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Abstract
Monte Carlo simulations provide an indispensible model for solving radiative transport problems,
but their slow convergence inhibits their use as an everyday computational tool. In this paper, we
present two new ideas for accelerating the convergence of Monte Carlo algorithms based upon an
efficient algorithm that couples simulations of forward and adjoint transport equations. Forward
random walks are first processed in stages, each using a fixed sample size, and information from
stage k is used to alter the sampling and weighting procedure in stage k + 1. This produces rapid
geometric convergence and accounts for dramatic gains in the efficiency of the forward
computation. In case still greater accuracy is required in the forward solution, information from an
adjoint simulation can be added to extend the geometric learning of the forward solution. The
resulting new approach should find widespread use when fast, accurate simulations of the
transport equation are needed.
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1 Introduction
Monte Carlo (MC) simulations have provided a “gold standard” of computational support
for many important problems of science and engineering that are modeled using the
radiative transport equation (RTE). However, when the method is conventionally applied,
according to the central limit theorem, the number of samples processed must be multiplied
roughly a hundredfold to gain a decimal digit of accuracy. This slow convergence has
encouraged the use of faster, but sometimes considerably less accurate methods (see [1]–
[3]). Many applications areas that rely on transport models would benefit from the
availability of faster MC methods

In this paper we describe a new MC method, based on sequential application of correlated
sampling [4], [7], that achieves geometric convergence for very general transport problems.
Coupling such simulations of the RTE with simulations of an adjoint RTE leads to an
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automated, highly efficient MC solution algorithm that “tunes” itself to the specific needs of
each RTE problem and requires minimal or no user intervention. In other papers, we will
describe a similar algorithm based on importance sampling [8]–[13], [4], [5] and we will
establish the geometric convergence of each. Here we illustrate the power of our new
method by applying it to an example that represents a model tissue problem. Comparison of
the numerical results with analytic solutions suggests that gains of computational efficiency
by several orders of magnitude in comparison with conventional Monte Carlo should be
possible when the algorithms are optimized for more complex, practical problems.

2 Forward and Adjoint Transport Equations
The methods we describe in this paper can be applied quite generally to RTE problems
involving full spatial, angular, energy and time dependence. However, to simplify both the
notation and the exposition, we specialize here to time-independent, single-speed radiation
transport for which the accepted model is the integro-differential equation 3

(1)

where the integration is over the sphere of unit direction vectors, S2. Equation (1) is assumed
to be valid for all vectors r in the interior of a closed, bounded subregion V of . The
solution, Ψ (r, Ω), describes the radiation intensity at any point (r, Ω) in the phase space Γ
due to a radiation source Q internal to V. In this equation, the coefficient functions σt(r),
σs(r) and p(r, Ω ← Ω′) characterize the physical transport, scattering and absorption of
radiation in Γ. The RTE simply expresses a balance between radiation arriving at (r, Ω) (the
two terms on the right hand side) and removal (the two terms on the left hand side). Arrivals
are due either to the source Q or scattering from direction Ω′ to direction Ω while removal
occurs by streaming (pure transport), expressed by the gradient term, and through
interactions at (r, Ω) that produce either absorption there or scattering away from Ω.

A unique solution Ψ (r, Ω) is assured for all r ∈ V, Ω ∈ S2 when the flux of radiation Ψinc(r,
Ω) incident on ∂V from outside of V is specified; that is, for unit directions Ω for which Ω ·
n∂V < 0, where n∂V is the unit outward normal vector on ∂V. As discussed in [6], pp. 20–30,
the solution Ψ (r, Ω) may then be expressed in terms of a volume Green’s function, G[(r, Ω)
←(r0, Ω0)], and a surface Green’s function, G∂V [(r, Ω)← (r∂V, Ω0)]:

(2)

where Q(r, Ω) is the volume source within V. The second term in Equation (2) comes from
the boundary condition

(3)

3Here and throughout the paper we will display only a single integral sign for all integrals, whether they are one- or multi-
dimensional. The number and kind of integration variables and the region of integration are shown explicity to avoid possible
ambiguity.
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Introduction of one or more radiation detectors into the physical system is described by a
response function Q* (r, Ω) that characterizes both the location and physical properties of
the detecting instruments. This leads to an adjoint integro-differential equation

