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Abstract

A new piecewise-polynomial interface method (PIM) for discretizing elliptic problems with complex interfaces between
high-contrast materials is derived, analyzed and tested. A Krylov-accelerated interface multigrid approach (IMG) solves
the discretization efficiently. Stability and convergence are proved in one dimension, while an extensive array of numerical
experiments with complex interfaces and large coefficient transitions demonstrate the accuracy, efficiency and robustness of
the method in two dimensions.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Elliptic interface problems with discontinuous coefficients and singular sources are found in many applica-
tions and simulations [12,16,19]. Solutions of these problems are usually non-smooth or discontinuous across
interfaces. For example, consider the following elliptic partial differential equation

V- (BVu) —ku=f in Q" UQ" (1)
with Dirichlet boundary condition
u=g on o0Q,

where B(x,y) = Bun > 0, = 0. Here Q is a regular domain separated by an interface I" into subdomains Q*
and Q~ (see Fig. 1). Both the coefficient  and the source term fare typically discontinuous across the interface
I', where the following jump conditions are prescribed:

W :=ut—u =w, [Bu,):=pu —Bu =v
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Fig. 1. (a) An irregular interface I" partitions a regular domain: Q = Q" U ' U Q™ where /B~ can be either small or large. (b) Normal
and tangential directions along the interface I'. Here u* = u],,_ .

with w, v being functions defined along the interface I'. In the special case that w = v = 0, the solution u is
continuous but its normal derivative u, has jumps across I whenever ' is different from S .

The challenge in solving elliptic interface problems is that interfaces can be very complex while the coeffi-
cients can be high-contrast. Consequently, it is difficult to use body-fitted unsteady grid to fit the evolving
interfaces. A fixed Cartesian grid, where the interface can cut through the grid lines, is often used. A variety
of methods have been proposed to deal with the grid-interface interaction [4,7,9,10,16,13-15,28,32,29—
31,33,34].

LeVeque and Li proposed the immersed interface method (IIM) for solving elliptic equations with discon-
tinuous coefficients and singular sources [13]. Global O(h?) accuracy is achieved by using the conventional
O(h?) central scheme for regular points and a local O(k) scheme for irregular points. A Taylor series expansion
at the interface yields a set of linear equations for the undetermined coefficients and the correction term. A
local O(h) approximation requires jump conditions involving second derivatives. Various extensions and
improvements have been considered in the literature. For interface problems with piecewise constant coeffi-
cients, a fast [IM was constructed by introducing an unknown jump condition [u,], to be solved numerically
together with the elliptic equation [14]. The success of the fast IIM is based on the fact that the IIM produces
the standard finite difference scheme with a correction term in 2D when f* = = = 1. As a result, standard fast
Poisson solvers can be applied. For general elliptic problems, a maximum principle preserving immersed inter-
face method (MIIM) forces the system matrix to be an M-matrix [15]. The coefficients of the finite difference
scheme are found by solving a constrained optimization problem, guaranteeing both stability and global sec-
ond-order accuracy.

Motivated by the fast IIM, the explicit jump IIM (EJIIM) introduces the high-order jumps at the intersec-
tions of the interface and the coordinate directions as auxiliary unknowns [28]. The interpolation equation for
these high-order jumps is derived via a one-sided local polynomial approximation and the jump data. Numer-
ical examples show that it may be critical to choose between exterior and interior points for interpolation
accuracy.

Another second-order method for elliptic interface problems is the decomposed immersed interface method
(DIIM), which decomposes the jump data along coordinate directions [4]. The method uses the standard cen-
tral finite difference scheme for the left-hand side and introduces a correction term from jumps to the right-
hand side, where high-order one-sided interpolation is used on both sides of the interface. The advantage is
the coefficient matrix remains symmetric and diagonally dominant and thus most standard solvers can be
applied. However, due to the fact that the right-hand side may involve large correction terms, a small param-
eter for successive under-relaxation is required to reach convergence.

A related high-order approach is the matched interface and boundary method (MIB) [34]. In each dimen-
sion, a high-order finite difference equation using grid data and jump data is derived through the help of fic-
titious points. In multiple dimensions, the jump data [fu,] in each coordinate direction is expressed in terms of
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[pu,] and [fu.]. The latter is obtained by a combination of the prescribed [u,] and one-sided interpolation of
nearby grid values. Since this one-sided interpolation has to be second-order and would involve many grid
points on one side, the method is limited to simple interfaces. For general irregular interfaces, the MIB was
improved by disassociating the discretization and the domain extension [33]. To deal with sharp-edged inter-
faces, the concepts of primary and secondary fictitious values are introduced in [31], where second-order con-
vergence is confirmed through numerical examples. However, the resulting scheme has a critical acute angle
limitation because the scheme depends on a priori calculation of secondary fictitious values. This restriction
is removed by using two sets of interface jump conditions in [29]. Interfaces with corner points are also
addressed in [10], but the resulting method is only first-order for Lipschitz-continuous interfaces.

Recently a coupling interface method (CIM) has been introduced for solving elliptic interface problems [7].
It takes a dimension splitting approach and is derived from a linear/quadratic approximation on both sides of
the interfaces in 1D. For higher dimensions, a coupled equation for the first-order derivatives is derived
through the jump conditions in each coordinate direction. However, the CIM requires either that the interface
intersects each grid segment at most once (first-order accurate) or that the interface does not intersect two
adjacent grid segment simultaneously (second-order accurate). This restriction limits the application of the
CIM to complex moving interface problems.

Another challenge of elliptic interface problems is to design a fast solver for the resulting matrix, which is
typically unsymmetric [7,13,34] so standard fast solvers are not applicable. In [1-3], multigrid methods were
designed specifically for interface problems discretized by immersed interface methods [13,15]. For interfaces
with moderate curvature, the method proposed in [1] produced satisfactory performance. AMG is employed in
[7] to solve the resulting linear system. It is observed that convergence becomes worse when the problem has
high-contrast coefficients and thus many more iterations are needed to achieve reasonable accuracy [1].

Thus an interface method should have the following properties:

e The method produces reasonably accurate solutions on a given mesh, when interfaces are complex and/or
there exist high-contrast coefficients. Typical examples are two interface points moving towards each other
in 1D or interfaces developing acute angles in higher dimensions.

e There exists an associated fast solver, which incorporates jump conditions and converges independent of
mesh size. The complexity of interfaces, as well as the ratio f7/f~ has minimum effect on convergence rates.

This paper introduces a new piecewise-polynomial interface method (PIM) for elliptic problems. For 1D
cases, we incorporate all possible jump conditions and differential equations in local approximations. As a
result, the PIM employs the minimum number of grid points while enjoying second-order accuracy, even with
multiple intersections. Explicit formulas are derived and rigorous analysis of general cases confirms stability
and rate of convergence.

To extend the idea for higher dimensions, we introduce a least squares approach to determine the unknown
coefficients for piecewise polynomials, due to its flexibility for complex interfaces. Various cases with multiple
intersections are carefully addressed. Extensive numerical examples show that the PIM produces high-quality
solutions for complex interfaces and high-contrast coefficients represented on coarse grids with multiple inter-
sections. The interface may have corner points and/or high curvature. The method naturally extends to treat
problems with multiple interfaces, general jump conditions and mixed boundary conditions.

We further apply the idea of the PIM to design a second-order accurate interpolator and thus a new inter-
face multigrid solver (IMG). We provide spectral analysis to investigate convergence properties of the IMG.
To enhance its robustness for problems with high-curvature interfaces and high-contrast coefficients, the IMG
is used as preconditioner for Krylov subspace iterations. Among Krylov iterations, GMRES [22] and BiCG-
STAB [26] are appropriate since our matrix is not symmetric. Numerical examples show that the IMG-pre-
conditioned Krylov solver is very stable and fast. It usually takes less than 6 iterations for the relative
residual to go below 107, despite the fact that 7/~ can move between 10° and 10>, The computational
time grows linearly in the number of unknowns.

Similar discretization approaches can be found in [32,33], in that all methods use Taylor series expansion
for local approximation and use two physical jumps only. We note that [32,33] use a wider stencil in both 1D
and higher dimensions and thus have trouble dealing with complex interfaces. For higher-dimensional cases,
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[32,33] uses dimension splitting approaches with one-sided interpolation and have to refine the mesh when
multiple intersections occur. On the other hand, the PIM uses higher-dimensional polynomials for approxima-
tion and produces accurate results without refining the mesh for complex interfaces with multiple intersec-
tions. Least squares techniques are also employed in [15], but the method there uses quadratic optimization
techniques to solve an under-determined system with the sign property of the discrete maximum principle.
The PIM proposes piecewise polynomials according to local geometries and then imposes at least as many
equations, thus solving an overdetermined system, which has been shown to have full column rank. Thus
the existence of solutions is guaranteed as well as the order of accuracy.

The paper is organized as follows: we describe the piecewise-polynomial interface method for 1D in Section
2. Section 3 extends the approach to 2D. Section 4 provides stability and convergence analysis for the PIM in
1D. We derive and analyze the new multigrid approach in Section 5. Section 6 presents GMRES(m) precon-
ditioned by the multigrid solver. Numerical examples in Section 7 confirm the accuracy of the PIM and the
efficiency of the new Krylov-accelerated multigrid solver on problems with high-contrast coefficients and com-
plex interfaces. Comparisons with previous methods are also presented.

2. The piecewise-polynomial interface method in 1D

The PIM is most conveniently derived in one-dimensional geometry. Consider the 1D elliptic equation
Lu=(Bu), = f(x), 0<x<1 2)
along with the jump conditions
[t](o) = wy,  [Puc)(oy) =v;, i=1,...,0r

on the domain Q = (0, 1) divided into subdomains Q° and Q™ by a set of interface points I' := {o;, ..., %, }.
Dirichlet boundary conditions are imposed on 0Q2. We define the subdomains

Q" ={xe[0,1]: ¢(x) >0}, Q ={xe|0,1]:d(x) <0},

where the phase function ¢(x) := [].", (e — x). A uniform grid on the interval [0, 1] is given by
x;=(@G(—-1h 1<i<N,

where h = 1/(N — 1). We say x; is a regular point if the interface does not separate any points in the standard

three-point stencil {x; |, x;,x;+1} centered at x;. Otherwise, we say x; is an irregular point.
Assume that (2) is approximated at each interior point x; with 1 <i < N by

LyU; == 7,Ui1 +9,Ui + 93U = Fi + G,

where F; = f(x;) and C; is a correction term which vanishes except near interfaces. The standard three-point
stencil at an interior regular point x; has

Bivg . B =By Baap
20 T g T
At irregular points we use the modified stencil described below. For simplicity of notation, we shall assume

that f(x) is piecewise constant. The same approach works when f(x) is piecewise smooth.

