
An Efficient Semi-Implicit Immersed Boundary Method for

the Navier-Stokes Equations

Thomas Y. Hou∗ Zuoqiang Shi †

July 7, 2008

Abstract

The Immersed Boundary method is one of the most useful computational methods
in studying fluid structure interaction. On the other hand, the Immersed Boundary
method is also known to require small time steps to maintain stability when solved
with an explicit method. Many implicit or approximately implicit methods have been
proposed in the literature to remove this severe time step stability constraint, but none
of them give satisfactory performance. In this paper, we propose an efficient semi-
implicit scheme to remove this stiffness from the Immersed Boundary method for the
Navier-Stokes equations. The construction of our semi-implicit scheme consists of two
steps. First, we obtain a semi-implicit discretization which is proved to be uncondition-
ally stable. This unconditionally stable semi-implicit scheme is still quite expensive to
implement in practice. Next, we apply the Small Scale Decomposition to the uncondi-
tionally stable semi-implicit scheme to construct our efficient semi-implicit scheme. Un-
like other implicit or semi-implicit schemes proposed in the literature, our semi-implicit
scheme can be solved explicitly in the spectral space. Thus the computational cost of
our semi-implicit schemes is comparable to that of an explicit scheme. Our extensive
numerical experiments show that our semi-implicit scheme has much better stability
property than an explicit scheme. This offers a substantial computational saving in
using the Immersed Boundary method.

1 Introduction

The Immersed Boundary method was originally introduced by Peskin in the 1970’s to
model the flow around heart valves. The method uses a uniform Eulerian grid to discretize
the fluid velocity and a Lagrangian description for the immersed elastic structure. The
interaction between the fluid and the elastic structure is expressed in terms of the spreading
and interpolation operations by use of smoothed Delta functions. This formulation allows
a single set of fluid dynamics equations to hold in the entire domain with no internal
boundary conditions. The Immersed Boundary method has now evolved into a general
useful method and has been used in a wide variety of applications, particularly in biofluid
dynamics problems where complex geometries and immersed elastic membranes are present.
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Examples include blood flow in the heart [29, 20, 21, 22, 30, 23, 24], vibrations of the cochlear
basilar membrane [3, 11], platelet aggregation during clotting [10, 40], aquatic locomotion
[7, 9, 14, 41, 4], flow with suspended particles [8, 36], and inset flight [25, 26], We refer to
[31] for an extensive list of applications.

Despite of its considerable success, the Immersed Boundary method is known to suffer
from a severe time step restriction to maintain stability if an explicit or semi-implicit method
is used [31, 37, 35]. This restriction is typically much more severe than the one that would
be imposed from using an explicit discretization for the convection term in the Navier-
Stokes equations. The instability is also known to arise from large elastic force and small
viscosity [37]. Much effort has been made to remove this restriction. Some implicit and
approximately implicit methods have been proposed in the literature [38, 27, 19]. However,
none of them give satisfactory performance. The computational cost of using these implicit
or approximately implicit schemes is still too high to be effective in a practical computation.
To date, almost all practical computations using the Immersed Boundary method have been
performed using an explicit discretization.

In this paper, we develop an efficient semi-implicit scheme to remove the time step
restriction of the Immersed Boundary method in a two-dimensional, incompressible Navier-
Stokes flow. There are two important ingredients in deriving our semi-implicit scheme.
The first one is to obtain a semi-implicit discretization for the immersed boundary problem
which is proved to be unconditionally stable. More precisely, we prove that the energy
norm of the numerical solution is a non-increasing function of time. This is a weaker
result than proving that the difference between two solutions in the energy norm can be
bounded in terms of the energy norm of their difference at time zero. The second one
is to perform the Small Scale Decomposition to this unconditionally stable semi-implicit
discretization to obtain our efficient semi-implicit scheme. An important feature of our
small scale decomposition is that the leading order term, which is discretized implicitly, can
be expressed as a convolution operator. This property enables us to solve for the implicit
solution explicitly using the Fourier transformation. Thus, the computational cost of our
semi-implicit scheme is comparable to that of an explicit method. This offers a significant
computational saving in using the Immersed Boundary method.

The semi-implicit scheme that we present in this paper is a generalization of a semi-
implicit scheme for the 2D Stokes equations recently introduced by the authors in [15]. One
of the main contributions of this paper is to find an unconditionally stable semi-implicit
discretization of the Immersed Boundary method for the 2D Navier-Stokes equations. Using
this unconditionally stable semi-implicit scheme as a building block, we obtain an efficient
semi-implicit scheme that is free from the usual CFL stability restriction when the convec-
tion term is discretized explicitly. We note that when viscosity is small and elastic force
is large, the velocity field could be quite large. In this case, removing the CFL stability
constraint could provide significant computational saving. This is also confirmed by our nu-
merical experiments. The semi-implicit discretization that we use for the convection term
is a variant of the Alternating Directional Implicit (ADI) scheme [32] which can be solved
efficiently. This property allows us to implement our semi-implicit scheme very efficiently.

As we mentioned earlier, the Small Scale Decomposition plays an essential role in our
construction of an efficient semi-implicit scheme. This method was first developed by Hou,
Lowengrub and Shelley [12, 13] to remove the stiffness from interfacial flow with surface
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tension. The coupling between the elastic boundary and the fluid makes it much more
difficult to remove the stiffness induced by the elastic force in the Immersed Boundary
method. We overcome this difficulty by designing a unconditionally stable semi-implicit
discretization that decouples the stiffness induced by the elastic force from the fluid flow.
The decoupling of the stiffness induced by the elastic force from the fluid flow makes it
possible for us to apply the Small Scale Decomposition to this unconditionally stable semi-
implicit discretization. This leads to an efficient semi-implicit scheme with the desirable
stability property.

We remark that very recently Newren et al. have obtained an unconditionally stable
method for the 2D Stokes flow with linear force in [28]. Their study sheds new light to the
stability property of the Immersed Boundary method and clarifies some of the confusions
regarding the stability property of the Immersed Boundary method. On the other hand,
since they treat the convection term explicitly, their semi-implicit discretization is not un-
conditionally stable for the Navier-Stokes equations. Moreover, since they do not use the
Small Scale Decomposition in their method, the computational cost of their semi-implicit
method is still quite expensive. The gain of their semi-implicit method over an explicit
discretization is rather limited.

To illustrate the stability property of our semi-implicit scheme, we apply our method
to several prototype problems and test our scheme for a wide range of elastic coefficients
and viscosity coefficients. Our extensive computational experiments confirm that our semi-
implicit scheme removes the high frequency stability constraint induced by the elastic force.
The stability of our semi-implicit scheme is essentially independent of the meshsize. The
computational saving over an explicit scheme is very substantial. The computational gain
is even bigger as the stiffness of the Immersed Boundary method becomes more severe. In
the most severe case we have tested with the elastic coefficient Sb = 105 and the Reynolds
number Re = 60, 000 on a 512 × 512 grid, the maximum time step of our semi-implicit
scheme is 1160 times larger than the explicit scheme. Even after we take into account the
extra cost in inverting the semi-implicit solution, our semi-implicit scheme still runs 683
times faster than the explicit scheme. The saving is even larger as we increase the resolution,
or the elastic coefficient, and/or the Reynolds number.

As an application, we apply our semi-implicit scheme to compute the vortex sheet
problem in a viscous fluid with Reynolds number Re = 10, 000, which is very challenging
computationally. We study the large time behavior of the vortex sheet solution for different
values of Weber numbers. For a modest value of Weber number We = 40/π, the interface
does not roll up. Instead it deforms into elongated fingers that penetrate each fluid into the
other. This is similar to the result of [13, 39]. But for a larger Weber number We = 400/π,
we observe that the vortex sheet rolls up and forms a thin neck near the tip of the finger.
The neck below the tip becomes thinner in time. Unlike the inviscid vortex sheet with
surface tension which forms a finite time pinching singularity in the neck of its finger, the
thickness of the neck does not appear to approach to zero in a finite time for the viscous
vortex sheet. It is likely that the neck is being stabilized by the viscosity of the fluid,
and the vortex sheet rollup may continue indefinitely. This confirms the result previously
obtained by Ceniceros and Roma in [6]. The behavior of the viscous vortex sheet seems to
be qualitatively different from the inviscid vortex sheet with surface tension [13, 6].

This paper is organized as follows. First, we review the classical formulation of the
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Immersed Boundary method in Section 2 and introduce the arclength and tangent angle
formulation. In Section 3, we introduce our unconditionally stable semi-implicit discretiza-
tion and prove its unconditional stability. The Small Scale Decomposition is applied to the
unconditionally stable scheme introduced in Section 4. We give a complete description of
our semi-implicit scheme in Section 5. In Section 6, we apply our semi-implicit scheme to
the viscous vortex sheet problem. In Section 7, we present our extensive numerical exper-
iments to study the stability of our semi-implicit scheme and compare the performance of
our method with the explicit scheme and the unconditionally stable semi-implicit scheme.
Numerical results for the viscous vortex sheet are also given in this section. Some concluding
remarks are given in Section 8.

2 Formulation

In this section, we will review the classical formulation of the Immersed Boundary method
and describe its spatial discretization. We will also introduce the arclength and tangent
angle formulation for the Immersed Boundary method. The use of the arclength and tangent
angle formulation simplifies the construction of our semi-implicit scheme and makes it easier
to apply the Small Scale Decomposition to our unconditionally stable discretization.

