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Abstract
A method is proposed which allows to efficiently treat elliptic problems on unbounded domains in
two and three spatial dimensions in which one is only interested in obtaining accurate solutions at
the domain boundary. The method is an extension of the optimal grid approach for elliptic problems,
based on optimal rational approximation of the associated Neumann-to-Dirichlet map in Fourier
space. It is shown that, using certain types of boundary discretization, one can go from second-order
accurate schemes to essentially spectrally accurate schemes in two-dimensional problems, and to
fourth-order accurate schemes in three-dimensional problems without any increase in the
computational complexity. The main idea of the method is to modify the impedance function being
approximated to compensate for the numerical dispersion introduced by a small finite-difference
stencil discretizing the differential operator on the boundary. We illustrate how the method can be
efficiently applied to nonlinear problems arising in modeling of cell communication.
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1 Introduction
Many nonlinear problems in a broad range of applications in science and engineering lead to
models which consist of coupled compartments of different spatial dimensionality (see e.g.
[1–7]). For example, in many cell communication systems signaling molecules are emitted,
interact with, and induce responses through the surfaces of cells forming a two-dimensional
layer of epithelium while diffusing through the three-dimensional extracellular medium
surrounding the epithelial layer [8] (for more details on this example, see the following section).
Model formulation in such problems is complicated by the need, in general, to consider partial
differential equations (PDEs) defined on two-dimensional surfaces (or even one-dimensional
curves) in addition to the usual three-dimensional equations in the bulk. This mixture of spatial
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dimensions, especially on unbounded domains, naturally complicates the computational
studies of these models.

Often in such problems, however, the equation in the bulk can be a simple linear PDE, as, e.g.,
in the case of the cell signaling example mentioned above where the concentration of the
signaling molecule in the extracellular medium can be assumed to satisfy the diffusion equation
in free space with some effective diffusion constant. In these cases it is possible to reduce the
dimensionality of the problem via a boundary integral formulation. At the same time, such a
formulation suffers from spatial (as well as temporal in the case of evolution problems)
nonlocality which, once again, generally makes numerical studies of such problems difficult
(for various approaches to this type of problems see e.g. [9–14]).

A new approach to computing boundary data for linear second-order problems has been
developed over the last decade which utilizes the concept of “optimal grids” [15–19]. This
method applies a finite-difference discretization to the second-order elliptic operator, using a
judiciously chosen sequence of unequal steps to accurately approximate the Neumann-to-
Dirichlet (NtD) map associated with that operator in a number of simple geometries. The
optimality of the approximation (in the sense which will be discussed in more detail in the
following sections) allows to dramatically reduce the number of grid points in the direction
normal to the boundary, making the dimensionality of the computational problem essentially
equal to that of the boundary. This method has many advantages which make it a natural choice
for the numerical studies of nonlinear problems [20]. In particular, the method is second order-
accurate in the size of spatial discretization of the boundary, and the size of the optimal grid
can be chosen to match its accuracy with that of the finite-difference stencil on the boundary
for all scales of the problem. When very high accuracy of the solution is not required, this
approach results in very compact finite-difference approximation schemes for the original
PDEs which are typically adequate for computational purposes.

Apart from increasing the size of the finite-difference grid, the most straight-forward way to
increase the accuracy of the optimal grid discretization would be to use a higher-order
discretization for the transverse part of the differential operator in the bulk. This would increase
the size of the stencil and naturally reduce the efficiency of the method. It appears, however,
that the optimal grid method has the capacity for increasing the degree of accuracy of the
obtained numerical solution on the boundary without increasing the size of the discretization
stencil. Instead of resorting to higher-order stencils, one can attempt to modify the impedance
function (for technical details see the following sections) in a way that it compensates for the
numerical dispersion introduced by a small nearest-neighbor stencil. The obtained method,
which we term the method of “compensated” optimal grids, is the subject of the present paper.
We will illustrate this method with a number of examples in two- and three-dimensional elliptic
boundary value problems relevant to cell communication models. In particular, we will show
that for two-dimensional problems on uniform grids along the boundary one could go from
second-order to essentially spectral accuracy without increasing the computational complexity
of the problem, while in three dimensions one can go from second-to fourth-order accurate
method by either utilizing hexagonal lattices on the boundary or using a special 9-point stencil
on square lattices.

Our paper is organized as follows. In Sec. 2, we give a motivating example from modeling cell
communication by diffusing ligands. In Sec. 3, we review the method of optimal grids and
introduce the idea of compensated optimal grids. Later on in this section we verify our method
for a linear and an exactly solvable nonlinear problem. Then, in Sec. 4 we discuss ways to
extend the two-dimensional version of the compensated optimal grids method to three
dimensions. In Sec. 5, we present an application of our computational approach to a three-
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dimensional problem arising in cell communication modeling. Finally, in Sec. 6 we summarize
our results.

