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Abstract

In this article we design new partitioned procedures for fluid–structure interaction problems, based on Robin-type
transmission conditions. The choice of the coefficient in the Robin conditions is justified via simplified models. The strategy
is effective whenever an incompressible fluid interacts with a relatively thin membrane, as in hemodynamics applications.
We analyze theoretically the new iterative procedures on a model problem, which represents a simplified blood-vessel
system. In particular, the Robin–Neumann scheme exhibits enhanced convergence properties with respect to the existing
partitioned procedures. The theoretical results are checked using numerical experimentation.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In the last three decades, there has been an increasing interest in the simulation of fluid–structure interac-
tion (FSI) problems that appear in several engineering and life science applications. We consider in this work
the situation of an incompressible Newtonian fluid interacting with a relatively thin structure. Such situation
appears for instance in hemodynamics applications when studying the interaction between blood and arterial
wall. The numerical approximation of this type of heterogeneous systems is challenging. They are coupled and
highly nonlinear problems with the following peculiarities:
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(1) The position of the fluid–structure interface is an unknown of the coupled problem. It introduces a geo-
metrical nonlinearity.

(2) The convective term of the fluid problem is nonlinear and, in case of using an ALE formulation (intro-
duced in Section 2), also depends on the velocity of the fluid domain.

(3) The fluid and structure subproblems are coupled through transmission conditions which state the con-
tinuity of velocity and normal stresses on the fluid–structure interface.

In this paper, we focus on algorithms based on subsequent solutions of fluid and structure sub-problems
(partitioned procedures). Every sub-problem is solved separately, allowing the reuse of existing codes/methods
(modularity). This is the main reason why partitioned procedures are so popular, see, e.g, [17,2,15,11,13].

In order to enforce continuity of velocity and normal stresses at the interface (condition (3)) one could con-
sider loosely coupled strategies, which solve the fluid and the structure only once (or just few times) per time
step and do not satisfy exactly the coupling transmission conditions. As a consequence, the work exchanged
between the two sub-problems is not perfectly balanced and this may induce instabilities in the numerical
scheme. For example, it was shown in [3] (see also [10]) that an explicit coupling is unstable in those applica-
tions where the added mass effect is important, as in hemodynamics. Alternatively, one can treat implicitly
(strongly) the coupling conditions at each time step, obtaining the solution of the fully coupled, monolithic
system of nonlinear equations. Several strategies have been proposed for the treatment of the nonlinearity.
In particular, one could consider Picard or Newton iterations over the nonlinear FSI system, to handle both
nonlinearities (1) and (2) (implicit strategy, see, e.g. [15,8]), or treat the interface position and the convective
term in an explicit way by extrapolation from previous time steps (semi-implicit algorithm, see, e.g. [7,16,1]). In
this way, no iterations are needed within each time step.

Whatever strategy is adopted, a sequence of linearized FSI problems (implicitly coupled through condition
(3)) has to be solved. Each of these problems can then be solved in a partitioned way via sub-iterations
between the fluid and structure sub-problems until convergence. Several iterative procedures have been inves-
tigated so far, see e.g. [20,5,13]. In all these approaches, the work exchanged between the two sub-problems is
perfectly balanced in each time step and the numerical scheme is stable. The price to pay is a relatively large
number of sub-iterations, particularly in those cases where the added mass is important. Up to now, the com-
putational cost remains extremely high.

The need to reduce the computational cost for those fluid–structure simulations where it is necessary to
treat implicitly the transmission conditions has motivated this work. In particular, we start from the Dirich-
let–Neumann (DN) partitioned procedure, in which the fluid problem is solved with a Dirichlet boundary con-
dition at the interface (the structure velocity at the previous sub-iteration) and the structure with a Neumann
boundary condition at the interface (the fluid normal stress just computed). This is the standard nomenclature
for partitioned procedures: the first kind of transmission conditions refers to the fluid sub-problem while the
second one refers to the structure sub-problem. This scheme is very easy to implement, yet, as shown in [3], it
often needs a large relaxation to converge and a quite high number of iterations when fluid and structure den-
sities are comparable.

This paper proposes new partitioned procedures based on Robin transmission conditions (linear combina-
tions of the Dirichlet and Neumann transmission conditions), applicable to those FSI problems where the
fluid and the structure have the same spatial dimension (say d ¼ 2; 3). We introduce the general Robin–Robin
algorithm, which generates a whole family of partitioned procedures that includes the classical DN and other
new algorithms, such as the Robin–Dirichlet (RD), the Robin–Neumann (RN), the Dirichlet–Robin (DR) and
the Neumann–Robin (NR) schemes. At the algebraic level, all these algorithms can be interpreted as suitable
block Gauss–Seidel iterations on the monolythic FSI system.

The use of Robin transmission conditions is motivated by introducing simplified models for the fluid and
the structure (see [3,16]). In particular, in [16] a simple membrane model for a thin ðd � 1Þ-dimensional struc-
ture has been derived, under the assumption of normal displacements. It was shown that this model can be
embedded into the fluid problem leading to a Robin boundary condition. Hence, the original FSI problem
is reduced to a single fluid problem. A similar approach was previously proposed in [9] for a fixed fluid geom-
etry. For FSI problems in which the structure is d-dimensional, the previous considerations motivate the con-
struction of iterative procedures based on Robin transmission conditions applied to the fluid sub-problem.
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The simplified model introduced in [16] also provides an estimate for the coefficient appearing in the Robin
condition.

On the other hand, in [3] a simplified fluid model was considered, based on the assumption of inviscid fluid.
It was shown that this model can be embedded into a ðd � 1Þ-dimensional structure equation, by introducing a
suitable ‘‘added mass” operator. In this work we consider the case of a d dimensional structure and show that
this embedding procedure leads to a generalized Robin boundary condition. Upon approximating the added-
mass operator with a multiple of the identity operator, the previous condition reduces to a ‘‘standard” Robin
condition. This motivates the construction of iterative procedures based on Robin transmission conditions
applied to the structure sub-problem, as well. Again, the simplified model introduced in [3] also provides
an estimate for the coefficient appearing in the Robin condition.

We study the convergence of the RD and RN strategies on the model FSI problem proposed in [3] and
extend the results given in [3] for the DN scheme. In particular, we provide the range of the relaxation param-
eter for which convergence is guaranteed. This theoretical analysis allows us to compare the efficiency of the
different schemes and to understand the dependence of the convergence on different physical and numerical
parameters. Our results indicate that, unlike the DN strategy, the RN scheme converges always without relax-
ation and independently of the added-mass effect.

Our preliminary numerical results presented in Section 6 show that the Robin–Neumann scheme features
excellent convergence properties in comparison to the classical Dirichlet–Neumann approach. Moreover, the
results confirm that convergence is almost independent of the added-mass effect. For these reasons we propose
the Robin–Neumann scheme as a valid alternative to the Dirichlet–Neumann scheme for problems where the
added-mass effect is significant. Among the other schemes, the Robin–Robin algorithm features even better
convergence properties provided that the coefficient appearing in the Robin condition for the structure is
properly chosen; the Dirichlet–Robin scheme features the same properties of the DN, while the Robin–Dirich-
let and the Neumann–Robin scheme are very slow.

The outline of the paper is as follows. In Section 2 we introduce the fluid–structure interaction problem at
the continuous level. In Section 2.1 we provide a suitable time discretization of the problem. In Section 3 we
introduce the classical Dirichlet–Neumann and the new Robin–Robin partitioned procedures. Sections 3.1
and 3.2 are devoted to the two simplified models used to provide suitable coefficients for the Robin boundary
conditions. In Section 4 we introduce the algebraic counterpart of the FSI problem and we interpret the par-
titioned procedures as a block Gauss–Seidel iterative solver. The convergence analysis of the DN, RN and RD
schemes is carried out in Section 5. A meaningful set of numerical experiments are presented in Section 6, that
confirm all the theoretical results obtained in Section 5. Finally, in Section 7 we draw some conclusions.

2. Problem setting

Let us consider an heterogeneous mechanical system which covers a bounded and moving domain Xt � Rd

(d ¼ 2, 3, being the space dimension), where t here denotes time. This domain is divided into a sub-domain Xt
s

occupied by an elastic structure and its complement Xt
f occupied by the fluid. The fluid–structure interface Rt

is the common boundary between Xt
s and Xt

f , i.e. Rt ¼ oXt
f \ oXt

s. Furthermore, nf is the outward normal to
Xt

f on Rt and ns ¼ �nf is its counterpart for the structure domain. The initial configuration X0 at t ¼ 0 is con-
sidered as the reference one.

