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Abstract

A high-order finite volume algorithm is developed for the Fokker-Planck Operator
(FPO) describing Coulomb collisions in strongly magnetized plasmas. The algorithm
is based on a general fourth-order reconstruction scheme for a unstructured grid in
the velocity space spanned by parallel velocity and magnetic moment. The method
provides density conservation and high-order-accurate evaluation of the FPO inde-
pendent of the choice of the velocity coordinates. As an example, a linearized FPO
in constant-of-motion coordinates, i.e. the total energy and the magnetic moment,
is developed using the present algorithm combined with a cut-cell merging proce-
dure. Numerical tests include the Spitzer thermalization problem and the return
to isotropy for distributions initialized with velocity space loss cones. Utilization of
the method for a nonlinear FPO is straightforward but requires evaluation of the
Rosenbluth potentials.

Key words: Fokker-Planck collisions, high order scheme, finite volume,
constants-of-motion coordinates

PACS:

1 Introduction

The differential Fokker-Planck Operator (FPO) describes the particle colli-
sions in a fully ionized plasma through electrostatic Coulomb fields. Colli-
sions are ubiquitous, and applications of the FPO range from plasma physics,
magnetic and inertial confinement fusion, industrial material processing, and
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astrophysics. Although formally a function of Cartesian velocity (vy, vy, vs),
for highly magnetized plasma, the FPO is traditionally expressed in spheri-
cal coordinates (v, 6, ¢), where v is the particle speed, # is the pitch angle
and ¢ the gyro-angle. For strong magnetic fields, the characteristic time scale
of many physical phenomena can be much longer than the gyro-period, and
the characteristic length scale much larger than the gyro-radius; for such phe-
nomena, the distribution function and hence the FPO become independent of
gyro-angle ¢. The 6 dependence may be expressed by a series expansion using
Legendre polynomials L, (cos#), and the FPO is obtained by solving a series
of one-dimensional equations in v [1] [2]. Based on this approach, Chang and
Cooper [3] developed a finite difference scheme which conserves particle num-
ber density. It was further extended to conserve particle energy by Epperlein
[4]. More recently, a spectral collocation method was also used to solve the v
equation by Khabibrakhmanov and Khazanov [5].

Though convenient for the FPO itself, the (v,6) coordinates typically may
not be suitable for simulating spatially inhomogeneous plasmas based on full
kinetic equations. In such cases, the choice of velocity coordinates is often dic-
tated not by the FPO but by the spatial advection terms (parallel streaming
and perpendicular drifts). Hence the FPO needs to be evaluated in the chosen
coordinates and its discretization becomes turely two dimensional. Chacon et
al (2000) proposed a tensor formalism for the two dimensional Fokker-Planck
operator and studied the finite difference scheme in cylindrical coordinates for
improved energy conservation. Other algorithms dealing with non-isotropic,
multidimensional FPOs use Cartesian velocity coordinates directly, see, e.g.[7]
[8], which are almost never used for magnetized plasma due to its high fre-
quency gyro-motion. Recent attempts [9] [10] to couple the collision operator
with the Vlasov equation in different velocity coordinates ignored the spatial
dependence of the distribution function in the collision operator.

The so-called constant-of-motion coordinates, e.g. the total energy F and the
magnetic moment g, have been chosen for both particle [11] and continuum
[12] gyrokinetic simulations in fusion devices. In such devices, the accurate
representation of the particle orbits, both for the passing and trapped par-
ticles, is critical. The choice of (u, F) coordinates is advantageous because
(u, F) remain constant along particle orbits (in the absence of collisions and
acceleration). In other words, the velocity coordinates (u, E) are orthogonal
to the spatial coordinates. For instance, the collisionless Vlasov equation in
(u, E) coordinates is particularly simple. To accurately represent collisional
effects, the same constant-of-motion coordinates should be used in the FPO.
Our experience with the alternative method—interpolating between different
velocity coordinates—has be found unsatisfactory, particularly with respect
to the conservation properties. In this paper, we present an algorithm for a
FPO in constant-of-motion coordinates based on a general high-order finite
volume scheme on an unstructured, two dimensional velocity grid.