2 Motivating example
We begin by discussing a typical example of a modeling setting in which the numerical issues
discussed in this paper arise naturally [4]. Consider an idealized situation in which a flat
epithelial layer is imbedded in a semi-infinite layer of extracellular medium (ECM), see Fig.
1. Cells at the bottom of the layer emit various signaling molecules which can then diffuse in
the extracellular space and bind to their specific cell-surface receptors [8,22]. Binding of the
signaling molecule to its respective receptor, in turn, activates the intracellular signaling
cascades which elicit multiple cellular responses. Importantly, such responses may further
regulate secretion of the acting signaling molecule, resulting in the establishment of positive
and negative feedbacks [23].

In a mechanistic model of cell communication system the concentration s = s(t, x, y, z) of a
signaling molecule in the ECM, chosen to occupy the upper half-space z > 0, satisfies the
diffusion equation, together with an inhomogeneous Neumann boundary condition at the
epithelium surface located at z = 0:

(1)

where  denotes the three-dimensional Laplacian and gs is the rate with which the
signal is secreted from the unit area of the epithelium surface. Note that gs can depend on the
concentration of the signal itself on the cell surfaces, resulting in a direct feedback. More
complex feedbacks may also arise via interaction with other molecular species, for simplicity
we lump the effect of all these other species into an explicit dependence of gs on time and
position at the epithelium surface.

To see how a direct feedback may arise, consider the process of association of the signaling
molecule (ligand) with its cell surface receptor into a ligand-receptor complex (see Fig. 1b) in
the case of a simple autocrine relay [4,24,25]. Denoting by s* = s* (t, x, y) the surface density
of the ligand-receptor complexes, we have the following equation for the ligand-receptor
binding kinetics:

(2)

where ks,on is the forward ligand binding constant, rs is the surface density of unoccupied
receptors, assumed to be constant, ks,off is the ligand-receptor dissociation constant, and ks,ec
is the rate of receptor-mediated endocytosis. The flux of the ligand across the cell membrane
is, in turn,

(3)

where we assumed that the secretion rate of the ligands is a Hill (sigmoidal) function of the
ligand-receptor complex density with Hill coefficient ν, maximum secretion rate ḡs and
threshold , and treated the epithelium as a continuum two-dimensional homogeneous
medium. Further invoking a biophysically reasonable approximation [4,24] of fast ligand-
receptor binding kinetics (which is also exact for stationary solutions), we arrive at the
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following simplified expression for gs which explicitly depends on the Dirichlet data s(t, x,
y, 0) at the epithelium surface:

(4)

where s0 is the appropriately rescaled threshold . Note that for certain choices of the
parameters the right-hand side in (4) is a cubic-like function, which results in the potential
bistability of the considered signaling system [4,25]. In particular, in this case the stationary
solutions of the problem satisfy

(5)

where u and f are appropriately rescaled versions of the time-independent solutions for s and
g, respectively, with f being a cubic-like function in the u-variable.

It is easy to see that to find solutions of (5), it is sufficient to solve for the trace

 of u on the epithelium surface. The latter, in turn, satisfies (see e.g. [20,
26]):

(6)

where Λ is the Dirichlet-to-Neumann (DtN) map, a pseudo-differential operator whose action
on plane waves is defined as:

(7)

Note that in some sense this equation can be thought of as one of the most natural nonlocal
generalizations of the stationary reaction-diffusion equation

(8)

The latter, in fact, also arises in the modeling of cell communication problems in another
extreme when the signaling molecules are allowed to diffuse only in a narrow layer of ECM
adjacent to the epithelium [24].

In the following, we show how the optimal grid method can be modified to serve as an
alternative to the pseudospectral approach for solving problems like (6) numerically and can
be used to obtain the solution with the accuracy comparable to that of pseudospectral methods.
The latter is achieved via a suitable approximation of the DtN map by compact finite difference
operators.

3 Compensated optimal grids in two dimensions
In this section, we first review the main ideas of the application of the optimal grid method to
elliptic problems and then introduce the method of compensated optimal grids in the simplest
case of two-dimensional problems discretized on uniform grids in the transverse direction.
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3.1 Optimal grid approach for the Laplace’s equation in half-space
The method of optimal grids applied to (5) takes advantage of the fact that the DtN map Λ can
be, at least formally, thought of as the (negative) square root of the negative Laplacian operator
restricted to the xy-plane [16]:

(9)

It then aims to approximate the square root function appearing in (9) by a rational function
which arises as an impedance function of a staggered three-point finite difference scheme used
to approximate the boundary-value problem obtained by Fourier-transforming (5).