In order to describe the evolution of the whole domain Xt we define two families of mappings:
L : X0
s � ð0; T Þ ! Xt

s; ðx0; tÞ 7! x ¼ Lðx0; tÞ

and
A : X0
f � ð0; T Þ ! Xt

f ; ðx0; tÞ 7! x ¼ Aðx0; tÞ:
The map Lt ¼ Lð�; tÞ tracks the solid domain in time and At ¼ Að�; tÞ does the same with the fluid domain. The
combination of these two mappings define an homeomorphism over Xt under the following continuity condi-
tion on the interface:
Lt ¼ At on Rt 8t 2 ð0; T Þ: ð1Þ
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We adopt a purely Lagrangian approach to describe the structure kinematics. Therefore, the solid mapping is
straightforwardly determined by
Ltðx0Þ ¼ x0 þ ĝðx0; tÞ;

where ĝ denotes the displacement of the solid medium with respect to the reference configuration.

The fluid problem is stated in an Arbitrary Lagrangian–Eulerian (ALE) framework (see e.g. [12,6]). The
fluid domain mapping At is defined by an appropriate extension of its value on the interface, which is given
by condition (1):
Atðx0Þ ¼ x0 þ Extðĝðx0; tÞjR0Þ: ð2Þ

A classical choice is to consider a harmonic extension operator in the reference domain. In general, this map-
ping does not track the fluid particles.

For any function ĝ : X0
s � ð0; T Þ ! R defined in the reference solid configuration, we denote by

g ¼ ĝ � ðLtÞ�1 its counterpart in the current domain:
g : Xt
s � ð0; T Þ ! R; gðx; tÞ ¼ ĝððLtÞ�1ðxÞ; tÞ:
An analogous notation is adopted for the fluid domain: given f : Xt
f � ð0; T Þ ! R defined in the current fluid

configuration, we denote by f̂ ¼ f �At its counterpart in the reference fluid domain:
f̂ : X0
f � ð0; T Þ ! R; f̂ ðx0; tÞ ¼ f ðAtðx0Þ; tÞ:
We define the ALE time derivative as follows:
otf jx0
: Xt

f � ð0; T Þ ! R; otf jx0
ðx; tÞ ¼ ot f̂ � ðAtÞ�1ðxÞ:
Moreover, we calculate the fluid domain velocity w as
wðx; tÞ ¼ otxjx0
¼ otA

t � ðAtÞ�1ðxÞ:
Then, owing to (2), we have
ŵðx0; tÞ ¼ Extðotĝðx0; tÞjR0Þ

provided that the extension operator chosen interchanges with the time derivatives.

The solid is assumed to be an elastic material, characterized by a constitutive law relating the Cauchy stress
tensor Ts to the deformation gradient FðĝÞ ¼ I þrĝ. Moreover, we assume the fluid to be homogeneous,
Newtonian and incompressible. We indicate with Tf its Cauchy stress tensor:
Tf ðu; pÞ ¼ �pI þ 2lGðuÞ;

where p is the pressure, l the dynamic viscosity and
GðuÞ ¼ 1

2
ðruþ ðruÞTÞ
is the strain rate tensor.
In order to write the fluid problem in ALE form, let us apply the chain rule to the velocity time derivative:
otujx0
¼ otuþ w � ru;
where otu is the partial time derivative in the spatial frame (Eulerian derivative).
Then, the fluid–structure problem in strong form reads:

1. Fluid–structure problem. Find the fluid velocity u, pressure p and the structure displacement ĝ such that
qf otujx0
þ qf ðu� wÞ � ru�r � Tf ¼ f f in Xt

f � ð0; T Þ; ð3aÞ
r � u ¼ 0 in Xt

f � ð0; T Þ; ð3bÞ
qsottĝ�r � T̂s ¼ f̂ s in X0

s � ð0; T Þ; ð3cÞ
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u ¼ otg on Rt � ð0; T Þ; ð3dÞ
Ts � ns þ Tf � nf ¼ 0 on Rt � ð0; T Þ: ð3eÞ
2. Geometry problem. Find the fluid domain displacement
Atðx0Þ ¼ x0 þ ExtðĝjR0Þ; w ¼ otA
t � ðAtÞ�1

; Xt
f ¼ AtðX0

f Þ: ð4Þ
Here, qf and qs are the fluid and structure densities and f f and f̂ s the forcing terms. Two transmission con-
ditions are enforced at the interface: the continuity of fluid and structure velocities (3d), due to the adherence
condition, and the continuity of stresses (3e), expressing the action–reaction principle. The fluid and structure
problems are also coupled by the geometrical condition (4), leading to a highly nonlinear problem. Finally, sys-
tem (3) and (4) has to be endowed with suitable boundary conditions on oXtn Rt and initial conditions. Since
the choice of boundary and initial conditions is not essential in the forecoming discussion, they will not be
detailed here.

2.1. The time discrete system

In this section we discretize in time system (3) and (4). Let Dt be the time step size and tn ¼ nDt for
n ¼ 0; . . . ;N . We denote by zn the approximation of a time dependent function z at time level tn. Let us define
the backward difference operator dt as dtznþ1 ¼ ðznþ1 � znÞ=Dt. The discrete ALE derivative is evaluated by the
following expression:
dtznþ1jx0
¼ ðznþ1 � zn �An � ðAnþ1Þ�1Þ=Dt:
We consider a backward Euler scheme for the time discretization of the fluid problem and an implicit first
order BDF scheme for the structure problem. Observe, however, that all the partitioned procedures proposed
in this work can be easily extended to other time marching schemes.

In order to treat the nonlinearity given by the convective term and by the fluid domain, we detail two strat-
egies; the semi-implicit and the implicit algorithms (see e.g. [1,16]). In the first case, we use suitable extrapo-
lations X�f ; u

� and w� of the fluid domain, fluid velocity and fluid domain velocity, respectively, obtaining the
following algorithm:

2.2. Semi-implicit algorithm

Given un; ĝn; ĝn�1 and Xn
f , for each n

1. Build a suitable extrapolation X�f of the domain Xnþ1
f .

2. Solve the linearized FSI problem
qf dtu
nþ1 þ qf ðu� � w�Þ � runþ1 �r � Tnþ1

f ¼ f nþ1
f in X�f ; ð5aÞ

r � unþ1 ¼ 0 in X�f ; ð5bÞ
qsdttĝ

nþ1 �r � T̂nþ1
s ¼ f̂ nþ1

s in Xs
0; ð5cÞ

unþ1 ¼ dtg
nþ1 on R�; ð5dÞ

Tnþ1
s � ns þ Tnþ1

f � nf ¼ 0 on R�; ð5eÞ
3. Update the fluid domain
Anþ1ðx0Þ ¼ x0 þ Extðĝnþ1jR0Þ;
wnþ1 ¼ dtA

nþ1 � ðAnþ1Þ�1
; Xnþ1

f ¼ Anþ1ðX0
f Þ;
where we have set dttð�Þ ¼ dtðdtð�ÞÞ. A simple choice is given by the first order extrapolations X�f ¼ Xn
f ; u

� ¼ un

and w� ¼ wn.
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A second possibility is to treat implicitly the fluid domain and the convective term and to embed the pre-
vious fluid–structure scheme into a fixed-point loop on the position of the FS interface R�. Indicating with i the
sub-iterations index, we obtain the following:

2.3. Implicit algorithm

Given un; ĝn; ĝn�1 and Xn
f , for i ¼ 0; 1; . . . do until convergence.

1. Solve the linearized FSI problem
qf dtu
nþ1
iþ1 þ qf ðunþ1

i � wnþ1
i Þ � runþ1

iþ1 �r � Tnþ1
f ;iþ1 ¼ f nþ1

f in Xnþ1
f ;i ; ð6aÞ

r � unþ1
iþ1 ¼ 0 in Xnþ1

f ;i ; ð6bÞ
qsdttĝ

nþ1
iþ1 �r � T̂nþ1

s;iþ1 ¼ f̂ nþ1
s in Xs

0; ð6cÞ
unþ1

iþ1 ¼ dtg
nþ1
iþ1 on Rnþ1

i ; ð6dÞ
Tnþ1

s;iþ1 � ns þ Tnþ1
f ;iþ1 � nf ¼ 0 on Rnþ1

i : ð6eÞ
2. Update the fluid domain
Anþ1
iþ1 ðx0Þ ¼ x0 þ Extðĝnþ1

iþ1 jR0Þ;
wnþ1

iþ1 ¼ dtA
nþ1
iþ1 � ðA

nþ1
iþ1 Þ

�1
; Xnþ1

f ;iþ1 ¼ Anþ1
iþ1 ðX0

f Þ:
System (5) (as well as every fixed-point iteration of (6)) is a fully coupled and linearized fluid–structure prob-
lem, where the transmission conditions (5d) and (5e) are kept implicit. In case of using a nonlinear structural
model, the linearization of the structure sub-problem should also be considered.