(4)

whose solution can be interpreted as an importance function in the sense that it is
proportional to the response of the detectors from a unit source at (r, Ω) [4], [5], [18]. It is
also understood that the boundary condition satisfied by Ψ* on ∂V is dual 4 to that specified
for Ψ. Thus, if the region external to V is either nonreentrant or a pure reflector, the
boundary conditions for Ψ* will be dual to those for Ψ (since then either the product ΨΨ*

vanishes on ∂V or it satisfies a reflecting boundary condition there). Also, if the boundary
segments include points at which both partially reflecting and partially nonrentrant
transmission occurs (as is the case for light transport where the Fresnel and Snell’s laws are
applicable), duality also holds, as was shown by Aronson in [35]. The theory of reciprocity
for the RTE makes it clear that either simulations of the forward equation, Equation (1), or
the adjoint RTE, Equation (4), may be used to estimate the response of the detector Q* due
to the source Q, since this response can be expressed equivalently as a linear functional of
either solution:

(5)

Approximate solutions of Equation (4) also play a crucial role in the variance reduction
method known as importance sampling, mentioned earlier.

The integro-differential RTE, Equation (1), can be converted to an equivalent integral
equation

(6)

that is more directly linked to the MC probability model on which the simulation is based.
The kernel K of (6) describes both the scattering and the transport of radiation and the
source S is defined by moving particles from their point (r, Ω) of origination (as determined
by sampling Q) to their first collision location; details may be found in [4], [5], [18].

We introduce a new dependent variable

(7)

and call the product function C an information density function. In [29]–[33], this function is
sometimes called a response or contribution function, and it was used in the early literature
to study RTE problems, mainly of nuclear radiation shielding type – problems characterized
by their focus on events with low probability outcomes in a simulation.

In the approach presented in this paper, we will use this function to capture the relative
“information value” of points in the phase space. The function C(r, Ω) satisfies the RTE [30]

4Duality here means that the integral ∫∂V × S2 n∂V · ΩΨ (r, Ω)Ψ* (r, Ω)drdΩ = 0.
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(8)

where

(9)

and

(10)

Equation (8) is a radiative transport equation for C that couples the direct and adjoint
solutions Ψ, Ψ*. The boundary conditions for C follow from those that apply for Ψ, Ψ*.
Thus, at a point of nonrentrant transmission clearly C = 0 while at a point of pure reflection,
the normal derivative of C must vanish. The same argument applies if the boundary
conditions include points at which both reflection and nonreentrant transmission occur (as
when light is refracted at the boundary).

Equation (8) implies that there is no absorption of information density 5, only scattering, and
that the scattering depends on both the entering and outgoing directions (through the factor

). This is in contrast with most models of conventional RTE problems for which the
scattering is rotationally invariant and therefore depends only on the scalar product between
the two directions. Also, there is no loss of information density at the boundaries provided
that the adjoint solution, Ψ* (r, Ω), satisfies boundary conditions that are dual to those
satisfied by Ψ (r, Ω), as we have assumed. Finally, there is both a source density (in the term
QΨ*) and a sink (in the term −Q*Ψ).

Each source-detector pair identifies a unique contributon function C(r, Ω) that characterizes
the flow of information from the source to the detector without any losses along the way.
These observations will be utilized in the strategy we present later for accelerating the
convergence of MC simulations of the RTE.

3 First Generation (G1) Adaptive Zero Variance Algorithms
In 1962, Halton [27] proposed using Monte Carlo algorithms to solve matrix problems by
iteratively applying one of several variance reduction methods, including correlated
sampling. More recently, Halton’s ideas were extended to the solution of continuous
radiation transport problems by researchers at Los Alamos National Laboratory [14]–[17]
and the Claremont Graduate University [19]–[26]. The basic idea underlying these methods
is to process the random walks in batches, called stages, consisting of W independent
random walks each and alter the sampling and weighting methods for each new stage by
incorporating information “learned” during the previous stage. It has been shown that these
methods all produce geometric convergence [19]–[26], i.e.,

5This follows since the second term on the left hand side of Equation (8), which is the removal term due to either scattering or
absorption, expresses just the removal due to scattering alone.
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(11)

where Ek = kth stage error; e.g., Ek = ||Ψ (P) − Ψ̂(k)(P)||, 6 where Ψ = exact transport
solution, Ψ̂(k) = kth stage adaptive estimate and ||·|| denotes an appropriate error norm.

