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with cylindrical symmetry. The new method is based on the properly scaled generalized-
Laguerre-Hermite functions and a normalized gradient flow. It enjoys three important
advantages: (i) it reduces a three-dimensional (3D) problem with cylindrical symmetry
into an effective two-dimensional (2D) problem; (ii) it solves the problem in the whole
space instead of in a truncated artificial computational domain and (iii) it is spectrally

Iégv;:;ﬁi’e d-Laguerre-Hermite functions accurate. Extensive numerical results for computing symmetric and central vortex states
Bose-Einstein condensate in BECs are presented for one-dimensional (1D) BEC, 2D BEC with radial symmetry and
Central vortex state 3D BEC with cylindrical symmetry.

Symmetric state © 2008 Elsevier Inc. All rights reserved.

Normalized gradient flow

1. Introduction

Quantized vortices play an important role in verifying the superfluid properties of quantum fluids such as Bose-Einstein
condensates (BECs) or degenerate Fermi gases. In weakly interacting alkali gases, condensate states containing a single vor-
tex line were first created using Raman transition phase-imprinting method [22]. Later, multiply charged vortices were cre-
ated by using topological phase engineering methods [18]. It is expected that more complicated vortex clusters can be
created in the future, e.g. with the further development of the phase-imprinting method. Such states would enable various
opportunities, ranging from investigating the properties of random polynomials [9] to using vortices in quantum memories
[15]. All of these experimental developments stir a great interest in the study of states with several vortices. Recently, there
were a number of investigations on the properties of quantized vortices in BECs, e.g. dynamical stability and interaction laws
between a few vortices [25,17,14,21]. To study these problems effectively, a key issue is to find efficiently and accurately
central vortex states in BECs.

In this paper, we consider a Bose-Einstein condensate (BEC) in a cylindrically symmetric trap V,(x,y,z) =
imy(@? (%2 +y?) + w2z?) + Wi(z) = Imp(w?r? + w?z?) + W, (z) with r = /x> +¥2, w, and w, the trap frequencies in radial
and axial direction, respectively, m, the mass of BEC atoms, and W,(z) is a real-valued bounded function of z. We assume
that the interaction strength within the BEC is Uy, given by Uy = 4mh?a, /my, with a; the s-wave scattering length. For tem-
peratures well below the critical temperature of the BEC, the dynamics of the BEC is well described by the dimensionless 3D
Gross-Pitaevskii equation (GPE) [24]
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zau,i:: [i (@+W+@) +i(y3.r2 +9222) + W(z) + Bl | . (1.1)

Here, ¥ = y/(x,y,z,t) is the normalized wave function of the condensate with
ey 2 01" = [ Wey.z. 0P drdydz =1, (12)

Y, =%, 9, =% with o = min{w,, w,}; = 4’%’”& characterizes the inter-atomic interaction in terms of the total number of
particles N in the condensate and the s-wave scattering length a;. W(x) is a dimensionless real-valued bounded function.
The above dimensionless quantities in three dimensions (3D) are obtained by scaling the length by the harmonic oscillator
length ay = 1/h/m;co, the time by ™! and the energy by ho.

To find cylindrical symmetric states (m = 0) and central vortex line states with index or winding number m (m=0) for the
BEC, we write

':[I(Xayv Za t) = e_i‘umr(;bm(x:ya Z) = e_iﬂquﬁm (T, Z)eimaa (1 3)
where (1, 0,2) is the cylindrical coordinates, u,, is the so called chemical potential, ¢,, = ¢,,(r,z) is a function independent of

time t and angle 0. Denoting

2 2
B:n¢:=%[ 1a(£)+v3r2+?—z]¢, B"d):z%{ O 22 |¢, BnimB,+F (1.4)

Crar\ or o2

Plugging (1.3) into the GPE (1.1) and the normalization condition (1.2), we obtain (see [8] for more detail)

I = [Bn + W(2) + Blgw[*Ibm,  (1,2) € (0,400) x (—00,+00), (1.5)
¢m(0,2) =0 (for m#0), —oco <z < co, (1.6)
;£m¢m(r,z):0, —00 < Z < 00, éllin ¢n(r,2) =0, 0K 1 < oo, 7

under the normalization condition

I6al =27 [ ) / "6 (rn2)Frdrdz = 1. (1.8)

This is a nonlinear eigenvalue problem for (i, ¢,,) under the constraint (1.8).
Once the eigenfunction ¢,, is known, the eigenvalue (or chemical potential) p,, can be computed by

00 20 2
P =T fo f {larrbmlz + (8.0 + (W + T—2+ V32 + ZW(Z)) |6ul* +2B6,|* | rdrdz == pu(4,,). (1.9)

In [3], a backward Euler finite difference (BEFD) method was used to discretize a normalized gradient flow for computing
the above symmetric and central vortex line states in the BEC. In the method, the original whole space was replaced by a
truncated computational domain with an artificial boundary condition (usually homogeneous Dirichlet boundary conditions
are applied). The method is formally second order accurate in space. However, how to choose an appropriately truncated
computational domain is a subtle problem in practice: if it is too large, the computational resource is wasted; if it is too
small, the boundary effects will contaminate the accuracy and lead to wrong solutions.