More precisely, applying Fourier transform to (5), we obtain the following equation for

, with q = (q1, q2):

(10)

Its solution at z = 0, which we are interested in, is given by

(11)

consistent with (6). The function F in (11) is the so-called impedance function of the
corresponding continuous problem.

We now write the three-point staggered scheme in place of the second derivative in (10):

(12)

(13)

Then we have  where

(14)

provided that the impedance function

(15)
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of the discrete problem, obtained by setting  in (12) and (13), is sufficiently
close to the impedance function F(λ) of the continuous problem on a suitable spectral interval
λ ∈ [λmin, λmax] [15–17].

The optimality of the obtained discretization scheme refers to such a choice of the discretization
steps hk which makes the approximation of F(λ) by Fn(λ) best in some sense on the prescribed
spectral interval. A particularly good choice of the optimality criterion which leads to the so-
called Zolotarev grids is to minimize the sup-norm of the relative error in approximating F
with Fn:

(16)

where the trial functions F̃n are chosen among all rational functions of order n − 1 by n. It was
proved by Ingerman, Druskin and Knizhnerman that such an approach always produces an
optimal rational approximant Fn of the impedance function in (11) for which all hk > 0, a
necessary condition for the stability of such a scheme [16]. Moreover, this approach
demonstrates exponential superconvergence in the number of discretization nodes n.

When Fourier-transformed back to the real space, the method presented above becomes a semi-
discrete approximation of the boundary-value problem in (5) [20]. In practice, the transverse
Laplacian Δ⊥ is then further approximated by some compact finite-difference stencil, the
resulting fully discrete problem can be then analyzed using any standard method for finite
difference schemes.

3.2 Basic idea of compensation
In a practical implementation of the optimal grid method the use of the finite-difference stencil
for approximating the transverse part of the differential operator introduces a source of error
that is distinct from the error of the rational approximation of the impedance function and
cannot be as easily controlled. We illustrate this point by considering a canonical problem of
the Laplace’s equation on half-plane. Consider plane wave solutions of (5) which do not depend
on y:

(17)

Now suppose one discretizes this problem on a cartesian product of a Zolotarev grid in the z-
direction and a uniform grid with step size h⊥ in the x-direction, and uses a standard three-
point central difference to approximate Δ⊥. Then the solution in (17) at z = 0 is approximated
by

(18)

which is obtained from (14) by observing that in the considered situation the approximation
of Δ⊥ with the three-point finite-difference stencil amounts to the replacement of λq = q2 in

(10) with  in (14). By choosing  one can ensure that the
rational approximant Fn resolves equally well all the high-frequency modes of the discrete
problem, while adjusting the values of λmin = O(1) and n one can guarantee a specified accuracy
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of the rational approximation for a given range of wave vectors q. From this and the error
estimate of [16] one can see that

(19)

i.e. the relative error of the considered finite-difference approximation to the solution in (17)

is  with the first part of the error coming from the finite difference
approximation of Δ⊥ and the second from the rational approximation of F. Thus, for n big
enough the main source of error in (18) is, in fact, the numerical dispersion associated with the
three-point stencil to approximate Δ⊥. On the other hand, observe that this numerical dispersion
is passed on to the problem only in the form of the argument of the impedance function Fn,
which in a practical implementation of the method essentially coincides with the impedance
function F of the continuous problem on the considered spectral interval.

Our idea of compensation is to modify the impedance function F being approximated to cancel
out the effect of the numerical dispersion associated with the finite-difference approximation
of the transverse part of the differential operator. For the problem considered here one should,
therefore, find a rational approximation Fn (λ) ≈ Fc (λ) of the form of (15) with

(20)

The choice of this function is determined by the requirement that the composition of Fc with
λq gives the exact impedance function as a function of q, i.e. we have

 and the first error term arising in (19) has been completely
eliminated. On the other hand, by choosing n sufficiently large one can efficiently control the
accuracy of the approximation of Fc by Fn uniformly on the prescribed spectral interval, thus
making the proposed numerical approach essentially spectrally accurate.

A natural question which arises in connection with the idea of compensation is how to choose
an appropriate spectral interval. Obviously, for a problem discretized on a finite uniform grid
of size m in the x-direction it is sufficient to choose

(21)

with a = 1. Note, however, that it is not immediately obvious whether the impedance function
Fc can be approximated on the spectral interval in (21) by a rational function of the form of
(15) with all hi > 0. In fact, this is questionable for a = 1, since the function Fc cannot be a
Markov function [16], since it is not defined for λ > λmax in this case. On the other hand, for
a ≪ 1 the function Fc essentially coincides with F on the spectral interval, hence by continuity
the Zolotarev optimal rational approximant should be extendable to the function Fc as well.
Therefore, for each n fixed it should be possible to approximate the compensated impedance
function Fc on the spectral interval in (21) for some a < 1 in a way which results in the optimal
grid with positive steps.
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We have implemented this approximation procedure for the impedance function Fc in (20),
using Remez algorithm [27], and were able to generate optimal rational approximants for a
broad range of values of m and n. For, example the (nearly) optimal rational approximant for
Fc with h⊥ = 1, n = 6, m = 100, and a = 0.5 on the interval from (21) is given by

(22)

where we found this value of a to be roughly the maximum value at which the algorithm
converged to a solution with negative poles and positive residues. The relative error in
approximating Fc in (20) on the spectral interval in (21) did not exceed 1.2 × 10−5 (see Fig. 2),
showing the usual high performance of optimal grids [16]. Also, following the procedure of
[20], we have extracted the grid steps from (22), these are given in Table 1 below.