These adaptive zero variance MC algorithms for global solutions of transport equations

make use of expansions of either the solution  or the dual solution, Ψ*, in
orthonormal basis functions, Bi(P), and produce arbitrarily accurate truncated solutions

(12)

of Ψ. This is done by estimating the first M expansion coefficients

(13)

in adaptive stages of ever-increasing accuracy. Because each coefficient ai is just a weighted
integral of the solution Ψ, it is readily estimated by conventional Monte Carlo methods.
Further discussion of the algorithm employed can be found in the Appendix, as well as in
[22].

To understand how the information from stage k is linked to that in stage k + 1, we outline
our G1 method based on repeated use of correlated sampling (called Sequential Correlated
Sampling or SCS). We introduce the linear integral operator  defined by

(14)

so that Equation (6) becomes

(15)

Next define a “reduced” source for the adaptive stage k + 1 in terms of the reduced source at
stage k by,

(16)

where φ̃(k)(P) is the approximate correction obtained in stage k to the truncated solution
(12). 7 The algorithm suggested by Equation (16) is implemented by initiating random walks
in adaptive stage k using the reduced source function S(k) and selecting all subsequent
collision sites using the continuous kernel K. The kth stage correction produced by this

6To abbreviate the notation, we have set P = (r, Ω).
7Legendre polynomials in each independent variable make an obvious choice of the basis functions Bi(P) to begin our investigations
when the variable is defined over any finite interval, just as Laguerre and Hermite polynomials would be appropriate over semiinfinite
or doubly infinite intervals, respectively. We have also experimented with other choices of complete orthogonal systems with results
similar to those presented in this paper. In fact, no “universal” choice of basis functions will be adequate for all transport problems
unless it is essentially constructed from the eigensystem of each RTE problem, which is clearly impractical for all but the simplest
transport problems.
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method decreases (with probability 1) in magnitude as k increases. Proof of the geometric
convergence of this method for the family of problems studied in this paper is found in [23],
while a detailed description of the algorithm was published in [22] and is also reviewed in
the Appendix.

These “first generation” (G1) adaptive methods and algorithms perform spectacularly well
on RTE problems in a few independent variables. We content ourselves here with
illustrating this by solving a simply described family of model transport problems in a
homogeneous slab of finite thickness T which is infinite in extent in the other two
dimensions. The resulting problem, when further specialized to scattering that is either
directly forward or backward, becomes tractable analytically and therefore provides an ideal
problem with which to test our Monte Carlo algorithms. While sufficiently simple to provide
closed form solutions for both the means and the variances of our Monte Carlo estimators
[36], by varying the slab thickness, the relative amounts of absorption and scattering, and the
fractions of forward and backward scattering, this family of slab problems includes
examples that pose severe challenges for conventional Monte Carlo simulations and thus
provides useful tests of new ones, like the one described here.

The transport problem we treat can be described as a pair of differential equations

(17)

where

(18)

The constants σs, σt describe the scattering and total macroscopic cross sections,
respectively, and pij is the probability of scattering from direction j to i, where i = j = 1
corresponds to motion from left to right in the slab while i = j = 2 corresponds to motion
from right to left. The function Ψ1 thus describes left-to-right-moving radiation and Ψ2
describes right-to-left-moving radiation. Formulas for the solutions of such problems may be
found, for example, in [36].

The problem chosen here describes a tissue optics application in which photons are
introduced through a laser light source at one end of 1 centimeter of tissue with typical
physical characteristics that are described by the input data

The scattering of light in tissue is modeled by a very forward-peaked phase function typical
for tissue. Here the average cosine of the scattering angle is chosen to be 0.97, for example.
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The G1 solution method used in this example represents the approximate solution as a linear
combination of the first 25 Legendre polynomials and the simulated measurement is
represented in this case by averaging the solution 8 over the final mm of tissue. That is, we
chose the function Q* in Equation (4) as

so that Equation (5) becomes

which is the average value of the radiation intensity in the final mean free path of tissue.
Figure 1 plots E = log10 |R| versus the number of adaptive stages, where the relative error, R,
is

Figure 1 clearly exhibits a geometric decrease in E as the number of adaptive stages
increases. The geometric convergence for this G1 algorithm ceases as the limit Ψ̂ (Equation
(12)) is approached. Here Ψ̂ is the stochastic approximation to Ψ̂ determined by the SCS
algorithm (See Equation (A-13) in the Appendix).