Although we focus on constant-of-motion coordinates in this paper, our goal
is to develop a FPO that is accurate, conservative, yet easily applicable to dif-
ferent coordinates systems. To achieve this, we first choose one convenient but
fixed coordinates system, e.g. in this case (v, 1), within which we develop a
conservative high-order unstructured finite volume scheme for the FPO equa-
tions. The finite volume discretization is inherently density conservative, and
the unstructured mesh decouples the choice of coordinates and the griding
strategy. Once this is completed, different velocity coordinates can then be
mapped directly into the chosen (v, 1) coordinates, with a regular grid in the
former typically becoming an irregular and unstructured grid in the latter.
But after the mapping, the solution we obtained maintains high-order accu-
racy and good conservation. In this sense, the FPO is independent the choice
of velocity coordinate, and the constant-of-motion coordinates discussed in
this paper is but one such choice. For simplicity, the method is illustrated for
the linearized FPO in this paper, where the diffusion coefficients are known,
assuming the scattering particles have a Maxwellian velocity distribution. For
nonlinear FPO, the diffusion coefficients are obtained by solving Rosenbluth
potentials, which is an important but rather independent problem and will be
dealt with in a separate paper. Once the nonlinear diffusion coefficients are
obtained, the algorithm described here applies directly.

The rest of this paper is organized as follows. The formulation of the FPO
in (v, ) coordinates is given in section 2 both for general and linearized
cases. The high-order finite volume scheme for general unstructured mesh is
presented in section 3. In section 4, we describe the cut-cell method in (u, E)
space, and choices of stencil for finite volume reconstruction. The numerical
tests are shown in section 5, and we give the summary and concluding remarks
in section 6.

2 Fokker-Planck collison operator

In this section, we present the Fokker-Planck collision operator in (v, ) coor-
dinates and its linearized version about a fixed Maxwellian distribution func-
tion describing the background field particles.



2.1 General form

Following Trubnikov [13], the Fokker-Planck collision operator C' can be writ-
ten in a divergence form as,

a/B
Clh) = L) = - L 2 i

B B

where S%/# is the flux of the ‘test’ particles of species a due to collision with
‘field’ particles of species 3 (including f = ). The flux S%? consists of a
friction term and a diffusion term:

Fq/ﬁ
S =~ f, — Dyl e (2)

Using the so-called Trubnikov-Rosenbluth potentials, we can write [1] [13]
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with Coulomb logarithm A. = log(8m(n.\3))), Ap is the Debye length. m is
the particle mass, and ng is the number density of the field particle.

The Trubnikov-Rosenbluth potentials are defined as

R AT = [T, )
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where the distribution function is normalized to unity. With the following
identities,

2 1
VoT - = A = —And(7— 7 6
it is easily established that
Vag® = h’, VP = fs. (7)



2.2 v — p coordinates

For magnetized plasmas, the parallel velocity v and magnetic moment p are
defined as

Mg

T2+ D), (8)

V|| = Vg, =

where B is the local magnetic field strength and is assumed to be in the z
direction. Note that v) and p are an appealing choice for velocity space co-
ordinates for magetized plasmas after gyro-averaging, as p is a constant of
motion, while the use of v)| makes f a single valued function in velocity space,
avoiding the complicated multi-sheet problems which occur in reconstruction
n (u, E) space. Furthermore, the Jacobian of the (v}, 1) coordinates is a con-
stant. Finally, a commonly used conservative form of the Vlasov equation is
expressed in (v}, p) space.

Hence, by ignoring the the gyro-phase dependence, we transform the result-
ing axisymmetric collision operator from Cartesian (v,, vy, v,) coordinates to
(v, ) coordinates and obtain
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where the fluxes F"H and I, are defined as
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and the diffusion coefficients are given by
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The Trubnikov-Rosenbluth potentials in (v, 1) coordinates satisfy
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Thus, the equations (9)-(19) constitute the fully nonlinear Fokker-Planck col-
lision operator in (v, 1) coordinates.

2.8 Linearization

The fully nonlinear FPO given above can be simplified or linearized if the
collisions between the test particles and the background plasma is more im-
portant than the collisions among the test particle themselves. Moreover, if
the background plasma has a large heat capacity, it will remain close to a
Maxwellian, i.e.

f3(0) = Fp(v) = (Vrvg) ™ exp (—0* /o) (20)

where v;3 = (2T,3/m5)% is the thermal velocity of field particles, and T} is the
its temperature.