Our goal is then to devise partitioned procedures for the solution of such a linearized problem. Partitioned
strategies capable of splitting the linear FSI problem into two separate sub-problems are very appealing from
a computational point of view, since they allow one to reuse codes that have been developed for each field
separately. This is the motivation of the partitioned procedures introduced in the next section.

3. Robin–Robin partitioned procedures

Partitioned procedures have been introduced in order to solve the linearized fluid–structure system by sep-
arate evaluations of fluid and structure sub-problems. These iterative algorithms can be motivated from a
domain decomposition viewpoint (see e.g. [5]). The most widely used partitioned procedure is the Dirich-
let–Neumann (DN) technique, that consists in solving the fluid sub-problem with a Dirichlet boundary con-
dition and the structure sub-problem with a Neumann boundary condition. We recall it briefly here. To
lighten the notation we omit here and in what follows the temporal index n. Referring to the semi-implicit
scheme, system (5), and indicating with k the sub-iteration index, the DN algorithm reads:

Dirichlet–Neumann algorithm

Given gn; gn�1; un and the current iteration gk, find the next iteration gkþ1; ukþ1 and pkþ1 such that,

1. Fluid problem (Dirichlet boundary condition)
qf dtu
kþ1 þ qf ðu� � w�Þ � rukþ1 �r � Tkþ1

f ¼ f f in X�f ;

r � ukþ1 ¼ 0 in X�f ;

ukþ1 ¼ dtg
k on R�:
2. Structure problem (Neumann boundary condition)
qsdttĝ
kþ1 �rT̂kþ1

s ¼ f̂ s in Xs
0;

Tkþ1
s � ns ¼ �Tkþ1

f � nf on R�:
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Once convergence is achieved, the geometry problem is solved and the new domain updated. Obviously, the
order in which the two sub-problems are solved can be reversed.
Remark 1. The same strategy can be applied in the implicit case to solve the linearized FSI problem (6). This
leads to a two nested loops algorithm. We point out that the internal loop does not need to be solved to full
accuracy and in general it is enough to reduce the initial residual by a given factor.

Alternatively, one could decide to perform only one iteration in the internal loop, which would lead to the
‘‘classical” non-linear DN (fixed-point) algorithm, considered for example in [15,20,5].

Unfortunately, the convergence properties of this algorithm deteriorate for certain classes of problems, like
the blood-vessel system. This phenomenon is related to the added-mass effect. Roughly speaking, this effect
becomes critical when fluid and structure densities are of the same order or when the domain is very slender.
We refer to [3] for a discussion on the added-mass effect in the frame of partitioned procedures. The straight-
forward alternative to DN is the Neumann–Dirichlet (ND) partitioned procedure. However, this scheme has
even worse numerical properties. In [5] a Neumann–Neumann algorithm was also proposed for hemodynam-
ics problems. Yet the results obtained did not improve substantially those obtained with a simple DN
algorithm. As a conclusion, the existing partitioned procedures are not suitable for some interesting FSI prob-
lems, as those encountered in hemodynamics applications.

At this point, let us consider a linear combination of the continuity of velocities and stresses conditions that
leads to a new set of transmission conditions of Robin type. These new transmission conditions lead to a new
family of partitioned procedures, introduced with the aim of getting better convergence properties.

In particular, referring to the semi-implicit case, we replace (5d) and (5e) by the following set of (equivalent)
transmission conditions
af unþ1 þ Tnþ1
f � nf ¼ af dtg

nþ1 � Tnþ1
s � ns on R�;

as

Dt
gnþ1 þ Tnþ1

s � ns ¼
as

Dt
gn þ asu

nþ1 � Tnþ1
f � nf on R�;

ð7Þ
where the combination parameters must satisfy af 6¼ �as. Moreover, to have well-posed sub-problems we will
assume af ; as > 0. By doing this, we are replacing Dirichlet and Neumann boundary conditions by two Robin
boundary conditions on the FSI interface. Let us introduce now the Robin–Robin (RR) algorithm for the
solution of system (5), omitting for the sake of simplicity the time index nþ 1:

Robin–Robin algorithm

Given gn; gn�1; un and the current iteration gk, find the next iteration gkþ1; ukþ1 and pkþ1 such that,

1. Fluid problem (Robin boundary condition)
qf dtu
kþ1 þ qf ðu� � w�Þ � rukþ1 �r � Tkþ1

f ¼ f f in X�f ; ð8aÞ
r � ukþ1 ¼ 0 in X�f ; ð8bÞ
af ukþ1 þ Tkþ1

f � nf ¼ af dtg
k � Tk

s � ns on R�: ð8cÞ
2. Structure problem (Robin boundary condition)
qsdttĝ
kþ1 �r � T̂kþ1

s ¼ f̂ s in Xs
0; ð9aÞ

as

Dt
gkþ1 þ Tkþ1

s � ns ¼
as

Dt
gn þ asu

kþ1 � Tkþ1
f � nf on R�: ð9bÞ
The RR partitioned procedure can be applied to the implicit system (6) as well, as described in Remark 1.

The Robin–Robin algorithm generates a family of partitioned procedures. Indeed, the classical DN and
ND algorithms can be recovered with appropriate values of the combination parameters. We can also consider
the particular cases af ¼ 0 or as ¼ 0, leading to the Neumann–Robin and the Robin–Neumann schemes,
respectively. Dirichlet–Robin and Robin–Dirichlet schemes are obtained taking (conceptually) af ¼ 1 and
as ¼ 1, respectively. We summarize all these methods in Table 1, where p.b.v. stands for ‘‘positive and
bounded value”.



Table 1
Family of partitioned procedure generated by Robin transmission conditions

Algorithm af as

Dirichlet–Neumann 1 0
Neumann–Dirichlet 0 1
Robin–Dirichlet p.b.v. 1
Dirichlet–Robin 1 p.b.v.
Robin–Neumann p.b.v. 0
Neumann–Robin 0 p.b.v.
Robin–Robin p.b.v. p.b.v.
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At this point, the main issue is the evaluation of suitable combination parameters af and as that will
improve the convergence properties of the classical DN scheme. In the next section we provide a way to esti-
mate such parameters, based on two simplified models for the fluid and for the structure problems.

3.1. Simplified structure model

We consider the membrane model proposed in [16] as a simplified model for the structure. We point out
that this is a lower dimensional model describing the structure as a ðd � 1Þ-dimensional manifold coinciding
with R0. Following [16], the reference position R0 of the membrane is identified by a regular mapping
/ : x � R2 ! R0 � R3; / ¼ /ðn1; n2Þ 8ðn1; n2Þ 2 x:
Under the hypothesis of small deformations, negligible bending terms and only normal displacement, the
structure model reduces to the simple scalar equation (inertial-algebraic model)
qsH s
o

2g
ot2
þ bg ¼ fs � nf � ðTf � nf Þ in Rt � ð0; T Þ; ð10Þ
where g and fs are the normal components of the structure displacement and body force (in the direction nf ),
respectively, and b is the algebraic parameter
b ¼ bðn1; n2Þ ¼
H sE

1� m2
ð4q2

1 � 2ð1� mÞq2Þ;
where E and m are the Young modulus and the Poisson coefficient of the material at hand, H s is the thickness
of the structure and q1 and q2 are the mean and Gaussian curvature of R0. Then, setting u ¼ u � nf and
T f ¼ nf � ðTf � nf Þ and owing to (5d) (or (6d)), the fluid–structure interaction problem (5) (or (6)) is reduced
to a fluid problem supplemented with a Robin transmission condition at the interface for the normal compo-
nent of the velocity, namely
qsHs

Dt
þ bDt

� �
unþ1 þ T nþ1

f ¼ f nþ1
s þ qsHs

Dt2
� b

� �
gn � qsH s

Dt2
gn�1 on R�: ð11Þ
In the case of a membrane structure and for an inertial-algebraic law the fulfillment of the interface conditions
(5d) and (5e) is guaranteed in just one iteration between the fluid and structure problems (in fact, the structure
problem is not explicitly solved since it is embedded in the fluid one thanks to (11)). In the case of a d dimen-
sional structure and for more general structure models, whose behaviour, however, is similar to the one pre-
dicted by (10), the previous derivation suggests the use of Robin transmission condition as in (8c) with
coefficient
af ¼
qsH s

Dt
þ bDt ð12Þ
inferred from (11). We observe that this value is easily computed, since it depends on the physical and geo-
metrical properties of the structure at hand and on the time step. As an example, when the geometry of the
structure is a cylinder, b ¼ HsE=ðð1� m2ÞR2Þ, where R is the radius of the cylinder.
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We point out that (11) prescribes a boundary condition at the interface in the normal direction only. How-
ever, for easiness of implementation we propose to use a Robin boundary condition with the same coefficient
af also in tangential directions as written in (8c).