Yig = , Ci=0.

2.1. Single intersection

Suppose that « is the only interface point between x;_; and x;;;, and x; < o = x; + 0h < x4, (see Fig. 2). We
use a piecewise quadratic polynomial

B+ 6h (1—0)h 8
© yAN ©
J a j+1

Fig. 2. A single-intersection case: o = x; + 0h.
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@ {pl (x) :==ax* +ax+a; x<a, 3)
p\x) =

Pr(x) == ax* +asx+ag x> a
to approximate the solution u(x) near x;, where ai, ..., as are undetermined coefficients. We assume that the

following values are provided:
u(x;) = Uj,  u(xp) = Upn,
[W](2) =w,  [Bud(x) =0, (4)
Lut (o) = Y, Lu (o) = f?.

Substituting (3) into (4) gives a linear system for the unknown coefficients:

[ xf x; 1 0 0 0] ra [ U; T
0 0 0 szﬂ Xji1 1 a Ujn
o o 1 —a? —o =lffa| _| W (s5)
20 BY 0 2 —B O a4 v
2600 0 0 0 0 |]as AR
0 0 0 26 0 0 |Llal Ls®.

After solving for the coefficients in terms of the right-hand side, we obtain approximate solution values as lin-
ear combinations of data:

~

Uji = pi(x41) = a]x_?+1 +ax;g +as =: 2, Uj+ 2 oUpy + 23w+ Agv + Ay sf D 4 o f @
and
(7j ~ pz(xj) = a4x12. —+ a5Xj —+ ag =: /1271 Uj —+ /12,2Uj+1 + /12‘3W —+ )~274U —+ )»2,5/‘(1) -+ ;Lz.ﬁf(2>.

Symbolic computation gives explicit formulas for the coefficients 4, ;:

All—l_%v /121:%7
}“1,2 27 /’{2,2 = ﬁB7
}Ll}:ﬁT) 12,3:_ PR

B

- (6)
e /} h7 /12,4 —Th,
As = wh{ Jos = — 0% ",

267 2p
2 A _

PENIEL PRPR SIS

where B is the weighted average

B:=0p +(1—0)p" >0.

The modified stencils for j and j + 1 are then
B’ =
(Bus),(x;) ~ ?(UH + Uj = 2U)),

B~
(ﬁux)x(Xj+1) ~ hfz(Uj + Uj+2 — 2Uj+1).
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As a result, we have

+
LhUj = [;,_2(/11‘2(]”] + Uj,] - (2 - /ﬂul‘l)Uj) - Fj + Cj,
~ (7)
LyUj = I;Z—Z(Uﬂz +701U; = (2= 222)Uj1) = Fj + Cja,
where
B ~ st @
Ci=— e (Msw =+ Zpav + Aisf) + i),
_ (8)
Ciy1=~— [;z_z (2w + 2aav + 2asfV + Jasf@).
Note 1. When 7 = f~, we have 11 =0and 41, = 1. As a result, we have regular stencils at irregular points

when f is continuous.

Note 2. The closed formulas in (6) are useful for convergence analysis. In practice, numerical solutions of the
local systems are faster and more stable than closed formulas.

2.2. Multiple intersections

The single-intersection approach naturally extends to multiple-intersection cases. A typical case is shown in
Fig. 3, where o; and a, are the only interface points between x;_; and x;;; and x; < o) < o < X;4;. As in the
single-intersection case, we use a piecewise quadratic polynomial

p(x) =ax* +axx +a3 x <,
p(x) =< po(x) = aex® +asx +asg o < x < o, 9)
py(x) == anx* +agx +ag x> o
to approximate the solution u(x) near x;. We assume that the following values are provided:
ulx;) = Uy, uxi) = Upp,
[u](o) = wy,  [Pu)() =v;, i=1,2, (10)

L) =/ (B =P () = s

Substituting (9) into (10), a linear system for the unknown coefficients can be set as above, yielding approx-
imate solution values

17/41 ~ P (X)) = AU+ 21U + Aijswy + diaws + 2501 + Ay g0 + dgf W+ dagf@ + )»1,9f<3)
and
(A]j R py(x;) = 20aU; + 422U 1 + Aoswi + Joawn + Ao svr + Aot + iz,7f(l) + )»248f(2) + /12,9f(3)~

Explicit formulas for 4;; are provided in A.1. As a result, we have for the irregular points

Gt bk i (1—6)h  B*
© yAN yAN ©
J a; Qs J+1

Fig. 3. A double-intersection case: oy = x; + 0,4, 0 = x; + 0>h.
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"
LU, :zi—z(thH] +Uj = 2=Aa)Uj) =F;+C,

g (11)
LU = ?(Uﬁz + 01U = (2= 722)Ujs1) = F + Cjyp,s

where

B ; ]
¢ = 2 (A13w1 + Aaaws + Ausvr + Augvz + A f Y + dg @+ 20/,

(12)
"

Ci1=— 7 (Aoawi + Apaws + Ao sv1 + Aogts + A f " + Jog [ + Ao fD).
Note 3. When % = B, we have 2,1 = 0 and 4;, = 1 and thus a regular stencil at the irregular points when f
is continuous.
Note 4. The sign conditions

Jiss 225 >0, Aig, /o <0 (13)

turn out to be the key property in the convergence proof below.

Note 5. For the coefficients (x), we assume the same constant 7 for both x < «; and x > «,. More generally,
we can assume fi(x) = f§, for x < oy, f(x) = f, for oy <x < oy and f; for x > op. A similar conclusion holds.

2.3. Why multiple intersections

We design this example to justify the consideration of multiple-intersection cases. It also arises in the solu-
tion of moving interface problems when interfaces collide. The coefficient is

1.0 ifxeQf
Plx) = {2.0 otherwise.

The source term is

—18sin(3x) if x € QF,
flx) = :
—2cos(x)  otherwise.

We propose the homogeneous jump conditions
[u] = [Bu,] = 0.0

as well as Dirichlet boundary conditions u(0)=0, u(l)=2sin3. The phase function is
¢(x) = (0.38 — x)(0.4 — x). Since an analytical solution is not available, we compare solutions on coarse grids
with the solution on the finest grid (N = 609). Fig. 3 displays the relative positions of the interface and grid
points (j = 8) in the case N = 20. We compare

(1) the PIM discretization at irregular points xg and xo and
(2) standard stencils at xg and xy, ignoring the interface.

Fig. 4 shows a comparison of the numerical results obtained from both approaches when N = 20. The max-
imum error from the approach (2) is of order 10~ while the PIM approach (1) reduces it to 10~. Therefore,
interface points may cause jumps in both the solution and its derivatives, which affect the process of discret-
izing differential equations for high accuracy. Of course multiple intersections are even more unavoidable and
problematic in two- or three-dimensional problems.
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3.5

25

0 0.2 0.4 0.6 0.8 1
X

Fig. 4. A comparison of the computed solutions for N = 20. The solid line is the exact solution. The asterisk denotes the result of the PIM
approach (1). The circle denotes the result of the approach (2).

2.4. Rank analysis

In this section we show that the local system determining the unknown stencil always has full rank, first for
piecewise constant and then for variable coefficients.

2.4.1. Piecewise constant coefficients

Theorem 2.1. Given two points x; < xji1, and two arrays of points oy, ...,0 and yyi,...,7,_1 satisfying
Xp<o <P <<y << oy <o < xjpp (see Fig. 5). Assume without loss of generality that k = 2.
Define a piecewise quadratic polynomial p(x) by
D (x) x < X
p(x) x<x<oy,
plx) =1 p(x) o <x<m,

Prr1(x) x> xp,

where p,(x) are quadratic polynomials. If B(x) is piecewise constant, then p(x) is uniquely determined by the fol-
lowing 3k + 3 values:

), plxjs),

[pl(e),  [Pus(ou), i=1,....k,

Lp(x;), Lp(xj1), Lp(y;), i=1,....k=1,
where L is the differential operator of (2).

! V-1
= . = ol
E—A == ey AN A N Y AN

X (651 (%) A1 Q. Tj1

Fig. 5. A general multiple-intersection case. We impose function values at x;,x;,; (circles), jump conditions at ¢; (triangles) and partial
differential equations at y; and x;, x;;; (squares).



T. Chen, J. Strain! Journal of Computational Physics 227 (2008) 7503-7542 7511

Proof. It suffices to show that if the 3k + 3 values provided are all zero, then p(x) = 0. If
Lp(x;)) =0, Lp(x;1)=0, Lp(y)=0 i=1,...,k—1,

then p(x) must be piecewise linear since f(x) is piecewise constant. The homogeneous jump conditions
[Pl(%) =0, [BpJ(ou) =0, i=1,....k

show that p(x) is actually continuous and each linear piece has the same sign of slope since f(x) > 0. Therefore
p(x) is monotonic. On the other hand we have p(x;) = p(x;+1) = 0. The conclusion follows immediately. [

2.4.2. Variable coefficients
The same conclusion holds for variable-coefficient cases provided that the step size / is small enough. For
simplicity we consider the single-intersection case (see Fig. 2).

Theorem 2.2. Suppose that o is the only interface point between x;_y and x;1, and x; < oo = x; + Oh < x;41. If
max{|B}|,|B; |} > 0, then the local system determining unknown coefficients has full rank if

_min{p/B" 5/B}
max([B, A1}

(14)

where p*, ﬁf are evaluated at o.