Note that for fixed ratio of λmax to λmin, the grid steps corresponding to different values of
h⊥ can be obtained from those with h⊥ = 1 by a simple rescaling.

3.3 Comparison with Zolotarev and geometric optimal grids
We now compare performance of the compensated optimal grids constructed in the preceding
section with that of the “uncompensated” Zolotarev and geometric optimal grids [16,20] of the
same size applied to the plane wave solutions of the Laplace’s equation on half-plane. For the
comparison purposes, we have implemented a discretized version of the boundary-value
problem

(23)

where q = 1, 2, …, which reads

(24)

(25)

with j = 0, 1, …, m and k = 0, 1, …, n − 1, the value of h⊥ = π/m, and the boundary conditions

(26)

We solved (24) – (26) using the diagonally preconditioned conjugate gradient method with a
number of different kinds of choices of hk: compensated grids with n = 8 and n = 10 optimized

on the spectral interval  a compensated grid with n = 14 optimized on the

spectral interval  optimal geometric and Zolotarev grids with different values
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of n, with Zolotarev grids optimized for the condition number λmax/λmin = 103; both the
geometric and the Zolotarev grids were scaled so that h1/2 = h⊥. Note that the accuracy of the
rational approximation for the compensated grids was 6 × 10−9 for n = 10 and 1.6 × 10−12 for
n = 14, while the accuracy of the Zolotarev’s approximation of the square root for n = 14 was
also found to be 1.6 × 10−12.

We first ran a series of simulations for different values of q at fixed m = 1000 and plotted the
relative error of the solution. The results are presented in Fig. 3, where the left panel shows the
comparison of the data obtained using compensated, geometric, and optimal grids with n = 8,
while the right panel shows the same results with n = 14. Our first observation is that the
performance of the geometric and Zolotarev optimal grids was not substantially improved with
increasing the value of n. This is consistent with the arguments of Sec. 3.2 that the main source
of error is the discretization of the transverse Laplacian, and not the rational approximation of
the inverse square root. Our second observation is that in all cases the compensated optimal
grids significantly outperformed the geometric and Zolotarev optimal grids. For n = 8 the error
in the solution did not exceed 10−6, while roughly doubling the size of the compensated optimal
grid reduced the error down to about 10−12 for essentially all wave vectors.

The performance of the grid deteriorates in two extremes: for large and for small wave vectors
q. The discrepancy for large wave vectors is due to the fact that the spectral interval of
optimization was chosen so that a ≃ 0.1 in (21), thus the highest frequencies of the discrete
problem were not completely resolved. On the other hand, the discrepancy at small wave
vectors has to do with the resolution limit of the optimal grid set by the condition number of
the optimization interval, for all the grids used in (3) this condition number was set to 103.
Note that similar deterioration in performance occurs also in the case of the Zolotarev grids
because of the same nature of the approximation procedure. On the other hand, the geometric
grid does slightly better at small wavevectors, since optimal geometric grids have a tendency
to over-resolve low frequencies.

To further illustrate an essentially pseudo-spectral character of the accuracy of the compensated
optimal grids, we performed a convergence study of the solution at fixed q as the value of m
is increased. The results for q = 4 and several choices of optimal grids are shown in Fig. 4.
While the error of the geometric and Zolotarev grids shows the expected O(m−2) behavior, the
error of the compensated optimal grid quickly falls to the value determined by the maximum
resolution of the rational approximant. Once again, only when m exceeds a sufficiently large
value at which the considered wavenumber goes outside of the interval of resolution, the error
of the solution begins to grow.

We would also like to point out that the compensated optimal grids allowed us to achieve very
high accuracy in approximating the solution by using grids of relatively small sizes. For
example, the grid with just n = 10 nodes already achieves single-precision accuracy for the
range of m ~ 10 ÷ 103 in the simulation of Fig. 4.