2.1 Review of the Immersed Boundary method

We consider a viscous incompressible fluid in a two dimensional domain Ω. An immersed
massless elastic boundary is a closed simple curve Γ contained in Ω. We assume that the
elastic boundary is parameterized by X(α, t), 0 ≤ α ≤ Lb, satisfying X(0, t) = X(Lb, t).
Here α is a Lagrangian variable. The governing equations are the incompressible Navier-
Stokes equations which interact with the elastic boundary through the elastic force f(x, t):

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + µ4u + f(x, t) , (1)

∇ · u = 0 , (2)

∂X

∂t
(α, t) = u(X(α, t), t) , (3)

where u is the fluid velocity, p is the pressure, ρ and µ are constant fluid density and
viscosity respectively. The force density is typically modeled as a Dirac delta function
along the boundary as follows:

f(x, t) =

∫ Lb

0
F(α, t)δ(x −X(α, t))dα, (4)

where δ is the two-dimensional Dirac delta function and

F(α, t) =
∂

∂α
(Tτ ), (5)

T = T

(∣∣∣∣
∂X

∂α

∣∣∣∣
)

. (6)
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The function T is chosen to satisfy the Hook’s law:

T = Sb

(∣∣∣∣
∂X

∂α

∣∣∣∣− 1

)
, (7)

where Sb is the elastic coefficient of the boundary, and τ is the unit tangent vector along
the boundary. This choice of force density has been used widely in the previous studies of
the Immersed Boundary method, see e.g. [16],[34],[38].

The interaction of the fluid and the elastic force is done through the spreading and
interpolation operations, which are defined as follows:

L(X)(g(α))(x) =

∫

Γ
g(α)δ(x −X(α, t))dα, (8)

L∗(X)(u(x))(α) =

∫

Ω
u(x)δ(x −X(α, t))dx . (9)

It is easy to show that L and L∗ are adjoint operators [28, 15]:

< u(x), L(X)(g(α)) >Ω=< L∗(X)(u(x)), g(α) >Γ , (10)

where the inner product are defined as follows:

< u, v >Ω=

∫

Ω
u(x)v(x)dx, < f, g >Γ=

∫

Γ
f(α)g(α)dα. (11)

Using the interpolation operator, we can rewrite (3) in the following way:

∂X

∂t
(α, t) = L∗(X)(u(x, t))(α, t). (12)

Equations (3)-(4) represent the interaction of the fluid and the elastic boundary. At a
given time, the elastic boundary interacts with the fluid through its force along the boundary
and the immersed boundary is convected by the fluid velocity. The force density is then
updated by the new configuration of the boundary.

2.2 Spatial Discretization

We consider the fluid in an unit square domain with doubly periodic boundary conditions.
We use the spectral method to discretize the diffusion term in the Navier-Stokes equations
with a uniform N × N Cartesian grid. A finite difference method can also be used if non-
periodic boundary conditions are used [31]. The discretization of the convection term will
be described in Section 3.

Next, we describe the discretization of the immersed boundary. We employ a Lagrangian
grid with gridsize ∆α. The number of grid points along the boundary is Nb. When the
interface is closed, the solution is periodic along the interface. Thus it makes sense to use
the spectral method to discretize the solution along the immersed boundary. We remark
that a finite difference discretization can be also used [31]. To discretize the spreading and
interpolation operators, we need to introduce a discrete delta function. The discrete delta
function we use was introduced by Peskin in [31]:

δh(x, y) =
1

h2
φ

(
x

h

)
φ

(
y

h

)
, (13)
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where

φ(r) =





1
8

(
3 − 2|r| +

√
1 + 4|r| − 4r2

)
, |r| ≤ 1,

1
8

(
5 − 2|r| −

√
−7 + 12|r| − 4r2

)
, 1 ≤ |r| ≤ 2,

0, |r| > 2.

(14)

Using the above discrete delta function, we discretize the spreading and interpolation op-
erators as follows

Lh(X)(g(α))(x) =
∑

α∈GΓ

g(α)δh(x −X(α, t))∆α, (15)

L∗
h(X)(u(x))(α) =

∑

x∈GΩ

u(x)δh(x−X(α, t))h2. (16)

The above summation is over grid points on the immersed interface Γ in (15) and over grid
points in Ω in (16). We can show that Lh and L∗

h are still adjoint operators [15]:

< u(x), L(X)(g(α)) >Ωh
=< L∗

h(X)(u(x)), g(α) >Γh
, (17)

where the discrete inner products are defined as follows:

< f, g >Γh
=
∑

α∈GΓ

f(α)g(α)∆α, (18)

< u, v >Ωh
=
∑

x∈GΩ

u(x)v(x)h2. (19)

2.3 The arclength-tangent angle formulation

The Small Scale Decomposition plays an important role in the construction of our efficient
semi-implicit scheme. To make it easier to perform the Small Scale Decomposition, we
reformulate the Immersed Boundary method using the arclength-tangent angle formulation.
The arclength-tangent angle formulation has been used successfully by Hou, Lowengrub and
Shelley [12] to remove the stiffness of interfacial flows with surface tension.

We parameterize the interface by X(α, t), α ∈ [0, Lb]. The arclength derivative, sα, and
the tangent vector, θ are defined as follows

sα(α, t) = |Xα(α, t)|, (20)

(xα(α, t), yα(α, t)) = sα(α, t)(cos θ(α, t), sin θ(α, t)). (21)

Let U and V be the normal and tangent components of the velocity field. We can rewrite
the interface equation as follows:

∂X

∂t
= u(X, t) = Un + V τ , (22)

where τ and n are the unit tangent and normal vectors of the interface respectively. By
using the Frenèt formula, ∂τ

∂s = kn, ∂n

∂s = −kτ , one can derive the equivalent evolution
equations for sα and θ [12]:

(sα)t = Vα − θαU, (23)

θt =
Uα

sα
+

V θα

sα
. (24)
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Given sα, θ and a reference point on the interface, we can reconstruct the interface Γ by
integrating (21) with respect to α. Using the sα − θ formulation, we can reformulate the
immersed boundary problem as follows:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + µ4u + L(X) (F(sα, θ)) , (25)

∇ · u = 0, (26)

U = L∗(X)(u(x)) · n, (27)

V = L∗(X)(u(x)) · τ , (28)

(sα)t = Vα − θαU, (29)

θt =
Uα

sα
+

V θα

sα
, (30)

where

F(sα, θ) =
∂

∂α
(Tτ ) = Sb (sα,ατ + (sα − 1)θαn) . (31)

3 A unconditionally stable semi-implicit discretization

In this section, we will describe our unconditionally stable semi-implicit discretization of
the Immersed Boundary method for the incompressible Navier-Stokes equations. We first
introduce the method in Section 3.1 and then prove its unconditional stability in Section
3.2.

3.1 The description of the method

In this subsection, we describe our unconditionally stable semi-implicit scheme. We dis-
cretize the Immersed Boundary method by using a time splitting method. In the first step,
we only discretize the convection term. In the second step, we discretize the Immersed
Boundary method for the Stokes equations. As we mentioned before, we can use a spectral
method or a finite difference method to discretize the solution in space. Below we describe
the algorithm of our unconditionally stable semi-implicit scheme from tn to tn+1. Assume
the velocity field and the interface position are already known at tn. We update the solution
from tn to tn+1 using the following three steps:

Step 1: Discretization of the convection term.

ũn+1,1 − un

∆t
+

1

2
un

1D0
h,1ũ

n+1,1 +
1

2
D0

h,1(u
n
1 ũ

n+1,1) = 0, (32)

ũn+1 − ũn+1,1

∆t
+

1

2
un

2D0
h,2ũ

n+1 +
1

2
D0

h,2(u
n
2 ũ

n+1) = 0, (33)

where D0
h,β is the central difference approximation of the derivative operator along the xβ

direction,

(
D0

h,β φ
)

(x) =
φ(x + heβ) − φ(x − heβ)

2h
, (34)
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where eβ is the unit vector along the coordinate axis with β = 1, 2. The above semi-
implicit discretization of the convection term is a variant of the Alternating Directional
Implicit (ADI) scheme [32]. This special form of the discretization of the convection term
is inspired by a similar explicit discretization of the convection term introduced in [31].

Step 2: Update of un+1, pn+1 and sn+1
α .

ρ
un+1 − ũn+1

∆t
= −∇hpn+1 + µ∇2

hu
n+1 + Lh,n

(
F(sn+1

α , θn; τ n,nn)
)

, (35)

∇2
hpn+1 =

1

∆t
∇h ·

(
Lh,n

(
F(sn+1

α , θn; τ n,nn)
)

∆t + ρũn+1
)

, (36)

V n+1 = L∗
h,n(un+1) · τn (37)

Un+1 = L∗
h,n(un+1) · nn, (38)

sn+1
α − sn

α

∆t
= D∆αV n+1 − D∆αθnUn+1, (39)

where τ
n = (cos(θn), sin(θn)), nn = (− sin(θn), cos(θn)), Lh,n = Lh(Xn), L∗

h,n = L∗
h(Xn),

∇h and D∆α are discrete derivative operators for the Eulerian grid and the Lagrangian grid
respectively, and

F(sn+1
α , θn; τ n,nn) = Sb

(
D∆αsn+1

α τ
n + (sn+1

α − 1)D∆αθnnn
)

. (40)

Step 3: Update of θn+1.
After we have obtained un+1, pn+1 and sn+1

α , we update θ at tn+1 using the following
semi-implicit scheme:

ρ
u n+1 − ũn+1

∆t
= −∇hp n+1 + µ∇2

hu
n+1 + Lh,n

(
F(sn+1

α , θn+1; τ n,nn)
)

, (41)

∇2
h p n+1 =

1

∆t
∇h ·

(
Lh,n

(
F(sn+1

α , θn+1; τ n,nn)
)

∆t + ρũn+1
)

, (42)

V
n+1

= L∗
h,n(u n+1) · τ n (43)

U
n+1

= L∗
h,n(u n+1) · nn, (44)

θn+1 − θn

∆t
=

1

sn+1
α

(
D∆αU

n+1
+ D∆αθnV

n+1
)

. (45)

where

F(sn+1
α , θn+1; τ n,nn) = Sb

(
D∆αsn+1

α τ
n + (sn+1

α − 1)D∆αθn+1nn
)

. (46)

It is important to note that the above discretization is not fully implicit. In fact,
both the spreading and interpolation operators are evaluated at the interface Xn from the
previous time step. Moreover, when solve the sn+1

α and un+1, in (35) - (39), we use θn

instead of θn+1 to evaluate the force density. This makes our semi-implicit discretization
linear with respect to the implicit solution variables, un+1, θn+1, and sn+1

α . The above
semi-implicit discretization essentially decouples the stiffness induced by the elastic force
from the fluid equations. This enables us to remove the stiffness of the Immersed Boundary
method effectively by applying the Small Scale Decomposition and arclength-tangent angle
formulation as was done in [12].
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3.2 Stability analysis

In this section we will analyze the stability of the semi-implicit discretization (32)-(45) in the
energy norm. We will prove that the above semi-implicit discretization is unconditionally
stable in the sense that the total energy is non-increasing.