Proof. Using the same notations in Section 2.1, we obtain a local linear system

xj2. x; 1 0 0 0 |Ta [ U; 7
0 0 0 sz.ﬂ Xji1 1 a Ujni
g e o o 1 o —o —ljfa| _| w _p
W B0 28w —f 0 ||a v
28"+ 2085 B0 0 0 0 |]as AR
0 0 0 28 +2uf; B 0 ]Llasl Lf¥]

Some calculations shows that the determinant of the matrix is
det(d) = 2(26" B~ (05 + (1 = 0)") = (1 = 07 BB+ OB B7h)
> 20(2F B (08 + (1 — 0)F7) — (B* B + ) max{|F]. |B; |}h).
A sufficient condition to ensure det(4) # 0 is that

28°p (08" + (1 - 0)B")
(BB + B B )ymax{|/[, 15,1}

After simplification, it suffices to assume
_min{8/B"5/B}
max{|6, ], [}

h <

Note 6. If B(x) is piecewise constant, then max{|f/], ||} = 0 and thus the inequality (14) is always satisfied.

2.5. Numerical examples for the 1D PIM

We present several examples to confirm the accuracy and robustness of the 1D PIM. Example 1 considers
the case when f(x) is highly oscillating. Example 2 explores the effect of interface locations on the global accu-
racy in solution.
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2.5.1. Example 1
The exact solution is

{excos(x) if x € Q*,
u(x) = .
0 otherwise
and the coefficient is
1.0 + 0.6 sin(kx) if x € QF,
plx) = .

1 otherwise.
The phase function is ¢(x) = (0.4 — x)(0.404 — x)(0.6 — x)(0.604 — x). As a result, we have two pairs of clus-
tered interface points on coarse grids, which are then well separated on fine grids. Table 1 shows the numerical
results for £ = 20 and 80. The convergence rate is very smooth and not affected by the transition from multiple
intersections to single intersection as N increases.

For comparison purpose, we also present the numerical results for the same problem without interfaces, i.e.

Q" = (0, 1). The results are very similar. Therefore, the 1D PIM works well for highly oscillating coefficients in
terms of both accuracy and convergence rates.

2.5.2. Example 2
The exact solution is

{ sin(x) +1 if x € QF,
u(x) =

cos(x) — 1 otherwise

and the coefficient is

Blx) =

{ 1.0 if x € QF,

2.0 otherwise.

We fix the grid to be N = 40. The phase function is ¢(x) = (@ — x)(b — x) where
a=xyp+ (1—=d)h/2, b=xp+(1+d)h/2

with d being an parameter. We vary d from 0.01 to 0.99
d =0.01,0.02,...,0.99,

so that the interface points move around inside the interval (xy,x»;). Fig. 6 demonstrates uniform accuracy
with respect to the location of interface points.

3. The piecewise-polynomial interface method in 2D

The 1D approach extends naturally to 2D. We assume the domain Q = (0, 1) x (0, 1) and cover the square
with N grid points in each direction, so that

Table 1
Example 1: § is highly oscillating
N k=20 k=280

IEN] Order llew |l s Order IEN]| Order llew ]l s Order
20 3.361e—03 3.431e—03 5.549¢—02 8.762¢—02
80 2.266e—04 1.9 1.914e—04 2.0 1.859¢—03 2.4 2.412e—03 2.5
320 1.311e—05 2.0 1.172e—05 2.0 1.188e—04 2.0 1.444e—04 2.0
1280 7.428e—07 2.1 7.292e—07 2.0 7.186e—06 2.0 8.968e—06 2.0

Here Ey is the maximum error |lu — U||,, for the interface problem with a mesh size N while ey is the maximum error for the problem
Q" = (0,1), containing k wavelengths of the coefficient f.
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x107°

4.2

4151

41t

oo

4.05f

llell

3.95f

3.9 . . . .
0 02 04 06 08 1
d

Fig. 6. The effect of interface location on global accuracy. Note the small scale in y-direction. Here ||e|| , is the maximum error |[u — U||
and N = 40.

xi:(i—l)h7 y]:(]—l)h, i,jzl,...,N,

where i = 1/(N — 1). We say that (x;,y;) is a regular point if the interface does not separate any points in the

standard five-point stencil centered at (x;,y;). Otherwise, we say that (x;,y;) is an irregular point.
Assume that at each interior point (x;,y;) with 1 <i,j < N the differential equation (1) is approximated by

LhU,-‘j = Z kaik-jk :Ffj—|—C,«j,
(ikjx)ENi;
where F;; = f(x;,y;), Cj; is a correction term at (i, j) and N;; is an index set of grid points neighboring (x;, ;).
The standard five-point stencil at a regular point (x;,y;) has

1 Uity — Uy Uy — Uiy Uiji1 — Uy Uy = Uiy
Z { (ﬁi+l/2,j% - ﬁi71/2‘/ %) + <ﬁi,j+l/2 % - ﬁi,_/fl/z% - KiJUiJ

=F

ijs
where
h

ﬁi,j = ﬁ(xiayj)a ﬁH»l/Z,j = Blx; + 57)’,‘)
and so on. Therefore, we have C;; = 0 and

Nij = {(17])7 (l+ 17])7 (l - 17])7 (17]+ 1)7 (i7j_ 1)}
At irregular points we use modified stencils described below. For simplicity of notation, we shall assume that
p(x,y) is piecewise constant and k = 0. The same approach works for general cases.

3.1. Single intersection

Consider the typical case shown in Fig. 7. We use a piecewise quadratic polynomial
p(x,y) = {p1 (x,) = axX* + axxy + a3y’ + asx +asy +as - (x,y) € Q°,
7 Po(x, ) = amx® + agxy + agy* + arox + any +app  (x,y) € Q°
to approximate the solution u(x,y) near o;. We assume that the following values are provided:
u('xik7yjk) = Uik,fw (ikajk) € Nijv
[u](o) =w;,  [Bun)() =v;, i=1,2,3, (16)
Lut (o) = fY, Lu () = [,
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gt Lan, po

Fig. 7. A single-intersection case: «; is the only intersection point between (i, j) and (i 4 1,). Here o, is an extra interface point nearby.

where N, is the index set of 8 grid points marked with circles in Fig. 7. As a result, we can substitute (15) into
(16), set up a 16 x 12 linear system for the unknown coefficients and solve them via least squares, yielding
approximate solution values

~ ~

Uirj = py (x,»H,yj), Ui, z}’72()51',3{;)-

The modified stencils for (i, /) and (i + 1,/) are
B =
((ﬁux)x + (ﬂuy)y)(xhyj) ~ F(UHIJ +tUijn Ui+ Ui — 4Ui,j)7

p ~
((Bur), + (Buy),) (xis1,;) = F(UHZJ + Ui + Ui+ Ui — 4U3 ).

The rest follows from the 1D PIM approach.

Note 7. We could select fewer neighbor points, making the local system exactly determined. However, the
local system might be singular if it is square (see Section 3.5 for an example).

Note 8. It is a problem-dependent question about how many neighbor points to select. For complex interfaces
more aggression is appropriate but the standard nine-point stencil usually suffices.

3.2. Multiple intersections

When representing complex interfaces on coarse grids, more than one interface points may separate neigh-
boring grid points. Consider the typical example shown in Fig. 8. Even though (x;, ;) and (x;,y;,,) are both in
Q*, we should expect some discontinuity in the solution or its derivatives. Thus the standard stencil cannot be
applied directly at these two irregular points. In the spirit of the 1D PIM, we propose a piecewise quadratic
polynomial

O, gt

-, 67

ar, gt

Fig. 8. Double-intersection case: oy, o, are the interface points between (i, j) and (i, j + 1). o3 is an extra interface point near o; and oy is
another interface point near o,.
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pxy) () €Q, y<y,,
plx,y) =14 pxy) (xy)€Q, (17)
pxy) () eQ, y=y,
to approximate the solution u(x, y) near oy, a, where (x,,,, ) are the coordinates of o;, i = 1,2. We assume that
the following values are provided:
u(xiwyjk) = Uik\jk7 (ik’jk) € Nifv
[u](o;) =wy,  [Pua)() =0, i=1,...,6, (18)
Lut (o) = O, Lu (o) = M2, Lu® () = £,
where o/, is the middle point between o; and «, and N; is the index set of eight points marked with circles in
Fig. 8. As a result, we can substitute (17) into (18), set up a 23 x 18 linear system for the unknown coefficients

and solve for them via least squares, yielding approximate solution values

~

i\]zljJrl %Pl(xnyﬁl)a Uij = ps(xi, ;).
The modified stencils for (i,;) and (i,j + 1) are then

B =
((Bur), + (Buy),) (xi,¥;) = ﬁ(Uu + Ui + Ui+ Uiy —4U4y),
B =
((Buy), + (Buy),) (xi,y141) = ?(UHIJH + Uijsz + Ui + Uiy = 4U4n).

Note 9. Numerical experiments show that if we propose quadratic polynomials for p;,p; but linear
polynomial for p,, only first-order convergence rates can be achieved.

3.3. Hard cases
Extremely complex interfaces on coarse grids may involve additional complications. Fig. 9 shows two cases.
(1) In Fig. 9a, there are enough neighbor points for (i + 1,) but none for (i, ;). As a result, the standard
approach in Section 3.1 works but produces inaccurate representations.
(2) In Fig. 9b, there are too few neighbor points for (i, ;) and (i + 1, ) and thus the standard approach will

produce an under-determined local system.

To resolve these hard cases, we look beyond (7, /) and (i + 1, /) and proposes more polynomials as neces-
sary. Fig. 9a and b shows the resulting stencils. We follow two criteria in designing new polynomial(s):

J

(a) Case 1

Fig. 9. Examples for hard cases.
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e The search starts from a neighbor of the irregular point. In Fig. 9, (i — 1,) is a neighbor of (i, ).
e The new polynomial should have enough supporting grid points. In Fig. 9, (i —1,/) is thus a good
candidate.

In almost all of our numerical examples, only one additional polynomial is needed.
3.4. Order of accuracy

One difference between the 2D PIM and the 1D version is that we use jump conditions at interface points off
grid lines. The following analysis justifies the approach for smooth interfaces or fine grids.
Lemma 3.1. Let p(x,y) be a 2D quadratic polynomial satisfying the following six conditions:
dp :
p(xhyi) =D a_ﬁ(xhyi) ={4 1= 172737 (19)
where ii is an arbitrary unit vector. If the points {(x;, yi)}?:1 are not collinear and 7 is not parallel to any segment

connecting two of the points, then the conditions (19) uniquely determine p(x,y).

