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Abstract
In [J. Halton, Sequential Monte Carlo, Proc. Comb. Phil. Soc. 58 (1962), J. Halton, Sequential Monte
Carlo Techniques for the Solution of Linear Systems, J. Sci. Comp. 9 (1994) 213–257] Halton
introduced a strategy to be used in Monte Carlo algorithms for the efficient solution of certain matrix
problems. We showed in [R. Kong, J. Spanier, Sequential correlated sampling methods for some
transport problems, in: Harold Niederreiter, Jerome Spanier (Eds.), Monte-Carlo and Quasi Monte-
Carlo Methods 1998: Proceedings of a Conference at the Claremont Graduate University, Springer-
Verlag, New York, 2000, R. Kong, J. Spanier, Error analysis of sequential Monte Carlo methods for
transport problems, in: Harold Niederreiter, Jerome Spanier (Eds.), Monte-Carlo and Quasi Monte-
Carlo Methods 1998: Proceedings of a Conference at the Claremont Graduate University, Springer-
Verlag, New York, 2000] how Halton’s method based on correlated sampling can be extended to
continuous transport problems and established their geometric convergence for a family of transport
problems in slab geometry. In our algorithm, random walks are processed in batches, called stages,
each stage producing a small correction that is added to the approximate solution developed from
the previous stages. In this paper, we demonstrate that strict error reduction from stage to stage can
be assured under rather general conditions and we illustrate this rapid convergence numerically for
a simple family of two dimensional transport problems.

Keywords
Transport equation; Geometrically convergent Monte Carlo algorithms

1. Introduction
Monte Carlo (MC) simulations have provided a “gold standard” of computational support for
many important problems of science and engineering that are modeled using the radiative
transport equation (RTE). While initial interest about 60 years ago was focused on problems
arising in nuclear design and engineering, that interest has widened greatly as computational
speed and efficiency have increased and now MC methods are routinely used for many other
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applications. The method is used often to solve problems for which no closed form or other
convenient analytic solutions are available – problems for which it may be the only practical
solution technique.

When the MC method is applied conventionally, however, its convergence is limited by the
central limit theorem to the rate O(W−1/2), where W is the number of samples generated. This
means that to obtain each new decimal digit of accuracy, the sample size must be increased
about a hundredfold. Because of this slow convergence, it is not unusual for difficult Monte
Carlo simulations to occupy days or even weeks of computer time to solve a single problem.
Researchers have therefore sought faster and more efficient numerical solutions to facilitate
implementation of this versatile modeling technique. Variance reduction methods have been
helpful but they cannot alter the underlying slow convergence rate unless some sort of
sequential strategy is employed.

In 1962, Halton applied Monte Carlo sequential algorithms to matrix problems (see [1,2]). In
his papers, Halton applied specific variance reduction strategies successively in many stages,
each of which is solved using conventional Monte Carlo methods. Under suitable conditions,
the error Em after the mth stage will be strictly bounded by the error Em−1 obtained in the
previous stage multiplied by a constant λ(W) that depends on the number W of random walks
used in each stage and on the problem input, but not on the stage number m; i.e.,

(1)

E0 being the initial error. Most importantly, with a relatively small number W of random walks,
one can often achieve λ(W) < 1. Thus, after m stages, the error is bounded by

(2)

which characterizes geometric convergence (also called “exponential convergence” in [3,5]).

In the past 20 years, researchers, notably at Los Alamos National Laboratory and Claremont
Graduate University, have explored the possibility of applying similar ideas to continuous
transport problems. Booth and his co-workers at Los Alamos (see [3–6]) and Spanier and his
co-workers at Claremont (see [7–11]) have adopted somewhat different approaches, but both
groups have achieved geometric convergence for a number of continuous transport problems.
The Claremont group also proved that convergence is geometric for a special class of model
transport problems [10]. What has been lacking until now, however, is a general formulation
of the theory underlying many of these methods and approaches and a more general proof of
their geometric convergence. We present such a theory in this paper, establishing rigorously
the conditions necessary to guarantee geometric convergence for sequential correlated
sampling Monte Carlo algorithms that can be applied to a large class of continuous transport
problems. In other papers, we will develop similar results for other adaptive Monte Carlo
methods, all of which have been shown to produce geometric convergence.