First, we define the total energy of the physical system. The total energy includes the
kinetic energy K and the potential energy P , which are defined below:

K =
1

2
ρ < u,u >Ωh

=
ρ

2

N∑

i,j=1

uij · uijh
2, (47)

P =
1

2
Sb < sα − 1, sα − 1 >Γh

=
Sb

2

Nb∑

j=1

(sα,j − 1)2∆α. (48)

The total energy is then defined as

E = K + P. (49)

Theorem 1. The semi-implicit scheme (32)-(45) is unconditionally stable in the sense

that the total energy is a non-increasing function of time, i.e. En+1 ≤ En for all n ≥ 0.

Proof of Theorem 1. We first introduce an intermediate kinetic energy as follows:

K̃n+1 =
1

2
ρ < ũn+1, ũn+1 >Ωh

=
ρ

2

N∑

i,j=1

ũn+1
ij · ũn+1

ij h2. (50)

To simplify the presentation, we denote the discrete spectral derivative D∆αg of a function
g as gα. Taking the discrete inner product of (35) with un+1 + ũn+1 , we obtain

Kn+1 − K̃n+1 =
ρ

2
< un+1 + ũn+1,un+1 − ũn+1 >Ωh

=
ρ

2
< −un+1 + ũn+1,un+1 − ũn+1 >Ωh

+ρ < un+1,un+1 − ũn+1 >Ωh

= −
ρ

2
< un+1 − ũn+1,un+1 − ũn+1 >Ωh

+∆t < un+1,−∇hpn+1 + µ∇2
hu

n+1 + Lh,n

(
F(sn+1

α , θn; τ n,nn)
)

>Ωh

= −
ρ

2
< un+1 − ũn+1,un+1 − ũn+1 >Ωh

+∆t < ∇h · un+1, pn+1 >Ωh

−µ∆t < ∇hu
n+1,∇hu

n+1 >Ωh

+∆t < L∗
h,n

(
un+1

)
,F(sn+1

α , θn; τ n,nn) >Γh
. (51)

The second term on the right hand side of (51) is zero because the discrete velocity field is
divergence free, i.e. ∇h · un+1 = 0. The fourth term can be rewritten as

< L∗
h,n

(
un+1

)
,F(sn+1

α , θn; τ n,nn) >Γh

= < V n+1
τ

n + Un+1nn, Sb

(
sn+1
α,α τ

n + (sn+1
α − 1)θn

αnn
)

>Γh

= Sb

(
< V n+1, sn+1

α,α >Γh
+ < Un+1, (sn+1

α − 1)θn
α >Γh

)
, (52)
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where we have used (37), (38), and (40). Combining (51) and (52), we get

Kn+1 − K̃n+1 = −
ρ

2
< un+1 − ũn+1,un+1 − ũn+1 >Ωh

−µ∆t < ∇hu
n+1,∇hu

n+1 >Ωh

+Sb∆t
(
< V n+1, sn+1

α,α >Γh
+ < Un+1, (sn+1

α − 1)θn
α >Γh

)
. (53)

Similarly, using (39) and performing summation by parts, we get

P n+1 − P n =
Sb

2
< sn+1

α + sn
α − 2, sn+1

α − sn
α >Γh

=
Sb

2
< −sn+1

α + sn
α, sn+1

α − sn
α >Γh

+Sb < sn+1
α − 1, sn+1

α − sn
α >Γh

= −
Sb

2
< sn+1

α − sn
α, sn+1

α − sn
α >Γh

+Sb∆t < sn+1
α − 1, V n+1

α − θn
αUn+1 >Γh

= −
Sb

2
< sn+1

α − sn
α, sn+1

α − sn
α >Γh

−Sb∆t
(
< sn+1

α,α , V n+1 >Γh
+ < sn+1

α − 1, θn
αUn+1 >Γh

)
. (54)

Adding (53) to (54), we have

En+1 − P n − K̃n+1

= −
ρ

2
< un+1 − ũn+1,un+1 − ũn+1 >Ωh

−µ∆t < ∇hu
n+1,∇hu

n+1 >Ωh

−
Sb

2
< sn+1

α − sn
α, sn+1

α − sn
α >Γh

≤ 0 (55)

To prove that the total energy is non-increasing, we need to prove that

K̃n+1 ≤ Kn. (56)

The key in proving (56) is the following observation:

〈
v,

1

2
un

i D0
h,iv +

1

2
D0

h,i(u
n
i v)

〉

Ωh

= 0, i = 1, 2, (57)

for any vector v. To prove (57), we use summation by parts to the second term:

〈
v,

1

2
un

i D0
h,iv +

1

2
D0

h,i(u
n
i v)

〉

Ωh

=

〈
un

i v,
1

2
D0

h,iv

〉

Ωh

−

〈
1

2
D0

h,iv, un
i v

〉

Ωh

= 0. (58)

In the above summation by parts, there is no contribution from the boundary term since
we use periodic boundary conditions. Using (57), we have
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K̃n+1,1 − Kn =
1

2
ρ < ũn+1,1 + un, ũn+1,1 − un >Ωh

= −
1

2
ρ < ũn+1,1 − un, ũn+1,1 − un >Ωh

+ρ < ũn+1,1, ũn+1,1 − un >Ωh

= −
1

2
ρ < ũn+1,1 − un, ũn+1,1 − un >Ωh

−ρ < ũn+1,1,
1

2
un

1D0
h,1ũ

n+1,1 +
1

2
D0

h,1(u
n
1 ũ

n+1,1) >Ωh
.

The second term of the right hand side vanishes using (57). Thus we obtain

K̃n+1,1 − Kn = −
1

2
ρ < ũn+1,1 − un, ũn+1,1 − un >Ωh

≤ 0, (59)

where K̃n+1,1 =
ρ

2
< ũn+1,1, ũn+1,1 >Ωh

. Similarly, we have

K̃n+1 − K̃n+1,1 = −
1

2
ρ < ũn+1 − ũn+1,1, ũn+1 − ũn+1,1 >Ωh

≤ 0. (60)

Adding (59) to (60) gives

K̃n+1 − Kn ≤ 0. (61)

Combining (55) and (61), we prove that the total energy is non-increasing

En+1 ≤ P n + K̃n+1 ≤ P n + Kn = En. (62)

This proves that the semi-implicit scheme (32)-(45) is unconditionally stable in the sense
that the total energy is non-increasing.

Remark 1. In our proof presented above, we have used three important properties of our
semi-implicit discretization. The first property is that the discrete spreading and interpo-
lation operators are adjoint. The second property is that the velocity field satisfies the
discrete divergence free condition. The third property is identity (57).

Remark 2. We can also use other schemes to discretize the convection equation

ũt + ũ · ∇ũ = 0, (63)

in the first step of our discretization described in (32)-(33). As long as we use a time
discretization with the following stability property

K̃n+1 ≤ (1 + C∆t)Kn, (64)

then we can easily modify the above proof to show that En ≤ C(T )E0 for all tn ≤ T , where
C(T ) = exp(CT ). In the case of the ADI discretization that we use for the convection
term, we have K̃n+1 ≤ Kn and the total energy is non-increasing. If we use an explicit
discretization for the convection term, a CFL stability constraint is required to satisfy (64).
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4 Small Scale Decomposition

In this section, we apply the Small Scale Decomposition to the unconditionally stable semi-
implicit scheme introduced in Section 3. First, we solve for the velocity field (still denoted as
un+1) from the space-continuous version of (35) and (36) using an integral representation:

un+1(x) =

(
1 −

µ∆t

ρ
∇2
)−1 (

ũn+1 +
∆t

ρ
Ln

(
F
(
sn+1
α , θn

))

− ∇
(
∇2
)−1

∇ ·

(
∆t

ρ
Ln

(
F
(
sn+1
α , θn

))
+ ũn+1

))

=

(
1 −

µ∆t

ρ
∇2
)−1 (

ũn+1 + ∇
(
∇2
)−1

∇ · ũn+1
)

+
∆t

ρ

(
1 −

µ∆t

ρ
∇2
)−1

Ln

(
F
(
sn+1
α , θn

))

−
∆t

ρ

(
1 −

µ∆t

ρ
∇2
)−1 (

∇2
)−1 (

∇∇ · Ln

(
F
(
sn+1
α , θn

)))
.

Let E1 and E2 be the free space fundamental solutions in two dimensions of the following
differential operators:

(
1 −

µ∆t

ρ
∇2
)

E1 = δ(x − x′), (65)

∇2
(

1 −
µ∆t

ρ
∇2
)

E2 = δ(x − x′). (66)

They can be expressed in terms of the modified Bessel function of the second kind [1]:

E1 =
λ2

2π
K0(λ|x − x′|), (67)

E2 =
1

2π

(
K0(λ|x − x′| + ln(|x − x′|)

)
, (68)

where λ2 =
ρ

µ∆t
and K0 is the modified Bessel function of the second kind.