Proof. Let p(x,y) = aix® + arxy + a3)* + asx + asy + as. We assume without loss of generality that

{(xivyi)}:{(070)7(1>r)7(5’t>}7 ﬁZ(l,O)’

where r, s, t are arbitrary real numbers. From conditions (19) we can set up the system for the coefficients {a;}
as:

ro 0 0 0 0 17T[a;] (D]
0 0 0 1 0 O0f]a q
e 1L r 7 1 r 1]|a P2y
2 r 01 0 Of|as 9,
s st 2 s ot 1] ]|as D3
125 ¢t 0 1 0 0] [Las] Lg3 ]

Then p(x, y) is uniquely determined iff the matrix 4 is non-singular. A straightforward calculation shows that
det(4) = 2rt(r — t)(¢ — rs).

If t = 0 or t = r then at least one of the segments connecting two of the points has the same direction as 7,
while if 7 = rs then three points are collinear. This completes the proof. [

Note 10. By a perturbation analysis, we can show that the lemma still holds if conditions (19) are replaced by
o :
p(xi7yi) =D a_—»(xhyi) =4q; 1= 172737
n;
provided that max; ;{|i; — 7|} < O(h).
Note 11. For the case shown in Fig. 7, Lemma 3.1 shows that the quadratic polynomial pl — p2 is uniquely
determined everywhere from the six jump conditions. Therefore if the number of grid points collected around
(i,j) and (i + 1, ) is greater than or equal to six and the points are in general position, then the system (16) has

full rank. The same conclusion holds for general cases.

Theorem 3.2. If all the points involved in Eq. (16) satisfy
i —x;| = O(h) (20)
then the PIM local approximation has an accuracy of O(h?).
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Proof. For simplicity, we consider the single-intersection case in Fig. 7. First we set up a linear system for the
unknown coefficient as in (5), where the right-hand side contains either u* or its derivatives. The full column
rank of this system is guaranteed by Lemma 3.1. Taylor expansion at o; gives

i\]i+1,j — Uit = D1 (xi+1ayj) —Uit1j = th Z (C;qaiajf + C;qﬁﬁézu‘).
k pHq=k

From dimensional analysis the coefficients C;I depends on f* and the relative positions of x; and o;, but not on
u* or h due to (20). On the other hand, this approximation is exact if the true solution is indeed a piecewise
quadratic polynomial. Therefore, qu =0for p+¢g < 2andso

(71'+1,j —Uir1y = O(h3)- O

Note 12. The same argument can be applied to multiple-intersection cases and thus O(4?) accuracy is always
achieved. Therefore, we have local truncation error of O(4) at irregular points and thus globally second-order
accuracy is expected for computed solutions.

3.5. Why least squares: a singular case

Consider the typical situation shown in Fig. 10 where we take a naive approach of imposing one condition
per unknown to get a square linear system:

u(xikvyjk) = Ufk‘jp (ik;jk) € Nif’
[w)(2) = w,  [Bun](e) = v,
Lut(2) = fV,  Lu () = f@.
However, the local 12 x 12 system has only rank 11 whenever « is on the same line as (i, ;) and (i + 1, j)!
Alternatively we can replace o by some other interface point & where & is not on the same line as (i, j) and

(i+1,/). Then the local system has full rank. But solving for the unknown coefficients gives

~

Uinj=4U;; - Uiy — Uiy — Uiy +C,
where C is some constant. The global matrix then has the corresponding row for the point (7, ) all zeros!
Least squares provide the flexibility of adding more information appropriately to effectively remove these
difficulties with minimal extra effort.
4. Convergence analysis for the 1D PIM

4.1. Single intersection

We assume that o is the only interface point between x;_; and x;,; with x; < o = x; + 0h < x;; (see Fig. 2).
Define

ot Q-

Fig. 10. A singular case.
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Bi=08 +(1—0)B", P :=max{f",f}, Puy:=min{p",},

M. := max{max |u”" (x)|, max 1" (x)|}, My := max{max |u" (x)|, max |u
x<o x>0 x<o x>0

n

(@[}

4.1.1. Local truncation error
We define the truncation error at each interior point by the usual formula:

T;:=Lyu; — f; — C;,

where u; = u(x;). At regular points, Taylor expansion shows | 7; |[< O(h*). At an irregular point x;, we
have

Ujpr = 20U+ 22U + Aigw + Ajgv + /11‘5/{(1) + /11.,6f(2)-
As a result, the local truncation error

Brup = 2B u; + Bl 7
h2 J*

Plugging in all the expressions (6) and simplifying gives
_ BT(1—0)(6°Dy — 0D, + D3)h N

7=

T, 5 o(n’),
where

D :—E M —|—£u+ +ﬁ;u’

1 2 XXX 3 XXX 6 XXX

B B~ B

D - + _ = .+ _

2 2 xXxx 6uxvx 3 xxx?

+ —+
D3 - %u;x +%u;(x

and the derivatives are evaluated at . An upper bound follows:

BT (1= 0)(30° + 30 + 1) BrusMaee , _ ThpunMoce
3ﬁmin h 3ﬁmin

The same bound can be derived for 7. ;.

IT)| < h. (21)

4.1.2. Stability analysis
We prove a discrete maximum principle in the following lemma.

Lemma 4.1. If f(x) is piecewise constant, then the coefficients are bounded above and below by

ﬁmiu 2Bmax
2 < vl < e

and a discrete maximum principle is satisfied.

. 1<i<n—1, k=123

20 >0, 93>0, 9,,<0, y 4y < ol 1<i<n—1

Proof. The conclusions are obvious for regular points. At irregular points x;,x;.; with x; < o < x;44, (7) and
(6) imply

LB _ B+ _BB /B
Yia = ek Via = 72 T T
L, _BBYB L BB B
IR R Vit1.2 e y o Vi+13 XN
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To prove the bounds, we distinguish two different cases. If B~ < ",
[ A i S i S
B0+ (-0 0 +(-0)p "
A S i S
BB+ (=0T 08T+ (1-0)5" '
If on the other hand B~ > f°,
A N S i S
B 0p +(1-0)p" " 0 +(1-0)p ’
BB _ BB (S

B0 +(—0)p 05 +(1-0)p

Thus B, < BB /B < Buax- The conclusion follows from (7) via simplification. [

4.1.3. Convergence proof
We start with the following lemma, which generalizes Theorems 6.1 and 6.2 of [17].

Lemma 4.2. Given a difference scheme Ly, defined on a discrete set of interior points J o, we assume the following
conditions hold.
1. Jq can be partitioned into a number of disjoint sets
Jo=J UJLU---Js, JinJi=@ ifi#k
2. The truncation error of the difference scheme at a grid point p satisfies
IT,|<T:, Vpeld;, i=12...s.
3. There exits a non-negative mesh function ® defined on Jq U Jyo satisfying
L@, 2 K; >0, Vpeld;, i=12,...,s.

Then the global error of the approximate solution from the difference scheme at mesh points is bounded by

T;
. < 7

where e; = u; — U; and Jaq are the boundary points.

To prove the major theorem for convergence, the key is to construct the following comparison function:

2 B o—x;)(x;—x :
(ng) + (1*“};(35*)‘)1; +( x,/)h(“l ) if x < o,
(p(x) - (x—a)? a(x—a)f | (je1—0)(x—x;41)
xﬁ, + “x/f; + i x> o
The function @(x) is non-negative at mesh points and the last two terms in each expression above correspond
to the Green function.

We apply the difference scheme (7) to the comparison function at j and j + 1:

(22)

Ly®; :%(2+9(p1 —1)+0(p, - 1)) +w+¥’
L@ :%(2/02 +30(1 = p2) + 0*(p2 = 1)) +¥+w

with p, :== B~ /B, p, := B*/B~. We are now ready to provide the error estimate in the following theorem.
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Theorem 4.3. Assume [(x) is piecewise constant, then the error of the approximate solution obtained from the
PIM is bounded by

Hul U ”—OO (ﬁ+ ﬁ ermexxx)h .

Proof. In the notation of Lemma 4.2,
J1:{1,2,...,j—1}, J2:{j+2,...,n—1}, J;:{],]+1}7 JaQ:{O,n}

In regions J; and J, the standard difference equation is used: L, ®; = 4. Thus

ﬁ max xxxx 2 ﬁ max xvcxx .
T, g Pmax™ o g Ti o BoasM o . i=1,2
12 Mo ST :

for K1 = K2 =2.
It’s straightforward to obtain the following inequalities:

B B

Q+0(p,—1)+0(p,—1) =-2-0-0%) >

P
%(zpz #3000 =)+ Plps = 1) 2 o min(2.201) 2 0

Hence in region J3

pra-60 po_p po. p (-0 p
L, 2 ——+—=—, L, =>— —.
v 2 R e R S
If we take K53 = f3,,,,/# and combine the local truncation error estimate (21), then
Ti 7ﬂ Mxx‘c . ..
P \ = ) =/ l
kS ap, i

Finally we estimate max,e,., ®4 = max{®(0), @#(1)}. From the definition of ®(x), we have
2 al—a)f (a—x)x; o2 a(l—o)p
—+ + = —
B B h B B

Similarly, we have

®(0) = + Ox,.

(1—2)  a(1—x)p
R

Since these are both of order O(1), the conclusion follows from Lemmas 4.1 and 4.2. O

o(1) = +(1=0)(1 —x;01).

4.2. Multiple intersections

We employ a more general approach for multiple-intersection cases by using an implicit construction of

comparison functions. Consider the typical case shown in Fig. 3 and define
o — X; o —X; - B
BN =B e (10— 0B+ (0 + 0B
Based on the formulas in A.1, we can show that Lemma 4.1 also applies to the double-intersection case. From
(11) and (12), the local truncation error at irregular points is bounded by

IT:| < C(B", B, Mu)h, i=j,j+1. (23)

A detailed calculation is tedious and avoided here. We are now ready to provide the error estimate in the fol-
lowing theorem.