Values of E indicate the number of significant digits of accuracy in the estimate. The results
in Fig. 1 were obtained using 10, 000 random walks in each adaptive stage. Thus, the 25
stages required a total of 250,000 random walks to produce an essentially exact result, and
all 25 stages required just over 32 minutes of computation on a 1.6 GHz Xeon E5310 10
quad core processor.

While near machine precision (i.e., relative error on the order of 10−15) is achievable with
these G1 algorithms for sufficiently simple transport problems, when more difficult
problems (involving more independent variables and/or severe spatial heterogeneity) are
solved by these methods, their performance deteriorates. Degradation of the quality of
practically achievable G1 adaptive results occurs because: 1. The need to generate expansion
coefficients for each independent variable means that the computational burden grows
exponentially with D = dim (Γ), Γ = phase space, making problems in 5 or 6 independent
variables quite challenging. 2. Severely heterogeneous problems further degrade
performance by requiring separate expansions in each homogeneous subregion, further
adding to the total number of coefficients needed to describe the solution. 3. The error
caused by truncating each expansion after a finite number of terms in each variable and each
subregion is very difficult to estimate accurately (and therefore difficult to control). That is,
it is difficult to predict in advance how many terms to retain in the expansion of each

8In general, the measurement is represented as a weighted integral of the RTE solution. For this simple illustration, we chose the
weighting function to be the characteristic function associated with the detector region divided by the volume of that region. The
measured quantity then becomes the average value of the radiation solution 3 in the detector region.
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independent variable in order to achieve a particular precision in the solution. 4. Perhaps the
greatest source of unpredictability about the error arises from the need to approximate
numerically many integrals that arise in the computations. In SCS, these come from the
integration of the reduced source, Equation (16). All quadratures encountered must be
carried out with extremely high precision if the final tally estimates are to have essentially
unlimited accuracy, and this is clearly not a realistic practical objective.

For general RTE applications, then, either some accuracy must be sacrificed or else the cost
of the G1 algorithm will increase dramatically. All of these imperfections taken together
mean that the G1 algorithms are not yet useful as practical general-purpose tools for solving
arbitrary transport problems. Nevertheless, they are very effective methods for solving
transport problems in one or two dimensions and they serve as useful computational
yardsticks against which to measure the performance of other, more approximate methods
for more complex problems.

4 Second Generation (G2) Adaptive Low Variance Methods
Dramatic gains in efficiency can be accomplished by eliminating the requirement that the
solution can be represented globally at every point of phase space by an infinite series of
basis functions. The new G2 algorithms achieve this by relaxing the requirement of
unlimited precision at every location and angular orientation of the phase space. Instead,
only the information most essential to determine accurate, but not perfect, regionwise
weighted averages of the solution is sought.

Suppose, then, that interest focuses only on estimating weighted integrals such as ∫V × S2Ψ
(r, Ω)Q* (r, Ω)drdΩ, of the solution with high precision (for example, to within 0.1%

relative error) over a fixed, but arbitrary decomposition  of the phase space. We
assume that this decomposition includes one or more regions designated as “true” detector
regions 9, and that the sets {Γi} are pairwise disjoint: Γi ∩ Γj = ∅, i ≠ j.