3.4 An exactly solvable nonlinear problem
We now apply the method presented in the preceding sections to a nonlinear problem admitting
an exact solution. As was observed by Toland [28], for the following boundary-value problem

(27)
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all bounded solutions are (π/δ)-periodic (the case of δ → 0+ corresponds to the Peierls front
solution [29]), and at the line z = 0 are given by a one-parameter family of functions (up to
translations, reflections, and additions of multiples of 2π)

(28)

where

(29)

The profiles of the solutions for several values of α are shown in Fig. 5(a).

Fixing the value of α, we discretized the problem on the domain  using the
product of a uniform grid with m nodes and a compensated optimal grid with n = 14 nodes
obtained in Sec. 3.2 (suitably rescaled). Dirichlet boundary conditions were applied at the
lateral boundaries. We then solved the obtained discrete problem numerically using a relaxation
method by replacing the Laplacian in (27) with a diffusion operator and evolving the solution

to the steady state from a suitably chosen initial condition. Namely, defining  with t = 0,
Δt, 2Δt, …, with Δt sufficiently small to ensure stability, we iterated the following scheme

(30)

(31)

until convergence to steady state. We then performed convergence studies in m as the value of
m is increased. The results of this analysis for several values of α are shown in Fig. 5(b). Here
one can see once again that, as m increases, the L∞ norm of the relative error of the obtained
numerical solution drops down to the resolution limit of the compensated optimal grid. For
example, for α = 1.5 increasing the size of the problem by a factor of 2 decreases the relative
error by about an order of magnitude, until the error reaches the limit of about 10−12. As
expected, further increase of the problem size does not produce any improvement of accuracy.
Moreover, at some critical value of m the accuracy begins to deteriorate, since the optimal grid
is no longer able to accurately treat long-wave Fourier modes. Note that the range of values of
m for which the optimal accuracy of the method is achieved decreases as α → 2, i.e. when the
profile of the solution becomes more and more front-like (see Fig. 5(a)). This is natural, since
in this case one needs to accurately resolve more wavenumbers simultaneously, which puts
constrains on the spectral radius used in the rational approximation.

To summarize these numerical studies, the method of compensated optimal grids applied to
the considered nonlinear problem produces solutions that are essentially spectrally accurate.
This is quite surprising for a finite-difference method based on a five-point stencil. Moreover,
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the method provides an easy way to control the error of the approximation and allows to obtain
the solutions with high accuracy, using relatively small finite difference grids.

4 Extension to three-dimensional problems
We now show how the idea of compensation can be extended to the discretizations of three-
dimensional problems. To illustrate our points, let us consider the following simple boundary-
value problem

(32)

(33)

where q1 and q2 are integer multiples of π/Lx,y, respectively. Unfortunately, the straightforward
extension of the method of Sec. 3.2 to (32) and (33) which replaces the three-point stencil with
a five-point centered difference for Δ⊥ on a square grid with step h⊥ would not work because
of the numerical anisotropy introduced by such a discretization. As a result, only the modes
with either q1 = 0 or q2 = 0 would be accurately resolved, while one would still encounter an

 error when both q1 ≠ 0 and q2 ≠ 0. We ran the solver using various combinations of
q1 and q2 and the results obtained show that the one-dimensional compensated grid still
performs no better than the geometric optimal grid of the same size (data not shown).

4.1 Compensation on hexagonal grids
Alternatively, one may seek to discretize Δ⊥ using a grid which possesses some extra degree
of isotropy. The simplest such grid is, in fact, the hexagonal grid, provided one uses a 7-point
stencil to approximate the transverse Laplacian. Hence, we discretize the problem as follows:

(34)

(35)

where the index j denotes a point on the hexagonal grid of step size h⊥ contained inside a
rectangle [0, Lx] × [0, Ly] and aligned with its sides (see Fig. 6(a)), (xj, yj) denotes the cartesian
coordinates of the point with index j, and j is the set of 6 nearest neighbors of the j-th point.
Reflecting boundary conditions are imposed on the rectangle boundaries, and a Dirichlet
boundary condition at k = n. In practice, the discretization is performed using a general purpose
code that we developed which combines finite volume discretization using Voronoi tessellation
in the xy-plane with a staggered grid in the z-direction.

Observe that for the considered discretization in the plane we have
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(36)

where the last term in the last line depends explicitly on both q1 and q2, while the first two

depend only on the modulus  So, since the discrete problem
diagonalizes in the basis of plane waves with suitably chosen (q1, q2), we have explicitly that

(37)

where Fn is the impedance function of the grid in the z-direction. The idea of compensation
now is to modify the impedance function F being approximated by some Fc to cancel out the
leading order error term in (36). This can be achieved, for example, by matching the resulting
impedance function to the exact one for a particular choice of direction of q, just as was done
in the two-dimensional case. Matching the impedance function for q1 = 0, we arrive at

(38)

With this choice of Fc, we have

(39)

for all choices of q, with the error term vanishing identically for all q = (0, q). Finally,
constructing an optimal grid from the rational approximant Fn of the modified impedance

function Fc on the spectral interval  we

will resolve the solution at z = 0 with  accuracy, provided the value of n is chosen to be
sufficiently big. While the obtained accuracy is no longer spectral-like, as in the case of one-
dimensional problems, it nevertheless is of higher order than the expected second-order
accuracy of such a 9-point stencil in three dimensions.