01 = 02 =
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Theorem 4.4. Assume (x) is piecewise constant, then the error of the approximate solution obtained from the 1D
PIM is bounded by

Hu(xi) - uh(xz)”m g C((xla %2, ﬁJra ﬁ_aMxxxaMxxxx)h2~ (24)

Proof. The solution to the following interface problem:
(B¢x)x =1, ¢|a9 =1,
[@](o1) =0, [¢](2) =0, (25)
B () = =1, [Bp,)(x2) =1

exits, and is unique, piecewise smooth, and bounded [6]. Let
B(x) = $(x) + [ min $(x)| > 0.

Then &(x) also satisfies the differential equations and jump conditions in (25). In the notation of Lemma 4.2,
let
J1:{172,...7j—1}, Jzz{j+2,...,n—l}, J3:{]7]+1}7 JaQ:{O,n}.
In regions J; and J, the standard difference equation is used: L,®; = 1. Thus
BmaxM XXXX T i ﬂ maxM XXXX

2
i
pmoand <7

for Kl = Kz =1.
At the irregular point j, the relation T; = L,®; — C; — f; ensures that

L@y =T;+C; + fj,
where T; = O(h) and

T; < B, i=12

+ +
C; = _i_z()vlﬁwl o+ Araws 4 Aisvr + Aagos + A fY + g S 4 2o f ) = i—z(ll,s — i) +O(1).
Hence ignoring higher-order terms for simplicity,
* 21 - 0)p~ + (6, —6,)p" C
M@Z%ﬂw—MQ+WD+WM“( ﬁﬁm(z Mg:Zv

where C is some generic positive constant depending on ., f, 01, 0, but not 4. Similarly, using the sign prop-
erty in (13) we can show that ,®,,; > C/h. Combining (23), we have T;/K; < C/I*, i = j,j + 1. Finally since
both @(0) and &(1) are of order O(1), the conclusion follows from Lemma 4.2. [

Note 13. Compared with the previous theorem, the relative location of the interface 6,, 0, enters the generic
constant in (24). This can be explained into two ways:

e In general, the solution u(x) depends on the location of interface points and so do its derivatives. In this
sense, 0 enters implicitly into the generic constant in the previous theorem.

e Typically, the convergence rate for interface problems is experimentally not constant and depends on the
relative positions. Thus we expect to see 0’s in the generic constant.

4.3. Variable coefficients
We briefly discuss the case of variable coefficients. Following the same approach as in Section 2.1, we have
approximations of the form
(A/j+1 R AU+ AiUjp + Aisw + Aiav + JsfV + ef@,
17]» R Ao Uj+ AopUjpy + dosw =+ Jaav + )»2.,5f<1) + }Lz,ef(2>
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with
A =1-— 11,

. B BB+ (=1+20)8h)
Alp =

)

>

ha =3B — (1 OB R)2B" — (1~ 20087k

_ BB B + L (—s1+20)h)
B

—

/12,1 )
iz,z =1- )~2,1,
, Oh — - + +
Faa = (2B — (1 =20) h)(2B" + OB h),
where
B=2B"B (08 +(1—0)")—(1— 0B B B h+ 6B B B;h.

Only a partial list for 4;; is provided for simplicity, which is to be used in the convergence proof. Here f* and
its derivatives are evaluated at o. Thus at the irregular points

1
LU; = ﬁ(ﬁ;l/zil,zUﬁl + B p Ui = (L= 2B + B2 U)),
1, -, — -
LU = 0 (BrszpUsz + Brrajphaa Uy = (1= Z22)Biiyjp + Brsp) Ui
with
+
i ,
C;=— f;lz/ (Aaaw 4 Aa) + A sfV + 26f @,
B , ,
Ci+1 _ /h+21/2 (;\,213W+/L2,4U+A2,5f(1> +)~2.,6f(2))~

We summarize the result in the following theorem:
Theorem 4.5. If there exists a constant 0 < C < 1 with
min fS(x)

2w

max |5, (x)|

then the 1D PIM satisfies the discrete maximum principle and second-order convergence is achieved.

Proof. With the upper bound for 7, the 4, satisfies the same sign property as for the constant-coefficient case
in Section 2.1. Thus the same approach as before yields the conclusion. [

4.4. Asymptotic error estimates

We extend the approach of [11,17] to provide estimates which show more precisely how the O(hz) error
behaves in the limit as the mesh size / tends to zero.

For simplicity of notation, we consider the case when there is only one interface point o and 7 =~ =1
(see Fig. 2). The extension to general cases is straightforward. Using the same notation as before, we know
from previous calculations that the error satisfies

Lhei = Ti7 (26)

where the truncation error
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{3 tass + O() i), J+l,
Ti=q ~51—0'h+0or) i=j.
—l=l9h + o) i=j+1

We now define ! to be the solution of the problem

1
o1,
lpxx 12 Unxxxs

y(0) = (1) =0,
W) @) = wi, BM)(2) =0
and ¥® to be the solution of the problem
v =0,
Y2 (0) =y (1) =0,
W) (@) = ws,  W](2) = 03,
where wy, v, ws, v, are constants to be determined later. Then y := ¢V + my'? satisfies
1

lpxx :Euxxxx-
From (6)
(m 1 A L ) 1 1-0
Ly, =Ci+fi+T;= _ﬁ(lljwl + hiavr + AisfY + iefY)+0(1) = —le - u + O(1).

Similarly, we have

1 1-0
uwnz—ﬁwruj—w+ouy
Therefore,
1 1 — 0o, +w
uszwﬁ+Mm?=—Fm—L—%f—i+om.

Repeating the steps at j + 1 gives

1 01)1 — Wy
Lhw/”rl = Lh%(fl +thllbﬁ>)l = ﬁwl — h

+0(1).

If we define wy, vy, w, by

wp = 07

(1= ey =l 1y
MXXX

91)1 —W2:[3' ]93,

then

[uxxx] 3 3
WIZO, U = 30 ((1—0) +9)

Combining (26)—30) gives

o

L(f-w)|<om =i st

7523

(31)

(32)
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Using Lemma 4.2 with the comparison function @ in (22),

| < Ch, (33)

80
e; =y + O(1). (34)
We summarize the results in the following theorem:

Theorem 4.6. Assume that B+ = B~ = 1, the solution u(x) is piecewise smooth and there is only one interface
point o. Then the numerical solution U; from the 1D PIM satisfies

u;, — U,‘ = lp(l)hz + O(h3),

where WV is the solution of

1
lpxx = Euxxxxv
V() = (1) =0,
W) =0,
Wl =" (1 ey v 02),

3!

Note 14. With minor modification, the approach can be applied to piecewise constant coefficient cases. Com-
pared with the discrete maximum principle, the asymptotic estimate gives a sharp error estimate and a basis
for deferred correction.

5. The new multigrid solver

Our multigrid approach contains the usual components: an interpolation operator /%,, a restriction opera-
tor I7" and a relaxation scheme. Let the error equation on the fine grid be A" = ¥ The corresponding coarse
grid equation is 4%"v*" = r?*, where the restriction and coarse-grid operators are defined as [25,5]:

2% BT 2 2% gh rh
I = (1), A7 =1A"1; (35)

and 7 := I"/". Red-black Gauss-Seidel iteration [5] is used as our relaxation scheme, due to its efficiency and
easy implementation. The algorithm recursively consider 4%v* = r? as the fine grid problem and telescopes
down to the coarsest grid.

We employ a novel interpolation operator /%,, which attains second-order accuracy even for complex inter-
faces on coarse grids. Higher order accuracy is attained similarly with a larger stencil.

5.1. Operator-dependent interpolation for regular points

For two-dimensional problems, we need to define the interpolation operator 7%, such that v* = %,0*. Con-
sider a generic nine-point stencil shown in Fig. 11. At coarse-grid points, the value of v* is simply copied to be
the value of v". For fine-grid points that are on a vertical cell edge, we start with the discretization stencil (see
Fig. 11) and assume the error residual is small:

Yovo + V101 + -+ -+ pgvs & 0. (36)
Away from the interface, v varies smoothly. Hence we approximate as

U1, U3 R Uy, Vs,V R Uy U7, Ug RS Uy (37)
From (36), the interpolation scheme gives vy = c,v; + c4v4 With

==+ s +76)/ o+ 71 +73), ca=—(a+7y7+78)/ (0o + 1+ 1)
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625 Y6 V2 Vs
301 73 Yo M
7438 Y7 Y4 Vs

Fig. 11. The numbering scheme for the nine-point stencil (left) and the discretization stencil (right).

The same strategy can be applied to fine-grid points that are on a horizontal cell edge. The interpolation
scheme is vy = cv; + c3v3, where
cr=—+rs+718)/ (o T2+ 7)), e3=—(3+ 76+ 7))/ (Vo + 72+ 74)

The only fine-grid points to be interpolated are those in the center of the cell. Since all values of the neighbor-
ing grid points have been determined, we can solve (36) to obtain the fine-grid values.

5.2. Interpolation for irregular points

At irregular points near interfaces, the approximation (37) is no longer valid since the error after pre-relax-
ation steps can have a large jump in the normal derivative [3]. However, since the jump conditions have been
explicitly incorporated into the PIM approach, it is natural to assume the following homogeneous jump con-
ditions along the interface:

] =0, [Bv) =0, [u]=0. (38)

The basic idea of the new interpolation is to construct a piecewise-polynomial approximation and then eval-
uate it at a fine-grid point as in the PIM. A piecewise linear polynomial is sufficient for second-order accuracy.

5.2.1. Single intersection in 1D
Consider the typical case shown in Fig. 12. To approximate v(x) near the interface point o, we propose a
piecewise linear polynomial

(x) = {pl(x) =ax+a, x<a,
p(x) i=ax+as x> a
satisfying
pGt) =y, pG") =0 [, =0, [p],=0.

The last two jump conditions come from (38). With four equations and four unknowns, we can solve for the
coefficients aj, ..., as and thus the interpolated value v, | = p(x!,_,) at the fine-grid point x4, ;.