3.2. Simplified fluid model

The motivation of this section is to derive a simplified fluid model that would allow us to quantify the added
mass effect on the structure. Our goal is to find an algebraic operator relating the fluid normal stress at the
interface to the structure acceleration. Unfortunately, the operator describing the added mass effect is not alge-
braic and its approximation by an algebraic relationship is not evident.

We consider the simplified fluid model proposed in [3]. In particular, the fluid is described by a linear
incompressible inviscid model, imposing at the interface the structure velocity. We also assume small displace-
ments for the structure, which implies that the fluid domain can be kept fixed. We denote by g ¼ g � nf the
displacement of the structure in the direction nf and again u ¼ u � nf . Let us consider the following simplified
model:
qf otuþrp ¼ 0 in Xf � ð0; T Þ;
r � u ¼ 0 in Xf � ð0; T Þ;
u ¼ otg on R� ð0; T Þ

ð13Þ
with suitable boundary conditions on oXf n R and initial conditions. The time discretization of (13) using
backward Euler at time step nþ 1 reads
qf dtu
nþ1 þrpnþ1 ¼ 0 in Xf ; ð14aÞ

r � unþ1 ¼ 0 in Xf ; ð14bÞ
unþ1 ¼ dtg

nþ1 on R: ð14cÞ
In this system, the value of the pressure on the interface can be written as a function of the imposed interface
acceleration
pnþ1 ¼ �qfMðdtunþ1Þ þ p̂nþ1 on R;
where p̂nþ1 takes into account non-homogeneous boundary conditions on oXf nR and M : H�1=2ðRÞ
! H 1=2ðRÞ stands for the added-mass operator. Observe that this operator, relating the interface pressure
and acceleration is not algebraic. We refer to Section 5 for a detailed description of this operator. For this
simplified problem, the stress exerted by the fluid on the structure in the normal direction is simply pnþ1

and the continuity of normal stresses at the interface becomes
T nþ1
s ¼ T nþ1

f ¼ qfMðdtunþ1Þ � p̂nþ1 ¼ qfMðdttg
nþ1Þ � p̂nþ1;
where we have set T f ¼ nf � ðTf � nf Þ and T s ¼ ns � ðTs � nsÞ. From the previous relationship we obtain the fol-
lowing generalized Robin boundary condition for the structure in the normal direction
qfM

Dt2
gnþ1 � ns þ ns � ðTnþ1

s � nsÞ ¼
qfM

Dt2
ð2gn � gn�1Þ � ns � p̂nþ1ns: ð15Þ
Condition (15) embeds the fluid problem into the structure problem. Thus, the interface condition is again
satisfied in just one iteration. The generalized Robin condition (15) can be obtained from (9b) by taking
as ¼ ðqf =Dt2ÞMð�Þ. In order to obtain a ‘‘classical” Robin condition, we propose to approximate the operator
M by clmaxI , where lmax is the maximum eigenvalue of the added-mass operator, I is the identity operator and
c is a coefficient suitably chosen, getting
as ¼ c
qf lmax

Dt
: ð16Þ
In the case of a fluid governed by the Navier–Stokes equations, the embedding of the fluid problem into the
structure one is not an easy task. However, we propose to use again partitioned procedures with Robin bound-
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ary conditions as in (9b) with the coefficient (16) based on the approximation of the added-mass operator
using its largest eigenvalue.

Although the choice (16) is only heuristic, the numerical tests presented in Section 6 reveal that this is a very
reasonable choice. The scaling factor c has to be tuned to obtain good convergence properties. Yet, the tuned
value seems to be very robust and practically independent of qf ;Dt and some geometrical parameters defining
the physical domain (and then lmax). This indicates that formula (16) captures the correct dependence of the
coefficient as on the physical parameters of the problems.

We point out that the analytical evaluation of lmax is not straightforward for a general geometry and we
have to resort to a numerical approximation. However, as we will show in Section 5, it is possible to provide
an analytical expression of lmax for particular geometries.

Finally, as for the simplified structure model, we propose to apply the Robin transmission condition on the
structure, with parameter as given by (16), on both the normal and tangential directions, for easiness of
implementation.

4. Block Gauss–Seidel interpretation

In this section we motivate the partitioned procedures introduced above from an algebraic point of view.
We have only considered the semi-implicit case for the sake of simplicity, but the extension to the implicit case
is straightforward. The fully coupled algebraic FSI system is obtained by writing the weak form of the semi-
discrete FSI problem (5) and discretizing it in space using the finite element method. In particular, let us intro-
duce a triangulation of the fluid and structure domains and assume that the two meshes are conforming on the
fluid–structure interface Rt. Moreover, we consider suitable finite element spaces with Lagrangian basis func-
tions, so that the degrees of freedom correspond to nodal values of the solution. We skip the details and refer
to [1] for a detailed discussion. We end up with the following linear system:
AXnþ1 ¼ bnþ1; ð17Þ

where
A ¼

Cff Gf Cf R 0 0

Df 0 Ds 0 0

0 0 MR �MR=Dt 0

CRf GR CRR SRR SRs

0 0 0 SsR Sss

26666664

37777775; ð18Þ

Xnþ1 ¼

Unþ1
f

Pnþ1

Unþ1
R

Dnþ1
R

Dnþ1
s

26666664

37777775; bnþ1 ¼

bnþ1
f

0

�MR=DtDn
R

bnþ1
R

bnþ1
s

26666664

37777775: ð19Þ
Here, Unþ1
f is the vector of nodal values of the fluid velocity on the interior nodes, Unþ1

R are the fluid velocity
nodal values on the interface, Pnþ1 is the vector of (interior and interface) nodal values for the pressure. Fi-
nally, Dnþ1

s and Dnþ1
R are the vectors of structure displacements related to interior and interface nodes, respec-

tively. On the other hand, the right hand side bnþ1 accounts for external forces and other terms related to the
time discretization scheme. The first two rows are the fully discrete versions of the momentum and mass con-
servation equations for the fluid. The third equation states the continuity of velocities on the interface and is
the algebraic counterpart of (5d). We have indicated by MR the interface mass matrix, which is invertible. The
fourth row enforces continuity of stresses in a weak form. Finally, the fifth row is the structure problem in the
internal nodes. If non-conforming meshes are considered, the third and fourth row should be modified accord-
ingly by introducing a projection (or interpolation) matrix between the interface structure displacement and
fluid velocity finite element spaces (see, e.g. [15]).
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All the partitioned procedures introduced so far can be written as a block Gauss–Seidel (GS) iterative sol-
ver for the preconditioned system
P�1AXnþ1 ¼ P�1bnþ1;
where P is a suitable preconditioning matrix which will be detailed later. We consider the following partition of
the unknowns vector Xnþ1 into
Xnþ1
f ¼

Unþ1
f

Pnþ1

Unþ1
R

264
375; Xnþ1

s ¼ Dnþ1
R

Dnþ1
s

" #
:

This choice splits the FSI system into ‘‘fluid” and ‘‘structure” blocks. This is the only choice that allows mod-
ularity of FSI codes. Let us denote the blocks of PA and Pbnþ1 as
PA ¼:
Bff Bfs

Bsf Bss

� �
; Pbnþ1 ¼:

ðPbnþ1Þf
ðPbnþ1Þs

" #
:

Therefore, omitting for the sake of simplicity the time index nþ 1, an abstract block Gauss–Seidel procedure
for the solution of the fluid–structure system (17) at time step nþ 1 consists of given Xk, do until convergence
Bff Xkþ1
f ¼ ðPbÞf � BfsX

k
f ;

BssX
kþ1
s ¼ ðPbÞs � Bsf Xkþ1

f :
We supplement this iterative procedure with the following stopping criterion:
krkþ1k
kr0k :¼ kb� AXkþ1k

kb� AX0k
< e ð20Þ
for a suitable tolerance e. Criterion (20) requires to evaluate the residual of the FSI monolithic system (17).
In this frame we can recover the DN, ND and RR partitioned procedures, by designing the respective pre-

conditioning matrices. For instance, for the DN algorithm, the preconditioning matrix is the identity matrix.
In this case, it is easy to show that the residual reduces to
rkþ1
D :¼ �MRUkþ1