In this case, the Trubinkov-Rosenbluth potentials depends only on the total
velocity v, i.e. h¥ = hP(v) and ¢ = ¢ (v), where v is defined as

v = /v +2uB/m. (21)

The derivatives of h and ¢ can be calculated explicitly as
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where the error function G(z), and function H(z) are defined as
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Consequently, the diffusion coefficients in (10) and (11) are given by
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This constitutes the linearized Fokker-Planck collision operator in (v, i1) co-
ordinates.

3 Finite volume discretization
3.1  General formula

To solve the FPO numerically, consider a fixed partition of (v}, u) plane by a
set of non-overlapping polygonal sub-domains €2;, 7 = 1...N. We may call each
sub-domain a cell. On any cell €2;, the following Fokker-Planck equation

Of _o.r- oy, +aru

o V=T (32)



can be integrated on the cell volume. By Gauss theorem, we the obtain the
basic form of the finite-volume scheme
of, 1 - 1
Erialky; > /(F -n;)dS; where f, = v/fdv. (33)
(3 13 QZ
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Here f, is the cell averaged value of distribution function f on cell 4, with
V; and 0€2; being its volume and boundary. The f;, rather than a point-wise
value, is the fundamental variable solved in the finite volume method, and its
rate of change is determined by the fluxes across the cell edges. The fluxes I,
and I, are given in (10) and (11), but to evaluate them, we must first obtain
the point wise values of f and its derivatives on the cell edges. Hence a central
piece of the finite-volume algorithm is the so-called reconstruction, i.e. finding
point-wise values of f (v, 1) from the available cell-averaged values f;.

The basic idea of reconstruction on a particular cell is to use the cell-averaged
values for this cell and the neighboring cells to form a local approximation
function to f(v, ), such that when this approximate function is averaged
over any of the cells involved, the known cell-averaged value is recovered.
Hence let us assume f to be a generic function of v and ;2 and approximate
[, in the neighborhood of cell p, by a polynomial of v and p, i.e.,

n n—i

Fo(op ) =32 ag (v —vppo)” (1 — o)’ (34)
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Here n is the desired order of the approximating polynomial, and a;; are the
unknown coefficients. For a given order n, the total number of a;; is (n +
1)(n+2)/2. The (v)j0, ito) is an appropriately chosen reference point. Here we
observe that if f, is a unique approximation based on (vjo, o), i.e., given all
the a;; determined uniquely, then it can be equivalently written for another
reference point (v, 11,). The new coefficients will become a;; and in general
ai; = a;j(amn,vno,v"‘o,uo,ug), but the f, itself remains the same. In other
words, the choice of (v, 110) is not essential to the approximation. Thus, we
can choose a global reference point and use it for the all reconstructions. The
origin vy, = p, = 0 is clearly a convenient choice and is used throughout the

paper. We will see its advantage in the next section.
3.2 High-order reconstruction

To obtain an accurate representation of FPO with modest grid resolution, we
choose a fourth order approximation n = 4. Therefore, 15 coefficients a;; in
(34) need to be determined. For convenience, we reorder the a;;s by a subscript



k, where k = 0, .., 14, and for each k, the corresponding exponents of v and
1 are denoted as i and ji, where iy 4 jr < n. So each ay is the coefficient of a
base polynomial of the order 7, + ji. To find these a, on a particular cell, we
first construct a 15-cell stencil consisting of the cell itself and 14 neighboring
cells, chosen as described below in section 4.2. Then by integrating (34) over
each of the cells within the stencil, we obtain a system of linear equations for
the ay:

Bk 0 = fons m,k=0,1,..., 14. (35)

where the matrix By, = [k, and by is given by

1 o
by = o / vﬁ’“/ﬂk dvdp, where Vin = / dvydp, (36)
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that is, b, is the cell averaged value of the kth base polynomial on the mth
cell. Note that the b,,, depends on the metrics of the mth cell only, but not
on f,,. More importantly, b,,x does not depend on stencil, i.e., the value of
bk is the same regardless which cell’s stencil it is on. This is because the the
polynomials in b, are based on a fixed global origin (see discussion in section
3). It suffices to compute b, only once.