Performing integration by parts, we can further rewrite velocity un+1 as follows:

un+1(x) =

(
1 −

µ∆t

ρ
∇2
)−1 (

ũn+1 + ∇(∇2)−1∇ · ũn+1
)

+
1

2π

∆t

ρ

∫

Γn

λ2K0(λ|x −Xn(α′)|)F(sn+1
α , θn)dα′

−
1

2π

∆t

ρ

∫

Γn

G(x −Xn(α′)) · F(sn+1
α , θn)dα′, (69)

where Γn is the immersed boundary at time tn, and

Gij(r) =
δij

|r|2
−

2rirj

|r|4
+

1

2
λ2(K0(λ|r|) + K2(λ|r|))

rirj

|r|2
− λK1(λ|r|)

(
δij

|r|
−

rirj

|r|3

)
, (70)

K0,K1,K2 are the modified Bessel functions of the second kind.
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As we can see, the singular velocity integral is a complicated nonlocal integral operator.
It is difficult to solve for the implicit solution if we treat the velocity integral fully implicitly.
The discretization we introduce in Section 3 has made an important first step in construct-
ing an efficient semi-implicit method by producing an unconditionally stable discretization
which is linear in terms of the implicit solution at tn+1. However, the resulting integral
equation is still quite expensive to solve. To derive an efficient semi-implicit scheme, we
apply the Small Scale Decomposition to the unconditionally stable discretization we obtain
in Section 3.

The main idea of the Small Scale Decomposition technique introduced in [12] is to
decompose the singular velocity integral into the sum of a linear convolution operator and a
remainder operator which is regular. Since the remaining operator, which could be nonlinear
and nonlocal, is regular, it does not contribute to the stiffness of the problem to the leading
order. Thus we do not need to treat it implicitly. The leading order singular operator,
which captures accurately the high frequency spectral property of the velocity integral,
can be further simplified as a linear convolution integral operator. Thus, if we treat only
the leading order convolution operator implicitly, but keep the regular remainder operator
explicitly, we can effectively remove the stiffness of the velocity field induced by the high
frequency modes of the solution.

Below we will show how to perform such Small Scale Decomposition for the Immersed
Boundary method. Using the Taylor expansion and neglecting the explicit part of the
integral expression (69), we obtain the following decomposition:

V n+1(α) = un+1(Xn(α)) · τn(α)

∼
Sb∆t

2πρ

∫

Γn

λ2K0(λsn
α|α − α′|)sn+1

α,α′dα′ − (71)

Sb∆t

2πρ

∫

Γn

(
1

2
λ2(K0(λsn

α|α − α′|) + K2(λsn
α|α − α′|)) −

1

(sn
α)2 (α − α′)2

)
sn+1
α,α′dα′.

Note that [1]

d2

dα′2

(
1

(sn
α(α))2 K0(λsn

α|α − α′|)

)
=

1

2
λ2 (K0(λsn

α|α − α′|) + K2(λsn
α|α − α′|)

)
. (72)

Integrating the right hand side of (71) by parts twice, we get

V n+1(α) ∼
Sb∆t

2πρ

∫

Γn

λ2K0(λsn
α|α − α′|)sn+1

α,α′dα′ −

Sb∆t

2πρ (sn
α)2

∫

Γn

(
K0(λsn

α|α − α′|) − ln(α − α′)
)
sn+1
α,α′α′α′dα′. (73)

Next, we solve for the velocity field u n+1 from the space-continuous version of (41) and
(42) using an integral representation. Following a similar procedure, we obtain the leading

order term for U
n+1

as follows:

U
n+1

(α) = u n+1(Xn(α)) · nn(α) (74)

∼
Sb∆t

2πρ (sn
α)2

∫

Γn

(
K0(λsn

α|α − α′|) − ln(α − α′)
) (

(sn+1
α − 1)θn+1

α′

)
α′α′

dα′.
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We note that the singular operator is linear since sn+1
α is updated first, but one part of the

operator K0(λsn
α(α′)|α − α′|) still can not be expressed as a convolution operator. Thus,

we need to simplify the kernel further.
First, we approximate sn

α(α) by min
α

sn
α(α). Let β = λmin

α
sn
α(α) and denote by F the

Fourier transform. In [15], we have shown that

F

(
1

π

∫ +∞

−∞
K0(β|α − α′|)f(α′)dα′

)
=

f̂(k)√
β2 + k2

, (75)

where f̂(k) = F(f)(k) =
∫∞
−∞ f(α)eikαdα. Using (75), replacing sn

α(α) by min
α

sn
α(α) and

(sn+1
α − 1) by max

α

(
sn+1
α − 1

)
, we obtain the following simple expressions of the leading

order term for V n+1
α and U

n+1
α in the Fourier transform:

V̂ n+1
α (α) ∼ T̂ (sn+1

α ) ≡ −
Sb∆t

2ρ
(
min

α
sn
α

)2




(
λmin

α
sn
α

)2
k2 + k4

√(
λmin

α
sn
α

)2
+ k2

− |k|3


 ŝn+1

α , (76)

Û
n+1

α (α) ∼ Ŝ(θn+1)

≡ −
Sb∆tmax

α

(
sn+1
α − 1

)

2ρ
(
min

α
sn
α

)2


|k|

3 −
k4

√(
λmin

α
sn
α

)2
+ k2


 θ̂n+1, (77)

Since the above small scale decomposition captures the leading order behavior of the
solution operator, we can use it to obtain the stability constraint for the explicit scheme near
the equilibrium. A simple calculation shows that the stability constraint for the explicit
scheme is given by

∆t < C(Sb, µ)hβ , (78)

where 1 ≤ β ≤ 3/2. The value of β depends on µ. If µ � 1, then we have β ≈ 3/2. On the
other hand, if µ � 1, we have β ≈ 1.

5 Summary of the efficient semi-implicit algorithm

To develop our efficient semi-implicit scheme, we will apply the Small Scale Decomposition
that we developed in the previous section for the tangential an normal velocity fields to the
unconditionally stable semi-implicit discretization introduced in Section 3. We note that
the leading contribution to the stiffness of the sα equation comes from the derivative of the
tangential velocity. The second term involving the normal velocity field is a lower order
term. Thus it is sufficient to treat the leading order term of the derivative of the tangential
velocity implicitly and treat the remaining terms explicitly. Once we have updated sα, the
leading order contribution to the stiffness of the θ equation comes from the derivative of the
normal velocity. Therefore, we just need to treat the leading order contribution from the
the derivative of the normal velocity implicitly when we discretize the θ equation. As we
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see from the previous section (see (76) and (77)), the leading order contributions from U α

and Vα can be expressed as convolution operators. Thus we can invert the implicit solution
explicitly by using the Fourier transform. Based on the above consideration, we propose
the following semi-implicit scheme for the Immersed Boundary method:

Step 1: Discretization of the convection term.

ũn+1,1 − un

∆t
+

1

2
un

1D0
h,1ũ

n+1,1 +
1

2
D0

h,1(u
n
1 ũ

n+1,1) = 0, (79)

ũn+1 − ũn+1,1

∆t
+

1

2
un

2D0
h,2ũ

n+1 +
1

2
D0

h,2(u
n
2 ũ

n+1) = 0. (80)

Step 2: Update of un+1, pn+1 and sn+1
α .

sn+1
α − sn

α

∆t
= T (sn+1

α ) +
(
D∆αV ∗,n+1 − D∆αθnU∗,n+1 − T (sn

α)
)

, (81)

ρ
un+1 − ũn+1

∆t
= −∇hpn+1 + µ∇2

hu
n+1 + Lh,n(F(sn+1

α , θn; τ n,nn)), (82)

∇2
hpn+1 =

1

∆t
∇h ·

(
Lh,n(F(sn+1

α , θn; τ n,nn))∆t + ρũn+1
)

, (83)

where

T̂ (sn+1
α ) = −

Sb∆t

2ρ
(
min

α
sn
α

)2




(
λmin

α
sn
α

)2
k2 + k4

√(
λmin

α
sn
α

)2
+ k2

− |k|3


 ŝn+1

α , (84)

λ2 =
ρ

µ∆t
, and u∗,n+1 is the intermediate velocity at tn+1 which is calculated explicitly

using the following algorithm:

ρ
u∗,n+1 − ũn+1

∆t
= −∇hp∗,n+1 + µ∇2

hu
∗,n+1 + Lh,n(F(sn

α, θn; τ n,nn)), (85)

∇2
hp∗,n+1 =

1

∆t
∇h ·

(
Lh,n(F(sn

α, θn; τ n,nn))∆t + ρũn+1
)

, (86)

V ∗,n+1 = L∗
h,n(u∗,n+1) · τ n, (87)

U∗,n+1 = L∗
h,n(u∗,n+1) · nn. (88)

Step 3: Update of θn+1. Once we have updated u, p, and sα at tn+1, we update θn+1

using the following semi-implicit scheme:

θn+1 − θn

∆t
=

S(θn+1)

minα sn+1
α

+

(
1

sn+1
α

(
D∆αUn+1 + D∆αθnV n+1

)
−

S(θn)

minα sn+1
α

)
, (89)

where

V n+1 = L∗
h,n(un+1) · τ n, (90)

Un+1 = L∗
h,n(un+1) · nn, (91)

Ŝ(θn+1) = −
Sb∆tmax

α
(sn

α − 1)

2ρ
(
min

α
sn
α

)2


|k|

3 −
k4

√(
λmin

α
sn
α

)2
+ k2


 θ̂n+1. (92)
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This is our semi-implicit scheme for the Immersed Boundary method for the Navier-Stokes
equations. Since this scheme is derived by using Small Scale Decomposition, we call it the
SSD semi-implicit scheme. In the semi-implicit scheme described above, we treat only the
leading order term implicitly and discretize the lower order terms explicitly. As a result,
the stability of the SSD semi-implicit scheme is weaker than the original unconditionally
stable scheme and the SSD semi-implicit scheme may not have an associated non-increasing
energy. A near equilibrium analysis shows that the stability condition is ∆t < C(Sb, µ).
Since we treat the convection term implicitly, there is no CFL stability condition for the
time step. Our numerical study also confirms this. Although the leading order term is
discretized implicitly, we can solve for the implicit solution explicitly using the Fourier
transform. Moreover, the linear system resulting from the discretization of the convection
term in (79)-(80) can be solved efficiently by two tridiagonal solves. Therefore the overall
computational cost of the SSD semi-implicit scheme is comparable to that of an explicit
method.