R þMRdtD
kþ1
R ; ð21Þ
that is, we have to check that the continuity of the velocity at the interface is satisfied up to a given tolerance.
We point out that, since we start with a Dirichlet problem, the continuity of the stresses is exactly satisfied at
each sub-iteration. On the contrary, if we consider the re-ordered system in which the structure is solved first,
the stopping criterion changes and the residual becomes
rkþ1
N :¼ bR � CRf Ukþ1

f � GRPkþ1 � CRRUkþ1
R � SRRDkþ1

R � SRsD
kþ1
s : ð22Þ
The new Robin-type partitioned procedures introduced in this article can be obtained using a preconditioning
matrix
P RR ¼

I 0 0 0 0

0 I 0 0 0

0 0 af I I 0

0 0 �asI I 0

0 0 0 0 I

26666664

37777775; ð23Þ
where I stands for the identity matrices for the unknown arrays. We point out that these identity matrices have
different dimensions but are not distinguished for the sake of simplicity. The residual in this case is a combi-
nation of (21) and (22)
rkþ1 ¼ af rkþ1
D þ rkþ1

N :
From (23) we can easily obtain the different methods of Table 1 using the appropriate values of af and as.
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5. Analysis of a model problem

In this section we analyze the convergence of the Robin–Dirichlet and Robin–Neumann iterative proce-
dures and compare them with the more traditional Dirichlet–Neumann algorithm. In order to simplify the
analysis, we consider the meaningful fluid–structure interaction (FSI) test problem suggested in [3] for the
analysis of Dirichlet–Neumann and Neumann–Dirichlet algorithms, based on the simplified fluid model
reported in Section 3.2. In particular, we consider a FSI system in which the fluid problem is two-dimensional
and the structure problem one-dimensional. For the structure we consider the generalized string model and the
independent rings model (see e.g. [19,16]). This test problem is a fair approximation of a blood-vessel system.
The geometrical definition and notations are the same as in [3]. In particular, referring to Fig. 1, the fluid
domain Xf is a rectangle and R is the part of its boundary on which the structure is located. The continuous
fluid–structure problem consists of: find u, p and g such that
qf otuþrp ¼ 0 in Xf � ð0; T Þ; ð24aÞ
r � u ¼ 0 in Xf � ð0; T Þ; ð24bÞ
p ¼ �p on C1 [ C2 � ð0; T Þ; ð24cÞ
u ¼ 0 on C3 � ð0; T Þ; ð24dÞ
u ¼ otg on R� ð0; T Þ; ð24eÞ
qsH sottgþ bg� boxxg ¼ p on R� ð0; T Þ: ð24fÞ
Again, g denotes the structure displacement in the direction nf and u ¼ u � nf . Eq. (24e) imposes the continuity

of velocities on the fluid–structure interface while the structure equation (24f) enforces the continuity of stres-

ses. The rest of boundary conditions on the fluid domain boundary are: zero normal flux on C3 and Neumann-
type boundary conditions on the inflow and outflow sections, where a pressure �p is imposed. We consider
�p ¼ �pðx; y; tÞ possibly depending on space and time. Finally, system (24) is equipped with suitable initial con-
ditions as well as homogeneous Dirichlet boundary conditions on g, whenever b 6¼ 0.

We consider the linear FSI system (24) since it is simple enough to be analyzed theoretically. On the other
hand, it features a behavior similar to the more complex system (3). In particular, the structure model consid-
ered here is based on the simplified structure model proposed in Section 3.1, to which we have added a term
involving space derivatives to approximate the elasticity operator in the tangential direction. We expect that
the theoretical results obtained with this model give insightful information also for system (3).

We introduce now the time discrete version of system (24). Backward difference schemes are considered for
the time integration of both fluid and structure equations. The discretized in time FSI problem at time step
nþ 1 reads as follows: given gn and un, find gnþ1; unþ1 and pnþ1 such that
qf dtu
nþ1 þrpnþ1 ¼ 0 in Xf ; ð25aÞ

r � unþ1 ¼ 0 in Xf ; ð25bÞ
pnþ1 ¼ �pnþ1 on C1 [ C2; ð25cÞ
unþ1 ¼ 0 on C3; ð25dÞ
unþ1 ¼ dtg

nþ1 on R; ð25eÞ
qsH sdttg

nþ1 þ bgnþ1 � boxxg
nþ1 ¼ pnþ1 on R: ð25fÞ
Ωf

Σ

Γ

Γ

Γ1 2

3

L

R

Fig. 1. Reference domains Xf .
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Assuming that the solution is regular enough, the fluid problem (25a)–(25e) can be reformulated only in terms
of the pressure, obtaining the following Poisson problem:
� Dpnþ1 ¼ 0 in Xf ; ð26aÞ
pnþ1 ¼ �pnþ1 on C1 [ C2; ð26bÞ
opnþ1

on
¼ 0 on C3; ð26cÞ

opnþ1

on
¼ �qf dtunþ1 on R: ð26dÞ
Let us introduce the solution p̂nþ1 of the problem
� Dp̂nþ1 ¼ 0 in Xf ; ð27aÞ
p̂nþ1 ¼ �pnþ1 on C1 [ C2; ð27bÞ
op̂nþ1

on
¼ 0 on C3; ð27cÞ

op̂nþ1

on
¼ 0 on R ð27dÞ
and the added-mass operator
M : H�1=2ðRÞ ! H 1=2ðRÞ;
c 7! qjR;
which consists of given c 2 H�1=2ðRÞ, find q 2 H 1ðXf Þ such that
� Dq ¼ 0 in Xf ; ð28aÞ
q ¼ 0 on C1 [ C2; ð28bÞ
oq
on
¼ 0 on C3; ð28cÞ

oq
on
¼ c on R ð28dÞ
and extract the value of the solution q on R. It can be proved that Mð�Þ is a self-adjoint operator on L2ðRÞ (see
[3]). Then, the pressure pnþ1 solution of (26) on the interface R is given by
pnþ1 ¼ p̂nþ1 � qfMðdtunþ1Þ on R: ð29Þ
This relation holds for any ðunþ1; pnþ1Þ satisfying (25a)–(25e), independently of the type of boundary condition
taken on R for the fluid problem. Therefore, (29) holds for all the partitioned algorithms considered in this
section.

In what follows, we will consider the Dirichlet–Neumann, the Robin–Dirichlet and the Robin–Neumann
algorithms. We will show that all of them can be written as fixed point algorithms on the variable gnþ1. We
will also investigate the convergence rates of such algorithms according to the following definition:

Definition 1. Let gnþ1 be the exact solution of the monolithic problem (25) and gnþ1;k the kth iterate of the fixed
point algorithm corresponding to either DN, RD or RN algorithm. Given a relaxation parameter x, we define
the asymptotic converge factor rðxÞ as the smallest positive number for which
kgnþ1;kþ1 � gnþ1kL2ðRÞ 6 rðxÞkgnþ1;k � gnþ1kL2ðRÞ
holds for any possible solution gnþ1.

From now on, for the sake of clarity, we omit the temporal index nþ 1, that will be understood.
To analyze the fixed point algorithms we will decompose g on the L2 orthonormal basis

giðxÞ ¼
ffiffi
2
L

q
sinðipx

L Þ
n o1

i¼1
, that is
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g ¼
X1
i¼1

gigi: ð30Þ
Observe that the functions gi are both eigenfunctions of the added-mass operator (see [3]) with corresponding
eigenvalues
li ¼
L

ip tanh ipR
L

� � ; i ¼ 1; . . . ;1; ð31Þ
and eigenfunctions of the Laplace operator L ¼ �oxx on R, with corresponding eigenvalues
ki ¼
ip
L

� �2

:

In particular, we point out that the values ki increase with i and ki !1 when i!1, whereas the values li

decrese with i and li ! 0 when i!1.
As we will show, for all three algorithms, the Fourier coefficients gi satisfy the fixed point equation
gkþ1
i ¼ ð1� xciÞgk

i þ f ðp̂; gn; gn�1; unÞ; i ¼ 1; . . . ;1 ð32Þ

for a suitable f and ci > 0. Hence, the following resut that applies for a general Richardson algorithm (see e.g.
[18]) can be used:

Lemma 1. For those algorithms that can be written in form (32), we have

(1) the algorithm converges for
0 < x <
2

supici
;