5.2.2. Multiple intersections in 1D

On a coarse grid, more than one interface point may separate neighboring grid points. A typical example is
shown in Fig. 13. To approximate v(x) near the interface points o; and o, we propose a piecewise linear
polynomial

pi(x) x <oy,
plx) =4 pax) o <x <oy,
pi(x) x>m

satisfying

© Ax ©

oh  _ b h 2h _ b
Ti—g = Tgi9 Loj—1 «a Ty = Ty

Fig. 12. A single interface point o lies between coarse-grid points x>, and x?".
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© I Ax ©

2h  __ ..h h 2h __ .h
Timp = L2 a1 Toi—1 a3 Tiw = Ty;

Fig. 13. Two interface points o; and «, lie between coarse-grid points x| and x?

s

p(sz-fl) = z-fl,p(xfh) = vjz-h; [, =0, [Bp), =0, i=1.2.
Solving for the coefficients gives the interpolated value v%, | = p(x4_,) at the fine-grid point x4,_,.

Note 15. The new interpolation in 1D is similar to [27]. For higher dimensions, however, [27] applies the 1D
interpolation dimension-by-dimension by implicitly assuming that

[ﬁ“t]r ~ 0,

which may not be true if we have large jumps in f along the interface. Thus second-order accuracy can not be
attained by the method of [27].

5.2.3. Single intersection in 2D
The 1D approach extends naturally to 2D. Consider the case shown in Fig. 14a. To approximate v(x, y)
near the interface point o, we propose a piecewise linear polynomial
p(x y){pl(xvy) = a1x+a2y+a3 (xay)eg+a
’ p(x,y) = ax+asy+as (x,y) €Q
satisfying

2h _2h\ __ .2k P
p(xik ’yjA) = Uy ks Jx) € Naigj-1,

(
[p]oc =0, [ﬁpn]ac =0,

where N;»;_ 1 is the index set of four coarse-grid points marked with filled circles in Fig. 14a. With six equa-
tions and six unknowns, we can solve for the coefficients and thus the interpolated value v, | = p(x3;, y’gj_ D
at the fine-grid point (x};, 4. ).

(39)

5.2.4. Multiple intersections in 2D
The same approach applies to the case when more than one interface point separate neighboring coarse-
grid points. Consider the typical case shown in Fig. 14b. To approximate v(x,y) near the interface points
oy, 0, We propose a piecewise linear polynomial
p(xy) i =ax+ay+as (x,y)€Q", y<y,,
px,y) = p(x,y) = ax+asy+as (x,y) €Q7,
p3(x,y) =ax +agy+ay (x,y) €QT, y =y,

(2i.2]) (2i.2])

7

. @ipi-1) o 0~ (2i.pj — 1) )
y+
2 o
(26,2) —2) (2i,2) —2)
(a) Single Intersection (b) Double Intersections

Fig. 14. Interpolation at (x%, ng). Filled circles are the coarse-grid points used for interpolation at the fine grid point(empty circle).
Indices are for the fine mesh. Here x" = x4, and so forth.

i
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satisfying

p(x,zkhvyf:l) = U?,f_jk7 (ikajk) € N2i~,2j*17

@]1, =0, [ﬁpn]z, =0, [u]=0, i=12,

where Nj;»;_ is the index set of four coarse-grid points marked with filled circles in Fig. 14b and (x,,,y,, ) is the
coordinate of o;, i = 1,2. With 10 equations and 9 unknowns, we can solve for the coefficients via least squares
and thus the interpolated value is v}, | = p(x},, 5, |) at the fine-grid point (x}, )4 ).

Note 16. There are cases with too few neighboring points for interpolation due to high curvature of interfaces.
As shown in Section 3.3, these cases can be resolved by adding more polynomials appropriately.

5.3. Multigrid cycles

The most commonly used iteration cycles in multigrid are V-cycle, F-cycle and W-cycle. The efficiency and
robustness of them have been evaluated in our numerical experiments. We are particularly interested in F-
cycle since it is cheaper than W-cycle and much more robust than V-cycle in our experiments. The algorithm
is presented for convenience in a recursive format.

Algorithm 1: Multigrid F-cycle scheme

1: procedure MGF (1,0, 1y, 15, 113)
2:  if coarsest level then
direct solver and return
else

3

4

5: Relax p; times on A"u" = f* with initial guess v
6: f2h _ [ih(,fh —Ahl)h)
7.

8

h

=0
: v = MGF(th,U2h,ﬂ1,ﬂ2,u3)
9: Correct v = o' + I4,0*
10: Relax p, times on 4"u" = f* with initial guess 0"
11: if 113 >0
12: th _ [ih(/(h _ Ahvh)
13: v =0
14: v’ = MGF (£, v*, 1y, 1, 0)
15: Correct v = o + 15, 0%
16: Relax u; times on 4"u" = f* with initial guess v"
17: end if
18: end if

19. end procedure

5.4. Spectral analysis

In this section we investigate the eigenvalue spectra of iteration matrices. We are interested in exploring the
following questions:

(1) How is the F-cycle compared with the V-cycle in terms of convergence rates?
(2) How is the spectrum of iteration matrices related to convergence rates?

(3) How does the spectra of iteration matrix change as the jump in coefficients increases?

We denote the discretized linear system as



7528 T. Chen, J. Strain! Journal of Computational Physics 227 (2008) 7503-7542

Au = b.
To study the convergence rates of various multigrid cycles, we split the matrix in the form
A=K+ (4-K)
with K being the iteration matrix. As a result, we can express one iteration of multigrid cycle as
Ku™) + (4 - K)u” =b
or, equivalently
u™V = (I =K 'A)u) 4+ K 'b.
Therefore, we have
D = (I —AK NP D = (1 — K7'4)e, (40)

where r) = b — Au"”, e®) = u — u"). Eq. (40) displays the close relation between asymptotic convergence rates
and the spectral radius of 7/ — 4K ~'. Note that / — K~'4 has the same spectral radius as / — 4K ~'. We consider
the following model problem. The interface is x? + y* = 0.50012563* and the exact solution is

(r.y) = r if (x,y) € Q7,
TOYE (1= L= /a+ (4 2)/b +log(2r)/(10b)  otherwise,

where r = /x? + »? and the diffusion coefficient is
¥4y +1if (x,y) € Q7
p) = {

b otherwise.
First consider a moderate value such as b = 10. Fig. 15a and b presents the spectra for the V-cycle and F-cycle,
respectively, where p is the spectral radius of the corresponding matrices. These graphs show two important
features: (i) most eigenvalues are clustered around zero for both cases, and (ii) the spectra radius p from F-
cycle (0.007) is much smaller than that from V-cycle (0.073).

Fig. 15¢ illustrates the progress of iterations for V-cycle and F-cycle. The graphs show log (7™ |],/||#?]l,)
versus iterations where |||, is the 2-norm of the residual vector after n iterations. It is clear that the asymp-
totic convergence rate p, of F-cycle (0.006) is much smaller than that of V-cycle (0.073), where we have
0. = [Ir™]],/1|7?]|, with m being the total number of iterations. The F-cycle is thus preferred for our test
problems even though it costs a little more than the V-cycle. Comparing Fig. 15a—c, we see that the spectral
radius determines the convergence rate as expected.

In the second experiment, we let the value of b vary and study the eigenvalue spectra of the iteration matri-
ces from the F-cycle. Fig. 15d shows the relation between b and p. Fig. 16 shows the detailed plots for selected
values of b. We have the following observations:

e Most eigenvalues are clustered around zero for all cases, which is advantageous for the Krylov methods
[18].

e As b — oo, the spectral radius increases but tends to converge to some value much smaller than 1.0. Part of
the reason is that the corresponding continuous problem is always well-posed.

e As b — 0, the spectral radius increases rapidly and eventually exceeds 1 for b = 0.0001 (see Fig. 15d). As a
result, the F-cycle diverges as confirmed by numerical experiments.

As shown by the numerical examples in Section 7, the Krylov-accelerated multigrid approach effectively
removes large eigenvalues, reduces the spectral radius and thus converges rapidly for all cases.

6. Preconditioned GMRES(m)
We accelerate multigrid by Krylov subspace iteration. In particular, we use multigrid as preconditioner for

GMRES [22]. The motivation comes from the inefficiency of multigrid as a solver alone in the case of large-
jump coefficients.
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Fig. 15. Spectral analysis with N = 33: (a) and (b) eigenvalue spectrum plots for b = 10; (c) the convergence comparison for » = 10; and
(d) spectral radius of the F-cycle with b= 1071073, ..., 10*.

Algorithm 2: GMRES(m) algorithm with F-cycle as a right preconditioner

1: procedure GMRES (4, x, b, uy, pr, i13)

2. ro=b-— Ax)

» B=roll5, and vy = ro/p

3: forj=1,...,mdo

4 u=MGF(v;,0,u1, 1, 13)

5: w = Au

6: fori=1,...,jdo

7: h,‘yj = (W, U,‘)

8: w=w— h,’JU,‘

9: end for

10: i = Wl vjp1 = w/hjs,

11: Define V,, = [v1,. .., 0m), Hn = {hi-,j}lgigﬁl;lg/gm
12:  end for

13: y, = argmin,|[fer — Hpylly, xn =x0 + MGF (V3. 0, 1, o, 13)
14:  If satisfied stop, else set xo = x,, and restart

15: end procedure
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The restarted version GMRES(m) is a robust solver for the linear system
Ax = b,

where A is a sparse, unsymmetric matrix. If used as a solver alone, GMRES(m) may not be efficient. A large
number of iterations are expected, especially for the case when A is ill-conditioned. In many practical appli-
cations, people use the preconditioned GMRES(m) to accelerate the convergence. The right preconditioned
GMRES(m) algorithm is based on solving

AM'u=b, u= Mx.
As is shown in [21], GMRES(/) builds an orthogonal basis of the right-preconditioned Krylov subspace
span{ro, AM 'ro, ..., (AM )" 'ro}.

As a result, the approximate solution minimizes the 2-norm residual |5 — 4x||, among all vectors from the
affine subspace

Xo + span{zo, M 'dzg, ..., (M~'4)" 'z}

in which z, is the preconditioned residual zy = M~ 'r,. Equivalently, the associated residual » = b — Ax has the
minimal 2-norm among all vectors belonging to

ro + span{AM_lro, (AM_I)ZI”Q, ey (AM_I)er}.

