
An Optimal Order Interior Penalty

Discontinuous Galerkin Discretization of the

Compressible Navier–Stokes Equations

Ralf Hartmann

Institute of Aerodynamics and Flow Technology, DLR (German Aerospace
Center), Lilienthalplatz 7, 38108 Braunschweig, Germany. Ralf.Hartmann@dlr.de

Paul Houston

School of Mathematical Sciences, University of Nottingham, University Park,
Nottingham, NG7 2RD, UK. Paul.Houston@nottingham.ac.uk

Abstract

In this article we propose a new symmetric version of the interior penalty dis-
continuous Galerkin finite element method for the numerical approximation of the
compressible Navier-Stokes equations. Here, particular emphasis is devoted to the
construction of an optimal numerical method for the evaluation of certain target
functionals of practical interest, such as the lift and drag coefficients of a body im-
mersed in a viscous fluid. With this in mind, the key ingredients in the construction
of the method include: (i) An adjoint consistent imposition of the boundary con-
ditions; (ii) An adjoint consistent reformulation of the underlying target functional
of practical interest; (iii) Design of appropriate interior–penalty stabilization terms.
Numerical experiments presented within this article clearly indicate the optimality
of the proposed method when the error is measured in terms of both the L2-norm, as
well as for certain target functionals. Computational comparisons with other discon-
tinuous Galerkin schemes proposed in the literature, including the second scheme
of Bassi & Rebay, cf. [12,13], the standard SIPG method outlined in [27], and an
NIPG variant of the new scheme will be undertaken.

Key words: Finite element methods, discontinuous Galerkin methods, adjoint
consistency, compressible Navier–Stokes equations

1 Introduction

The ever-increasing range of applications of compressible fluid dynamics is a
fertile source of difficult and challenging problems with important implications
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in engineering design. In recent years there has been tremendous interest in
the mathematical development and practical implementation of discontinu-
ous Galerkin finite element methods (DGFEMs, for short) for the discretiza-
tion of compressible fluid flow problems; see, for example, [8,10,11,14,16–
18,27,28,33,36] and the references cited therein. The key advantages of these
schemes are that DGFEMs provide robust and high-order accurate approxi-
mations, particularly in transport-dominated regimes, and that they are lo-
cally conservative. Moreover, there is considerable flexibility in the choice of
the mesh design; indeed, DGFEMs can easily handle non-matching grids and
non-uniform, even anisotropic, polynomial approximation degrees.

The construction of DGFEMs is based on employing a test and trial space
comprising discontinuous piecewise polynomial functions of a given degree.
Information regarding the numerical solution is then communicated between
each element through the introduction of suitable numerical flux functions
defined on the faces of each element in the mesh. We remark that boundary
conditions are typically imposed in a similar fashion. The choice of the nu-
merical flux functions employed then determines the stability and accuracy
properties, etc, of the underlying scheme. For the discretization of transport
terms, numerical flux functions employed within the finite volume community
are typically employed; in the linear setting, most of these fluxes simply lead to
a straight-forward upwinding of the underlying hyperbolic partial differential
operator; see, for example, [7], and the references cited therein.

The discretization of second–order partial differential operators by the DGFEM
has proved more challenging in many ways, particularly in the context of
nonlinear diffusion problems. For a recent review of many of the approaches
proposed in the literature for the discretization of linear second–order ellip-
tic partial differential equations, we refer to [1]. In this case, the DGFEM
is usually constructed by first rewriting the underlying second–order partial
differential equation as a first-order system of equations by introducing addi-
tional auxiliary variables; the resulting system is then discretized by restricting
the test and trial functions to come from the DGFEM finite element space,
together with the introduction of suitable numerical flux functions. The result-
ing discretized system of equations is often referred to as the flux formulation
of the DGFEM. The flux formulation involves unknowns which approximate
the solution of the original partial differential equation, together with the ap-
proximation of the auxiliary variables. Thereby, for computational efficiency,
it is usually desirable to eliminate the auxiliary variables introduced en route
to the derivation of the discretization scheme. This is typically done through
the introduction of suitable lifting operators which leads to the so–called pri-
mal formulation of the DGFEM, cf. [1]. In general, the computation of the
lifting operator present in the primal formulation of the underlying scheme
requires the inversion of local mass matrix problems on each face present in
the computational mesh; see below for the definition of the second scheme
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(BR2) proposed by Bassi & Rebay [12,13].

The computation of the lifting operator present within many DGFEMs is
typically quite expensive; indeed, for a nonlinear problem, around 30% of the
computational effort required for the evaluation of the nonlinear residual is
devoted to the computation of the lifting operator. However, it is worth noting
that for one prominent class of DGFEMs, referred to as the interior penalty
DGFEMs, the lifting operator may be explicitly evaluated; indeed, here the
lifting operator simply reduces to the identity operator. Thus, in principle, the
exploitation of the interior penalty DGFEM is particularly appealing for large
scale CFD applications. In the context of the laminar compressible Navier–
Stokes equations, interior penalty DGFEMs have been developed in our earlier
articles [27,28], for example. However, as we shall see later in this article, in
the context of duality–based error estimation, the symmetric version of the
interior penalty DGFEM proposed in [27] may not lead to optimal rates of
convergence as the mesh size tends to zero.

Building on the techniques outlined in our previous articles [25,27,28], the aim
of this paper is to propose a new alternative interior penalty DGFEM for the
numerical approximation of the compressible Navier–Stokes equations which
leads to computationally optimal orders of convergence when the error is com-
puted in terms of both the L2-norm, as well as for certain target functionals
of the solution of practical interest. Error control in this latter sense is par-
ticularly important in engineering applications; indeed, in CFD one is often
concerned with calculating the lift and drag coefficients of a body immersed
into a viscous fluid whose flow is governed by the Navier–Stokes equations.
The lift and drag coefficients are defined as integrals, over the boundary of the
body, of the viscous and pressure induced forces normal and tangential to the
flow, respectively. With this aim in mind, we note that there are essentially
three key ingredients in the design of the underlying interior penalty DGFEM
to ensure the optimality of the resulting scheme:

(1) Adjoint consistent discretization including an adjoint consistent imposi-
tion of the boundary conditions;

(2) Adjoint consistent reformulation of the underlying target functional of
practical interest;

(3) Design of appropriate interior–penalty stabilization terms.