Our implementation of the G2 algorithm, named ASCS (= Averaged Sequential Correlated
Sampling), finds a piecewise constant approximation Ψa of Ψ

(19)

Now let  denote an initial estimate of Ψa(P) obtained from a conventional Monte

Carlo simulation consisting of W random walks. For example,  can be obtained by
averaging the total distance traveled by all simulated particles in each subregion Γi. In [4] it
is shown that this provides an unbiased estimate of the solution integral in each region. More
general weighted solution integrals can be handled similarly [28]. Replacement of the

continuous function Ψ̃ by the piecewise constant function  in Equation (16) then
produces an appropriate reduced source for the new G2 adaptive algorithm:

(20)

9The remaining regions of the decomposition will be those for which average RTE solution values will be determined by the
algorithm.
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(21)

and in general, the ASCS algorithm based on this idea is characterized by the iterative
scheme

(22)

where the function  is the correction from stage k to the approximate solution from
previous stages. The G2 adaptive algorithm is also described in the Appendix.

We have implemented this algorithm and confirmed that it converges to estimates of the αi
that depend on the coarseness/fineness of the mesh imposed. The geometric learning ceases
when the locally constant approximation Ψ̃a(P) of the transport solution Ψ has been
stabilized. Because such an approximate solution, which is discontinuous, cannot satisfy the
original RTE pointwise (except in the trivial case that the latter is globally constant), the
precision achievable is limited by the overall quality of the decomposition of the phase
space, Γ; that is, by the variation of the solution over each subregion of the decomposition.

We applied this G2 algorithm to the same problem described in Section 3. In Fig. 2 we track
the convergence obtained when 2000 uniformly space subintervals Γi are used to subdivide
the phase space [0, 10]. The graph plots the error E as a function of the number of G2
adaptive stages. Our G2 algorithm generated 20 adaptive stages (including a conventional
MC initial stage) to converge. In this example, with a relatively fine decomposition into
2000 subintervals, we obtain nearly 4 significant digits of accuracy in the solution with an
investment in computer cost of a little more than 22 minutes.

The geometric learning power of this G2 algorithm alone should make possible accurate
solution of many RTE problems not currently accessible by conventional MC. However, we
would like to be able to increase this accuracy when it is required. To do this, we need to be
able to refine an initial decomposition of the phase space Γ in an intelligent way to achieve
the accuracy needed. In other words, in case the precision reached when the G2 geometric
learning stops is insufficient, we want to be able to extend it by an appropriate refinement of
the phase space. What is needed, then, is an automated strategy for determining which
subregions are most important to refine, and by how much, as well as which subregions
should be coalesced for maximal computational efficiency. Such a strategy is described in
the following section.

5 Third Generation (G3) Phase Space Refinement Methods
The mechanism we propose to exhibit how to refine any phase space decomposition
intelligently is to combine information collected from particle trajectories constructed
according to the original RTE with information collected from trajectories sampled
according to an adjoint RTE. As we pointed out earlier, the function C(r, Ω) defined by
Equations (7) – (10) accurately captures the relative information value of the point (r, Ω)
with respect to the transport of radiation from the source to the detector. Because C(r, Ω)
combines the intensity of radiation at (r, Ω) with the likelihood that radiation at (r, Ω) will
actually reach the detector, this function quantifies the data on which intelligent grid
refinement should be based.

Of course, obtaining detailed knowledge of the function C(r, Ω) point-wise throughout the
phase space poses a daunting problem, even more so than capturing the RTE solution Ψ (r,
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Ω) everywhere since C(r, Ω) obeys a complicated RTE that involves both Ψ and Ψ*.
However, we can quite easily estimate integrals of C(r, Ω) over an arbitrary decomposition
of Γ by combining information from two G2 algorithm applications, one to obtain an
approximate Ψ (r, Ω) solution and the other an approximate Ψ* (r, Ω) solution. These
regionwise constant approximations, Ψa(r, Ω) and , can then be multiplied together
in each subregion and the resulting approximation Ca(r, Ω) can be integrated easily to
produce the required approximate integrals of C(r, Ω).

Suppose then that the initial decomposition of Γ consists of R regions: Γ1, Γ2, …, ΓR and let

Ψa(r, Ω) = (Ψ1, Ψ2, …, ΨR) and  denote the vector solutions
obtained by applying the G2 algorithm to the forward RTE (1) and the adjoint RTE (4),
respectively. Suppose that the adjoint source Q* vanishes except in region Γi for some
unique value of i (so that Γi designates the “true” detector position and angular range of this
detector). The G2 algorithm then finds a regionwise constant approximation to Ψ* (r, Ω):

 whose jth component represents the
average value of  over (r, Ω) in Γj. Similarly, the G2 solution for Ψ then finds a
regionwise constant approximation Ψa(r, Ω) = (Ψ1, Ψ2, …, ΨR) whose jth component

represents the average value of Ψ (r, Ω) over (r, Ω) in Γj. The product  may then
be integrated over Γj and interpreted as an estimate of the average information value of that
region when estimating the response of a detector placed in region Γi. Thus, the ith row of
the “information matrix” Ci,j provides the raw data to be used for intelligent grid refinement
with respect to a detector in Γi.