2. General principles
In this paper, we consider continuous transport problems that are formulated as integral
equations of the form
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(3)

where

(4)

We assume that the kernel K(P, Q) is nonnegative and that there exists a constant M > 0 such
that |S(P)| ≤ M and |K(P, Q)| ≤ M. We further assume that K satisfies either

(5)

or

(6)

either of which, together with (4), will ensure the existence and uniqueness of a nonnegative
and bounded solution Ψ(P); details may be found in [7] or in [15].

Remark
For transport equations given in the form of integro-differential equations, as long as the
physical process has a positive absorption probability in the problem phase space, condition
(6) is always satisfied. Weaker conditions that also suffice are discussed in [7].

For physical processes described by Eq. (3), one is often only interested in estimating a number
of weighted integrals of the solution. Therefore, our task can be formulated in terms of
estimating one or more integrals:

(7)

where S*(P) is a known function and where, without loss of generality, S* can be assumed to
be nonnegative. Thus, each continuous transport problem considered here is uniquely
characterized by the known nonnegative functions S(P), K(P, Q), and one or more functions
S*(P). In the physical context of such a problem, S describes a known source of radiation, K
(P, Q) describes how random walking “particles” move from state Q to state P in the phase
space Γ, and the function S*(P) incorporates properties of a radiation detector at points P in
the phase space. Appropriate boundary conditions are also imposed to guarantee that a unique
solution Ψ of Eq. (3) exists.

Each Monte Carlo algorithm describes how random walks are to be generated and used to
provide estimates of integrals such as I and their errors. We follow the general approach of
[7] here in which a probability model that mirrors features of the physical model is constructed
using a few basic ideas drawn from probability theory.
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Our task is to describe a random walk process (a method for generating random walks), an
(unbiased) estimating random variable defined on the space Ω of all random walks for each
choice of S* and demonstrate how the sequential application of such estimators produces
accelerated Monte Carlo convergence. A great variety of random walk processes and
estimating random variables is possible, each of which produces unbiased estimates of the
desired weighted integrals, but all of which produce different statistical errors. For ease of
exposition we examine only one such sequential method here based on the repeated use of
correlated sampling, and one specific type of random variable, the so-called collision estimator
(see [7]). However, other sequential methods and estimators can be treated in analogous
fashion. This flexibility is very useful in the design of effective and efficient MC methods, for
which one needs to strike a proper balance between computational speed and accuracy, since
both are involved in estimating the overall computational efficiency of the method.

The random walk process is defined by selecting a pair of nonnegative functions {Ŝ(P), K̂(P,
Q)} subject to the conditions:

(8)

The function Ŝ will be used to generate initial states P0 in the phase space, while K̂ will be used
to produce successor states Q conditioned by the current state P and the function p̂(P) describes
the probability of terminating a random walk in state P. These functions determine random
variables on the phase space Γ by means of

(9)

where B(p̂(Q)) is a binomial random variable and where the symbol ξ ~ f(Q) means that ξ is
sampled from the probability density function f(Q), Q ∈ Γ. Then we define random variables
ζ and ω on the space Ω of all random walks (ξ0, ξ1|ξ0,…, ξk|ξk−1, …) by

(10)

where

(11)

Notice that the estimators defined by (10) and (11) are collision estimators in the language of
[7], meaning that they produce nonzero tallies for each collision point. Use of other estimating
random variables, such as terminal and track length estimators [7], can also be accommodated
with modest alterations in the theory.
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We next describe how to make use of the random variables defined above by (10) and (11).
Assume that we want to estimate the integral I defined by (7). The initial step is to choose the
function pairs {Ŝ(P), K̂(P, Q)} to satisfy (8). We initialize the estimation  of I by

Next we outline the sampling/estimation procedure by tracing one random walk. The starting
state space vector P0 (which represents an initial collision point) is sampled from Ŝ(P) and the
contribution recorded from this event is

We then check for absorption at P0 using the absorption probability at that vector:

If the random walk is absorbed, we continue to the next random walk. Assume that the random
walk is scattered at P0. We then sample the next collision point P1 from

and record the contribution from it as

We check again for absorption at P1 using the absorption probability

This process can be repeated until the random walk is terminated either through absorption or
leaving the phase space domain. Generally, if the random walk encounters collisions at P0,
P1,…, Pk, the final contribution from the random variable we have defined is
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After we have generated all of the random walks, we compute the average of  over the total
number of random walks to obtain a final estimate of the integral I. Second moment estimates
are obtained in a similar manner and the variance is determined in the usual way from these
estimates of the mean and the second moment.