(2) there exists an optimal choice
xopt ¼
2

supici þ inf
i

ci
such that
ropt ¼ rðxoptÞ ¼
supici � inf

i
ci

supici þ inf
i

ci
is minimal.
5.1. The Robin–Dirichlet algorithm

We begin by analyzing the Robin–Dirichlet algorithm for the proposed simplified problem. A Robin
boundary condition for the fluid problem on R can be easily obtained applying qsH sdtð�Þ to (25e) and substi-
tuting the result in (25f). Then, (25e) is replaced by
�qsH sdtuþ p ¼ bg� boxxg on R;
which can be written equivalently as
ðbDt2 þ qsHsÞdtu� p ¼ �bgn þ boxxg� bDtun on R:
Observe that this condition is consistent with the general Robin condition (7)a with the choice
af ¼ qsH s=Dt þ bDt. At this point, we can define the Robin–Dirichlet algorithm supplemented with a relaxa-

tion technique. For time step nþ 1 and iteration k þ 1 with k > 0, the method consists of given gn, un and gk,
find gkþ1; ukþ1 and pkþ1 such that,
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1. Fluid problem (Robin boundary condition)
qf dtu
kþ1 þrpkþ1 ¼ 0; in Xf ; ð33aÞ

r � ukþ1 ¼ 0 in Xf ; ð33bÞ
pkþ1 ¼ �p on C1 [ C2; ð33cÞ
ukþ1 ¼ 0 on C3; ð33dÞ
ðbDt2 þ qsH sÞdtukþ1 � pkþ1 ¼ �bgn þ boxxg

k � bDtun on R: ð33eÞ
2. Structure problem (Dirichlet boundary condition)
egkþ1 ¼ Dtukþ1 þ gn on R: ð33fÞ

3. Relaxation step
gkþ1 ¼ xegkþ1 þ ð1� xÞgk: ð33gÞ

The relaxation parameter x might be necessary to guarantee convergence of the method. We observe that for
this simple case the structural equation is never explicitly solved. This is due to the fact that the structure prob-
lem is a d � 1-dimensional manifold coupled via a Dirichlet boundary condition to the fluid. We point out that
the algorithm given by (33) coincides with the Robin-based scheme proposed in [16]. In the next theorem we
analyze the convergence properties of system (33).
Theorem 1. The Robin–Dirichlet iterative algorithm (33) applied to the FSI test problem (25) never converges to

the monolithic solution, when b 6¼ 0, for any choice of x > 0. Indeed, we have xopt ¼ 0 and ropt ¼ 1. On the other

hand, when b ¼ 0, the algorithm converges in just one iteration.

Proof. Substituting (29) in (33e) and thanks to (33f), we obtain
�qfMðdttegkþ1Þ þ p̂ ¼ ðbDt2 þ qsHsÞdttegkþ1 � boxxg
k þ bgn þ bDtun:
Due to the orthogonality of the basis fgjg
1
j¼0, by multiplying the latter equality by gi and integrating over R,

we obtain
ðqf li þ bDt2 þ qsHsÞdttegkþ1
i ¼ �bkig

k
i þ p̂ � bgn

i � bDtun
i :
The previous equation together with (33g) leads to
1

x
ðqsHs þ qf li þ bDt2Þgkþ1

i ¼ 1� x
x
ðqsH s þ qf li þ bDt2Þ � bkiDt2

� �
gk

i þ f ðp̂i; g
n
i ; g

n�1
i ; un

i Þ
for a suitable f. We have then,
gkþ1
i ¼ 1� x 1þ bkiDt2

qsHs þ qf li þ bDt2

 ! !
gk

i þ f ðp̂i; g
n
i ; g

n�1
i ; un

i Þ
and therefore we obtain (32) with
ci ¼ 1þ bkiDt2

qsH s þ qf li þ bDt2
: ð34Þ
By noticing that the function ci increases with i, we have, for b 6¼ 0,
inf
i

ci ¼ cmin ¼ 1þ bkminDt2

qsH s þ qf lmax þ bDt2
;

sup
i

ci ¼ 1þ
b sup

i
kiDt2

qsH s þ qf inf
i

li þ bDt2
¼ þ1:
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Therefore owing to Lemma 1, we can state that the algorithm never converges.
Otherwise, if b ¼ 0, that is for the independent rings model, from (34) we obtain ci � 0 and therefore, from

Lemma 1, xopt ¼ 1 and ropt ¼ 0. This means that in this case RD scheme converges in exactly 1 iteration. This
is not surprising, since for b ¼ 0 the RD algorithm coincides with the monolithic problem (see [16]). h

Remark 2. When considering discrete versions of the operators M and L, for instance by means of a finite
elements discretization, we expect the discrete eigenvalues k̂i; l̂i to behave as
k̂max ¼ C1h�2; l̂min ¼ C2h; ð35Þ

where h is the space discretization parameter on R. Therefore, we expect that
ĉmin ’ 1þ bk̂minDt2

qsH s þ qf l̂max þ bDt2
;

ĉmax ’ 1þ bk̂maxDt2

qsH s þ qf l̂min þ bDt2
obtaining, from Lemma 1 and owing to (35), that convergence should be reached for
0 < x̂K
2ðqsHs þ C2qf hþ bDt2Þ

qsH s þ C2qf hþ bDt2 þ C1bDt2h�2
:

Moreover, the best convergence rate is
r̂opt ’
C1bDt2h�2

qsHsþC2qf hþbDt2 �
k̂minbDt2

qsHsþl̂maxqfþbDt2

2þ C1bDt2h�2

qsHsþC2qf hþbDt2 þ
k̂minbDt2

qsHsþl̂maxqfþbDt2
and therefore r̂opt < 1, that is, in practical computations, convergence is always possible. In particular, if we
satisfy a ‘‘CFL-like” condition Dt ’ kh and take the limit Dt! 0, we observe that
ropt ’
C1kb

2qsH s þ C1kb
:

We expect, then, the convergence to be fast if C1b	 qsHs and slow when the elasticity term dominates over
the inertial one. This result is expected since in the RD algorithm we treat explicitly the elastic term and implic-
itly the inertial term.
5.2. The Robin–Neumann algorithm

In this section we prove convergence results for the Robin–Neumann algorithm, the most promising of the
partitioned procedures designed in this work. The only difference with respect to system (33) is in the structure
step, which does involve the solution of the structural equation. As we will prove below, this fact has a dra-
matic impact on the convergence properties of the algorithm (with respect to the Robin–Dirichlet method).
For time step nþ 1 and iteration k þ 1 with k > 0, the Robin–Neumann method consists of: given gn; un

and gk, find gkþ1; ukþ1 and pkþ1 such that,

1. Fluid problem (33a)–(33e) (Robin boundary condition)
2. Structure problem (Neumann boundary condition)
qsH sdtt~g
kþ1 þ begkþ1 � boxxegkþ1 ¼ pkþ1 on R: ð36Þ
3. Relaxation step (33g).
The next theorem is devoted to the stability properties of this method.
Theorem 2. The Robin–Neumann iterative algorithm (33a)–(33e), (36), (33g) applied to the FSI test problem (25)
em converges to the monolithic solution under the following condition for the relaxation parameter:
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0 < x < 2: ð37Þ

Moreover, the convergence rate for x ¼ 1 is given by
rð1Þ ¼ 1

1þ bDt2þqsHs

qf l�i
þ bDt2þqsHs

bk�iDt2 þ ðbDt2þqsHsÞ2
bqf l�ik�iDt2

	 
 ; ð38Þ
whereas the best convergence rate is characterized by
ropt ¼
1

1þ 2 bDt2þqsHs

qf l�i
þ bDt2þqsHs

bk�iDt2 þ
ðbDt2þqsHsÞ2

bqf l�ik�iDt2

	 
 ð39Þ
for a suitable index �i ¼ argmin 1þ bDt2þqsHs

qf li

	 

1þ bDt2þqsHs

bkiDt2

	 

.