The use of adjoint consistent, or at least asymptotically adjoint consistent,
numerical schemes is of paramount importance for duality–based error esti-
mation, cf. [1,23,29]. Indeed, the use of, for example, the nonsymmetric inte-
rior penalty method for the numerical approximation of the Poisson’s equation
leads to suboptimal orders of convergence when the error is measured in terms
of both the L2-norm, as well as for target functionals of the solution, cf. [23].
We should point out that the use of adjoint consistent numerical fluxes within
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the design of DG methods is a very natural requirement which is already em-
ployed within a number of schemes proposed within the literature; see [1], for
example, and the references cited therein. In the context of target functional
error estimation, it is frequently the case that the functional may be expressed
in a variety of different ways which are all equivalent on the continuous level,
but may lead to quite different numerical approximations under discretiza-
tion. Thereby, a suitable adjoint consistent reformulation of the functional
under consideration may also be required for purposes of optimality. This was
first investigated for DGFEMs in the article [22], though we remark that this
idea had been previously developed in the context of conforming finite ele-
ment methods in the articles [2–4], for example. In this context, we point out
that when considering the estimation of, for example, the flux on a portion
of the boundary of a second–order elliptic partial differential equation, the
adjoint consistent reformulation of the target functional under consideration
is performed in a fundamentally different manner depending on whether a
DGFEM or a conforming Galerkin finite element method is employed. Indeed,
in the former case, the adjoint consistent modification of this target functional
still leads to an integral on the corresponding boundary of the computational
domain. In contrast, for the case when a continuous Galerkin finite element ap-
proximation is employed, the boundary flux must be reformulated as a volume
integration over all the elements in the computational mesh which neighbor
the boundary of interest, to ensure optimal convergence of the underlying tar-
get functional as the mesh is uniformly refined. The extension of these ideas
to the discontinuous Galerkin discretization of compressible fluid flows has
also been developed in the recent articles [34] and [25]. Finally, in the con-
text of interior–penalty DGFEMs, the absence of the lifting operator, although
advantageous from a computational point of view, means that the natural gen-
eralization of the scheme from the discretization of the Laplace operator to
nonlinear diffusion problems, leads to the introduction of so-called jump terms
in the underlying numerical scheme which penalize discontinuities present in
the numerical solution subject to a uniform penalty term weighted appropri-
ately by the polynomial degree and the mesh size; cf. [27] for the discretization
of the compressible Navier–Stokes equations and [30] for DGFEMs employed
in the numerical approximation of second–order quasi-linear elliptic partial
differential equations. However, as we shall see later, this choice of the interior
penalty parameter may not lead to optimal orders of convergence, when the
error is measured in terms of the L2-norm as well as for target functionals
of the solution. Thereby, in this article we shall propose an alternative choice
which is very much inspired by the corresponding term arising in the BR2
scheme, cf. [12,13], for example, but has the advantage of not requiring the
computation of a lifting operator; we point out that a similar expression for
the interior penalty parameter has also been proposed in the recent article [35].
Indeed, our numerical experiments will demonstrate that the accuracy of the
proposed interior penalty DGFEM is comparable to that of the BR2 method,
yet the evaluation of the underlying residual of the scheme is significantly
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computationally cheaper due to the absence of the lifting operator.

The outline of this article is as follows. In Section 2 we introduce the two–
dimensional compressible Navier–Stokes equations. Section 3 considers the
construction of the new symmetric interior penalty DGFEM; here, particu-
lar attention will be devoted to both the adjoint consistent imposition of the
boundary conditions, as well as the design of appropriate penalty terms. The
adjoint consistency of the method with respective to a general target func-
tional of practical interest will be demonstrated in Section 4 using the general
framework developed within the article [25]. The computational performance
of the proposed method will be studied in Section 5 on sequences of both
uniformly and adaptively refined computational meshes. Finally, in Section 6
we summarize the work presented in this paper and draw some conclusions.

2 The compressible Navier-Stokes equations

In this section we consider the two-dimensional stationary compressible Navier-
Stokes equations

∇ · (F c(u) −F v(u,∇u)) = 0 in Ω, (1)

where Ω is an open bounded domain in R
2. The vector of conservative variables

u and the convective fluxes F c(u) are defined by

u =




ρ

ρv1

ρv2

ρE




, f c
1(u) =




ρv1

ρv2
1 + p

ρv1v2

ρHv1




and f c
2(u) =




ρv2

ρv1v2

ρv2
2 + p

ρHv2




,

respectively. Furthermore, the viscous fluxes F v(u,∇u)=(f v
1 (u,∇u), f v

2 (u,∇u))
are defined by

fv
1 (u,∇u) =




0

τ11

τ21

τ1jvj + KTx1




and fv
2 (u,∇u) =




0

τ12

τ22

τ2jvj + KTx2




.

Here, ρ, v = (v1, v2)
>, p, E, and T denote the density, velocity vector, pressure,

specific total energy, and temperature, respectively. Moreover, K is the thermal
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conductivity coefficient and H is the total enthalpy defined by H = E + p/ρ.
The pressure is determined by the equation of state of an ideal gas, i.e.,

p = (γ − 1)ρ(E − 1
2
v2), (2)

where γ = cp/cv is the ratio of specific heat capacities at constant pressure
(cp) and constant volume (cv); for dry air, γ = 1.4. For a Newtonian fluid, the
viscous stress tensor is given by

τ = µ
(
∇v + (∇v)> − 2

3
(∇ · v)I

)
,

where µ is the dynamic viscosity coefficient; the temperature T is given by
KT = µγ

Pr

(
E − 1

2
v2

)
, where Pr = 0.72 is the Prandtl number.

Writing G to denote the homogeneity tensor, with Gij(u) = ∂f v
i (u,∇u)/∂uxj

,
for i, j = 1, 2, cf. [27], the viscous fluxes may be written in the form f v

i (u,∇u) =
Gij(u)∂u/∂xj , i = 1, 2, or more compactly, we may write F v(u,∇u) =
G(u)∇u.

Given that Ω ⊂ R
2 is a bounded region, with boundary Γ, the system of

conservation laws (1) must be supplemented by appropriate boundary condi-
tions. For simplicity of presentation, we assume that Γ may be decomposed
as follows

Γ = ΓD,sup ∪ ΓD,sub-in ∪ ΓD,sub-out ∪ ΓW,

where ΓD,sup, ΓD,sub-in, ΓD,sub-out, and ΓW are distinct subsets of Γ representing
Dirichlet (supersonic), Dirichlet (subsonic-inflow), Dirichlet (subsonic-outflow),
and solid wall boundaries, respectively, cf. [27]. We remark that as in [27,28],
Neumann boundary conditions may also be considered; for clarity of presen-
tation, we neglect this case and refer to our earlier articles for details.