We next describe a simple refinement strategy based on these ideas that we applied to the
slab transport problem described earlier (Equations (17), (18)). After completing the G2
phase with 20 stages to compute a piecewise constant approximation Ψa(r, Ω) = (Ψ1, Ψ2,
…, Ψ2000) whose jth component represents the average value of Ψ (x) over the jth
subinterval, the G2 algorithm computes a similar piecewise constant approximation

 whose jth component represents the average value of Ψ* (x)
over the jth subinterval and the information density function needed for the intelligent mesh
refinement strategy is formed from the component-wise product of these two vectors. The
G3 algorithm, sketched above and described more fully in the Appendix was applied in this
way to produce the output graphed in Fig. 3. The mesh refinement G3 algorithm produced a
contributon-based mesh 2 grid consisting of a total of 7230 nonuniformly distributed
subintervals as compared with the 2000 uniform ones making up mesh 1 in the initial G2
phase. Overall, the precision increased by nearly an additional 2 orders of magnitude.

Comparisons of the efficiency gains that result from the use of the new algorithms are
noteworthy for these transport problems. A useful indicator of efficiency in conventional
MC implementations is

(23)

where Var is the variance of the estimating random variable and t is the total computer time
required to achieve this variance. For conventional MC simulations, this measure 10 is
roughly independent of the number N of random samples processed since t is linear in N and
Var is inversely proportional to N, and therefore to t. However, our adaptive algorithms are
designed to produce variances that decrease exponentially with time. Thus, to compare

10In MCNP [34] the term “Figure of Merit”(FOM) is used for this quantitative estimate of efficiency.
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computational efficiency of these new methods with conventional Monte Carlo requires that
we examine the amount of error reduction attained by each of the more powerful algorithms
and compute the run time that would be necessary for conventional Monte Carlo to achieve
this amount of additional error reduction. This last computation is predicated on the
assumption that the conventional simulations converge at the rate predicted by the central
limit theorem.

To apply these ideas, the time t required for each computation was obtained by careful
timing of the runs performed for each of our methods on the same computer: a 1.6 GHz
Xeon E5310 10 quad core processor. And since the initial stage of our adaptive algorithms is
simply conventional MC (the geometric learning begins with the next stage), the efficiency
of conventional MC (CMC) is easily obtained by identifying the time required for this initial
stage, observing the error (as measured by the standard deviation) it produced, and
extrapolating to the desired precision based on the central limit theorem.

In Table 1 we compare the efficiencies of our G2 and G3 algorithms with that of
conventional Monte Carlo (CMC). Thus, for example, to achieve a variance of 2.403 × 10−3

with conventional Monte Carlo when the variance it achieves in 33 seconds is 82.549 would
require

whereas this was achieved with the G2 algorithm at a cost of 1341 seconds. The advantage
factor of G2 compared with conventional Monte Carlo is thus

The G3 entry in the table was computed similarly.

From the table we see that use of the G2 algorithm alone is sufficient to estimate the detector
response in this problem to a fraction of 1% relative error, which is more than adequate for
most practical applications. The addition of intelligent grid refinement adds more than an
additional order of magnitude accuracy in this problem and to achieve this with conventional
Monte Carlo would require more than 50 days of computation on the same platform

Of course, one need not achieve 6 or more digits of precision to be successful modeling RTE
problems. Taking into account the uncertainties inherent in the mechanisms that supply and
detect radiation, 3 – 4 digits of precision in the simulation would certainly be adequate to
distinguish real effects from background noise and to validate approximate RTE solutions.
The significance of the accuracy achieved with the G2 and G3 methods, however, is that it is
obtained with relatively simple algorithms that do not degrade explosively in higher
dimensional problems, as is the case with G1 algorithms. Computational complexity for G2
increases roughly linearly with the number of phase space subdivisions, and not
exponentially with growth in the number of phase space dimensions. To determine how
many subdivisions will suffice for a given accuracy depends, of course, on the variability of
the solution and adjoint solution functions over the regions of the decomposition. While
more subdivisions may be needed in regions of large solution fluctuation, the G3 strategy
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guarantees that computing time is not wasted in regions for which the solutions vary only a
little.