This observation is useful in constructing the GMRES minimal polynomial explicitly. The pseudocode for
GMRES(m) right preconditioned with multigrid is provided in Algorithm 2.

7. Numerical examples

We have tested our PIM discretization and IMG solver with a number of 2D experiments. We investigate
the accuracy of the computed solution, and the efficiency of the multigrid solver for problems with complex
interfaces or high-contrast coefficients.

Our test problem is

Lu:=V-(fVu)=f inQ UQ,

[u] =Ww, [ﬁun] =v onl,
u=g on 0Q
with Q:=Q"UTI'uQ =[-1,1] x [-1,1]. A Cartesian grid is used with

xi=—1+@G—=1h, y,=-1+(—1)h,

where h = 2/(N — 1) and N varying from 20 to 600.
The order of the scheme is estimated as

log([|Ean ||/ I1EN )
log(2) ’

where ||Ey||oo is the maximum error

order :=

|Elloo = max u(x,»,) - U

onan N x N grid.

Interfaces are represented with linear line segments where we use 3000 control points for smooth interfaces
with high curvature. The only exception is the pentagon example, where only 10 control points are needed.
For the new multigrid solver, we use two pre- and two post-Gauss—Seidel smoothing steps. The coarsest grid
is 9 x 9 and the iteration is stopped when the relative residual norm satisfies
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IZyU — fill
17all

where our discretization contributes the linear system L,U = f;,.
We test four different solvers:

< 107", (41)

¢ GMRES-F: GMRES as solver right preconditioned with the F-cycle.

e BiCGSTAB-F: BiCGSTAB as solver right preconditioned with the F-cycle.
e The direct solver SuperLU [8].

e The AMG method using AMGIRG6 [20,24].

To measure the performance of Krylov-accelerated multigrid solver, we define

n;; := number of iterations to satisfy 10-digit accuracy (41),
t;, := total CPU seconds for the new Krylov-accelerated multigrid solver.

All the tests are done on one processor of a Sun Java workstation W2100z with 3.2 GB memory and dual
AMD 1.8 GHz Opteron CPUs. The code is written in C++ and compiled with gcc 4.0. The implementation
of the methods is sequential and unoptimized.

7.1. The IMG solver
We compare the IMG solver with AMG and SuperLU and study the effect of high-contrast coefficients.

7.1.1. Example 1: solver comparison

Our initial motivation was to design a fast efficient solver. In this example, we would like to compare the
performance, in terms of CPU seconds, of our iterative solver GMRES-F, algebraic multigrid (AMG) and
direct solver SuperLU [8]. We test the AMG method using AMGI1R6 written by Ruge, Stiiben and Hempel
with version date 1997. The interface is (see Fig. 1)

X(0) = (a+ bcos(m0) sin(nd)) cos 6,
{ Y(0) = (a + bcos(m0) sin(n)) sin 0

with a = b = 0.40178 and m = 2,n = 6. The exact solution is

x—3° if (x,y) € QF,

) = {

e“cosmy otherwise
and the diffusion coefficient is

b if (x,y) € QF,
1 +x*+)* otherwise.

ﬁmw={

Table 2 shows how the CPU time (in seconds) grows with respect to mesh size N. For the case » = 1000, tim-
ings of GMRES-F and AMG are comparable. Our experiments show that their performance slightly surpass
SuperLU for N > 400 and we expect larger differences as N increases. SuperLU also requires a large amount
of memory and easily goes beyond what is available for N > 700 or so.

However, for the case b = 0.001, the AMG solver slows down dramatically, while GMRES-F and SuperLU
remain similar to the previous case. In both cases, GMRES-F performs very well and least-squares analysis
shows a growth rate of 2.0 as expected.

7.1.2. Example 2: the effect of high-contrast coefficients
Most standard multigrid approaches perform poorly for elliptic problems with high-contrast coefficients.
We would like to study how different jumps in coefficients affect the convergence of the IMG solver, as well
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Table 2
Example 1: CPU time (in seconds) comparison
N b =1000 b =10.001

GMRES-F SuperLU AMG GMRES-F SuperLU AMG
33 0.1 0.1 0.1 0.1 0.1 0.9
65 0.2 0.1 0.2 0.2 0.1 1.4
129 0.8 0.3 0.8 1.2 0.3 10.2
257 34 3.0 35 6.8 3.0 96.5
513 13.9 23.7 15.8 24.4 224 556.3

as the accuracy of our PIM discretization. Both GMRES-F and BiCGSTAB-F are used to verify the robust-
ness of the Krylov-accelerated multigrid solver.
The interface is x> + y* = 0.50012563. The exact solution is

(r.y) { sin(x +y)+1 if (x,y) € QF,
u(x,y) = .
4 cos(x +y)+1 otherwise

and the diffusion coeflicient

Blx.y) {b if (x,y) € Q",
x7 - .
Y 1 otherwise.

Here b is a contrast parameter varying from 107> to 10° and introducing ill conditioning when small. Table 3
displays iteration counts and CPU seconds for GMRES(20) preconditioned with the IMG solver. Grid-inde-
pendent convergence is confirmed for all values of . CPU time grows linearly with the number of unknowns.
As the jump in f along the interface becomes larger, the iteration number grows but remains small. Note that
as b approaches 0, in addition to large jump in f8, the continuous problem becomes more ill-conditioned (see
Fig. 17b).

In Table 4 BiCGSTAB [26] is the solution method preconditioned with the IMG. A similar convergence
pattern is evident. For each iteration, BICGSTAB requires two matrix—vector products and two precondition-
er solves, while GMRES needs one matrix—vector product and one preconditioner solve. This explains why
iteration counts in BICGSTAB-F are always less than those in GMRES-F. The CPU seconds between them
are always comparable. Table 5 shows the convergence analysis.

7.2. Accuracy and convergence analysis

We investigate the accuracy of the computed solutions with complex interfaces and high-contrast
coeflicients.

7.2.1. Example 3: complex interfaces
The exact solution is

x+y+1 if (x,y) € QF,
ulx,y) =9 . :

sin(x +y) + cos(x +y) + 1 otherwise
Table 3
GMRES(20)-F: each entry represents (1)t
N b

0.001 0.01 0.1 1 10 100 1000

33 (5)0.1 (5)0.1 (4)0.1 (3)0.0 (4)0.1 (4)0.1 (4)0.1
65 (6)0.3 (5)0.2 (4)0.2 (3)0.2 (4)0.2 (5)0.2 (5)0.2
129 (6)1.2 (6)1.2 (4)0.9 (3)0.8 41.0 (5)1.1 (51.1
257 (6)5.5 (6)5.6 (4)4.3 (3)3.6 (4)4.3 (5)5.0 (5)4.9

513 (7)23.8 (6)21.7 (5)18.8 (4)16.4 4)16.3 (5)18.8 (5)18.7
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Fig. 17. Example 2: (a) the computed solution for N = 65, b = 1000; (b) the maximum error ||Ey||,, versus the mesh size N in log-log

scale.
Table 4
BiCGSTAB-F: each entry represents (n;)t;
N b
0.001 0.01 0.1 1 10 100 1000
33 (3)0.1 (3)0.1 (2)0.1 (2)0.0 (2)0.1 (2)0.0 (2)0.0
65 (3)0.2 (5)0.3 (2)0.2 (2)0.2 (2)0.2 (3)0.2 (3)0.2
129 4)1.3 4)1.2 (2)0.8 (2)0.7 (2)0.8 (3)0.9 (3)1.0
257 (4)5.3 (4)5.0 (2)3.5 (2)2.9 (2)3.5 (3)4.0 (3)4.1
513 (4)20.6 (4)20.5 (5)25.3 (2)13.7 (2)13.9 (3)16.1 (3)16.1
Table 5
Example 2: high-contrast coefficients
N b =0.001 b=0.1 b=10 b = 1000
1EN] o Order IEN] o Order IEN]| Order IEN] Order
33 3.760e—02 - 9.155¢—04 - 1.250e—04 - 1.224e—04 -
65 1.237e—02 1.6 1.896e—04 2.3 3.245e—05 1.9 2.974e—05 2.0
129 9.300e—04 3.7 1.200e—05 4.0 7.270e—06 2.2 8.397e—06 1.8
257 2.782e—04 1.7 3.206e—06 1.9 9.187¢e—07 3.0 1.110e—06 2.9
513 7.230e—05 1.9 8.242¢—07 2.0 2.448¢—07 1.9 2.851e—07 2.0
and the diffusion coefficient
Bx.y) {(xy—|—2)/5 if (x,y) € QF,
X,y) = .
’ (x> —»*+3)/7 otherwise.
The interface is given by
X(0) = (a+ bcos(mb) sin(nh)) cos 0,
Y(0) = (a + bcos(m0) sin(nb)) sin 0.
For case I, a=5b=040178 and m=2,n=6 (see Fig. la). For case II, a=0.50012563,

b =0.250012563,m = 0 and n = 12. GMRES-F is used to solve the discretized system. Fig. 18a and b plot
the computed solutions for both cases on a 65 x 65 mesh. Fig. 18c and d are plots of errors versus the mesh
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Fig. 18. Example 3: (a) and (b) the computed solutions on a 65 x 65 mesh; (c) and (d) the maximum error ||Ey ||, versus the mesh size N in
log-log scale.

size N in log-log scale for both cases with N varying from 33 to 577. The least-square fit produces an asymp-
totic convergence rate of 2.39 for case I and 2.46 for case II.

Table 6 exhibits the computed errors and confirms second-order convergence rates. The grid-independence
speed of the IMG solver is clearly displayed.