Thereby, we may specify the following boundary conditions:

B(u) = B(gD) on ΓD,sup ∪ ΓD,sub-in ∪ ΓD,sub-out,

where gD is a prescribed Dirichlet condition. Here, B is a boundary opera-
tor employed to enforce appropriate Dirichlet conditions on ΓD,sup ∪ ΓD,sub-in ∪
ΓD,sub-out. For simplicity of presentation, we assume that B(u) = u on ΓD,sup,
B(u) = (u1, u2, u3, 0)> on ΓD,sub-in, and B(u) = (0, 0, 0, (γ − 1)(u4 − (u2

2 + u2
3)/

(2u1)))
> on ΓD,sub-out; we note that this latter condition enforces a specific

pressure pout = (B(gD))4 on ΓD,sub-out.

For solid wall boundaries, we consider isothermal and adiabatic conditions; to
this end, decomposing ΓW = Γiso ∪ Γadia, we set

v = 0 on ΓW, T = Twall on Γiso, n · ∇T = 0 on Γadia,
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where Twall is a given wall temperature; see [8,10,15,17,19] and the references
cited therein for further details.

3 DGFEM discretization of the compressible Navier-Stokes equa-

tions

In this section we propose a new discontinuous Galerkin method with interior
penalty for the discretization of the compressible Navier–Stokes equations (1).
This is based on two key modifications of the original scheme developed in [27]:
(i) Implementation of an adjoint consistent formulation of the numerical fluxes
on the boundary of the computational domain, cf. [34,25]; (ii) Modification of
the interior penalty parameter, which is very much inspired by the definition
of the penalty term involving a suitable lifting operator present in the second
scheme proposed by Bassi & Rebay [12,13].

First, we begin by introducing some notation. We assume that Ω can be sub-
divided into shape-regular meshes Th = {κ} consisting of quadrilateral ele-
ments κ. For each κ ∈ Th, we denote by nκ the unit outward normal vector
to the boundary ∂κ, and by hκ the elemental diameter. Moreover, h denotes
the piecewise constant mesh function defined by h|κ ≡ hκ = diam(κ) for all
κ ∈ Th. We assume that each κ ∈ Th is an image of a fixed reference element
κ̂, that is, κ = σκ(κ̂) for all κ ∈ Th, where κ̂ is the open unit square in R

2 and
σκ is a smooth bijective mapping. For elements in the interior of the domain,
namely ∂κ ∩ Γ = ∅, the mapping σκ is bilinear; in order to represent curved
boundaries in an accurate manner for boundary elements, i.e., ∂κ ∩ Γ 6= ∅,
the mapping σκ is constructed based on employing a higher–order polynomial
representation of the computational boundary, see [24,31,37], for example.

On the reference element κ̂ we define the space of tensor product polynomials
of degree p ≥ 0 as follows:

Qp(κ̂) = span {x̂α : 0 ≤ αi ≤ p, 1 ≤ i ≤ 2} ,

where α denotes a multi-index and x̂α =
∏2

i=1 x̂
αi

i . Finally, we introduce the
finite element spaces V

p
h and Σp

h consisting of discontinuous vector–valued
and tensor–valued, respectively, tensor product polynomial functions of degree
p ≥ 0, defined by

V
p
h = {vh ∈ [L2(Ω)]4 : vh|κ ◦ σκ ∈ [Qp(κ̂)]

4 , κ ∈ Th},
Σp

h = {τh ∈ [L2(Ω)]4×2 : τh|κ ◦ σκ ∈ [Qp(κ̂)]
4×2 , κ ∈ Th},

respectively.

An interior edge of Th is the (non-empty) one-dimensional interior of ∂κ+ ∩
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κ+
v+

κ v−
κ

κ−

Fig. 1. Definition of the interior and exterior traces v
±
κ with respect to element κ+.

∂κ−, where κ+ and κ− are two adjacent elements of Th. Similarly, a boundary
edge of Th is the (non-empty) one-dimensional interior of ∂κ∩Γ which consists
of entire edges of ∂κ. We denote by ΓI the union of all interior edges of Th.
Suppose that v|κ ∈ [H1(κ)]

4
for each κ ∈ Th. Let κ+ and κ− be two adjacent

elements of Th and x an arbitrary point on the interior edge e = ∂κ+∩∂κ− ⊂
ΓI . By v±

κ we denote the traces of v taken from within the interior of κ±,
respectively, see Figure 1. Traces of matrix-valued functions τ are defined in
an analogous manner. Since below it will always be clear from the context
which element κ in the subdivision Th the quantities v+

κ and v−
κ correspond

to, for the sake of notational simplicity, we shall suppress the letter κ in the
subscript and write, respectively, v+ and v−, instead.

We now define average and jump operators for vector- and matrix-valued
functions. To this end, we again write κ+ and κ− to denote two adjacent
elements of Th and x an arbitrary point on the interior edge e = ∂κ+∩∂κ− ⊂
ΓI . Moreover, let v and τ be vector- and matrix-valued functions, respectively,
that are smooth inside each element κ±. Then, we define the averages at x ∈ e
by {{v}} = (v+ + v−)/2 and {{τ}} = (τ+ + τ−)/2, respectively. Similarly, the
jump at x ∈ e is given by [[v]] = v+⊗nκ++v−⊗nκ− . On a boundary edge e ⊂ Γ,
we set {{v}} = v, {{τ}} = τ and [[v]] = v⊗n, where n denotes the unit outward
normal vector to the boundary Γ. For matrices σ, τ ∈ R

m×n, m,n ≥ 1, we
use the standard notation σ : τ =

∑m
k=1

∑n
l=1 σklτkl; additionally, for vectors

v ∈ R
m,w ∈ R

n, the matrix v ⊗ w ∈ R
m×n is defined by (v ⊗ w)kl = vk wl.

The discontinuous Galerkin discretization of the compressible Navier–Stokes
equations (1) is given by: find uh ∈ V

p
h such that

N (uh,v)≡−
∫

Ω
F c(uh) : ∇hv dx +

∑

κ∈Th

∫

∂κ\Γ
H(u+

h ,u
−
h ,n

+) · v+ ds

+
∫

Ω
Fv(uh,∇huh) : ∇hv dx −

∫

ΓI

{{F v(uh,∇huh)}} : [[v]] ds

−
∫

ΓI

{{G>(uh)∇hv}} : [[uh]] ds+
∫

ΓI

δ(uh) : [[v]] ds

+NΓ(uh,v) = 0 (3)

for all v in V
p
h. The subscript h on the operator ∇h is used to denote the

broken gradient operator ∇, defined elementwise. Here, H(·, ·, ·) denotes the
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(convective) numerical flux function; this may be chosen to be any two–point
monotone Lipschitz function which satisfies the following two conditions:

(i) H(·, ·, ·)|∂κ is consistent with the flux F c(·) · n for each κ in Th, i.e.,

H(v,v,n)|∂κ = F c(v) · n ∀κ ∈ Th;

(ii) H(·, ·, ·) is conservative, i.e., given any two neighboring elements κ+ and κ−

from the finite element partition Th, at each point x ∈ ∂κ+ ∩ ∂κ− 6= ∅,
noting that nκ− = −nκ+, we have

H(v,w,nκ+) = −H(w,v,−nκ+).