Concerning this algorithm we have

Theorem 1
Assume that P ∈ Γ is a fixed but arbitrary point of phase space and that ω(P) and ζ are defined
by (11) and (10), respectively with ξ0 = P. Then,

(12)

and

(13)

Proof
Focusing on the general term ωn(P) of the expression for ω(P) we calculate

Using (8), this reduces to

which is exactly the general term of the Neumann series expression of the solution Ψ(P).

As for (13), from (11) we have

proving (13).

To prove geometric convergence we will need to establish relationships between the variances
of our estimators in successive stages. This can be done by making use of transport-like
equations for the variances and using these to relate the variance after the mth sequential stage
to that of the previous stage. The final step in our proof involves applying Tchebycheff’s
inequality to the random variables responsible for the estimates. We will state the needed results
here, leaving the detailed proof for Appendix.
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Theorem 2
The variance of ω(P), Vω[ω(P)] satisfies

(14)

and the variance of ζ, Vζ[ζ], can be obtained by

(15)

A sketch of the argument needed to prove this result can be more easily recognized perhaps
by examining the second moment of the estimator instead of the variance. Since Ψ(P) = E[ω
(P)] by Theorem 1, Eq. (14) is equivalent to the transport equation for the second moment:

(16)

This equation is very plausible because the source term represents the expected square of the
direct contribution from terminations at the initial state P selected, while the integral term
represents the expected square of all other contributions resulting from terminations at states
Q beyond the initial state. To see the latter point more clearly, rewrite (16) as

so that the integral term is more easily recognized as requiring continuation of the random walk
beyond its initial state, P. As we will see in Appendix, a complete proof of results such as (14)
requires making repeated use of the relationships linking unconditional and conditional means
and variances, which leads to the Neumann series representation for the solution of (14).

3. Sequential correlated sampling methods
In this section, we construct a sequential correlated sampling MC algorithm using the
estimators developed in the previous section. As we mentioned earlier, a similar algorithm was
first used by Halton [1] in 1962 to solve discrete transport (matrix) problems.

To solve Eq. (3), we begin with an initial guess  of the solution at P (which could be taken
to be zero) and then introduce a first correction ψ1(P) by setting

(17)
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Substituting (17) into (3) produces an equation for ψ1(P)

(18)

where

(19)

Applying conventional Monte Carlo methods to (18) produces an approximate solution

.

Assuming that we have obtained , ,…, , introduce a new function ψm(P) by
setting

(20)

Substituting (20) into (3) then produces an equation for the mth stage correction ψm(P)

(21)

where

(22)

and where

(23)

Applying conventional Monte Carlo methods to (21) produces an approximate solution

.

Repeating this recursive process produces a sequence of approximations ,…,  to
Ψ(P). It is then natural to ask: does this sequence converge to the true solution Ψ(P)? If so,
what is the convergence rate? In this section, we will give a positive answer to the first question,
and prove that the convergence is actually geometric.

Theorem 3
Assume that either (5) or (6) is satisfied, and that the phase space Γ has finite Lebesgue measure;
i.e., there is a constant κΓ such that
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(24)

Then for any ε > 0 and λ < 1, there is a threshold number, W0, of random walks per adaptive
stage, such that when at least W0 random walks are generated in each adaptive stage,

(25)

The integer W0 is independent of the stage number m.

Proof

First, we connect Ψ(P) −  to the solution for each stage. According to (20), we have

(26)

Now, we apply (15) of Theorem 2 to Eq. (21).

(27)

Notice that

for any δ > 0 (to be determined). We have

(28)

At this point, we make use of the results in Theorem 1 of [15]. Since the function K̂(P, Q) is
at our disposal, we may assume that K̂(P, Q) satisfies either

or
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For example, because of either (5) or (6) we can simply pick K̂(P, Q) = K(P, Q).

