due to difficulties in
computing theH~1 andH* norms, we present here results for the norm only,
cf. (43)]. While in none of the cases can we claim that theionabflow has been
successfully reconstructed, the progress towards thalatinimizer®, is in the
caseH? andL 4 significantly better than in the cae, with the caséH? yielding
the lowest errors over the whole assimilation window. Weatade our discussion
by mentioning that state estimation in the present chanowl iroblem with dis-
tributed wall measurements was also investigated usingr atfethods, including
Taylor—series expansions in [22] and Kalman filtering in][37
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5 Summary and Conclusions

In this investigation we proposed a method for acceleratomyergence of gradient—
based optimization of PDE systems. Inspired by the idea efaipr precondition-
ing of Farago and Karatson [14], our approach uses desaegtidns constructed
in continuously varying function spaces as a way of prediming the itera-
tions. We show that extraction of descent directions in gariganach spaces not
equipped with the Hilbert structure is in fact equivalenatoonlinear change of the
control variables. For nonconvex problems such a changaraies may offer the
possibility of “smoothing” the control space more effeeliwthan can be done with
a linear change of variables (which is equivalent to mereitshing and contract-
ing the space in the different directions). We showed hovh slescent directions
can be characterized and computed in the Lebesgue and Besocesscommonly
arising in analysis on nonlinear PDEs [25]. These functjmerces are parametrized
by, respectively, one and three parameters which can betadjin order to accel-
erate convergence. Ideally, a prescription of how this &hba done should come
from the mathematical analysis of the PDE optimization f@ot) however, at least
for the problems of the type proposed in Sections 2.1 ands2éh results are un-
likely to be within reach in the foreseeable future. Therefthese parameters need
to be determined by way of computational experimentatiar.r®sults concerning
the Kuramoto-Sivashinsky equation show that with suitabhlysen Lebesgue and
Besov descent directions one can solve optimization praler which the linear
approach with thé, andH? gradients fails. Furthermore, using the Besov descent
directions this could be done performing relatively fewdtgons. The reasons for
the superior performance of the Besov descent directiopsaprelated to their
larger number of independent free parameters which offaerpossibilities for a
topology change than are available in the other cases. Asdsghe Navier—Stokes
problem, our results indicate that approaches based oablarSobolev gradients
and Lebesgue descent directions exhibit similar perfogaamhich is better than
in the standard. , approach. It is also worth noting that, given the rate of ¢jeaof
the different parameters in the case of both model problem$95), and Tables 1
and 2], the Lebesgue and Besov spaces used remained sighfdifferent from
the spacd., during initial iterations only. This initial effect was hawer impor-
tant enough to result in much faster convergence obsergedadllater iterations.
Thus, the two sets of results obtained for two different nigmieblems show the
usefulness of an additional flexibility in the design of agrdtive process offered
by the alternative descent directions proposed here. Qupaotational experience
with problems different than the cases reported here inelscdnat Banach descent
directions are particularly useful in hard problems in whibe classical gradients
cannot provide satisfactory performance. As a matter af fe@mputational evi-
dence showing that convergence of iterations in some fonatispaces is more
rapid than in other possibly might guide the mathematicalysis of such prob-
lems, especially as regards finding for them a natural fonetispace setting. The
fact that “optimal” values of these parameters must be fdunexperimentation is
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not a serious practical limitation, because in actual @gfitbns such optimization
problems are often solved repeatedly for a given systengudifferent data (e.g.,
data assimilation in numerical weather prediction [5])u$honce determined, the
sets of “optimal” parameters can be reused to acceleratmigations performed
subsequently. From the heuristic point of view, our pre¢toing approach can
be regarded as an application of a nonlinear filter toltheescent direction. Af-
ter its parameters are suitably calibrated, this nonlirfdi@r acts to emphasize
components of the descent direction which are importantdowergence and de—
emphasize those which are assumed to represent noise. \Wel sth®o mention
that the computational cost involved in determining a Lgoesor Besov descent
direction is insignificant comparing to the cost of a singéeation. Finally. we re-
mark that using finite—dimensional emulations of the norseduin the different
Banach spaces, the present approach can also be easigtapghe context of the
“discretize—then—differentiate” methods.
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A Operator Preconditioning in Numerical Solution of a Linear Boundary
Value Problem

In this Appendix we use the Ritz method applied to the Poigspration in a 1D
periodic domaim = (0, 2m) to illustrate the importance of extracting gradients in
suitable spaces. The problem we consider is thus

{ —Aw =g, A le)er<Q) - Haelr(Q)7 (A1)

w(0) = w(2m),
wherew € U = Hrl)er(Q) and Hrl)er(Q) is the Sobolev space of periodic functions

with square integrable first derivatives. One way of solv{Agl) is by finding
minimizers of a cost functional : le,er(Q) — R defined as

A 1 2
9(9)2 [ [5(09)2 - g9] dx (A.2)
which can be done using iterations (4). Assuming (incoly8cthat U = L,(Q),

the gradient of (A.2) €127 = —A9 — g, whereas if one take®l = le,er(Q), the
gradient is0™ 7 = A-1[-A9 —g.
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It is well-known [7], that the rate of convergence of gradigarations (4) de-
pends on the condition numbel(i) of the discrete Hessiah of (A.2). It can be
computed noting that” (8;9’,8") = — [Z"9"(A8') dx= — [Z(A9")9' dx Then,
assuming again thatl = L»(Q), we have

]//(3;3/,3”) = (ELZS/,SH)LZ = ELZS/ =AY = =L, = A (A.3)

Using Fourier harmonics as the basis functions, the He&siaoan be represented

as an infinite diagonal matrix with entries proportionallie tvavenumbers squared
k2. After truncating the problem at sori;eﬁax, the discrete Hessian condition num-
ber can be expressed a$=|,) = (@?HX) , which grows without bound as the res-
olution is refined (i.e., akmax— ). Thus, as the grid is refined, the conditioning
of the minimization problem deteriorates rendering it picadly unsolvable.

On the other hand, takin@l = H3(Q) we have

788,98 =¥, 9")y1 = Zpd' =9 = Zu=Id, (A4)
so that the condition numbet(=,:) = 1 regardless of the numerical resolution
used. This is thus an instance of a perfect conditioning amyergence can in
principle be achieved in a single iteration. It must be, haaveborne in mind that

determination of the gradiertiit”lj is fact equivalent to solution of problem (A.1)
itself. This example contrasting two extreme situationdartines the usual trade—
offs between the effectiveness and ease of computationegbpditioning opera-
tors.
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