Proof. This result can be proved following the same lines as in the previous theorem. From (29), we know that
M�1ðpkþ1 � p̂Þ ¼ �qf dtukþ1:
Invoking this equality in (33e) we get
bDt2 þ qsHs

qf
M�1 þ I

 !
pkþ1 ¼ �boxxg

k þ f ðp̂; gn; unÞ ð40Þ
for a suitable f and where I is the identity operator. On the other hand, the value of pkþ1 is determined by (36):
pkþ1 ¼ qsH sdttegkþ1 þ begkþ1 � boxxegkþ1: ð41Þ

Combining (40) and (41), we obtain
bDt2 þ qsHs

qf
M�1 þ I

 !
qsHsdttegkþ1 þ begkþ1 � boxxegkþ1
� �

¼ �boxxg
k þ f ðp̂; gn; unÞ: ð42Þ
As above, we can use the decomposition (30) and write the previous equation for every component gkþ1
i . Let us

define the following value:
wi ¼
bDt2 þ qsHs

qf li
þ 1

 !
qsHs

Dt2
þ bþ bki

� �
:

It allows us to write (42) in form (32) with
ci ¼ 1� bki

wi

:

We observe that 0 < ci 6 1 and it is not monotone in general. In particular, it reaches its maximum for i!1
(where ci ! 1) and its minimum for a suitable index �i depending on the parameters of the problem. Then, ow-
ing to Lemma 1 and rearranging, we obtain (37) and (39). Moreover, if x ¼ 1, from (32) we obtain
rð1Þ ¼ maxij1� cij ¼ 1� c�i, leading to (38). h

Remark 3. When b ¼ 0 the RN scheme coincides with the monolithic problem. Indeed, from (39) it follows
that xopt ¼ 1 and ropt ¼ 0 and then RN converges in just one iteration. On the other hand, when b 6¼ 0
and Dt! 0, the convergence gets faster and faster.

From (39), we observe that the convergence rate gets worse if the ratio qs=qf decreases or if the elastic term
b increases. However, due to the presence of three terms in the bracket in (39), the value of ropt is in any case
far from 1, and therefore it seems that the RN scheme is not too sensible to the variation of b and to the added-
mass effect, as the numerical results in Section 6 confirm. The same considerations holds when using x ¼ 1,
since rð1Þ exhibits the same dependence on the parameters.
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5.3. The Dirichlet–Neumann algorithm

In this section, we extend the results shown in [3], concerning the convergence of the DN algorithm, to the
generalized string model. Moreover, we provide also for this scheme the optimal values of the asymptotic con-
verge factor. In particular, we have the following

Theorem 3. The Dirichlet–Neumann iterative algorithm applied to the FSI test problem (25) converges to the

monolithic solution under the following condition on the relaxation parameter:
0 < x 6
2

1þ lmaxqf

qsHsþbDt2þkminbDt2

: ð43Þ
Moreover, the best convergence rate is characterized by
ropt ¼
1

1þ 2 qsHsþbDt2þbkminDt2

lmaxqf

: ð44Þ
Proof. In this case we can write the algorithm in form (32) with
ci ¼ 1þ
qf li

qsHs þ bDt2 þ bDt2ki
:

By noticing that the function ci decreases with i, owing to Lemma 1 we obtain (43) and (44). h

From (44), we observe that the convergence rate gets worse if b decreases. Moreover, it depends heavily on
the ratio qs=qf , that is the DN scheme is very sensible to the added-mass effect, as already pointed out in [3]
and as the numerical results confirm.

6. Numerical results

In this section we present some numerical results with the aim of testing the algorithms proposed in the
previous sections. As pointed out in Section 2.1, we call semi-implicit the algorithms in which we do not
update in the loop neither the convective term nor the fluid domain, otherwise we refer to them as implicit.
In particular, in Section 6.1 we test the performance of the semi-implicit Robin–Dirichlet (SIRD) and
Robin–Neumann (SIRN) algorithms, in comparison with the semi-implicit Dirichlet–Neumann scheme
(EDN). Moreover, we test the implicit Robin–Neumann algorithm (IRN). In Section 6.2 we detail the perfor-
mance of the semi-implicit Robin–Robin, Dirichlet–Robin and Neumann–Robin algorithms.

For the structure, we consider the following equation of linear elasticity:
qsottg� cr � ðrgþ ðrgÞtÞ � kr � ððr � gÞIÞ þ bg ¼ f s;
where I is the identity operator, c ¼ E=ð1þ mÞ, and k ¼ mE=ðð1þ mÞð1� 2mÞÞ. The reaction terms stand for the
transversal membrane effects that appear when the structure is written in axisymmetric form.

All the numerical simulations are performed in a rectangular domain both for the fluid and for the two
structures, whose size is 6� 1 cm and 6� 0:1 cm, respectively (see Fig. 2). We use a 2D Finite Element Code
Ω

Ω

Ω

f
0

0
s

s
0

Fig. 2. Computational fluid and structure domains.
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written in Matlab at MOX-Dipartimento di Matematica-Politecnico di Milano and at CMCS-EPFL-Lau-
sanne. Moreover, we consider P1isoP2 and P1 elements for the fluid and P1 element for the structure and a
space discretization step h ¼ 0:02 cm. In all the cases we use the residual normalized on the initial one as stop-
ping criterion (see Section 4), with a tolerance equal to 10�4.

We set l ¼ 0:035 poise; qf ¼ 1 g=cm3 and, unless otherwise specified, we consider the following other val-
ues: Dt ¼ 10�3 s; qs ¼ 1:1 g=cm3; c ¼ 1:15� 106 dyne=cm2; k ¼ 1:7� 106dyne=cm2; b ¼ 4� 106 dyne=cm4 and
the thickness of the structure Hs ¼ 0:1 cm.

6.1. The Robin–Neumann and the Robin–Dirichlet schemes

In this section we study the performance of the Robin–Neumann and the Robin–Dirichlet schemes. When
we prescribe a Robin boundary condition for the fluid, an optimal choice for the parameter af , as (12) sug-
gests, is naturally given by the simplified model for the structure equation, that is af ¼ Hsqs=Dt þ bDt. This
value is directly computable, hence very useful in practical computations.

Let us start with the semi-implicit case. In Fig. 3 we show the solution computed with the SIRN scheme,
which, of course, is the same as the one computed with the semi-implicit monolithic scheme (SIM), up to the
employed tolerance. In particular, this figure shows average quantities on a radial section of the mean pressure
(top), the flow rate (middle), and the fluid domain radius (bottom), as a function of the axial coordinate.

Fig. 4 shows the structure displacement, obtained with the SIRN scheme, in the deformed domain at three
different instants. In Table 2 we show the average number of iterations in the first 12 time steps, employed by
the SIRN, SIRD and SIDN schemes, in three cases: without relaxation ðx ¼ 1Þ, with an optimally tuned
relaxation parameter ðxoptÞ and using an Aitken relaxation procedure (see [14,4]). First of all, we point out
that SIRN is the only algorithm that converges without relaxation. This is a very interesting feature of this
scheme. Moreover, SIRN is always much faster than SIDN. This is confirmed also by Fig. 5 that plots the
errors on several quantities, measured in the L1 norm, versus the number of iterations. To compute the errors,
we have taken as reference solution the one provided by the SIM scheme. In all these tests, we have employed
an optimal relaxation parameter. On the other hand, the SIRD scheme is very slow and the relative error at
convergence is high, evidencing high condition number of this problem. However, as Table 3 shows, the
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Fig. 3. SIRN scheme. Mean pressure (top), flow rate (middle) and fluid domain radius (bottom) at three time instants.
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Fig. 4. Displacement of the structure-SIRN scheme-t ¼ 0:004 s (left), t ¼ 0:008 s (middle) and at t ¼ 0:012 s (right).

Table 2
Average number of iterations per time step for the three schemes without relaxation ðx ¼ 1Þ, with an optimal choice of the relaxation
parameter ðxoptÞ and using an Aitken procedure

SIDN SIRN SIRD

x ¼ 1 NO 7.00 NO
xopt 73.25 (0.09) 7.00 (1) 394.00 (0.015)
Aitken 15.50 6.00 123.75

In brackets, the value of the optimal parameter.
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number of iterations decreases if we consider a small value of the elastic coefficients, as expected from the anal-
ysis of Section 5. Due to its inefficiency, from now on we drop the Robin–Dirichlet scheme and we focus on the
Robin–Neumann algorithm only.

In the sequel, we compare the SIDN and SIRN performance, studying their sensitivity with respect to some
of the parameters of the fluid and structure models; see Table 3. First of all, we point out that SIRN always
converges without relaxation, while SIDN always needs a relaxation parameter smaller than one. Moreover,
SIRN shows a number of iterations quite insensitive to the values of physical and numerical parameters and
5–20 times less than SIDN. In particular, we observe that the convergence of SIDN is deteriorated when the
added-mass effect becomes more important, that is to say, the value qs=qf increases. On the contrary, SIRN is
insensitive to this phenomenon. Changing the stiffness parameters c and k, the two algorithms have different
behaviours: SIDN seems to improve the convergence rate when these parameters increase, while SIRN when
they decrease (even if in the last case the variation is very small). Finally, decreasing the time step Dt and the
thickness H s we observe that the convergence rate of SIDN gets worse, while for SIRN there is only a slight
worsening. All these numerical simulations are consistent with the theoretical results presented in Section 5.