Now, according to Theorem 1 of [15], there is a constant C1, only depending on the kernel and
the size of the phase space Γ, such that

(29)

Now, we can choose δ such that C1δ < 1. We then have

According to (22), we have

(30)

Combining (29) and (30) produces

(31)

where

Now, by Tchebycheff’s inequality, for W samples of ωm(P) and any ε > 0,
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or by (26),

(32)

Combining (31) and (32) produces

which implies (25) if we choose

This completes the proof of Theorem 3.

The random variables ωm(P) can be used to approximate the solution pointwise. However, we
are often interested in representing the solution everywhere as a sum of basis functions. In the
rest of this section, we will adopt this point of view. We will obtain an estimate similar to that
in Theorem 3. Additional details can be found in [10].

To solve (21) for ψm(P), we assume that the solution and our approximations to it can be
represented in the form

(33)

where . form a complete set of orthonormal basis functions on the phase space Γ. For
later convenience, we assume that there is a finite number B such that

(34)

Assume that the solution ψm(P) of (21) has the form

(35)

Orthonormality produces
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(36)

We now use ζ, defined by (10), to estimate all the coefficients bi for i up to a large and fixed
integer N. Assume that we have chosen {Ŝ(P), K̂(P, Q)} satisfying (8). For each i, we can then
define

(37)

where ωm(P0) is defined by (11) with S(P) replaced by Sm(P), defined by (22). Then, according
to Theorem 1,

(38)

so we can use  to estimate each of the coefficients . Assume that the estimated values of

 are  and define

(39)

where we have assumed that the initial guess  has the form

(40)

Then, the estimated solution  can be written as

(41)

Theorem 4
Assume that either (5) or (6) is satisfied, and that the phase space Γ has finite measure, i.e.,
there is a number κΓ such that

(42)
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Then for any ε > 0 and λ < 1, there exists a sufficiently large integer W0 which does not depend
on m, such that

(43)

where

(44)

Remark
According to (20),

(45)

Thus, we can choose N so large that rN(P) is no more than any error level that we prescribe.
Therefore, (43) expresses geometric convergence with a small error modification that is caused
by the truncation of the infinite series expansion.

Proof
For each i, we can follow the proof of Theorem 3 to arrive at

(46)

where the constant C1 does not depend on stage index m. Now, according to Eq. (15)

(47)

where we have used the orthonormality of the basis set  and

Therefore, using (30), we obtain
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(48)

On the other hand, according to (20) and (23), we have

(49)

where the truncation error rN(P) can be made as small as we want upon choosing a large N.
We then have

(50)

According to Tchebycheff’s inequality, for any εi > 0,

(51)

Using (48), we obtain

(52)

Thus, combining (50) with (52) produces

(53)

where

(54)
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Now, for any ε > 0, we choose εi > 0, so that

(55)

Then, choose W0 such that

(56)

For such a W0, we have

(57)

The proof is completed.

The two theorems in this section not only show that the sequence  is convergent,
but also shows that the convergence is geometric, at least in a probabilistic sense.

Remark
The theory just presented establishes the existence of an integer W0 such that our adaptive
algorithm will converge geometrically provided that W0 independent random walks are
processed in each adaptive stage. It is, of course, of interest to determine the smallest value for
W0 that satisfies the error constraints of the transport problem under study. However, this is
not easily found through the application of our very general theorems, which are intended only
to establish the existence of a minimal W0. In fact, the final step in our argument makes use of
Tchebycheff’s inequality, which, because it is completely general, provides extremely
conservative estimates of the constants needed to determine W0 accurately. In practice, much
smaller numbers of random walks per stage will suffice to produce geometric convergence.
We discuss this issue more fully in the next section.

4. Model two dimensional transport problems
To illustrate the theory developed in the previous sections, we consider the coupled system of
ordinary differential equations

(58)
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where

and where we assume

(59)

This system describes a transport problem in a rectangle R: 0 < x < a, 0 < y < b, and the functions
ψ1(x, y), ψ2(x, y), ψ3(x, y) and ψ4(x, y) are the right, left, up and down moving fluxes,
respectively.