For the purposes of the numerical experiments presented in Section 5, we
employ the Vijayasundaram flux. In this case, H(·, ·, ·) is defined by

H(u+
h ,u

−
h ,nκ)|∂κ = A+(ûh,nκ)u

+
h + A−(ûh,nκ)u

−
h for κ ∈ Th,

where A+(ûh,nκ) and A−(ûh,nκ) denote the positive and negative parts of
the Jacobi matrix A(ûh,nκ), respectively, evaluated at some average state ûh

between u+
h and u−

h . Here,

A(uh,nκ) = F c
u
(uh) · nκ ≡

2∑

i=1

Ai(uh) (nκ)i ,

where Ai, i = 1, 2, are the Jacobi matrices of the fluxes f c
i , respectively, cf.

[32,38].

For an interior edge e ∈ ΓI the penalization function δ(·) arising in the
DGFEM (3) may be defined in a number of ways. For our newly proposed
interior penalty DGFEM, we denote δ(·) by δSIPG(·), since this represents a
generalization of the symmetric interior penalty method developed for linear
diffusion problems, cf. [1], and the references cited therein. Indeed, on this basis
we shall use the short-hand notation SIPG to refer to this scheme. In Section 5
computational comparisons between our newly proposed SIPG scheme and,
what we shall subsequently refer to as the standard interior penalty method
proposed in [27], as well as the second DGFEM proposed by Bassi & Rebay
(see Remark 3.2 for further details) will be undertaken; in the sequel we shall
refer to these two latter schemes as STSIPG and BR2, respectively. Thereby,
we shall also introduce the corresponding penalty functions δSTSIPG(·) and
δBR2(·), respectively. With this notation we write

δ(uh) ≡





δSIPG(uh) = CIP

p2

he
{{G(uh)}}[[uh]], for the (new) SIPG scheme,

δSTSIPG(uh) = CIPµ
p2

he
[[uh]], for the STSIPG scheme,

δBR2(uh) = CBR2{{Le
0(uh)}}, for the BR2 scheme,

9



where CIP and CBR2 are positive constants. For reasons of stability, CIP must
be chosen sufficiently large. Similarly, CBR2 must be chosen to be at least as
large as the total number of edges a given element possesses, i.e., in the case
of quadrilateral meshes, CBR2 ≥ 4. We remark that this theoretical minimum
is based on the analysis of Poisson’s equation, though such a requirement is
also likely to be necessary for more complex problems. The local mesh size he,
defined by

he = min(meas(κ+),meas(κ−))/meas(e),

represents the element dimension orthogonal to the edge e = ∂κ+ ∩ ∂κ−, cf.
[20]. Here, we point out that the BR2 scheme requires, for every edge e ∈ ΓI ,
the computation of the local lifting Le

0(uh) ∈ Σp
h which is defined by

∫

Ω
Le

0(uh) : τ dx =
∫

e
[[uh]] : {{G>(uh)τ}}ds ∀τ ∈ Σp

h.

Note, that the support of Le
0(uh) is Ωe = κ+

e ∪ κ−e with e = ∂κ+
e ∩ ∂κ−e 6= ∅.

Finally, it remains to define the boundary terms present in the semilinear form
NΓ(uh,v). To this end, we define

NΓ(uh,v) =
∫

Γ
HΓ(u+

h ,uΓ(u+
h ),n+) · v+ ds+

∫

Γ
δΓ(u+

h ) : v ⊗ nds,

−
∫

Γ
n · F̂v(uΓ(u+

h ),∇hu
+
h )v+ ds

−
∫

Γ

(
Ĝ>(uΓ(u+

h ))∇hv
+
h

)
:
(
u+

h − uΓ(u+
h )

)
⊗ nds.

(4)

Here, the viscous fluxes F̂v(u,∇u) are defined as follows

F̂v(u,∇u) =




Fv(u,∇u) on Γ\Γadia,

Fv,adia(u,∇u) on Γadia,

where F v,adia(u,∇u) is defined so that

Fv,adia(u,∇u) · n = (0, τ1jnxj
, τ2jnxj

, τijvjnxi
)>;

thereby, enforcing the adiabatic solid wall boundary condition n · ∇T = 0
on Γadia. Here, the summation convention has been assumed, where n =
(nx1

, nx2
)>. Furthermore, the corresponding homogeneity tensor Ĝ is defined

so that F̂v(u,∇u) = Ĝ(u)∇u.

On the boundary of the computational domain the penalization function δΓ(·)
is defined as follows
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δΓ(uh) ≡





δSIPG
Γ (uh) = CIP

p2

he
Ĝ(uΓ(u+

h )) (uh − uΓ(uh)) ⊗ n,

δSTSIPG
Γ (uh) = CIPµ

p2

he
(uh − uΓ(uh)) ⊗ n,

δBR2
Γ (uh) = CBR2L

e
Γ(uh),

for the (new) SIPG, STSIPG, and BR2 schemes, respectively. For a boundary
edge e ⊂ Γ the local lifting operator Le

Γ(uh) ∈ Σp
h is defined by:

∫

Ω
Le

Γ(uh) : τ dx =
∫

e
(uh − uΓ(uh)) ⊗ n :

(
Ĝ>(uΓ(uh))τ

)
ds ∀τ ∈ Σp

h.

Here, note that the support of Le
Γ(uh) is κe, where κe is the element in Th such

that ∂κe ∩ Γ = e.

The convective numerical flux function HΓ(·, ·, ·) is defined as follows

HΓ(u+
h ,uΓ(u+

h ),n) = n · F c(uΓ(u+
h )). (5)

Finally, the boundary function uΓ(u) is given according to the type of bound-
ary condition imposed. To this end, we set uΓ(u) = gD on ΓD,sup, uΓ(u) =

((gD)1, (gD)2, (gD)3,
p(u)
γ−1

+((gD)2
2 +(gD)2

3)/(2(gD)1))
> on ΓD,sub-in, and uΓ(u) =

(u1, u2, u3,
pout

γ−1
+ (u2

2 + u2
3)/(2u1))

> on ΓD,sub-out. Here, p ≡ p(u) denotes the

pressure evaluated using the equation of state (2). On Γiso, we set uΓ(u) =
(u1, 0, 0, u1cvTwall)

>, while uΓ(u) = (u1, 0, 0, u4)
> on Γadia.

Remark 3.1 We note that the non-symmetric variant of the interior penalty
method, which we will subsequently refer to as the NIPG scheme, is obtained
by changing the sign in front of the fifth and fourth terms arising in the semi-
linear forms N (·, ·) and NΓ(·, ·), respectively, defined, respectively, in (3) and
(4).