In our scheme, the reference point to reconstruct the interface Xn+1 is computed ex-
plicitly. In order to reduce the stiffness introduced by the single reference point, we update
two points X1,XNb/2, then take average of them to determine the position of the interface
at next time step.

Remark 3. The leading order term we derive above is calculated analytically using the
space-continuous formulation with an unsmoothed Dirac delta function. As Stockie and
Wetton pointed out in [37], this analysis over-predicts the stiffness of the Immersed Bound-
ary method in a practical computation. If we use the leading order approximation directly,
the semi-implicit scheme with the leading order terms derived above tends to over-dissipate
the solution. To alleviate this effect in the practical implementation, we rescale the leading
order term by a coefficient which is calculated at the first time step in the following way:

CV =
maxα V 1,∗

α

maxα T (s0
α)

,

CU =
maxα U1

maxα SU (θ0)
,

where SU (θ0) is the leading order term of U
1
, which can be computed from S(θ0) via the

Fourier transform. The leading order term we use in a practical computation is actually
CV T (sn+1

α ) and CUS(θn+1).

Remark 4. We remark that if we exclude the source term from the above algorithm, we
can get a unconditionally stable method for the incompressible Navier-Stokes in the sense
of the total energy is non-increasing. The accuracy of this method would be first order in
time and second order in space.

6 Viscous Vortex Sheet

In this section, we derive an efficient semi-implicit scheme for the viscous vortex sheet with
surface tension. The motion of an interface, Γ, with surface tension, separating incompress-
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ible, viscous fluids can also be formulated by the Immersed Boundary method:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + µ4u + L(X)(F(sα, θ)), (93)

∇ · u = 0, (94)

U = L∗(X)(u(x)) · n, (95)

V = L∗(X)(u(x)) · τ , (96)

sαt = Vα − θαU, (97)

θt =
Uα

Sα
+

V θα

Sα
, (98)

where

F(sα, θ) =
∂

∂α
(Tτ ) = Tθαn, (99)

and T is the surface tension coefficient. The far field boundary condition is

u(x, y) → (±V0, 0) as y → ±∞. (100)

Note that in this case the force density depends only on the curvature and the configu-
ration of the boundary. If we change the integration variable from the Lagrangian variable
α to the arclength variable s, and use the relationship, θα = κsα, we obtain the following
expression for the force density:

f(x, t) =

∫ L(t)

0
κ(s, t)δ(x −X(s, t))ds, (101)

where L(t) is the total arclength of the interface at time t. Since the force is independent of
sα, the leading order term of the tangential velocity becomes zero. In fact, the tangential
velocity does not influence the evolution of the interface. The choice of the tangential ve-
locity only affects the parameterization of the interface. We can use any tangential velocity,
V , to evolve the interface. In particular, we can choose V such that sα is independent of α
at each time step. In this case, the arclength derivative, sα, can be replaced by the total
arclength of the interface, L(t). This is the so-called θ − L formulation. This leads to the
following choice of V [12]:

V (α, t) = V (0, t) +

∫ α

0
θα′Udα′ − α

∫ 1

0
θα′Udα′. (102)

For simplicity, we can simply set V (0, t) to be 0.
If we use the tangential velocity above, then sα is independent of α, and we have

sα(α, t) = L(t) =

∫ 1

0
sα′(α′, t)dα′. (103)

The evolution of the interface is now given in terms of L and θ

Lt = −

∫ 1

0
θα′Udα′, (104)

θt =
1

L
(Uα + θαV ). (105)
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We remark that Ceniceros and Roma have also used the arclength and tangent angle
formulation to alleviate the stiffness of the viscous vortex sheet with surface tension in [6].

Next, we will derive our semi-implicit scheme for the viscous vortex sheet problem based
on the θ − L formulation. In order to resolve the configuration of the sheet, we develop a
second order semi-implicit scheme. To simplify the presentation, we will only describe the
semi-discrete algorithm. We use the second order ENO scheme to discretize the convection
term [5]. The numerical scheme consists of two steps. In the first step, we update the

solution at an intermediate time step tn+ 1

2 :

Ln+ 1

2 − Ln

∆t/2
= −

∫ 1

0
θn
α′Undα′, (106)

ρ

(
un+ 1

2 − un

∆t/2
+ un · ∇un

)
= −∇pn+ 1

2 + µ∇2un+ 1

2 + Ln (F(θn;nn)) , (107)

∇2pn+ 1

2 = ∇ · (Ln (F(θn;nn)) − ρun · ∇un) , (108)

Un+ 1

2 = L∗
n(un+ 1

2 ) · nn, (109)

V n+ 1

2 =

∫ α

0
θn
α′Un+ 1

2 dα′ − α

∫ 1

0
θn
α′Un+ 1

2 dα′, (110)

θn+ 1

2 − θn

∆t/2
=

Sp(θ
n+ 1

2 )

Ln+ 1

2

+

(
1

Ln+ 1

2

(
U

n+ 1

2
α + θn

αV n+ 1

2

)
−

Sp(θ
n)

Ln+ 1

2

)
. (111)

where nn = (− sin θn, cos θn) and

F(θn;nn) = T θn
α nn. (112)

In the second step, we update the solution at tn+1:

Ln+1 − Ln

∆t
= −

∫ 1

0
θ

n+ 1

2

α′ Un+ 1

2 dα′ (113)

ρ

(
un+1 − un

∆t
+ un+ 1

2 · ∇un+ 1

2

)
= −∇p + µ∇2u + Ln+ 1

2

(
F(θn+ 1

2 ;nn+ 1

2 )
)

(114)

∇2p = ∇ ·
(
Ln+ 1

2

(
F(θn+ 1

2 ;nn+ 1

2 )
)

− ρun+ 1

2 · ∇un+ 1

2

)
(115)

U = L∗
n+ 1

2

(u) · nn+ 1

2 (116)

V =

∫ α

0
θ

n+ 1

2

α′ Udα′ − α

∫ 1

0
θ

n+ 1

2

α′ Udα′ (117)

θn+1 − θn

∆t
=

Sm(θ)

2L
+

(
1

L

(
Uα + θαV

)
−

Sm(θn+ 1

2 )

2L

)
.(118)

where nn+ 1

2 =
(
− sin

(
θn+ 1

2

)
, cos

(
θn+ 1

2

))
,

L =
Ln+1 + Ln

2
, u =

un+1 + un

2
, θ =

θn+1 + θn

2
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and

F(θn+ 1

2 ;nn+ 1

2 ) = T θ
n+ 1

2
α nn+ 1

2 .

Now, the leading order terms, Ŝp and Ŝm, become simpler. They are defined below:

Ŝp(θ
n+ 1

2 ) = −
T∆t

4ρ(Ln)2


|k|3 − k4

√
(λLn)2 + k2


 θ̂n+ 1

2 , (119)

Ŝm(θ) = −
T∆t

2ρL
2


|k|

3 −
k4

√(
λL
)2

+ k2


 θ̂, (120)

where λ2 =
2ρ

µ∆t
The configuration of the interface, X(α, t), can be obtained by integrating the formula

xα = L cos θ, yα = L sin θ. (121)

Unfortunately, integrating (121) directly can not guarantee that the interface is periodic.
The loss of periodicity of the interface can have a serious consequence on the accuracy and
stability of the numerical computation. To overcome this difficulty, we force the interface
to be periodic by integrating the following equivalent formula:

x(α, t) = x(0, t) + α

(
1 − L

∫ 1

0
cos(θ(α′))dα′

)
+ L

∫ α

0
cos(θ(α′)))dα′, (122)

y(α, t) = y(0, t) − αL

∫ 1

0
sin(θ(α′))dα′ + L

∫ α

0
sin(θ(α′)))dα′. (123)

From the periodicity of the problem, the velocity at x(0, t), y(0, t) is always zero, so we fix
x(0, t) = x(0, 0) = 0, y(0, t) = y(0, 0) = 0 in our computations.

7 Numerical results

In this section, we perform a number of numerical experiments to study the stability prop-
erty of our semi-implicit scheme for the immersed boundary problem. To illustrate the
stability property of our semi-implicit scheme, we apply our method to a prototype test
problem and test our scheme for a wide range of elastic coefficients and viscosity coeffi-
cients. We also compare the performance of our method with that of an explicit scheme
and the unconditionally stable scheme. Our computational experiments confirm that our
semi-implicit scheme removes the high frequency stability constraint induced by the elastic
force. The computational saving over an explicit scheme is very substantial. The compu-
tational gain is even bigger as the stiffness of the Immersed Boundary method becomes
more severe. We also apply our semi-implicit scheme to compute the vortex sheet prob-
lem in a viscous fluid with Reynolds number of order 10,000, and observe some interesting
phenomena.
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7.1 The Immersed Boundary method for 2D Navier-Stokes equations

We first describe the set-up of our numerical test problem. The test problem we use is one
typically seen in the literature, in which the immersed boundary is a closed curve initially
in the shape of an ellipse. We choose an ellipse initially aligned in the coordinate directions
with horizontal semi-axis a = 0.32 and vertical semi-axis b = 0.24:

{
x(α, 0) = 0.5 + 0.32 cos α,
y(α, 0) = 0.5 + 0.24 sin α.

(124)

The rest state of the boundary is a circle with radius r = 0.2. The fluid is initially at rest in
a doubly periodic domain Ω = [0, 1] × [0, 1]. The boundary conditions are periodic in both
directions. For this test problem, the boundary oscillates around a circular equilibrium
state with the same area as that of the original ellipse.

We discretize Ω using a uniform N × N grid. We set the mesh size of the immersed
boundary to be Nb = 2N , so that there are approximately 2 immersed boundary points per
mesh width. We use the spectral method to discretize the diffusion term and the spatial
derivatives in the domain Ω and along the immersed boundary. The leading order singular
integral is also discretized by the spectral method. On the other hand, the convection term
is discretized by using the center difference approximation.