This problem specializes to one dimensional transport on horizontal and vertical lines when
the equations are suitably decoupled and the resulting decoupled system can be easily solved
analytically. Thus, this family of problems plays a very useful role in debugging Monte Carlo
codes such as the one developed from the algorithm described in this paper. The four boundary
conditions characterize the flux incident on the boundaries of the rectangle from the exterior
and prescribe a unique solution of the system (58) [17].

The system (58) can be written in matrix form by setting

(60)

(61)

(62a)
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(63)

(64)

Then Eq. (58) can be written

(65)

Now assume that

is a solution of the adjoint system of equations:

where

Here K′ is the matrix transpose of K and the functions

(66)

are specified by the problem we wish to solve. That is, the problem is to estimate the inner
product
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Reciprocity then allows the conclusion (assuming that the boundary conditions for the adjoint
system are dual to those for the original system, so that all boundary integrals vanish)

Often it is more convenient to use the integral form of the RTE. If we assume that all the
coefficient functions Σt(x, y), Σs(x, y) do not depend on x or y, then Eq. (58) can be converted
to the following system of integral equations:

(67)

We write this in matrix form by defining the matrix K, where

(68)

for j = 1,…, 4. Then we have:

(69)

where
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(70)

Based on the algorithm described above, we have executed some tests for a wide range of
choices of Ŵ0 = the number of random walks selected for each adaptive stage. As stated in the
Remark following Theorem 4, the theory predicts very conservative values for W0. However,
much smaller values of W0 can produce the sought geometric convergence. For instance, our
numerical experiments show that W0 ≅ 49, 000 produces stable geometric convergence for the
data:

with boundary value functions (which concentrate the source on the x = 0 and y = b boundary
lines)

For all of the numerical experiments reported here we represented the approximate solution as
a 10th order polynomial in both x and y, so that N = 100 in Theorem 4. Fig. 1 plots the log10
values of the variances versus the number of adaptive stages for W0 = 50, 000, 80, 000 and
100, 000 while Fig. 2 depicts the cases W0 = 60, 000, 70, 000, 80, 000 and 100,000 and
concentrates attention on just the first 50 adaptive stages. We note that increasing W0 does
increase the rate of convergence, as the theory predicts, and results in a smaller number of
stages to achieve a fixed precision. However, optimal computational efficiency requires a
balance between the number of random walks per stage and the number of stages. If we ask,
for example, which of the five choices of W0 produces the most efficient computation, the
answer may be found by fixing a desired level of accuracy, estimating the convergence rates
from the slopes in the figures and calculating the run time required to achieve that for each
choice of W0. We can easily also estimate the computation time required to achieve any fixed
error level with conventional Monte Carlo since the initial stage of each adaptive run is just
conventional Monte Carlo based on W0 random walks.

From Figs. 1 and 2, we can see that the first 50,000 random walks produces roughly 1.5 decimal
digits of accuracy. Each additional decimal digit of accuracy will require roughly a 100-fold
increase in the number of random walks based on the central limit theorem rate of convergence
for conventional Monte Carlo. Since 50,000 random walks took about 404 s, to achieve an
additional (say) 5 decimal digits of accuracy would require about 404 × 1005 s, which is more
than 1 year!

To illustrate how to estimate the run time to achieve this accuracy for each adaptive case, we
select the case W0 = 60, 000. The run time per stage is about 485 s and the following table
shows that this case produces a geometric error reduction factor of λ = 0.747. We next observe
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that the minimum stage number N to achieve reduction of the initial error by 5 additional
decimal digits produces the inequality λN ≤ 10−5, establishing that N = 40 would suffice. We
conclude that the total time needed for the case W0 = 60, 000 to achieve the same error reduction
as in the conventional illustration would be 40 × 485 = 19, 400 s, which is a little more than 5
h! The gain in computational efficiency resulting from the use of our algorithm compared with
conventional Monte Carlo in this problem is thus 404 × 1005/40 × 485 = 2.05 × 107.

The following table displays the estimates of λ that correspond to the different values of W0
for each of the 5 cases:

W0 50,000 60,000 70,000 80,000 100,000

Estimated λ 0.958 0.747 0.57 0.549 0.465

Time per stage, in s 404 485 566 646 808

The table uses the inequality (1) to determine λ

where we have replaced the error term Em by the standard deviation, since we do not have the
exact solution for this problem. In summary, our analysis reveals that the case W0 = 70, 000
would require the least run time and is, therefore, the most efficient of the 5 chosen for this
study.