We performed numerical test of the proposed method by solving the discretized version of the
problem (32) and (33) with the help of the diagonally preconditioned conjugate gradient

method, choosing . We used two different optimal rational
approximants for Fc in (38): one with n = 8 optimized on the spectral interval λ ∈ [1, 103], and
the other with n = 14 optimized on the spectral interval λ ∈ [3 × 10−1, 3 × 102]. The results for
several choices of q are shown in Fig. 7. One can see that, as |q| is decreased, the accuracy of
the solution quickly reaches the resolution limit of 3.2 × 10−7 for the n = 8 optimal grid, and
stays low for all smaller wave vectors in the problem. The performance of this grids is
essentially as good as that of the one-dimensional compensated optimal grid constructed earlier
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(see Sec. 3.3). On the other hand, in the case of the n = 14 optimal grid the error does not quite
reach the resolution limit of 1.6 × 10−12 for most of the wave vectors. Nevertheless, in this
case the error behaves as O(|q|4), and rapidly decreases, as expected.

4.2 Compensation on anisotropy-adjusted square grids
Another approach to anisotropy reduction is to modify the finite-difference stencil used to
discretize the problem in the xy-plane to achieve higher degree of isotropy for the discrete
problem. Note that this is different than using higher-order discretization for spatial derivatives,

since the resulting stencil may still remain  accurate.

Let us illustrate this approach for the boundary-value problem given by (32) and (33). We want
to discretize the transverse Laplacian Δ⊥ on a square grid with step size h⊥, using as compact
a stencil as possible. As was already pointed out, the most natural choice of a 5-point stencil
would not work because the anisotropy it produces appears in the second order in h⊥. So,
instead, we consider a centered 9-point stencil involving nearest and next-to-nearest neighbors
of each grid point (see Fig. 6(b)). It turns out that it is possible to choose (uniquely) the relative
weights of different points in the stencil in such a way that the obtained discretization of Δ⊥

is consistent up to  and at the same time has anisotropy appearing only in .
Denoting by i and j the cartesian indices of the points on the square grid in the xy-plane and
by k the index of the staggered grid in the z-direction, we obtain

(40)

where now xi = ih⊥ and yj = jh⊥. With this choice of the discretization we have

(41)

similarly to (36). Hence, using the discretization of (40) in place of the 7-point stencil in a
suitably modified version of (34) and (35), we find the solution to be

(42)

where, again, Fn is the impedance function of the staggered grid. We now note that for q2 = 0
the solution in (42) reduces to

(43)

an expression which coincides with (18) obtained for the one-dimensional problem. Therefore,
approximating by Fn the impedance function Fc from (20), we have

 and, moreover, for all q

Posta et al. Page 13

J Comput Phys. Author manuscript; available in PMC 2009 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(44)

In other words, we obtain a result similar to the one in the case of hexagonal lattices with the
7-point stencil, i.e., the solution of the discrete problem is approximating the exact solution of
the boundary-value problem as good as the rational function Fn approximates the modified

impedance function Fc given by (20), and the solution is  accurate for all wave vectors
at sufficiently large values of n. Curiously enough, the obtained 9-point stencil turns out to
coincide with the fourth-order accurate stencil for discretizing the Laplace’s equation in the
plane, see e.g. Refs. [30,31]. We note that the compensated optimal grid in this case coincides
with the one already constructed for the two-dimensional problem in Sec. 3.2.

The results of the numerical studies analogous to those of Sec. 4.1 are presented in Fig. 8. In

(32) and (33) we chose Lx = Ly = π and discretized the problem with  using the
compensated optimal grids constructed earlier in Sec. 3.3 with n = 8 and n = 14. The obtained
results essentially coincide with those obtained, using the method of Sec. 4.1.

5 Application to cell signaling
We now demonstrate the utility of the methods developed in the preceding sections by applying
them to a problem arising in cell signaling. The problem under consideration involves an
interaction of a positive feedback loop established through receptor signaling by ligand-
induced ligand release mechanism [4,22,24,25] with an imposed morphogen gradient. A
morphogen is a diffusible chemical that can induce multiple cellular responses depending on
its concentration during development [8].

For concreteness, consider the following idealized situation in which a particular cell in a flat
epithelium surrounded by semi-infinite extracellular medium (see Sec. 2) is emitting a
morphogen molecule at the rate of Qw molecules in a unit of time. Neglecting, for simplicity,
the recapture of the morphogen by the cells and assuming that the size of the cell is negligible
on the length scale of the problem, the concentration w of the morphogen molecule satisfies
the following equation

(45)

where we placed the emitting cell at the origin. Here δ(x) denotes Dirac delta-function and
Dw is the morphogen diffusion constant.