We focus on the tests with large elastic coefficient Sb and relatively small viscous coeffi-
cient µ. This is also the most challenging case in practical computations. In our numerical
study, we use a wide range parameter values:

ρ = 1, Sb = 103, 104, 105, µ = 1, 0.1, 0.01.

We also use different spatial resolutions with

N = 128, 256, 512,

to study the stability of our SSD semi-implicit scheme and to compare its performance with
an explicit method.

It is useful to rewrite the model in the nondimensional form. To this end, we define the
following dimensionless variables:

t′ =
t

t0
, x′ =

x

L
, u′ =

ut0
L

, p′ =
pt0
µ

, f ′ =
fLt0

µ
,

where L is the size of computational domain, t0 is characteristic time. Using these new
variables, we have

∂u′

∂t′
+ u′ · ∇u′ =

µt0
ρL2

(
−∇p′ + 4u′ + f ′(x′, t′)

)
, (125)

0 = ∇ · u′. (126)

For the equations of the elastic boundary, the dimensionless variables are

X′ =
X

L
, s′α =

sα

L
, θ′ = θ, α′ =

α

L
, T ′ =

T

Sb
, F′ =

FL

Sb
, τ

′ = τ , n′ = n.
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Then the equations describe the interaction of the boundary and the fluid become

U ′ = u′(X′(α′, t′), t′) · n′, (127)

V ′ = u′(X′(α′, t′), t′) · τ ′, (128)

s′α,t′ = V ′
α′ − θ′α′U ′, (129)

θ′t′ =
1

s′α

(
U ′

α′ + V ′θ′α′

)
, (130)

where

f ′(x′, t′) =
Sbt0
µL

∫ Lb/L

0
F′(α′, t′)δ(x′ −X′(α′, t′))dα′, (131)

u′(X′(α′, t′), t′) =

∫

Ω
u′(x′, t′)δ(x′ −X′(α′, t′))dx′. (132)

From the nondimensional analysis, we can see that there are three nondimensional param-
eters in this problem:

Sbt0
µL

,
µt0
ρL2

,
Lb

L
.

Let U0 = L
t0

be the characteristic velocity. In our test problem, Lb and L are fixed and
depend on the initial condition only. Then there are only two parameters left:

Sb

µU0
,

ρLU0

µ
.

We note that the second parameter is the Reynolds number.
If we choose the characteristic velocity to be the maximum velocity, the range of these

two parameters in our numerical tests is ,

ρLU0

µ
: 10 ∼ 6 × 104,

Sb

µU0
: 102 ∼ 1.6 × 104.

In the case of Sb = 105 and µ = 0.01, the Reynolds number ρLU0

µ is equal to 6 × 104 and

the nondimensionalized elastic coefficient Sb

µU0
is equal to 1.6 × 104.

7.2 Accuracy of our semi-implicit scheme

In this subsection, we perform a convergence study for our semi-implicit scheme. First, we
study the convergence rate in time. We fix N = 256 and vary the time steps in powers of 2
from 1

16 to 1
128 . The elastic coefficient Sb is fixed to be 1. We consider a sequence of viscosity

coefficients: µ = 0.1, 0.01, 0.005. Following [27], we compute the time discretization error
at time T as follows:

eT (v;∆t) = ‖v(T ;∆t) − v(T ;∆t/2)‖l2 . (133)
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∆t = 1/16 ∆t = 1/32 ∆t = 1/64 convergence rate

µ = 0.1 3.32 × 10−4 9.73 × 10−5 2.85 × 10−5 1.77
X µ = 0.01 2.42 × 10−3 7.81 × 10−4 2.82 × 10−4 1.55

µ = 0.005 2.57 × 10−3 1.06 × 10−3 3.69 × 10−4 1.40

µ = 0.1 7.59 × 10−4 3.72 × 10−4 1.66 × 10−4 1.09
u µ = 0.01 2.22 × 10−3 1.06 × 10−3 4.62 × 10−4 1.13

µ = 0.005 4.27 × 10−3 2.05 × 10−3 9.18 × 10−4 1.11

Table 1: Numerical error of X and u with different timestep.

For a vector field u(x) = (u1(x), u2(x)) defined on the Cartesian grid with xi = ih, yj = jh,
the discrete l2 norm is defined as follows

‖u‖l2 =


∑

i,j

(
u2

1(xi, yj) + u2
2(xi, yj)

)
h2




1

2

. (134)

Similarly, the discrete l2 norm for a vector field w(α) = (w1(α), w2(α)) defined on the
interface Γ is defined below:

‖w‖l2 =

(
∑

i

(
w2

1(αi) + w2
2(αi)

)
∆α

) 1

2

. (135)

We compute the solution up to T = 1 and evaluate the convergence rate based on the
numerical solution at T = 1 with different temporal resolutions. The results are shown
in Table 1. As we can see, the convergence rate is better than first order but it does not
achieve second order.

Now, we study the convergence rate in space. The time step is fixed to be 1
512 and the

meshsizes are varied in powers of 2 from 32 to 256. The elastic coefficient Sb is fixed to be
1 and we consider a sequence of viscosity coefficients: µ = 0.1, 0.01, 0.005. The numerical
error is computed in the same way as before:

eT (u;h) = ‖u(T ;h) − u(T ;h/2)‖l2 . (136)

The solution is computed up to T = 1. The results are shown in Table 2. Again, we observe
that the convergence rate is better than first order. As the viscosity coefficient decreases,
the velocity field becomes more and more singular, and the convergence rate also decreases.

7.3 Stability property of our semi-implicit scheme

In this subsection, we will perform some extensive numerical studies to investigate the
stability property of our semi-implicit scheme and compare its performance with an explicit
scheme and the unconditionally stable semi-implicit scheme. In the explicit scheme that we
use, we discretize the convection term using the upwinding scheme and update the elastic
boundary explicitly, but the diffusion term is discretized implicitly. This is similar to the
Forward Euler/Backward Euler method used by Stockie and Wetton in [37].
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h = 1/32 h = 1/64 h = 1/128 convergence rate

µ = 0.1 1.52 × 10−4 3.57 × 10−5 9.31 × 10−6 2.01
X µ = 0.01 3.92 × 10−3 1.23 × 10−3 3.71 × 10−4 1.70

µ = 0.005 6.33 × 10−3 2.19 × 10−3 6.78 × 10−4 1.61

µ = 0.1 3.01 × 10−4 1.06 × 10−5 4.03 × 10−5 1.45
u µ = 0.01 2.86 × 10−3 7.25 × 10−4 3.86 × 10−4 1.44

µ = 0.005 7.77 × 10−3 2.06 × 10−3 1.06 × 10−3 1.43

Table 2: Numerical error of X and u with different spatial meshsize.
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Figure 1: Energy of the Navier-Stokes system for semi-implicit and explicit methods with
different time steps, using the implicit scheme (32)-(33) to discretize the convection term.
Left: ∆t = 2 × 10−6; Right: ∆t = 2 × 10−5. Sb = 105, µ = 0.01.

In Fig 1 we plot the total energy as a function of time for the explicit scheme and our SSD
semi-implicit scheme with different time steps 2×10−6 and 2×10−5. When ∆t = 2×10−6,
both the explicit and SSD semi-implicit schemes are stable. When ∆t = 2 × 10−5, the
explicit scheme becomes unstable, but our SSD semi-implicit scheme is still stable.

To further investigate the stability property of our SSD semi-implicit scheme, we com-
pute the maximum time steps with different meshsizes N = 128, 256, 512. The total time
we run is t = 0.01. For each method we run at least 100 steps. The results are shown in
Table 3. As we can see from Table 3, the maximum time steps that we can use for our
semi-implicit scheme is much larger than that for the explicit scheme. Moreover, the larger
the elastic coefficient, or the Reynolds number, or the numerical resolution is, the larger the
ratio between the maximum time step of our semi-implicit scheme and that of the explicit
scheme becomes. In the most severe case we have tested with Sb = 105, N = 512 and
µ = 0.01, the maximum time step of our semi-implicit scheme is 1160 times larger than
that of the explicit scheme. Even after we take into account the extra cost in inverting the
semi-implicit solution, our semi-implicit scheme still runs 683 times faster than the explicit
scheme.

It is interesting to compare the performance of our semi-implicit scheme for the Navier-
Stokes equations with that for the Stokes equations. In [15], we proposed an efficient
semi-implicit scheme for the Stokes equations, and showed that our semi-implicit scheme
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Sb = 103 Sb = 104 Sb = 105

SSD s,i exp SSD s,i exp SSD s,i exp

N=128 1.21 × 10−1 3.29 × 10−4 2.26 × 10−2 6.33 × 10−5 1.68 × 10−3 1.62 × 10−5

µ = 1 N=256 1.19 × 10−1 1.49 × 10−4 2.26 × 10−2 2.53 × 10−5 1.68 × 10−3 5.72 × 10−6

N=512 1.19 × 10−1 6.73 × 10−5 2.26 × 10−2 1.01 × 10−5 1.68 × 10−3 2.19 × 10−6

N=128 1.67 × 10−2 1.61 × 10−4 4.05 × 10−3 4.57 × 10−5 1.12 × 10−3 1.14 × 10−5

µ = 0.1 N=256 1.67 × 10−2 5.95 × 10−5 4.05 × 10−3 1.64 × 10−5 1.09 × 10−3 4.79 × 10−6

N=512 1.67 × 10−2 2.21 × 10−5 4.05 × 10−3 5.72 × 10−6 1.09 × 10−3 1.63 × 10−6

N=128 1.13 × 10−2 1.17 × 10−4 3.38 × 10−3 1.92 × 10−5 1.01 × 10−3 3.48 × 10−6

µ = 0.01 N=256 1.11 × 10−2 4.57 × 10−5 3.13 × 10−3 1.07 × 10−5 8.86 × 10−4 1.69 × 10−6

N=512 1.09 × 10−2 1.62 × 10−5 2.92 × 10−3 3.50 × 10−6 8.02 × 10−4 6.91 × 10−7

Table 3: Maximum time steps for our SSD semi-implicit scheme for the Navier-Stokes
equations with different meshsizes. The legend “exp” stands for the explicit scheme, “SSD
s,i” the SSD semi-implicit scheme.

gave a substantial improvement over an explicit scheme or a fully implicit scheme. One may
be interesting to see how the inclusion of the convection term may affect the performance of
our semi-implicit scheme. In Table 4, we list the maximum time steps obtained by using our
semi-implicit scheme for the Stokes equations and compare them with those obtained using
the explicit scheme. The comparison is conducted using the same test problem with the same
range of parameters. By comparing Table 3 with Table 4, we can see that the ratio between
the maximum time steps of our semi-implicit scheme and those of the explicit scheme for the
Navier-Stokes equations is comparable to that for the unsteady Stokes equations. This is
very encouraging. It shows that our semi-implicit scheme is as effective for the Navier-Stokes
equations as it is for the unsteady Stokes equations.