The simple grid refinement strategy described in this section is only intended to demonstrate
the potential of the use of the contributon function for optimizing computational efficiency.
We intend to pursue several other strategies based on this general idea to optimize
computational efficiency.

6 Summary and Conclusions
This paper establishes proof of principle and illustrates the latent power in our proposed
methods over conventional Monte Carlo methods and existing adaptive methods. In other
papers now in preparation we prove the geometric convergence of the G2 algorithm of this
paper under rather general conditions, and we explore more focused applications of the G2–
G3 strategy to problems in both neutron transport and photon transport. We have also
recently completed a new proof of geometric convergence of our G1 algorithm under
conditions more general than those presented in [23]. Each broad application area draws
attention to its own specific demands and requirements. For example, in neutron transport,
the energy variable merits special attention because the energy dependence of neutron cross
sections is both complex and erratic, while for photon transport, directional dependence is of
key importance and the contributon function must be used to understand how to vary the
decomposition of the unit sphere of direction vectors with spatial location. For electron and
other charged particle transport, both energy and angle dependences are important.

We believe, however, that adaptive Monte Carlo algorithms of the sort we have developed
here hold the key to making RTE modeling truly practical. We expect that these methods
will support accurate RTE modeling even in cases of highly complex geometric
heterogeneity and subtleties in angular variation, especially near sources and detectors or in
regions of “streaming radiation”. At present, effective use of many existing Monte Carlo
codes requires skillful user intervention in order to optimize their utility. Moreover, the
strategies adopted to achieve optimization for one RTE problem may not easily transfer to
another. Because the methods and algorithms developed here are mathematically rigorous
and general rather than ad hoc, they offer real hope of rapid, accurate and automated RTE
modeling that “tunes” itself to the specific needs of individual transport problems.
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Appendix: Implementation of G1, G2 and G3 Algorithms

Problem Definition
The problem described by Equations (17), (18) can also be formulated as a system of
coupled integral equations:
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(A-1)

or

(A-2)

where

(A-3)

Sequential Strategy For G1 Algorithm
The following algorithm is based on equation (A-2) above. We begin by choosing a set of

basis functions in [0, T], , for which it is natural to choose the Legendre polynomials,

, which form a complete orthogonal system on the interval [−1, 1]. Setting fi
(x) = pi (2x=T − 1), the G1 algorithm finds the solution by truncating the infinite series

(A-4)

By orthogonality, we have

where

Monte Carlo methods will be applied to estimate the first M pairs of coefficients ai and bi

and used to reconstruct an approximate solution,  and . The solution is
obtained in stages, in each of which a predetermined number W of random walks is
processed conventionally. In the initial, or zeroth stage, we have the system of equations

(A-5)
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where  and  are assumed to have an expansion similar to that in (A-4). We then

apply Monte Carlo methods to obtain an estimate  and  of the exact solution,

 and . We next set

(A-6)

We substitute (A-6) into (A-2) and obtain a system of equations for  and 

(A-7)

where

(A-8)

We solve equations (A-7) by conventional Monte Carlo methods, and denote the solution by

 and . Assume that we have obtained solutions through the k − 1-st stage,

 and . Set

(A-9)

substitute them into (A-2) and obtain equations for the k-th stage correction  and

:

(A-10)

where

(A-11)

Then the pair

Kong et al. Page 15

J Comput Phys. Author manuscript; available in PMC 2012 December 05.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



(A-12)

is taken as an approximate solution of system (A-2) resulting from the k + 1 adaptive stages
and

(A-13)

Sequential Strategy For G2 Algorithm
Assume that the interval I = [0, T] has been subdivided into a disjoint union of subintervals