Remark 3.2 We point out that the formulation of the second DGFEM pro-
posed by Bassi & Rebay defined above is based on exploiting the so–called
flux–based formulation of the scheme which has been developed for laminar
flows in the articles [12,13]; this terminology is used to highlight the fact that
the underlying lifting operator represents a contribution to the viscous flux
function. An alternative gradient–based formulation, where now the associated
lifting operator represents a contribution to the gradient of the conservative
variables, may be defined by employing the following the penalty function on
interior edges

δBR2′(uh) = CBR2{{G(uh)L
e′

0 (uh)}},
where, for every edge e ∈ ΓI , the local lifting operator Le′

0 (uh) ∈ Σp
h is defined

by ∫

Ω
Le′

0 (uh) : τ dx =
∫

e
[[uh]] : {{τ}} ds ∀τ ∈ Σp

h;

11



on boundary edges we write

δBR2′

Γ (uh) = CBR2 Ĝ(uΓ(uh))L
e′

Γ (uh),

where
∫

Ω
Le′

Γ (uh) : τ dx =
∫

e
(uh − uΓ(uh)) ⊗ n : τ ds ∀τ ∈ Σp

h.

This latter gradient–based formulation has been exploited for turbulent com-
pressible flows in the article [9]; see also [14] for earlier work on this scheme.
We point out, cf. Section 5 below, that for the numerical approximation of
the laminar compressible Navier–Stokes equations (1) both the flux–based and
gradient–based schemes proposed by Bassi & Rebay are almost identical in
terms of accuracy, however, the latter scheme is substantially more expensive,
in terms of computational effort, than the flux–based method. Thereby, in the
sequel we shall primarily focus on making comparisons between the flux–based
scheme (BR2) and the SIPG and STSIPG methods.

Remark 3.3 We remark that for purposes of stability the constant CIP ap-
pearing in the definition of the interior penalty terms must be chosen suffi-
ciently large, cf. [1], for example. Computational experience indicates that a
value of around 10–20 is sufficient to guarantee stability of the method, without
being so large as to adversely affect the conditioning of the resulting system of
nonlinear equations. However, in terms of accuracy, the method is relatively
insensitive to the magnitude of CIP, provided that CIP is chosen large enough
to guarantee stability.

Remark 3.4 As a final remark, we point that that a similar definition for
the interior penalty terms for the newly proposed SIPG scheme has also been
considered in the recent article [35]. In that paper, the jumps in the numerical
solution are scaled by the homogeneity tensor G evaluated at the average of the
numerical solution (the averaging being computed between the two states of the
solution on neighboring elements), rather than computing the average state of
G on a given edge as proposed here. However, the scheme developed in [35] does
not impose the boundary conditions in an adjoint consistent manner which is
essential for optimality.

4 Consistency and adjoint consistency

In the context of duality–based error estimation, one of the key ingredients
needed to ensure that the underlying numerical approximation converges opti-
mally, as the computational mesh is refined, is the so-called adjoint consistency
property of the discretization scheme employed (assuming, of course, sufficient

12



regularity of both the underlying primal and dual problems). In the context of
DGFEM approximations to Poisson’s equation, adjoint consistency has been
investigated in [1] for a wide variety of commonly used DGFEMs; see also
[22] for related work developed in the context of functional error estimation.
The extension of these ideas to DGFEM approximations of compressible fluid
flows has been considered in the articles [34,25]. As noted in the Section 1,
in the context of target functional error estimation, adjoint consistency of the
underlying scheme must also be accompanied by an adjoint consistent refor-
mulation of the underlying target functional of practical interest, cf. [22,34,25].
Indeed, as we shall see in Section 5.2, the accuracy of the underlying scheme
may seriously deteriorate if the underlying target functional considered is not
reformulated in a suitable manner. However, we remark that this reformula-
tion of the target functional is not essential in all cases, cf. Section 5.1, where
the weighted mean-value of the density is considered.

The purpose of this section is to demonstrate that the new SIPG scheme
proposed in the previous section is adjoint consistent. Here, the analysis will
be pursued in the context of estimating the general target functional

J(u) = JΩ(u) + JΓ(u), (6)

where

JΩ(u) =
∫

Ω
u ·ψΩ dx

and

JΓ(u) =
∫

Γ
(pn − τ n) ·ψΓ ds. (7)

Here, ψΩ ∈ [L2(Ω)]4 and ψΓ ∈ [L2(Γ)]2 are given weighting functions de-
fined on the interior and boundary of Ω, respectively. We remark that JΩ(·)
represents the weighted mean-value functional, while the boundary functional
JΓ(·) is of vital importance in the context of aerodynamic flows. Indeed, in
this latter case, setting

ψΓ =





1
C∞
ψ on ΓW ,

0 otherwise,
(8)

where ψ is given by ψd = (cos(α), sin(α))> or ψl = (− sin(α), cos(α))>, JΓ(·)
defines the drag and lift coefficient, respectively, of a body immersed in a
viscous fluid with inlet flow at the angle of attack α. Here, C∞ = 1

2
γp∞M

2
∞l̄ =

1
2
γ |v∞|2

c2∞
p∞l̄ = 1

2
ρ∞|v∞|2l̄, where M∞ denotes the Mach number at free-stream

conditions, c∞ is the free-stream speed of sound defined by c2∞ = γp∞/ρ∞,
where p∞ and ρ∞ denote the freestream pressure and density, respectively,
and l̄ denotes the reference (chord) length of the body.

Following [25], we note that the continuous adjoint equations to (1) are given

13



by

− (F c
u
− Fv

u
)>∇z −∇ ·

(
(Fv

∇u
)> ∇z

)
= ψΩ. (9)

subject to the boundary conditions on ΓW = Γiso ∪ Γadia,

(n · (F c
u
− Fv

u
))> z + n ·

(
(Fv

∇u
)> ∇z

)
= 1

C∞
(pu n − τu n) ·ψ, (10)

(n · Fv
∇u

)> z = 1
C∞

(τ∇u n) ·ψ, (11)

see [25]. At wall boundaries ΓW where v = (v1, v2)
> = 0, the normal viscous

flux reduces to n · F v(u,∇u) = (0, (τn)1, (τn)2,n · ∇T )>. Thereby, cf. [25],
the continuous adjoint boundary conditions of the adjoint problem (9) to the
compressible Navier-Stokes equations are given by

z2 = 1
C∞

ψ1, z3 = 1
C∞
ψ2 on ΓW , z4 = 0 on Γiso, n · ∇z4 = 0 on Γadia.