The results we present here confirm that our SSD semi-implicit scheme can eliminate
the stability constraint from both the convection term and the elastic force. The stability
of our SSD semi-implicit scheme is much better than that of the explicit scheme. We
note that the maximum time steps for both the Navier-Stokes equations and the unsteady
Stokes equations are essentially independent of the meshsize. On the other hand, we also
observe that the maximum time steps for our SSD semi-implicit scheme still have some mild
dependence on the elastic coefficient and the Reynolds number. This is because the Small
Scale Decomposition does not remove the stiffness of the Immersed Boundary problem in the
low to intermediate frequencies. The large elastic coefficient Sb is multiplied to the solution
in all frequencies. Thus the stiffness also contributes to the low to intermediate frequencies of
the solution. This explains why we can not completely remove the stiffness of the elastic force
in the Immersed Boundary method by using the Small Scale Decomposition. Nonetheless,
given the simplicity and the efficiency of our semi-implicit scheme, the computational gain
we obtain over the explicit scheme is already very substantial.
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Sb = 103 Sb = 104 Sb = 105

SSD s,i exp SSD s,i exp SSD s,i exp

N=128 1.22 × 10−1 3.29 × 10−4 2.26 × 10−2 6.33 × 10−5 3.73 × 10−3 1.61 × 10−5

µ = 1 N=256 1.19 × 10−1 1.48 × 10−4 2.26 × 10−2 2.52 × 10−5 3.25 × 10−3 5.72 × 10−6

N=512 1.19 × 10−1 6.72 × 10−5 2.26 × 10−2 1.01 × 10−5 3.13 × 10−3 2.19 × 10−6

N=128 3.75 × 10−2 1.61 × 10−4 4.49 × 10−3 4.42 × 10−5 8.94 × 10−4 1.14 × 10−5

µ = 0.1 N=256 3.24 × 10−2 5.95 × 10−5 4.39 × 10−3 1.58 × 10−5 8.89 × 10−4 4.20 × 10−6

N=512 3.13 × 10−2 2.21 × 10−5 4.34 × 10−3 5.53 × 10−6 8.89 × 10−4 1.38 × 10−6

N=128 8.78 × 10−3 1.19 × 10−4 2.34 × 10−3 2.02 × 10−5 6.22 × 10−4 3.84 × 10−6

µ = 0.01 N=256 8.72 × 10−3 4.11 × 10−5 2.29 × 10−3 1.01 × 10−5 6.12 × 10−4 1.59 × 10−6

N=512 8.68 × 10−3 1.39 × 10−5 2.26 × 10−3 2.68 × 10−6 5.61 × 10−4 4.94 × 10−7

Table 4: Maximum time steps for our SSD semi-implicit method for the unsteady Stokes
equations with different meshsizes. The legend “exp” stands for the explicit scheme, “SSD
s,i” the SSD semi-implicit scheme.

7.4 Performance

Next, we compare the computational cost of our SSD semi-implicit scheme with that of
the unconditionally stable semi-implicit scheme and the explicit scheme. Specifically, we
compare the CPU time that is required for each of these schemes to obtain an accurate
numerical solution at a given time. Since there is extra computational cost in implementing
our semi-implicit scheme, it is important to compare how much saving we actually obtain
when performing a large scale computational with realistic physical parameters. We docu-
ment the CPU times required for each scheme if we compute the solution up to t = 0.05 in
the most severe case of Sb = 105 and µ = 0.01. We use ∆t = 5× 10−4 for our semi-implicit
scheme and the unconditionally stable semi-implicit scheme. This choice of ∆t = 5×10−4 is
due to the accuracy consideration, not that of stability. We choose this time step to ensure
that the interface is resolved with a reasonable accuracy. Note that the corresponding time
step required by the explicit scheme is much smaller. In the case of N = 512, the maximum
time step that is required by the time step stability constraint is 6.91 × 10−7.

In Table 5, we show the CPU times in seconds for these three schemes. The computa-
tional results presented here are performed by using a Matlab code in a Dell OPTIPLEX
GX620 computer (64-bit-capable 3.6GHz Pentium 4 660 CPU, 512MB of RAM). We observe
that the computational cost of the unconditionally stable semi-implicit scheme is roughly of
the same order as that of the explicit scheme for a modest resolution. The computational
gain over the explicit scheme is very limited. On the other hand, our SSD semi-implicit
scheme runs 427 times faster than the explicit scheme in the case of N = 512. As the elastic
coefficient or the Reynolds number or the resolution increases, the gain over the explicit
scheme is even more substantial.

Recall that the convection term is discretized by using a variant of the semi-implicit ADI
scheme, (32)-(33). To obtain the intermediate velocity field ũ, we need to invert a N × N
linear system 4N times in each time step. Fortunately, the matrix for this linear system
is a cycled tridiagonal matrix, which can be solved with a linear complexity. Thus, the
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explicit SSD s,i stable s,i

N=128 660 13 660

N=256 4970 44 3330

N=512 96961 227 18300

Table 5: The CPU time in seconds for semi-implicit and explicit method. The total time
is 0.05, Sb = 105, µ = 0.01. The legend “SSD s,i” stands for the SSD semi-implicit scheme,
“stable s,i” the unconditionally stable semi-implicit scheme. We use the maximum time
step listed in Table 3 for the explicit scheme. For the SSD semi-implicit scheme and uncon-
ditionally stable semi-implicit scheme, we use ∆t = 5 × 10−4.

SSD s,i upwind s,i (uniform) upwind s,i (adaptive)

N=128 13 39 23

N=256 44 474 194

N=512 227 9912 2672

Table 6: The CPU time in seconds for three semi-implicit schemes with different treatments
of the convection term. The total time is 0.05, Sb = 105, µ = 0.01. The legend “SSD s,i”
stands for the SSD semi-implicit scheme, “upwind s,i (uniform)” the semi-implicit scheme
with an upwinding discretization of the convection term and a uniform time stepping,
“upwind s,i (adaptive)” the semi-implicit scheme with an upwinding discretization of the
convection term and an adaptive time stepping. For the SSD semi-implicit scheme, we use
∆t = 5 × 10−4.

complexity for solving ũ is essentially the same as that for discretizing the convection term
by the upwinding scheme. This shows that the computational cost of our SSD semi-implicit
scheme per time step is comparable to that of the explicit scheme.

As we mentioned before, we can also discretize the convection term by using an explicit
scheme, such as the upwinding scheme. If we do so, we obtain a new semi-implicit scheme
by replacing the discretization (32)-(33) by the upwinding scheme. We call this modified
scheme the upwind semi-implicit scheme. The upwind semi-implicit scheme needs to satisfy
the CFL condition to maintain stability. We have performed numerical experiments to
compare the performance of the upwind semi-implicit scheme with that of the SSD semi-
implicit scheme introduced in Section 5. We have used both a uniform time step and an
adaptive time step to satisfy the CFL condition. The results are shown in Table 6. In the
case of N = 512 using the adaptive time stepping, we need to run 1226 steps to solve the
solution at t = 0.05 for the upwind semi-implicit scheme. The CPU time is 11 times of that
of our SSD semi-implicit scheme. If we use a uniform time step, the number of time steps
would increase to 4386. The CPU time becomes 9912 seconds, which is about 44 times of
that of our SSD semi-implicit scheme. Therefore the additional saving by using the ADI
semi-implicit scheme to the convection term is quite significant.
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Figure 2: Area for our SSD semi-implicit and explicit schemes using a finite difference or a
spectral method. For the explicit scheme, we use ∆t = 3× 10−6. For the SSD semi-implicit
scheme, we use ∆t = 1 × 10−4. Sb = 105, µ = 0.01.

7.5 Area Conservation

It is known that the Immersed Boundary method does not conserve the area enclosed by
the immersed boundary although the velocity field on the Eulerian grid satisfies a discrete
divergence-free condition. Our semi-implicit method does not fix this problem. However,
we find if the velocity field is updated by a spectral method instead of a finite difference
method, the area is conserved much better. This observation is illustrated in Fig 2. For
the same explicit method, if we use the spectral method to solve for the velocity, the area
is almost conservative with only 0.07% area loss. On the other hand, if we use a finite
difference method to solve for the velocity field, then the area loss is as large as 23%. It
has been observed that the larger the time step is, the more severe the area loss becomes
[28]. Note that our SSD semi-implicit scheme uses a much larger time step than the explicit
scheme (by a factor as large as 1000), the use of our semi-implicit scheme may result in a
greater area loss than an explicit scheme. Fortunately, since we use the spectral method to
solve the velocity field, our SSD semi-implicit scheme still gives a much smaller area loss
than the explicit scheme using a finite difference method to solve the velocity field.