Let us now suppose that the morphogen molecule reversibly binds to its own receptor to form
a morphogen-receptor complex, which is required to activate signaling through the positive
feedback loop. Assuming fast equilibration kinetics and that the morphogen-sensing receptors
are in excess, we may conclude that the density of morphogen-receptor complexes w* is
proportional to morphogen concentration at the cell surface:

(46)

where kw,onrw is the morphogen-receptor binding rate times the number of receptors per unit
area and kw,off is the morphogen-receptor dissociation constant.
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We now assume that ligand release depends on the product of concentrations of the inductive
signal (the morphogen) and the induced ligand. This algebraic expression can be viewed as an
approximation of the AND logic commonly encountered in developmental gene regulatory
networks [32]. With this in mind, the input to the signaling cascade in the secretion rate (the
argument of the Hill function in (4)) should now be taken to be proportional to the cell surface
density of ligand-receptor and morphogen-receptor complexes:

(47)

where, as before, we assumed fast equilibration of the binding kinetics.

In the case of stationary signaling profiles, which are of particular interest to development, the
problem under consideration can be further simplified by noting that the steady solution of (45)
at the epithelium surface is w = (Qw/2πDw) (x2 + y2)−1/2. Introducing the quantities

(48)

and scaling length with L = Ds (ks,off + ks,ec)/(ks,ecks,onrs), we arrive at (6) with

(49)

We have simulated the problem in (6) and (49) with ν = 2 and κ = 0.15 on a square (x, y) ∈
[−L, L] × [−L, L] with Dirichlet boundary conditions, using a relaxation algorithm similar to
the one described in Sec. 3.4 (for simplicity, Dirichlet boundary conditions are chosen to avoid
the issue of treating the spatial average of the solution). In practice, the problem was solved
on a hexagonal grid covering the first quadrant with Neumann boundary conditions at x = 0 or
y = 0, and Dirichlet boundary conditions at x = Lx or y = Ly, with Lx, Ly chosen sufficiently
close to L = 15 in a way compatible with the lattice. We used the suitably rescaled n = 14
compensated optimal grid obtained in Sec. 4 and varied h⊥ in the range h⊥ = 0.1 ÷ 1. The
profile of the solution for h⊥ = 0.25 is shown in Fig. 9(a). It has the expected bell-shaped
profile, with high signaling restricted to a small neighborhood of the cell emitting the
morphogen. Also, quite expectedly, we found that the region of high signaling grows upon
decrease of k (corresponding to increase in Qw), and shrinks with increase of k, until at some
critical value of k the solution disappears altogether. This signifies a region of bistability, since
the problem always has ū = 0 as as the trivial solution.

We have also performed convergence studies of the solution to assess the accuracy and
efficiency of the method. As the indicator, we chose the maximum value of ū in the
computational domain, which is attained at the origin. The results of these studies for both the
hexagonal and anisotropy-adjusted square lattices combined with their corresponding n = 14
compensated optimal grids obtained in Sec. 4 are presented in Fig. 9(b). As expected, both
lattices produce solutions that are fourth-order accurate in h⊥.

6 Conclusions
To conclude, we have developed an extension of the method of optimal grids which takes into
account the additional source of numerical error introduced by spatial discretization of the
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elliptic differential operator on the domain boundary. We showed that for a number of boundary
discretizations one can actually compensate this error by choosing a suitably modified
impedance function to be approximated by a rational function generating the steps of the grid.
This is done in an optimal way in the sense of the minimax approximation of the relative error
on the spectral interval which covers most of the wave vectors of the discrete problem. We
note that, in some sense, the compensated optimal grids provide the best way to match the
discrete and continuous boundary value problems in the sense of achieving the best accuracy
for the boundary data using the smallest discretization grid possible.

We have demonstrated that for the Laplace’s equation in the upper half-plane discretized
uniformly along the boundary one can increase the accuracy of the optimal grid method from
second-order to essentially spectral accuracy by simply changing the impedance function being
approximated. This is because in the case of two-dimensional problems (hence one-
dimensional boundary) the eigenvalues of the discrete DtN map are ordered, while the
eigenfunctions of the continuous and discrete problems coincide. Therefore, applying a suitable
transformation one can map the impedance function of the discrete problem to that of the
continuous problem exactly. While this example is more of a methodological significance, it
shows an interesting relation of the method of compensated optimal grids to the fast Fourier
transform (FFT)-based methods. Indeed, according to the error estimate in (19), which is
expected to remain qualitatively valid in our case, too, the method of compensated optimal
grids requires that the size of the optimal grid be on the order of ln m, where m is the number
of discretization nodes on the boundary, thus making the size of the full two-dimensional grid
O(m ln m). As a result, for example, a relaxation algorithm like the one used in Sec. 5 would
require a comparable amount of computations to arrive at the result as an FFT-based algorithm.