,

(A-14)

and, without loss of generality, we assume that the length of each subinterval is Vi > 0. Our
goal with G2 algorithm is to estimate the averages of the solution over the subintervals

(A-15)

Mimicking the procedure for the G1 algorithm, we consider the zeroth stage for  and

(A-16)

where

(A-17)

To estimate the integrals,

(A-18)

we employ conventional Monte Carlo methods. Suppose that the estimated values are 

and . Then define the estimated solution as
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(A-19)

Continuing to the first stage, we set

(A-20)

and substitute (A-20) into (A-2) to produce the equation

(A-21)

for the correction  and  where

(A-22)

From (A-21), we can estimate the integrals

(A-23)

by conventional Monte Carlo methods. In general, having obtained

 and , set

(A-24)

This determines a system of equations for  and 

(A-25)

where
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(A-26)

From (A-25), we can estimate the integrals

(A-27)

by conventional Monte Carlo methods. Finally, for each i (1 ≤ i ≤ R), we sum over all
adaptive stages to obtain the approximation

(A-28)

for the integral (A-15).

Sequential Strategy for G3 Algorithm
The G3 algorithm is designed to achieve high precision automatically in solving transport
problems. The idea is to use the contributon function to reduce computational costs in low
contributon regions and uniformize the effort over all subregions based on contributon
values. This idea is carried out in practice by two processes: refining the high contributon
subregions and recombining subregions in which contributon values might have become too
small for optimal efficiency. We describe the G3 strategy for general transport problems and
use P, Q to denote generic state space vectors. Assume that the transport problem is
expressed by an integral equation

(A-29)

where K (P, Q) is the transport kernel and S (P) is the source function. Then the adjoint
equation is

(A-30)

where K*(P, Q) = K(Q, P ) and S* (P) describes the detector. That is, the quantity we are
estimating is
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We denote the approximate solutions produced by the G2 algorithm by Ψ̃(P) and Ψ̃*(P),
respectively. Then the approximate contributon function is

(A-31)

The G3 algorithm accepts as input a global constant G which roughly indicates the desired
precision in estimating the integral I. After linearly ordering the R subregions Γ1, …, ΓR, the
contributon integrals over all subregions are themselves organized in a linear array. That is,
we set

and reorder the subscripts, if necessary, so that 0 ≤ C1 ≤ C2 ≤ ··· ≤ CR. Provided it is not too
small, the value C1 can be set to G to initiate the G3 algorithm.

Refining the Decomposition of the Phase Space
This step is applied if a subregion contains too much information, as measured by the
contributon integrals. The criterion for refining a subregion Γi is based on an examination of
the integer  where

(A-32)

and  denotes the integer part of . If ri < 2, we do not subdivide the subregion Γi but if ri
≥ 2, we divide the subinterval Γi into ri smaller subregions with equal volume. This process
is continued until all subregions have been tested for refinement.

Recombining
This step is applied if a subregion contains too little information about the contributon
function, in which case we consider joining it to an adjacent subregion and retesting the
newly recombined union for further possible recombination. Consider the integral of C (x)
over the ith subregion

(A-33)

and the ratio  (here we do not take the integer part). If , we ignore the subregion Γi
for now, but if , we consider combining the subregion Γi with one or more adjacent
subregions. For example, if 1/2 ≤ ui−1 < 2 we define a new subregion Γi−1,i = Γi ∪ Γi−1 and
test this new subregion for possible further recombination with a third subregion. This
process is continued until the refinement and recombination logic is completed. The details
are too lengthy to spell out fully here. However, the overall objective of the G3 algorithm is
to optimize the computational efficiency in estimating the integral I. This relies on
increasing the amount of detail needed in computationally important regions while reducing
the amount of detail needed in computationally insignificant regions. Convergence of the G3
algorithm occurs when the amount of information extracted from each subregion (as
measured by contributon integrals) is approximately uniform across all subregions.
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Fig. 1.
Geometric Convergence for the G1 Algorithm.
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Fig. 2.
Geometric Convergence for the G2 Algorithm.

Kong et al. Page 21

J Comput Phys. Author manuscript; available in PMC 2012 December 05.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Fig. 3.
Geometric Convergence for the G3 Algorithm.
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