To evaluate b,,, for each cell, we notice that the simplex in the 2D plane is a
triangle, and any polygonal cell can be divided into one or several triangles (in
3D it would be tetrahedron). It suffices to integrate the base polynomials over
a simplex. Let A be such a simplex, and A = {(v, £t0), (|11, 141), (V)j2, t12) };
for fourth order accuracy, we choose 16-point Gaussian quadrature

/ Fop, ) doydp =" wif (v, 1) = I > wi f (], 3:) (37)
=0

where the (¢}, /i) are the Gaussian abscissa in the standard triangle at (0,0),(0,1)
and (1,0). The transformation between (vyj;, ;) and (v};, fi;) is given by

)i = vjjo + (V0 — V) Vi + (V)2 — v)o) i (38)
1 = o + (p1 — po) i + (p2 — po) fli- (39)
Here J = |(vjp — v)j0) (2 — o) — (v)j2 — v)j0) (11 — to)| is the Jacobian. The

numerical values of the Gaussian weights w; and abscissa (vj;, fi;) are given in
the Appendix.

Once the b, are known, the coefficients a; can be solved directly by invert-
ing By in (35), e.g. by the Gaussian elimination method. Substituting the



coefficients into (34), we obtain the the pointwise reconstruction formula for
f (v, ). Moreover, the pointwise derivatives f, and f,, needed for flux eval-
uation, can also be obtained as

n n—ig n n—ig
. ir—1 . ik, k=1
foy =22 2 ik aw v p, fu= 22 2 Jr ax vt i (40)
ip=1j,=0 1, =0 jr=1

To integrate the fluxes across a cell edge, again we use fourth-order Gaussian
quudrature. For example, given the fluxes I') = ' - n at three Gaussian points
on a edge, the edge flux is computed by

2 l 2 ~
/Pdl =Y 6l =5 S al(). (41)
I p=0 p=0

Here [ is the length of the edge. The ¢, = {5/9,8/9,5/9} are the weights and
i, = {—V15/5,0,v/15/5} are the Gaussian abscissa on [-1,1].

Since each interior cell edge belongs to two cells, the flux across it can be
computed from either of the cells. To have a conservative scheme, a unique
definition of the flux must be used. Here we use an upwind approach, that is,
assuming edge pq is shared by cell p and ¢, the flux F'is chosen according to

e STy npg dl if [T,y -npdl >0 (42)
JDgp - ngp dl otherwise

Here I'), and I'y, are the computed point-wise fluxes from cell p to cell ¢ and
vice versa. Also,n,, is the unit normal of edge pg pointing from p to q.

We note a few features of this reconstruction method. First, unlike the con-
ventional finite-volume method, the current reconstruction does not require
one to specify the location of f,; it suffices for f, to be associated with a cell.
Second, the metric information of each cell is included automatically in the
base polynomial average b,,,. So the reconstruction procedure applies equally
to structured or unstructured meshes with arbitrary cell shapes. Furthermore,
since for each cell the b,,; need to be computed only initially, and then, to
construct the matrix B,,;, we only need to choose the b,,, from the cells in
the stencil.

A properly chosen stencil is the key to the reconstruction algorithm. The
minimum requirement is that the resulting matrix from the stencil should
be invertible and well-conditioned. In practice, the cells in a stencil should
form a simply-connected domain in the neighborhood of the current cell and

10



have sufficient support in both directions to avoid a singularity in the resulting
matrix. Since the FPO is a convection-diffusion equation in velocity space, the
construction of the stencils should take into account the direction of the edge
fluxes. In next section, we discuss this in the context of constant-of-motion
coordinates.

4 Constant-of-motion coordinates

As mentioned earlier, the general finite volume algorithm developed here does
not require the mesh to be regular or even structured. The advantage of this
method is that it can use a (v, u) mesh that may be mapped directly from
another mesh in a different velocity coordinate system, and yet the same
algorithm still applies.

One choice of velocity space coordinates for gyrokinetic simulation, as noted
in section 1, is the total energy F and magnetic moment pu, In the absence of
collision and acceleration, the E and p are conserved along a particle orbit. So
for the Vlasov equation, the numerical approximation of the spatial derivative
is effectively decoupled from the velocity space operation. This prevents the
spatial approximation from introducing numerical diffusion into the velocity
space and is a particularly good choice for accurately calculating particle or-
bits. An example of a regular (i, E) mesh is shown in figure 1a), where the
boundary v = 0 is a straight line cutting through the background grid and
separates the physical (above, vﬁ > 0) and non-physical (below, vﬁ < 0) zone.