(12)

We begin by first demonstrating that the proposed SIPG scheme is consistent.
To this end, by employing integration by parts in (3) we obtain the primal
residual form given by, cf. [25]: find uh ∈ V

p
h such that

∫

Ω
R(uh) · v dx +

∑

κ∈Th

∫

∂κ\Γ

(
r(uh) · v+ + ρ(uh) : ∇v+

)
ds

+
∫

Γ

(
rΓ(uh) · v+ + ρ

Γ
(uh) : ∇v+

)
ds = 0 ∀v ∈ V

p
h. (13)

Here, the primal residuals are given by

R(uh)|κ =−∇ · F c(uh) + ∇ · F v(uh,∇huh),

r(uh)|∂κ\Γ =n · F c(u+
h ) −H(u+

h ,u
−
h ,n

+) − 1

2
[[Fv(uh,∇huh)]] − n · δ(uh),

ρ(uh)|∂κ\Γ =
1

2

(
G(uh)[[uh]]

)>
,

rΓ(uh)|∂κ∩Γ =n ·
(
F c(u+

h ) −F c(uΓ(u+
h )) − F v(u+

h ,∇u+
h )

+F̂v(uΓ(u+
h ),∇u+

h )
)
− n · δΓ(uh),

ρ
Γ
(uh)|∂κ∩Γ =

(
G>(uΓ(u+

h )) :
(
u+

h − uΓ(u+
h )

)
⊗ n

)>
,

for κ ∈ Th. Exploiting the consistency of the (convective) numerical flux func-
tion H(·, ·, ·), namely, H(u,u,n) = n · F c(u), the consistency of the boundary
function, i.e., uΓ(u) = u on Γ and hence δ(u) = δΓ(u) = 0, assuming the
analytical solution u to (1) is sufficiently smooth (u ∈ [H2(Ω)]4, for example),
we deduce that

R(u) = 0, r(u) = 0, ρ(u) = 0, rΓ(u) = 0, ρ
Γ
(u) = 0.

14



Thereby, we deduce that the proposed SIPG discretization given in (3) and
(4) is consistent.

We now proceed to demonstrate the adjoint consistency of the SIPG scheme
(3). To this end, the target functional JΓ(·) defined on the boundary Γ of the
computational domain Ω must be replaced by the following modified version,
cf. [25]:

J̃Γ(uh) = JΓ(uΓ(uh)) +
∫

Γ
δΓ(uh) : zΓ ⊗ nds, (14)

where

zΓ = 1
C∞

(0, ψ1, ψ2, 0)>,

represents the boundary values of the adjoint solution z. Noting that δΓ(u) = 0
holds for the analytical solution u, assuming u is sufficiently regular, we have
J̃Γ(u) = JΓ(u), i.e., J̃Γ(·) in (14) is a consistent modification of JΓ(·).

Rewriting N (uh,v) in (3) in terms of the homogeneity tensor G, recalling (4)
and using integration by parts, we see that the discrete adjoint problem: find
zh ∈ V

p
h such that

N ′[uh](w, zh) = J̃ ′[uh](w) ∀w ∈ V
p
h, (15)

can be given in adjoint residual form as follows, see [25]: find zh ∈ V
p
h such

that

∫

Ω
w · R∗[uh](zh) dx +

∑

κ∈Th

∫

∂κ\Γ

(
w · r∗[uh](zh) + ∇w : ρ∗[uh](zh)

)
ds

+
∫

Γ

(
w · r∗Γ[uh](zh) + ∇w : ρ∗

Γ
[uh](zh)

)
ds = 0 ∀w ∈ V

p
h. (16)

Here, the adjoint residuals are given by

R∗[uh](zh)|κ =(F c
u
(uh) −G′[uh]∇uh)

>∇hzh + ∇h ·
(
G>(uh)∇hzh

)
,

r∗[uh](zh)|∂κ\Γ = −
(
H′

u+(u+
h ,u

−
h ,n

+)
)>

[[zh]] · n − 1

2
[[G>(uh)∇zh]]

− (δ′[uh])
>

[[zh]] +
1

2
(G′[uh]∇uh)

>
[[zh]]

+
1

2

(
G′[uh][[uh]]

)> ∇hzh,

ρ∗[uh](zh)|∂κ\Γ =
1

2
G>[uh][[zh]],

for κ ∈ Th. Recalling that F v
u

= G′[u]∇u and F v
∇u

= G(u) we see that the
analytical solution z to the continuous adjoint problem (9) satisfies R∗[u](z) =
0. Furthermore, the adjoint solution z satisfies r∗[u](z) = 0 and ρ∗[u](z) = 0.
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The adjoint boundary residuals in (16) on ΓW are given by

r∗Γ[uh](zh) = 1
C∞

(pu n − τu n) ·ψ −
(
n ·

(
F c

u
(uΓ(uh))−F̂v

u
(uΓ(uh),∇uh)

))>
zh

− n ·
(
Ĝ>(uΓ(uh))∇zh

)
,

ρ∗
Γ
[uh](zh) = − 1

C∞
(τ∇un) ·ψ +

(
n · F̂v

∇u
(uΓ(uh),∇uh)

)>
zh.

Recalling (10) and (11) we see that the analytical solutions u and z to the
primal problem (1) and the continuous adjoint problem (9)-(12), respectively,
satisfy r∗Γ[u](z) = 0 and ρ∗

Γ
[u](z) = 0.

Thereby, in summary we conclude that the proposed SIPG scheme defined
in (3) is adjoint consistent with respect to the general target functional J̃(·)
which is defined in a similar manner to J(·) in (6) with the boundary functional
JΓ(·) replaced by J̃Γ(·), cf. (14).

Remark 4.1 We point out that the NIPG variant of the proposed DGFEM,
cf. Remark 3.1, is not adjoint consistent, cf. [25]. As we shall see in Section 5
the lack of adjoint consistency of the NIPG method leads to a loss of accuracy
when the error is measured in terms of both the L2(Ω)-norm, as well as in
terms of the given target functional J(·); analogous behavior is also observed
in the context of linear advection–diffusion problems in the article [23].

Remark 4.2 We remark that although the STSIPG scheme, cf. above, has
been shown to be adjoint consistent in the article [25], the penalty terms present
in the method penalize all components of the system in an equal manner, which
computationally leads to a loss in accuracy. The newly proposed SIPG scheme
weights the jump terms in a ‘natural’ fashion by scaling them according to the
size of the homogeneity tensor G. In this way, we shall observe computationally
in the next section that the resulting scheme converges optimally under mesh
refinement when the error is measured in terms of both the L2-norm, as well
as for certain target functionals.