7.6 The Immersed Boundary method for the viscous vortex sheet

In this section, we apply the semi-implicit scheme (106)-(120) to compute the viscous vortex
sheet problem with surface tension. The interface is nearly flat initially

x(α, 0) = α, y(α, 0) = 0.05 sin 2πα, γ(α, 0) = 2, (137)

where γ is the vortex sheet strength.
The computational domain is a rectangular domain, [0, 1] × [−1, 1]. The horizontal

boundaries are periodic and the top and bottom boundaries are rigid, moving walls. The
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Figure 3: The evolution of log10(sα) for different values of surface tension

velocity fields at the top and bottom boundaries are (1, 0) and (−1, 0) respectively. This
generates a shear to the fluid flow. The density and viscosity of the fluids above and below
the interface are same, ρ = 1, µ = 2× 10−4. The Reynolds number is equal to 10000, which
is very large. The mesh size we use is 1024 × 2048. The Navier-Stokes equations are solved
by the projection method [2].

A ”frozen coefficient” analysis reveals that an explicit method needs to satisfy the fol-
lowing time step stability constraint:

∆t < C We1/2 (sαh)3/2, where sα = min
α

sα, (138)

where We is the Weber number [12, 13], h = 1/Nb is the grid spacing, Nb is the number
of grid points along the interface Γ. Since the arclength spacing, ∆s ≈ sαh, equation (138)
implies that the stability constraint is in fact determined by the minimum spacing in the
arclength between two adjacent points on the grid.

We plot sα as a function of time for two different values of surface tension coefficients
in Fig. 3 on a base 10 logarithmic scale. We can see that sα decreases by a factor of more
than 102 as the time increases. Thus the time step constraint decreases by at least a factor
of 103 for an explicit method. This makes the computations using an explicit Immersed
Boundary method very expensive.

The evolution of the interface with surface tension coefficient T = 0.05 is shown in Fig
4. The Weber number in this case is We = 40/π. For this value of Weber number, the
interface is unstable but not completely dominated by roll-up induced through the Kelvin-
Helmholtz instability. At the early time, the interface tends to roll up, but the surface
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Figure 4: Configurations of the interface at different times, 0.5s, 1s, 1.5s, 2s, surface tension
coefficient is T = 0.05
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Figure 5: Resolution comparison for N = 1024 (solid) and N = 1536 (dashed-dotted) at
t=2s with surface tension coefficient T = 0.05.

tension force prevents it from rolling up further. The interface deforms into two elongated
fingers that penetrate each fluid into the other. As the time increases, the neck of these
fingers becomes thinner and the length of the fingers becomes longer. In the process, the
fluid accumulates near the tip of each figure. Our result is qualitatively similar to the result
obtained by Hou-Lowengrub-Shelley [13], Ceniceros-Roma [6] and by Tryggvason et al. [39]
for an intermediate Weber number. In Fig 5, we compare the interface that is computed
using N = 1024 with that using N = 1536 at t = 2s. We note that the interface computed
by the coarser mesh moves a bit faster than the interface computed by the finer mesh. Our
result is in a qualitative agreement with the corresponding result obtained by Ceniceros and
Roma (see Fig. 34 of [6]). As pointed by Tryggvason et al. [39], the surface tension forces
are spread out more on a coarser mesh. As a result, the effect of surface tension is weaker
on a coarser mesh and the interface computed by a coarser mesh moves a bit faster than
the interface computed by a finer mesh. We also observe that the accurate computation
of the interface at this late stage requires a very high spatial resolution. This is consistent
with the result obtained by Ceniceros and Roma (see Fig. 34 of [6]).

When the surface tension coefficient is 0.005, the interface rolls up in time as it is shown
in Fig 4. The Weber number in this case is We = 400/π. At t = 0.25, the interface produces
two fingers. These fingers grow in length in the sheet-wise direction. The tips of the fingers
broaden. This can be clearly seen at t = 0.5. By t = 1, the vortex sheet produces another
turn and the fingers have become broader and larger. As time increases, the neck of the
fingers becomes thinner. It is possible that the sides of the fingers might also collide at
some finite time, and so abbreviate their smooth evolution. In the case of an inviscid vortex
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Figure 6: Configurations of the interface at different times, 0.25s, 0.5s, 1s, 1.5s, surface
tension coefficient is T = 0.005
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Figure 7: The closeup view of the vortex sheet roll-up at t=1s with surface tension coefficient
T = 0.005
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Figure 8: Resolution comparison for N = 1024 (solid) and N = 1536 (dashed-dotted) at
t=1s with surface tension coefficient T = 0.005
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sheet with surface tension, a finite time pinching singularity has been observed near the
thin neck of the finger, forming a trapped bubble. In the case of the viscous vortex sheet
with surface tension, this does not appear to the case (at least for this initial data). In Fig
7, we plot the close-up of the tip region and its pocket of fluid. The neck below the tip is
becoming thinner in time. So far as can be discerned, it seems that the thickness of the
neck of the finger does not appear to approach to zero in a finite time. If this is the case,
viscosity would regularize the pinching singularity of the inviscid vortex sheet.

To obtain better evidence that the viscous vortex sheet does not develop a pinching
singularity, we perform a resolution study. In Fig 8, we compare the interfacial profiles
that are obtained by using two large meshsizes: N = 1024 and N = 1536 respectively.
The interfaces computed by the two resolutions agree very well except near the tip of the
interface. As we observed before, the interface computed by a coarser mesh moves a bit
faster than the interface computed by a finer mesh near the tip. Note that, at this time,
there are still more than 10 grid points to resolve the smallest gap, this seems to indicate
that our computation is still reasonably resolved.

We remark that Ceniceros and Roma had previously performed a very careful study of
the viscous vortex sheet problem for various Weber numbers using an acrlength parameter-
ization of the interface and a locally adaptive mesh to solve for the velocity field [6]. They
observed that viscosity tends to stabilize the vortex sheet against pinch-off and presented
a detailed analysis to explain why this is the case. This behavior is qualitatively different
from the inviscid vortex sheet with surface tension [13]. Our computational results are in a
qualitative agreement with the correpsonding results obtained in [6].

It requires very high space resolutions to resolve the nearly singular interfacial dynamics
of the viscous vortex sheet problem. Since the immersed boundary method is only first order
in space, it is not the best method to use to resolve the nearly singular solution of the viscous
vortex sheet problem. Local mesh refinement would be helpful in providing the higher local
resolution near the region where the two interfaces are nearly touching as was done in [6].
We do not intend to use the immersed boundary method to perform a careful study of the
nearly singular dynamics of the viscous vortex sheet problem. This is not the purpose of our
paper. The main purpose of including the viscous vortex sheet problem in our study is to
illustrate that the immersed boundary method can be applied to study interfacial dynamics
that is more complicated than the prototype elastic problem that we considered earlier.

We should also point out that for the viscous vortex sheet problem with small surface
tension coefficient, the stiffness of the problem is much less severe than the elastic problem
with very large elastic coefficients that we consider in this paper. For the viscous vortex
sheet problem, the use of an arclength parameterization can already reduce significantly
the stiffness associated with surface tension, as observed by Ceniceros and Roma [6]. The
combination of the acrlength parameterization of the interface and the use of locally adaptive
mesh to solve for the velocity field seems to offer a computationally effective method to study
the nearly singular behavior of the viscous vortex sheet problem [6].

8 Concluding Remarks

In this paper, we have developed a very efficient semi-implicit immersed boundary scheme
for solving the immersed boundary problem for the Navier-Stokes equations. The Immersed
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Boundary method has emerged as one of the most useful numerical methods in computing
fluid structure interaction, and has found numerous applications. But it also suffers from
the severe time step stability restriction due to the stiffness of the elastic force. Guided by
our stability analysis, we have developed an efficient semi-implicit scheme which removes the
stiffness of the Immersed Boundary method. We have demonstrated that our semi-implicit
scheme has much better stability property than the explicit scheme. More importantly,
unlike most existing implicit or semi-implicit schemes, our semi-implicit scheme can be im-
plemented very efficiently. In fact, our semi-implicit scheme has a computational complexity
that is essentially the same as that of an explicit scheme in each time step, but with a much
better stability property. The saving in the computational cost is very substantial. We have
demonstrated this improved stability for a range of parameters and numerical resolutions.
Our computational results have shown that the more severe the stiffness of the immersed
boundary problem becomes, the bigger the computational saving our semi-implicit schemes
can offer.

One of the essential steps in developing our semi-implicit scheme is to obtain an un-
conditionally stable semi-implicit discretization of the immersed boundary problem. This
provides us with a building block to construct our efficient semi-implicit schemes. By
applying the Small Scale Decomposition to the unconditionally stable semi-implicit time
discretization and further simplifying the leading order singular kernel, we obtain our SSD
semi-implicit scheme. The advantage of this semi-implicit scheme is that the leading order
term can be expressed as a convolution operator, which can be evaluated explicitly using
the Fourier transformation. This allows us to solve for the implicit solution explicitly in
the spectral space. Another contribution of this paper is to introduce a variant of the semi-
implicit ADI discretization for the convection term to eliminate the usual CFL stability
restriction. Both the ADI discretization of the convection term and the leading order semi-
implicit scheme using the Small Scale Decomposition can be inverted very efficiently. This
enables us to obtain a semi-implicit scheme which has the same order of complexity as the
explicit scheme per time step but with a much better stability property.

As an application, we have applied our semi-implicit scheme to study the large time
behavior of the viscous vortex sheet with surface tension. The Reynolds number we consider
is equal to 10, 000, which is very challenging computationally. For large Weber number, we
observe that the vortex sheet rolls up and forms a thin neck near the tip of the finger. Our
computations seem to suggest that the thickness of the neck of the finger does not approach
to zero in a finite time. Our computational result is in a qualitative agreement with the
previous result obtained by Ceniceros and Roma [6] who observed that viscosity tends to
regularize the finite time pinching singularity of the inviscid vortex sheet and performed a
detailed study to explain why this is the case. This behavior is qualitatively different from
the inviscid vortex sheet with surface tension.

The methodology that we present here can be generalized to the three dimensional case.
We are currently developing an efficient semi-implicit scheme for the 3D immersed boundary
problem. This will be reported elsewhere in the future.
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