However, existing FPOs are typically not written in constant-of-motion coor-
dinates. So to evaluate the FPO term, we adopt the following strategy. First,
we employ a cell-merging technique (described below) to treat the cells being
cut by the boundary. This is to avoid cut-cells which can be arbitrarily small
and thus dominated by a Courant-Fredrich-Lewy time step constraint. Then,
the resulting (p, E) grid is mapped into (v), 1) space, and we apply the finite
volume algorithm describe in section 3. The resulting cut-cell may have vari-
ous shapes and different connectivity patterns to its neighbors. For instance,
figure 1b) shows the corresponding (v, 1) mesh mapped directly from the
(1, E) mesh in figure 1a). Note that the v = 0 boundary now becomes the
vertical axis about which the mesh is symmetric. The left and right half planes
correspond to particles with different signs of the parallel streaming velocity.

11
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3 2 4 0 1 2 3
Y|

Fig. 1. Velocity space expressed in (u, /) and the corresponding (v}, i#) coordinates.

4.1 Cell merging and mapping

The cut-cell merging procedure starts by computing the cell center of the
regular background (u, E) grid. If the center of a cell is above the v = 0
boundary (physical domain) , this cell will be retained. Otherwise, it will be
discarded. If the cell that is discarded has a part in the physical zone, then
this part will be merged into its neighboring cells. We follow Ye et al [14] and
choose to merge cells in the vertical E direction. Since the v = 0 boundary
is a straight line, after the cell merging, there are totally four different types
of cut-cells, shown in figure 2, with a regular cell for comparison. Note that
depending on the slope of v = 0 boundary, i.e., the local B field, there could
be no neighboring cells available in the E direction at the upper-right corner.
In such cases, we merge the cut-cells in p direction. So the last one in figure
2 can appear only at the upper right corner with highest values of E and pu.

E
L 0
Looa) b) c) d) e)

Fig. 2. Computational cells in (u, F) coordinates. a) is a regular cell and b-e) are
cut cells at v = 0 boundary. b) and e) have been merged with neighboring cells. e)
only appears at the corner of highest £ and pu.

As a result of the merging, the cut-cells may share some of their edges with
more than one neighboring cell (see figure 1a). When we assemble the edge
fluxes, contributions from different neighboring cells must be accounted ap-
propriately.

The mapping between (u, £') into a (v|, 1) coordinates is through the following
formula expressing energy conservation

v =+ E — puB —q?, (43)
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k 12 3 4 5 6 7 8& 9 10 11 12 13 14
Aip {2 -1 -1 o 0 0O 06 0 1 1 1 2 2 -1
Ajp|{0O 1 0 2 1 -1 -1 -2 1 0 -1 0 1 -2

Table 1
Index shifts relative to cell (7, ) in a 15-cell stencil.

where B and ® are the magentic field and the electric potential. g is un-
changed, but becomes the second coordinate. Through this mapping, each
(u, E) cell, (cut cell or regular cell) will be mapped into two symmetric (v, i)
cells with opposite sign for v)|. Because the mapping is analytic, particle conser-
vation holds in both coordinates. In this mapping, a cell boundary of constant
FE is not mapped strictly to a straight cell boundary in (v}, #). But this poses
no problem, as we only need to map the vertices of a cell. The initialization of
f, as well as the ensuing computations, is carried out entirely in (v, i) space.
It is equivalent to change the cell boundary in (u, F) to a slightly curved
line such that when mapped to (v}, 4), it becomes straight line. On the other
hand, one might think using finite volume directly in (u, E') coordinates, but
the problem is that when getting to the turning point boundary v =0, it is
difficult for the reconstruction to include cells on the other sheet. Whereas in
the (v, 1) coordinates, there is no multi-sheet problem; the reconstruction at
the turning point boundary is essentially the same as anywhere else.

4.2 Reconstruction stencil

As mentioned earlier, the 4th order reconstruction scheme requires a 15-cell
stencil. Since the FPO represents convection and diffusion in velocity space,
and the direction of the edge fluxes is not usually known a priori, we choose
the stencil somewhat centered on the cell on which the reconstruction is being
sought.

Since each cell in (u, F) directly corresponds to two cells in (v}, 1), to make
the notation clear, we may describe the stencil using (u, E') cells which are
Cartesian except near the v) = 0 boundary.