5 Numerical results

In this section we present a series of numerical experiments to highlight the
practical performance of the interior penalty DGFEM introduced in this article
for the numerical approximation of the compressible Navier-Stokes equations.
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5.1 Example 1: Flow in a square domain

In this first example, we consider a simple model problem in order to exam-
ine the experimental order of convergence of the proposed interior penalty
DGFEM. To this end, we let Ω = (0, π)2, and supplement the compressible
Navier–Stokes equations (1) with an inhomogeneous forcing function f , which
is chosen so that the analytical solution to (1) is given by

u = (sin(2(x+y))+4, sin(2(x+y))/5+4, sin(2(x+y))/5+4, (sin(2(x+y))+4)2)>,

where the dynamic viscosity coefficient µ has been set to 1/10. This represents
a modification of the (unsteady) test problem employed in the article [36]. In
this section we shall be interested in measuring the discretization error in
terms of both the L2(Ω)-norm, denoted by ‖ · ‖0, as well as in terms of a given
target functional J(·). In the latter case, we consider the weighted mean-value
of the density, i.e.,

J(u) ≡ JΩ(u) =
∫

Ω
u1ψ dx,

where ψ = sin(πx) sin(πy); thereby, the true value of the functional is given
by J(u) = 1.168587648689877.

In Figure 2(a) we present a comparison of the error in the L2(Ω)-norm with the
(square root of the) number of elements for p = 1, 2, 3, 4, employing both the
SIPG method with CIP = 10 and the (flux–based) Bassi–Rebay method (BR2)
with CBR2 = 4. In both cases, we observe that ‖u − uh‖0 converges to zero
at the expected optimal rate O(hp+1) as the mesh is refined for each fixed p.
Moreover, from Figure 2(b) we observe that the error in the computed target
functional J(·) behaves (approximately) like O(h2p), for each fixed p, as the
mesh is uniformly refined for both of the discretization schemes considered.
These rates of convergence for both the L2(Ω)-norm of the error and the error
in the computed target functional J(·) are in complete agreement with the
corresponding convergence behavior we would expect for the SIPG and BR2
methods when applied to a linear convection–diffusion problem; see [23], for
example, for the analysis of general interior penalty DGFEMs for second–order
partial differential equations with non-negative characteristic form. We remark
that in terms of accuracy, for a given number of elements, or equivalently, for
a fixed number of degrees of freedom, both the newly proposed SIPG scheme
and the BR2 method perform in a comparable manner, with the latter scheme
being, in general, slightly more accurate. However, in terms of computational
resources, the time required to assemble the residual vector of the BR2 method,
which is the most computationally intensive part of the flow solver, when
explicit time-stepping schemes are employed, is significantly more expensive
than the computation of the corresponding quantity when the SIPG scheme is
employed. More precisely, for (bi)-linear, elements, i.e., p = 1, the BR2 method
is around 38% more expensive than the SIPG scheme; this overhead increases
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Fig. 2. Example 1. Comparison of the SIPG and BR2 methods when the error is
measured in terms of: (a) L2(Ω)-norm; (b) Weighted mean-value functional J(·).
as the underlying polynomial degree is enriched. Indeed, for p = 2, the BR2
method is approximately 47% more expensive, and for p = 3 and p = 4 the
additional work rises to around 55%. This increase in the cpu times when
the BR2 method is employed is attributed to the computation of the lifting
operator on each face of the computational mesh. We point that the gradient–
based formulation of the BR2 method, cf. Remark 3.2, is almost identical in
terms of accuracy when compared to the flux–based formulation employed
here, however, this former scheme is significantly less efficient in terms of
computational effort. Indeed, comparing with SIPG scheme, the computation
of the residual vector of the gradient–based BR2 method is around 78% more
expensive than the SIPG method for p = 1; for p = 2, this overhead increases
to 86%, for p = 3, it is approximately 107% more expensive, and for p = 4,
the additional work rises to around 115%.

Finally, in this section we compare the performance of the proposed SIPG
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Fig. 4. Example 1. Convergence of the NIPG scheme with respect to J(·) with
h–refinement.

method with both the corresponding NIPG formulation of the underlying
scheme (cf. Remark 3.1), together with the interior penalty method outlined
in our previous article [27]; as in Section 3, we shall refer to this latter scheme
as the standard SIPG (STSIPG) method. To this end, in Figure 3 we plot the
L2(Ω)-norm of the error against the (square root of the) number of elements
for p = 1, 2, 3, 4 using each of the above schemes. In contrast to the SIPG and
BR2 methods, we now observe that ‖u − uh‖0 behaves like O(hp+1) for odd
p and like O(hp) for even p when either the NIPG method or the STSIPG
scheme are employed. The sub-optimal convergence observed when employing
these two schemes is attributed to the lack of smoothness in the resulting
dual problems, cf. [23]. Moreover, the same behavior is also observed in the
functional setting; indeed, for the NIPG scheme, from Figure 4 we see that
|J(u)−J(uh)| tends to zero at (approximately) the rate O(hp+1) for odd p and
O(hp) for even p, as the mesh is uniform refined. Analogous behavior is also
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observed when the error in the computed target functional J(·) is evaluated
using the STSIPG method; for brevity, these numerics have been omitted.

5.2 Example 2: Mach 0.5 flow at Re = 5000 and α = 0◦ around a NACA0012

In this example, we consider the subsonic viscous flow around a NACA0012
airfoil; here, the upper and lower surfaces of the airfoil geometry are specified
by the function g±, respectively, where

g±(s) = ±5 × 0.12 × (0.2969s1/2 − 0.126s− 0.3516s2 + 0.2843s3 − 0.1015s4).

As the chord length l of the airfoil is l ≈ 1.00893 we use a rescaling of g in
order to yield an airfoil of unit (chord) length. The computational domain
Ω is subdivided into quadrilateral elements. Curved boundaries are approxi-
mated by piecewise quadratic polynomials. At the farfield (inflow) boundary
we specify a Mach 0.5 flow at a zero angle of attack, i.e. α = 0◦, with Reynolds
number Re = 5000; on the walls of the airfoil geometry, we impose a zero heat
flux (adiabatic) no-slip boundary condition. This is a standard laminar test
case which has been investigated by many other authors, cf. [10,27], for ex-
ample. The solution to this problem consists of a strictly subsonic flow which
is symmetric about the x-axis.