7.2.2. Example 4: complex interface with high-contrast coefficients
The interface is (see Fig. 19a)

{X(t) = r(t) cos(6(¢)),
Y(¢) = r(¢) sin(6(¢))
with
0(t) =t +sin(4t), r(t) =0.6012563 + 0.2401256 cos(4t + 1/2).
Note that the curvature can be as large as 255 at certain points. The exact solution is
0 if (x,y) € QF,
u(x,y) = .
e“cosy otherwise

and the diffusion coefficient is
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Table 6
Example 3: complex interfaces
N Case 1 Case 11
it tir ”ENHoc Order Njt ti HENHOC Order
33 3 0.1 1.967e—04 - 4 0.1 2.774e—04 -
65 4 0.2 4.237e—05 22 4 0.2 4.635e—05 2.6
129 3 0.9 9.462e—06 22 4 1.1 8.702e—06 2.4
257 3 3.9 1.707e—06 2.5 4 4.6 1.865e—06 22
513 4 16.5 4.393e—07 2.0 4 17.1 3.388e—07 25
1
y
-1
-1 1
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Fig. 19. Example 4: (a) the interface I'; (b) the computed solution on a 65 x 65 mesh for 5 = 1000; (c) and (d) the maximum error ||Ey||
versus the mesh size N in log-log scale.

b if (x,y) € QF,
1 +x*+3* otherwise,

Blx,y) = {

where b is either 1000 or 0.001. Hence this example contains both a large-curvature interface and variable
high-contrast coefficients.

GMRES-F is used to solve the discretized system. Fig. 19b plots the computed solution on a 65 x 65 mesh.
Fig. 19¢ and d plot errors versus the mesh size N in log-log scale for both cases with N varying from 33 to 577.
The least-square fit produces an asymptotic convergence rate of 2.2 for » = 1000 and 1.8 for » = 0.001.
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Table 7 exhibits the computed errors and confirms second-order convergence rates. The grid-independence
of the IMG solver is clearly displayed for 5 = 1000, while the iteration number grows a little but still is rea-
sonable for the ill-posed case & = 0.001.

7.2.3. Example 5: interface with corners

The pentagon interface of Fig. 20a if given by

X(0) =r(0)cosb,
{ Y(6) =r(0)sin6

with
o) L e, for 0, + (2 —3)/5 < 0 < 0, + m(2i — 2)/5,
- Rsin(0,/2) . .
SO 010 e Tyys 0 for O+ (20 —2)/5< 0 <6, +n(2i—1)/5.

The exact solution is

0 if (x,y) € QF,
e™cos(my) +5 otherwise

u(x,y) = {

and the diffusion coefficient is

Table 7
Example 4: complex interfaces with variable high-contrast coefficients
N b = 1000 b =10.001
nis tis IEN] o Order nis tis IEN] o Order
33 7 0.1 2.867e—04 - 8 0.1 6.099¢—03 -
65 8 0.4 6.887¢—05 2.1 9 0.4 4.808e—03 0.3
129 8 1.6 1.147e—05 2.6 11 2.1 9.289¢—04 2.4
257 8 6.8 3.166e—06 1.9 10 8.1 3.931e—04 1.2
513 7 24.6 5.321e—07 2.6 10 32.6 7.748¢—05 2.3
1
y

-1 1
X

(a) Interface (b) Computed Solution

Fig. 20. Example 5: (a) the interface I'; (b) the absolute value of the computed solution on a 65 x 65 mesh for 5 = 1000.
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b if (x,y) € QF,
1 otherwise,

ﬁ@w—{

where b is either 1000 or 1. Hence this example contains both a large-curvature interface and high-contrast
coeflicients.

This problem is taken from the MIB [29], but the case here is more challenging since b goes up to 1000
instead of 1. GMRES-F is used to solve the discretized system. Fig. 20b plots the computed solution on a
65 x 65 mesh.

Table 8 exhibits the computed errors and displays excellent second-order convergence rates. The accuracy is
also slightly better than shown in [29], despite the high-contrast coefficients. The grid-independence of the
IMG solver is clearly displayed for both » =1 and 5 = 1000.

7.3. Comparison and accuracy study

We demonstrate the accuracy of our method when applied to problems considered by previous authors
[4,13,14,28]. For interfaces with moderate curvature, it is never significantly worse and sometimes better.

7.3.1. Example 6
The interface is x> + 3> = 0.25. The exact solution is

2 if »r<0.5,
u(x7y) = 1 1 [ 2 1
(1—g—1)/4+ (5+r)/b+ Clog(2r)/b otherwise

with the diffusion coefficient

2+ +1 if r<0.5,
b otherwise.

ﬁmw={

As a result, the jump conditions are
[u] =0, [Pu,] =2C, [u,]=Q2C+5/4)/b—1.

This problem has been studied with the IIM [13] and DIIM [4]. SuperLU is used to solve the discretized
system. In our first test, » = 10 and C = 0.1. Fig. 21a plots the computed error on a 40 x 40 mesh and
Fig. 21b exhibits a least-square fit of the convergence rate. Table 9 compares the computed errors to
the results from [4,13]. We observed a second-order convergence rate and slightly improved accuracy from
the PIM.

In our second test, we set b = 1000 to give a large contrast in the coefficients. Table 10 exhibits an error
behavior comparable to the results of [4,13].

7.3.2. Example 7: composite material problem
We also consider a composite material problem with piecewise constant coefficients, typically generating
large differences in material properties. The interface is x> 4 y*> = 0.25. The exact solution is

Table 8
Example 5: sharp-edged interfaces with high-contrast coefficients
N b=1 b = 1000

niy ti 1EN] s Order ny ti IEN]| oo Order
33 3 0.0 1.847e—02 - 5 0.1 1.057e—02 -
65 3 0.1 4.645¢—03 2.0 6 0.2 2.801e—03 1.9
129 3 0.6 5.191e—04 3.2 5 0.9 4.472e—04 2.6
257 3 2.4 1.295¢e—04 2.0 5 3.6 9.201e—05 23
513 4 13.6 3.184e—05 2.0 6 18.3 2.172e—05 2.1
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a b

Fig. 21. Example 6 with b = 10, C = 0.1: (a) the computed solution on a 40 x 40 mesh; (b) the maximum error ||Ey ||, versus the mesh size
N in log-log scale for N = 20:10:300.

Table 9
Example 6: b =10, C =0.1
N DIIM 1M PIM
IEN] o Order IEN]| o Order 1EN] 5 Order
20 1.394e—03 3.520e—03 8.243e—04
40 3.228e—04 2.1 7.561e—04 2.2 2.514e—04 1.7
80 7.857e—05 2.0 1.651e—04 2.2 6.404e—05 1.9
160 1.925¢—05 2.0 3.600e—05 2.2 1.499e—05 2.1
320 4.774e—06 2.0 8.441e—06 2.1 3.910e—06 1.9
Table 10
Example 6: b = 1000, C = 0.1
N DIIM M PIM
IEN || Order 1EN oo Order 1EN o Order
32 2.083e—04 5.136e—04 2.401e—04
64 5.296e—05 2.0 8.235e—05 2.8 5.726e—05 2.0
128 1.330e—05 2.0 1.869¢e—05 2.2 1.401e—05 2.0
256 3.330e—06 2.0 4.026e—06 2.2 3.461e—06 2.0
. .
(r.3) S -D/4 if r<0.5,
ux,y) = x(s+1)—(s—1)x/(4r%) :
W otherwise
and the diffusion coefficient is
Bx.y) p if r<0.5,
xX,y) = .
’ BT otherwise.
Here s = 7 /B" is the contrast ratio and » = 1/x2 + y*. Hence the jump conditions are

[u] =0, [Bu,]=0.

This example has been studied with the FIIM [14], EJIIM [28] and DIIM [4]. SuperLU is used to solve the
discretized system. A grid refinement analysis is summarized in Table 11 for s = 5000 and Table 12 for
s = 1/5000. The results from [4,14,28] are also presented for comparison purpose. We observed robust perfor-
mance from the PIM for both cases (see Fig. 22).
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Fig. 22. Example 7: (a) and (b) the computed solutions on a 40 x 40 mesh; (c) and (d) the maximum error || Ey||, versus the mesh size N in
log-log scale for N = 20:10:300.

Table 11
Example 7: = = 5000, 7 =1
N DIIM EJIIM FIIM PIM

IEN] Order IEN] o Order IEN] o Order 1EN] 5 Order
50 3.278e—04 3.5e—04 9.2e—02 9.686e—04
100 5.277e—05 2.6 9.0e—05 2.0 5.9e—02 0.6 1.269¢—04 2.9
200 1.371e—05 1.9 2.2e—05 2.0 7.7e—03 2.9 3.274e—05 1.9
400 3.653e—06 1.9 - - - - 7.856e—06 2.1
Here — denotes unpublished data.
Table 12
Example 7: B~ =1, B = 5000
N DIIM EJIIM FIIM PIM

1EN || Order 1EN |0 Order 1EN oo Order 1EN oo Order
50 7.038¢—03 5.5e—04 1.6e—03 5.559e—04
100 1.934e—03 1.9 1.3e—04 2.1 2.3e—04 2.8 3.889e—04 0.5
200 5.209e—04 1.9 3.2e—-05 2.0 5.0e—05 22 1.184e—04 1.7
400 1.346e—04 2.0 - - - - 2.730e—05 2.1

Here — denotes unpublished data.
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8. Conclusions

We have proposed an efficient geometric multigrid method for solving elliptic problems with complex inter-
faces separating high-contrast materials. The multigrid approach is further enhanced by Krylov subspace
acceleration methods. The continuous problem is discretized by a new piecewise-polynomial approach. The-
oretical analysis confirms second-order accuracy of the multigrid interpolation and spectrum analysis justifies
the Krylov-accelerated multigrid approach. Numerical results for problems with complex interfaces and high-
contrast coefficients demonstrate the efficiency and robustness of the new approach, which is also being
applied to over-determined elliptic systems [23].

Appendix A

A.1. Formulas for the double-intersection case

}Ll‘ll_'BT_, ;Lz’lﬁ_B:’

/11,22_, /12,21—_"}37

A3 /;7 Joz = l},

Aa= _ﬁT, A2a —%,

T T

Ao = —%h, A log = _%hv

/ll’7 - L 2012;+01B/ﬁh27 /12,7 - — §;€Bh27

/ﬂnl’g _ 03(2(1 — 02)+ﬁ: + 03ﬁ+) h27 /12,8 _ 83(201ﬁ—+_’: 03ﬂ+)h2’
2P 28'B
2 s

Jo = _%hz’ g = 120 +2(;+— 0B /B

where

Bi= (1400 —0:)p + (=01 +0:)B%, 05:=0,—0,.
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