By the cell cutting procedure, each cell, regular or cut, has one and only one
cell center. They are the cell centers of the background grid, and for the cut-
cells, typically not the geometric center of the cell. Nevertheless, the cell center
index can be used as a label to uniquely identify each cell. Let us assume the
cell where the reconstruction is sought has a cell center located at index (3, j),
then corresponding to figure 3, besides cell (i, j), the base stencil consists of
14 cells with the index shift shown in Table 1.

In figure 3, we show such a stencil in both coordinates where all the cells in

13
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1|3 0 | 10| 12 )
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14 | g 14 2
1
a) b)

Fig. 3. A 15-cell stencil in the a) (u, ) and b) corresponding (v, #) coordinates.
This stencil does not cross cut-cell boundary, and only part of the corresponding
cells in (v|, ) coordinates are marked.

13(12 13112
5(8) [10(11) 11|10
0(7) 8 7 10 5
a) b)

Fig. 4. A 15-cell stencil in the a) (u, ) and b) corresponding (v, #) coordinates.
This stencil crosses cut-cell boundary, and the overlapping cells are marked in both
coordinates

this stencil belong to the same sheet in (i, E). The numbers marked on the
cells in the (v|, #) coordinates correspond the cells marked with same number
in the (u, F) coordinates. In figure 4, a stencil with its center cell close to
the turning point boundary is shown. Because of the turning point boundary,
some cells in the stencil are not available since the index shift place them into
nonphysical zone. But this simply means that the cells are on the other sheet,
i.e. the other half plane across the vertical axis in (v|, 1) space. The numbers
in the parentheses designate cells on the other sheet with the same (u, E)
indices that need to be included in the stencil.

In general, a stencil need not be static; its composition can change with time
according to the direction of the local flux. Examples in a one dimensional sys-
tem include upwind, TVD and ENO/WENO schemes. Although for a multi-
dimensional system a complete theory is still lacking, in practice there are
still ways to incorporate the basic idea of dynamic stencil. For instance, we
can make a slight variation of the above static stencil to form a stencil with
a certain degree of upwinding. The idea is to keep the maximum extension of
the stencil in (u, F) directions the same, but choose the last two cells, 13 and
14, based on the direction of the edge fluxes of cell 0. Hence, the index shift

14



of the cell 13 and 14 can be determined by

, -2 ifI'g >0 ] —-2if ', >0
Allg = and A]M = (44)
2 otherwise, 2 otherwise
4 14 | 4
B 25|09 2| 5|9 |13
1| 3<=0 |10 |12 1| 3] 01012
6| 7 | n 6|7 |
14| 8 8

Fig. 5. Dynamic upwind stencil consisting of 15 cells in (u, F) coordinates. The
arrows indicate the direction of the net edge fluxes of cell 0.

Here I'p and I', are the net fluxes through the edge of the cell 0 which are
obtained from the v and p space at the previous time step. In figure 5,
two examples are shown for the location of cells 13 and 14 based on the
sign of I' and I',,. The dynamic stencil can adjust itself to bias towards the
upwind direction of the edge fluxes, so it offers better numerical stability and
robustness compared to a static stencil.

For the same stencil to be used near a boundary, ghost cells must be provided.
At the top boundary E = FE,,.:, we add two more rows of ghost cells and
specify their values by assuming the distribution function decays exponentially
in the F direction. Similarly, at 4 = 0 boundary, we add two more columns
of cells, and assign their cell averaged values by linear extrapolation based on
three interior neighboring cells.

After the cut-cell merging and mapping, and the construction of the stencil,
the FPO in constant-of-motion coordinates can now be evaluated directly in
the (v, 1) coordinates.