Here, we consider the estimation of the drag coefficient cd; i.e., the target
functional of interest is given by

J(u) ≡ JΓ(u) =
∫

Γ
(pn − τ n) ·ψΓ ds,

where

ψΓ =





1
C∞
ψd on ΓW ,

0 otherwise,

and ψd = (cos(α), sin(α))>, cf. (7), (8). We remark that the adjoint consis-
tency of the proposed SIPG scheme is based on the consistent reformulation of
J(·) defined in (14). With this in mind, in Figure 5(a) we present a comparison
of the error in the computed target functional with the (square root of the)
number of elements for p = 1, 2, 3, employing both the SIPG method with
CIP = 10 and the (flux–based) Bassi–Rebay method (BR2) with CBR2 = 4. In
both cases, we observe that, asymptotically, at least, |J(u)− J̃(uh)| converges
to zero at the expected optimal rate O(h2p) as the mesh is refined for each fixed
p, cf. Section 5.1 above. Moreover, as before, we note that in terms of accuracy,
for a given number of elements, or equivalently, for a fixed number of degrees of
freedom, both the newly proposed SIPG scheme and the BR2 method perform
in a comparable manner, though as already noted, the SIPG scheme requires
less computational effort to attain the computed solution. As in the previous
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Fig. 5. Example 2. Comparison of the SIPG and BR2 methods employing: (a) Ad-
joint consistent reformulation of the drag functional; (b) Adjoint consistent refor-
mulation of the drag functional excluding the penalty terms.

example, we note that the gradient–based formulation of the BR2 method is
almost identical in terms of accuracy when compared to the flux–based for-
mulation employed here; though, again it is significantly less efficient in terms
of computational effort. To highlight the necessity of the consistent reformu-
lation of the original target functional J(·) through the additional of the term
involving the penalty function δΓ(·), cf. (14) for the definition of J̃Γ(·), in Fig-
ure 5(b) we present a comparison of |J(u)− J(uΓ(uh))| with the (square root
of the) number of elements for p = 1, 2, 3 employing both the SIPG and BR2
schemes. In this case, we now observe that there is a significant deterioration
of the error for a given mesh size and polynomial order when compared to the
corresponding results when the penalty function modification of the target
functional has been included. Indeed, comparing Figures 5(a) and 5(b), we
see that the inclusion of the penalty function modification in the definition
of J̃(·) ≡ J̃Γ(·) leads to around 2–3 orders of magnitude improvement in the
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Fig. 6. Example 2. Comparison of the SIPG, NIPG, and STSIPG methods: (a)
p = 1; (b) p = 2; (c) p = 3.
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computed error in the drag.

Finally, in Figure 6 we present a comparison of the newly proposed SIPG
method with both the NIPG and STSIPG schemes for p = 1, 2, 3. In this case,
we see that for p = 1 and p = 2, the NIPG scheme is inferior to both the
SIPG and STSIPG methods; indeed, in this case, the error in the underlying
target functional computed using the SIPG method is between 1–2 orders of
magnitude smaller than the corresponding quantity evaluated using the NIPG
method. For p = 1 we observe that the STSIPG method is marginally more
accurate than the SIPG method on the two finest meshes employed, though
for p = 2 this method is inferior to the SIPG scheme. For p = 3, the three
methods lead to a very similar error in the computed drag coefficient, for a
given number of elements.

5.3 Example 3: Mach 0.5 flow at Re = 5000 and α = 2◦ around a NACA0012

In this final example, we investigate the performance of the newly proposed
SIPG method on a sequence of adaptively refined meshes generated based on
the goal–oriented dual–weighted–residual error indicators η̂κ derived in [27].
We remark that although the STSIPG scheme was employed in the article [27],
the extension of the a posteriori error bound derived in [27] to the application
of the DGFEM developed within the current article follows in a similar fashion;
for brevity, we omit the details.

To this end, we consider a variant of the problem studied in the previous exam-
ple. Indeed, here we consider the subsonic viscous flow around a NACA0012
airfoil with inflow Mach number equal to 0.5, at an angle of attack α = 2◦, and
Reynolds number Re = 5000; on the walls of the airfoil geometry, we impose
a zero heat flux (adiabatic) no-slip boundary condition. In Tables 1 & 2 we
demonstrate the performance of the adaptive algorithm for the numerical ap-
proximation of the drag (cd) and lift (cl) coefficients, respectively. In each case,
we show the number of elements and degrees of freedom (DoF) in V1

h, the true
error in the functional J(u)−J̃(uh), the computed error representation formula∑

κ∈Th
η̂κ, and the corresponding effectivity index θ =

∑
κ∈Th

η̂κ/(J(u)−J̃(uh)).
We see that even on the initial very coarse meshes the quality of the computed
error representation formula

∑
κ∈Th

η̂κ is relatively good, in the sense that θ is
close to one; however, as the mesh is refined, we observe that the effectivity
indices θ improve by slowly tending towards unity.

Finally, in Figure 7 we show the meshes generated for both the approxima-
tion of the drag and lift coefficients after five adaptive refinements, with 5155
and 5236 elements, respectively. As noted in [27], refinement is mainly con-
centrated within in the vicinity of the airfoil, with the mesh generated for the
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Elements DoF J(u) − J̃(uh)
∑

κ∈Th
η̂κ θ

400 6400 1.179e-02 1.385e-02 1.17

655 10480 -1.345e-03 -2.113e-03 1.57

1096 17536 -8.976e-04 -7.871e-04 0.88

1795 28720 -4.282e-04 -3.803e-04 0.89

3028 48448 -2.422e-04 -2.275e-04 0.94

5155 82480 -1.152e-04 -1.104e-04 0.96

8653 138448 -5.481e-05 -4.781e-05 0.87

14584 233344 -3.484e-05 -3.458e-05 0.99

Table 1
Example 3: Adaptive algorithm for the numerical approximation of cd.

Elements DoF J(u) − J̃(uh)
∑

κ∈Th
η̂κ θ

400 6400 -1.175e-01 -5.867e-02 0.50

658 10528 6.548e-03 6.841e-03 1.04

1108 17728 -1.292e-03 -1.159e-03 0.90

1861 29776 -1.784e-03 -1.891e-03 1.06

3118 49888 -1.239e-03 -1.266e-03 1.02

5236 83776 -6.504e-04 -6.704e-04 1.03

8746 139936 -2.623e-04 -2.622e-04 1.00

Table 2
Example 3: Adaptive algorithm for the numerical approximation of cl.

computation of the lift coefficient being more concentrated around the the
airfoil, than the corresponding mesh generated for the accurate computation
of the drag coefficient.

6 Concluding Remarks

In this article we have considered the formulation of a new symmetric ver-
sion of the interior penalty method for the numerical approximation of the
compressible Navier-Stokes equations. Indeed, in the goal–oriented setting we
have shown that the new method is adjoint consistent with respect to cer-
tain target functionals of practical interest, based on exploiting the analysis
developed in the article [25]. Experimentally, the newly proposed scheme has
been shown to yield optimal rates of convergence, when the error is measured
in terms of both the L2-norm, as well as for certain target functionals of the
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Fig. 7. Example 3: Adaptively refined computational mesh generated for the accu-
rate approximation of: (a) cd; (b) cl.

solution of practical interest. Future work will be devoted to the application
of the scheme to both three–dimensional laminar and turbulent flows.
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