Fig. 3 plots the scalar flux Ψ(x, y) for this problem, which is simply the sum of the four
component solutions since the angular dependence is discrete for this problem:

. Note especially the lack of any polynomial artifacts in this plot, even
though the solution method represents the solution by a polynomial in each independent
variable.

5. Summary, conclusions and future work
In this paper, we have constructed sequential Monte Carlo algorithms to solve a rather general
family of transport problems and we have established rigorous conditions that will guarantee
geometric convergence with probability 1. While our theory falls short of establishing both
necessary and sufficient conditions for this accelerated convergence, numerical evidence
strongly suggests that the sufficient conditions outlined here lead to quite conservative
estimates of the number of random walks per stage that will assure geometric learning. The
question then remains: how, in practice, one can determine adequate choices of W0 that will
assure geometric convergence without incurring large computational costs?

We have found that reliable error estimates can be based on the residual which, with the
sequential correlated sampling method, is automatically computed at the end of each adaptive
stage, since this function provides the source to the next adaptive stage. Our experience with
this method is that it is very robust, producing very impressive results over a wide range of
transport problems. As well, the residual and the error are closely coupled for many interesting
applications (see, e.g. [15]). We are successfully applying the ideas of this paper to challenging
practical problems for which a very accurate solution of the global transport equation is needed
to serve as a computational “gold standard”. Such methods are therefore playing a major role
for a growing number of real problems for which either no other solution method is adequate,

Kong and Spanier Page 20

J Comput Phys. Author manuscript; available in PMC 2009 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



or as a standard against which to compare other less expensive and less accurate solution
techniques.

In other publications we will provide similar results concerning the geometric convergence of
adaptive Monte Carlo algorithms based on successive application of importance sampling
estimators. Our conviction is that no single Monte Carlo method can hope to solve all transport
problems equally well. Our experience, in fact, suggests that geometrically convergent
importance sampling algorithms apply to some transport problems that are not as well treated
by sequential correlated sampling algorithms as those described in this paper, and that both
methods should be pursued.
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Appendix

Proof of Theorem 2
Remark

We rely on the following two basic formulas for the conditional mean and variance of any
random variables X and Y,

(A.1)

and

(A.2)

For proofs of these results, see [16].

Proof of Theorem 2
By conditioning on ηP0 and using (A.2), we obtain

(A.3)

where, and hereafter, Vω ≡ Vω(·), Eω ≡ Eω(·), Vη ≡ VηP, Eη ≡ EηP, and so on. We have

(A.4)

The first term of the right hand side is equal to zero because, under the condition ηP0 = 1, ω
(P0) is deterministic, while the last term is equal to (Eω[ω(P0)])2, owing to (A.1). Again,
applying (A.1) on the second term by conditioning (.ω(P0)|ηP0 = 0) on ξ1, we obtain

(A.5)

where, it can be easily verified that Eω[.ω(P0)|ηP0 = 1] = S(P0). According to (A.1), the third
term and the fifth term cancel out. We then have

(A.6)

According to the definition of ω(P0), (11), we have
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(A.7)

Substituting this into (A.6) produces

(A.8)

Using (12), we finally obtain an equation governing Vω[ω(P0)]

(A.9)

or

(A.10)

Since ∫ΓK(P0, Q)Ψ(Q)dQ = Ψ(P0) − S(P0), we have

(A.11)

(14) is proved. Now, let us prove (15). Applying (A.2)–(A.10), we obtain

(A.12)

Using (A.2) and (A.10), we finally obtain a formula for Vζ[ζ]

(A.13)

or
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(A.14)

The proof is completed.
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Fig. 1.
Convergence characteristics for three choices of W0; I: W0 = 50, 000; II: W0 = 80, 000; III:
W0 = 100, 000.
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Fig. 2.
Convergence characteristics for four choices of W0; I: W0 = 60, 000; II: W0 = 70, 000; III:
W0 = 80, 000; IV: W0 = 100, 000.
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Fig. 3.
Scalar flux for two dimensional transport problem.
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