5 Numerical Tests

5.1 Reconstruction accuracy

We first test the accuracy of the reconstruction scheme using an analytic
drifting Maxwellian. The normalized density and mean temperature are n, =
1,7, = 1, and the normalized drift velocity is v,, = 0.1. The boundaries of
the Cartesian mesh are set at E,,,; = ltmae = 16. Starting from cell-averaged
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N, x Ng %iﬁom—fm U — Un |T — Ty
20 x 20 | 1.3929 x 1073 | 2.6042 x 1073 | 2.1463 x 1072
40 x40 | 2.1665 x 107* | 5.6951 x 10~* | 1.7826 x 103
80 x 80 | 2.9407 x 107° | 9.1703 x 107> | 1.3963 x 10~*

160 x 160 | 5.9352 x 1076 | 1.4444 x 10~ | 5.4600 x 106

Table 2

Errors of reconstruction for a normalized drift Maxwellian. The columns are reso-
lution, point-wise values the cell corners, the mean drift velocity U, and the mean
temperature T'. N is total number of cell corners. The velocity space boundaries are
at at Fner = Mmae = 16 and the magnetic field B = 1.2

initial values, we use the reconstruct scheme to compute the point-wise value
of f at the cell centers, the mean drift velocity and mean temperature. The last
two correspond to the first and second moments of the distribution function,
respectively. The errors of the reconstruction with different resolutions are
summarized in Table 2. The results confirm the fourth order accuracy of the
reconstruction scheme.

5.2 Spitzer thermalization

We then test the linear FP collision operator on the Spitzer thermalization
problem [13], which describes the thermal relaxation rate of species « on a
background fixed Maxwellian species 3. Assuming the distribution of a par-
ticles also remains Maxwellian during the relaxation, the theoretical rate of
temperature change for species « is given by

dly, — 8ma Ty —1p (45)
dt N Smﬁﬁ Ta/ﬁ{Ta + Z—ZT/B}
Here 7%/7 is the basic relaxation time defined by
3/2
rolB(e) = Yo © (46)

B mV2eZed Aeng

We solve the time dependent FPO equation in (u, F) space, and use a standard
4th-order Runge-Kutta scheme for the time integration. We consider both
cases with the background temperature higher (heating) and lower (cooling)
than the initial test particle temperature. The parameters are as follows. m, =
mg = 2my, e, = €3 = q, where m,, is proton mass, and ¢ the charge of electron.
The density of the background particles is ng = 10" /em?, and we choose the
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Fig. 6. Mean energy evolution of Spitzer thermalization. Field particle temperature
is 1.5kev and initial test particle temperature is at lkev.
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Fig. 7. Mean energy evolution of Spitzer thermalization. Field particle temperature
is 0.75 kev and initial test particle temperature is at 1 kev

Coulomb logarithm A. = 16. The initial temperature of the test particles is
T, = lkev, the background temperature is set T3 = 1.5kev for heating and
Ts = 0.75kev for cooling.

Figure 6 and 7 show the time history of the mean energy of the test species
during heating and cooling with different grid resolutions. The density is con-
served and the momentum remains zero during the process. The mean energy
evolution at different resolutions shows the convergence to the field particle
energy. It can be seen the initial development follows the analytic curve very
closely, because the test particles is initialized with a Maxwellian distribution.
Then the relaxation starts to deviate from the analytic cure, as the distribu-
tion of the « particles changes from its initial Maxwellian as the collisional
evolution progresses. However, when thermal equilibrium is approached, the
curve follow the theory again as now the distribution function returns to be-
ing Maxwellian, but at the same temperature as the background particles.The
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time history for the cooling case follows a similar process.

5.8  Return to isotropy from loss cone distribution

In this section we show the relaxation to a Maxwellian for the test particles
starting from an initial condition with a velocity space loss cone. Loss cone
situations are common in plasma confinement experiments, particularly for
the plasmas at the edge of the fusion device. In such cases, particles in part
of the velocity space escape from the magnetic confinement, leaving behind a
loss cone region with no particles inside. However, because of the collisional
effects, particles from other parts of the velocity space will be scattered into
the loss cone region, and the loss cone will gradually get filled up. So for the
test particles, it is a process of a return-to-isotropy, and the its distribution
function will eventually recover to a Maxwellian.
a)
N e

0.02
10| Loss

Ay

8| cone 12 1 0.015

0.01

0.005

Nl

15 2

n uB/T

Fig. 8. a) Loss cone in (u, E) velocity space, b) distribution function f as a func-
tion of uB/T for at a fixed energy E/T = 2.387 during the filling of the loss
cone. The normalized times (by the basic relaxation time 7 ) for the curves 0-6 are
t/7 =0,0.027,0.135,0.27,0.675, 1.35, 2.7.