On the other hand, for three-dimensional isotropic problems (as in the case of the Laplace’s
equation considered here) the mapping between the continuous and the discrete impedance
function is no longer possible, since the isotropy is lost on the discrete level. Nevertheless, as
we showed in this paper, by a particular choice of the discretization of the boundary (e.g. by
using hexagonal or anisotropy-compensated square grids for the Laplace’s equation) it is
possible to eliminate the effect of the discretization error at least at the lowest order in h⊥. As
a result, for these lattices the method provides an unexpectedly high order of accuracy, e.g.

 instead of the usual  order for the Laplace’s equation in three dimensions.

The obtained finite-difference discretizations present three main advantages for studying
boundary-value problems with nonlinear boundary conditions, such as those which arise in the
problems of cell-to-cell communication considered here. First, these schemes are very easy to
implement and can be readily incorporated into existing codes, the only programming effort
is involved in obtaining the optimal grid steps. Second, the resulting schemes involve sparse
matrices and, therefore, easily lend themselves to Newton-like methods, etc. Third, for
multiscale problems involving localized isolated boundary sources a multi-grid approach using
patches of uniform grids in the plane coupled to the compensated optimal grid in the normal
direction should produce accurate discretizations without the need of too many discretization
points. In this case one should also be able to apply these methods to domains with general
boundaries. All these features may make the compensated optimal grid method superior to the
conventional FFT-based methods for the considered class of problems. Let us also point out
that time-dependent problems can be treated equally well, using our discretization approach,

since the obtained grids are consistent to  with the parabolic problem in the Fourier-
Laplace transform space [33].
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Fig. 1.
The schematics of cell-to-cell signaling in an epithelial layer: the geometry of the epithelial
layer (a) and the summary of the physical processes at the cell surface (b). In (a), red and blue
circles show signaling molecules that are secreted by the epithelial cells, orange ovals represent
the molecules of an imposed morphogen gradient. Both the signaling molecules and the
morphogen bind to their specific cell-surface receptors, initiating responses by the intracellular
machinery, represented by various symbols within cells. Details are taken from the signaling
circuitry involved in the Drosophila egg development [21].
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Fig. 2.
The relative error in approximating Fc in (20) with Fn from (22)
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Fig. 3.
Comparison of the performance of different optimal grids for solving the boundary-value
problem in (23) with m fixed. In both (a) and (b), the relative error of the solution is shown for
all admissible values of q; n = 8 in (a) while n = 14 in (b). Red, green, and blue lines show the
results of using geometric, Zolotarev, and compensated optimal grids, respectively. In all cases
m = 1000.
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Fig. 4.
Convergence study for the solution of (23) with q = 4. Results for the compensated grids with
n = 10 and n = 14, as well as geometric and Zolotarev grids with n = 14 are shown.
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Fig. 5.
(a) The form of the solutions of (27) for several values of α. (b) Results of the convergence
studies of the numerical solution using a compensated grid with n = 14 obtained in Sec. 3.2
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Fig. 6.
(a) The discretization of the rectangular domain using a hexagonal grid. (b) The 9-point
anisotropy-adjusted stencil for Δ⊥ on a square grid. In (a), the solid circles show the
discretization nodes, while the empty circles correspond to the ghost nodes of the reflecting
boundary. Similarly, solid lines in (a) show the connections between the discretization nodes,
while dashed lines show the connections to the ghost nodes. In (b), the fractions give, apart
from the factor of , the weights of different nodes in the stencil.
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Fig. 7.
The L∞ norm of the relative error of the numerical solution of (32) and (33) obtained, using
hexagonal grids in the xy-plane and compensated optimal grids with n = 8 in (a) and n = 14 in
(b) (see text for complete details). In (b), the straight line indicates the O(|q|4) dependence.
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Fig. 8.
The L∞ norm of the relative error of the numerical solution of (32) and (33) obtained, using
anisotropy-adjusted square grids in the xy-plane and compensated optimal grids with n = 8 in
(a) and n = 14 in (b) (see text for complete details). In (b), the straight line indicates the O(|
q|4) dependence.
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Fig. 9.
(a) The profile of the solution of (6) and (49) obtained using the n = 14 compensated optimal
grid of Sec. 4 on a hexagonal lattice with  (b) The relative
error of ū(0, 0) obtained using the n = 14 compensated optimal grids of Sec. 4 for hexagonal

and anisotropy-adjusted square lattices. In (b), the straight line indicates the 
dependence.
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