In conclusion, we can state that the SIRN algorithm is clearly more robust and faster than the SIDN scheme.
Let us consider now the implicit algorithms. In Fig. 6 we compare the mean pressure, the flow rate and the

radius of the fluid domain obtained with the SIRN and IRN algorithms. We point out that IRN does not
converge using the same iterative loop to update the convective term and the fluid domain, on one hand,
and to solve the block Gauss–Seidel system, on the other one. Therefore, we need to use two nested loops:
an external one in which we update the convective field and the fluid domain and an internal one in which
we solve the block Gauss–Siedel system, as described in Remark 1. However, as numerical evidence suggests,
it is sufficient to take tol ¼ 10�1 as tolerance for the internal loop. On the other hand, the implicit Dirichlet–
Neumann scheme (IDN) converges using just one loop. Anyhow, as Table 4 shows, the average number of
total sub-iterations N (that is the product of the internal and external sub-iterations) per time step is less
for IRN, showing that also in the implicit case the Robin–Neumann partitioned procedure is faster than
the Dirichlet–Neumann one. This is confirmed by Fig. 7 showing the L1 relative errors, using the implicit-
monolithic (IM) algorithm as the reference solution and choosing optimally the relaxation parameter.

6.2. Schemes based on a Robin boundary condition for the structure

In this section we analyze the semi-implicit Robin–Robin (SIRR), Dirichlet–Robin (SIDR) and Neumann–
Robin (SINR) schemes. Let us start with the semi-implicit Robin–Robin scheme. As pointed out in Sections
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Fig. 5. Relative errors in L1 norm with optimal relaxation parameter. Top, left: fluid velocity error, t ¼ 0:004 s. Top, right: pressure error,
t ¼ 0:004 s. Middle, left: structure displacement error, t ¼ 0:004 s. Middle, right: residual normalized with the initial one, t ¼ 0:004 s.
Bottom, left: fluid velocity error, t ¼ 0:012 s. Bottom, right: structure displacement error, t ¼ 0:012 s.

Table 3
Average number of iterations per time step for SIDN and SIRN schemes, with an optimal choice of the relaxation parameter, varying the
structure thickness H s, the structure density qs, the stiffness parameters c and k and the time step Dt

SIDN SIRN SIRD

Basic parameter 73.25 (0.09) 7.00 (1) 394.00 (0.015)
186.25 (0.03) 9.00 (1.25)

Hs ¼ 0:15 32.00 (0.215) 5.50 (1)
qs ¼ 5 36.50 (0.185) 5.75 (1.125)
qs ¼ 50 14.00 (0.5) 4.00 (1)
5c; 5k 49.75 (0.125) 7.75 (1.25) 97.50 (0.075)
c=5; k=5 76.25 (0.09) 5.50 (1)
Dt ¼ 0:002 27.25 (0.25) 5.50 (1)
Dt ¼ 0:0005 112.50 (0.05) 7.50 (1.25)

In brackets, the value of the optimal parameter.
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3.2 and 6.1, when we prescribe a Robin boundary condition for the fluid, an optimal choice for the parameter
af is naturally given by the simplified model for the structure equation. On the other hand, when we prescribe
a Robin boundary condition for the structure, we proposed in Section 3.1 a value of the parameter as depend-
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Fig. 6. Comparision between the SIRN and IRN solutions. Mean pressure (left), flow rate (middle) and fluid domain radius (right) –
t ¼ 0:004 s.

Table 4
Number of iterations N for IDN and IRN schemes, with an optimal choice of the relaxation parameter

IDN IRN

xopt 0.09 1
N 61.75 14.25
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Fig. 7. Relative errors in L1 norm with optimal relaxation parameter for IDN and IRN: fluid velocity error – t ¼ 0:004 s.

Table 5
Average number of iterations per time step of the SIRR scheme for different values of the coefficient c

c 2� 10�7 2� 10�5 10�4 0.005 0.01 0.02 0.05 1

Number of iteration 7.00 7.00 7.00 6.25 6.00 9.00 58.25 72.23

Table 6
Average number of iterations per time step of SIRR with c ¼ 0:01 and of SIRN

qf Dt h L R SIRR SIRN

1.0 10�3 0.2 6 0.5 6.00 7.00
1.0 5� 10�4 0.2 6 0.5 7.00 7.50
1.0 2� 10�3 0.2 6 0.5 5.00 5.50
1.0 10�3 0.1 6 0.5 6.00 7.00
0.1 10�3 0.2 6 0.5 6.75 7.00
1.0 10�3 0.2 3 0.5 6.00 7.00
1.0 10�3 0.2 6 0.25 7.00 8.00

In both cases the relaxation parameter is x ¼ 1.
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ing on a coefficient c to be suitably chosen, namely as ¼ cqf lmax=Dt. Here, we study the sensitivity of the per-
formance of the Robin–Robin scheme with respect to the values of c, in terms of average number of iterations
per time step. The results are given in Table 5. We point out that we have an optimal performance around the
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value c ¼ 0:01, which provides a convergence rate higher than the SIRN scheme. For values c < 0:005 the
behaviour is the same of the SIRN algorithm, while for values greater than 0.02 the convergence rate deteri-
orates. In Table 6, we show the number of iterations obtained with SIRN and with SIRR using the best coef-
ficient c found in the previous simulation for different values of qf ;Dt;R; L and the characteristic mesh size h,
that is for different parameters appearing in estimate (16). We observe that with this choice, the performance
of SIRR is always better than SIRN and the value c ¼ 0:01 seems to be optimal also when changing the other
parameters. The results given in Table 6 clearly show that this choice of c is robust.

For what concerns the SIDR algorithm, the numerical results shows that for c < 0:02 its performance is
very close to the ones of SIDN scheme. In particular, for c ¼ 0:01 we obtain xopt ¼ 0:09 and 74.25 iterations
(in average) to reach convergence. Moreover, Fig. 8 shows that the relative errors for SIDN and SIDR
schemes are almost the same in this case. For values c > 0:02 the performance of the SIDR scheme deterio-
rates as seen for the SIRR scheme.

Finally, we have experienced that the SINR algorithm does not converge.

7. Conclusions

The classical Dirichlet–Neumann algorithm is negatively affected by the added-mass effect. Therefore, for
FSI applications where this effect is important, DN needs a strong relaxation and its convergence is very slow.
We have obtained some new convergence results that are in accordance with this behavior.

The main contribution of this work is the design of partitioned procedures suitable for FSI problems where

the added-mass effect is important, as, for instance, in hemodynamics applications. With this aim, we have
introduced a new family of partitioned procedures generated by Robin transmission conditions, i.e. linear
combination of Dirichlet (continuity of velocities) and Neumann (continuity of stresses) conditions on the
interface. The convergence of the Robin-based algorithms depends on the choice of the combination coeffi-
cients. We have proposed those coefficients based on explicit formulae for simplified models for the fluid
and for the structure.

In particular, we have analyzed two of these new methods: Robin–Dirichlet and Robin–Neumann.
Whereas the Robin–Dirichlet algorithm is fairly disappointing, the Robin–Neumann algorithm does exhibit
excellent convergence properties that make this algorithm very appealing:


 The method always converges, without any relaxation.

 The convergence is insensitive to the added-mass effect.

These properties have been proved theoretically for simplified blood-vessel system and checked for more
general fluid and structure models using numerical experimentation. These two properties make the RN algo-
rithm very useful in hemodynamics applications. In fact, this method converges much faster than DN for a
wide set of numerical tests.

We have also proposed the more general RR scheme, that depends on the scaling factor c. By suitably tun-
ing this coefficient, we obtain convergence properties for the RR scheme even better than those of the RN
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algorithm. Moreover, the tuned value seems to be very robust and practically independent of some of the
parameters defining the problem at hand.

Even though we have not considered this point in this article, the use of a Robin transmission condition for
the fluid system allows to solve FSI problems with enclosed fluid domains (balloon-type problems). The DN
algorithm is useless in these cases because the fluid sub-problem is confined (Dirichlet boundary conditions
on the whole fluid boundary). Furthermore, those Dirichlet boundary conditions for the fluid are obtained
from the structure sub-problem and do not satisfy
Z

oXf

u � nf ¼ 0
in general. Thus, the null divergence constraint cannot be fulfilled, leading to unphysical results. The applica-
tion of RN to this kind of problems will be the subject of a future work.
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