Figure 8a shows a typical loss cone in velocity space for purely magnetic mir-
ror trapping. In this case the loss cone boundary is a straight line whose slope
is set by the maximum of the B field. The following parameters are chosen
to compute the loss cone problem using the present linear FPO in (p, E)
space. The slopes of the loss cone and the v = 0 boundaries are B, = 2.0
and B,,;, = 1.2. The initial condition for the distribution function f is a
Maxwellian at 7,, = 1 but with the loss cone region zeroed out. The initial
normalized density is thus 0.6991 instead of unity. Both the test and back-
ground particles have twice the proton mass and unit charge. The background
temperature T3 = 1. The grid resolution used is Ny = 45 and N, = 50. Let
Ty = 1kev be the reference temperature, the magnetic moment is normalized
by Ty/Bmin and the normalized energy is E/Tp. Figure 8b shows f as a func-
tion of p at a fixed E/T, = 2.387 at different times of the loss-cone filling.

18



Time is normalized as before by the initial basic relaxation time 7. Starting
from a step function at time ¢t = 0, the loss cone (left) is gradually filled by
particles from the trapped region (right), so the increase of f in the loss cone
is accompanied by the decrease of f in the trapped region. Eventually, the loss
cone is completely filled up, and f is relaxed to a Maxwellian. In this case, f
becomes independent to p as shown by the curve 6 in 8b.

6 Summary and discussion

In this paper, a new fourth-order finite-volume algorithm is developed for the
Fokker-Planck collision (FPO) operator for highly magnetized plasmas. The
underlying velocity-space coordinates are chosen to be the parallel velocity v
and magnetic moment p, and the FPO and its linearized form are derived in
these coordinates. The finite-volume reconstruction scheme is based on two
dimensional Gaussian quadrature and can be applied to arbitrary unstruc-
tured meshes. As a result, the underlying mesh in (v, z) can be generated by
directly mapping a grid from a different, user-chosen coordinate set, and the
resulting FPO still conserves the number of particles to roundoff error, and
the momentum and energy up to fourth order truncation error.

As an application, we compute the linearized collision operator in constant-of-
motion coordinates (i, F). A cell-merging method at the turning point bound-
ary is employed and the resulting mesh is mapped into (v, ) coordinates
analytically. An 15-cell stencil is devised for the reconstruction and the fluxes
are evaluated by the fourth order Gaussian quadrature. The accuracy of the
reconstruction algorithm is validated using a drifting Maxwellian. The method
is applied to Spitzer thermalization problem with both heating and cooling
cases, and good agreement with the theoretical results is obtained. A return
to isotropy was obtained from the present FPO operator for the test particles
starting from a distribution function with a velocity space loss cones.

We would like to make a few final remarks here. First, the present reconstruc-
tion scheme is not specific to velocity space; it can be applied to configuration
space as well. Second, though we focused on the linear FPO here, the method
is directly applicable to a fully nonlinear collision operator once the Trubnikov-
Rosenbluth potentials are known. Lastly, the present finite-volume scheme can
be generalized to three dimensionals in a straightforward way.
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Appendix: Gaussian quadrature

The 4th-order Gaussian quadrature on the standard triangle A = {(0,0), (0, 1), (1,0)}

is given by

15

[ £@5) didg = 3" wif (3,5,

A

where the standard abscissa and weights are given in the following table.

1=0

Wi

i

i

NeliNe < T =R ) S e VR \)

e e e
B~ W NN = O

—
(@3]

0.144315607677787
0.095091634267285
0.095091634267285
0.095091634267285
0.103217370534718
0.103217370534718
0.103217370534718
0.032458497623198
0.032458497623198
0.032458497623198
0.027230314174435
0.027230314174435
0.027230314174435
0.027230314174435
0.027230314174435
0.027230314174435

0.333333333333333
0.081414823414554
0.459292588292723
0.459292588292723
0.658861384496480
0.170569307751760
0.170569307751760
0.898905543365938
0.050547228317031
0.050547228317031
0.008394777409958
0.008394777409958
0.263112829634638
0.263112829634638
0.728492392955404
0.728492392955404

0.333333333333333
0.459292588292723
0.081414823414554
0.459292588292723
0.170569307751760
0.658861384496480
0.658861384496480
0.050547228317031
0.898905543365938
0.050547228317031
0.263112829634638
0.728492392955404
0.008394777409958
0.728492392955404
0.008394777409958
0.263112829634638
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