A main purpose of this paper is to develop an efficient numerical method which is spectrally accurate in space and robust
for all m > 0. This is achieved by discretizing the normalized gradient flow in the whole space directly using properly scaled
generalized-Laguerre and Hermite functions as basis functions. These basis functions are scaled in such a way that they be-
come eigenfunctions of the linear operator B,,. We then use a special time discretization procedure which, while preserving
the normalization and energy diminishing, does not require solving any linear system by taking advantage of the eigenfunc-
tion expansion.

The paper is organized as follows: in the next section, we describe the normalized gradient flow and its time discretiza-
tion. In Section 3, we construct eigenfunctions of B, using properly scaled generalized-Laguerre and Hermite functions, and
introduce the interpolation operators based on the scaled generalized-Laguerre and Hermite Gauss quadrature. We present
in Section 4 pseudospectral methods based on the scaled generalized-Laguerre and Hermite functions for computing ground
state in 1D BEC, symmetric and central vortex states in 2D BEC with radial symmetry and in 3D BEC with cylindrical sym-
metry. In Section 5, we present numerical results on symmetric and central vortex states to demonstrate the efficiency and
accuracy of our new numerical methods. Finally, some concluding remarks are drawn in Section 6.

2. Normalized gradient flow and its time discretization

In this section, we describe a time discretization procedure for solving the nonlinear eigenvalue problem (1.5)-(1.7).
i i oblem (1.5)-(1.8) can also be viewed as the Euler-Lagrangian equations of the energy func-
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under the constraint (1.8).

From a mathematical point of view, the symmetric states (m = 0) and central vortex line states with index m (m=0) of the
BEC are defined as the minimizer of the following nonconvex minimization problem:

Find i, € R and ¢%, € Sy, such that

Eg .= E(¢},) = minE(¢),

1E = J(95) = Eg + 7B f / (6% (r,2)rdrdz,
0 —o0
where

Sm = {¢n = ¢u(r,2)||¢nll = 1; ¢,,(0,2) = 0 when m#0, E(¢,,) < co}.

When g = 0, it is well known that there exists a unique positive minimizer of the nonconvex minimization problem (2.2)
[19,8]. It is easy to show that the minimizer ¢2, is an eigenfunction of (1.5)-(1.8). In fact, the symmetric state is also the
ground state of the BEC in this case [3].

Various algorithms for computing the symmetric and central vortex line states of BEC has been proposed in the literature
[10,3,8,23,1]. One of the popular and efficient techniques for dealing with the normalization constraint (1.8) is through the
following procedure: Choose a time step At > 0 and set t, = nAt for n = 0,1,2,... Applying the steepest decent method to
the energy functional E(¢) without constraint (1.8), and then projecting the solution back to the unit sphere S, at the end of
each time interval [t,,t;.1] in order to satisfy the constraint (1.8).

It is clear that the above procedure leads to the function ¢(r, z, t) which is the solution of the following normalized gra-
dient flow:

(2.2)

SO2,0) = ~Bud — W) + FIOFIS, b St <brs, n 30, 23)

¢(0,z,t) =0 (for m#0), zeR, t =0, (2.4)

!Lm ¢(r,z,t) =0, zeR, élim ¢(r,z,t) =0, Te R, (2.5)
o + _ ¢(r121 t;+])

O(r,z,th) = o(r,z, ). ) = m, (2.6)

#(r,2,0) = §y(r,2), with [|g(-)] =1, (2.7)

where R = (—00,00), R, = (0,00), [|()[|> =27 [;° [ |$(r,2)’rdrdz, and ¢(r,z,t7) = lim, - ¢(r, 2, ).
When g = 0, it can be shown as in [3] that the above normalized gradient flow is energy diminishing for any time step
At > 0 and any initial data ¢, (r,z), i.e.

E(d)(a tﬂ—j)) < E(QS(: tﬂ)) SEREEN E(d’(: t())) = E(qﬁo)? n= 0) 11 2) LR (28)

which shows, rigorously, that the above algorithm for computing symmetric and central vortex line states for the BEC in the
linear case is convergent. When g > 0, letting At — 0 in (2.3)-(2.6), we obtain the following continuous normalized gradient
flow (CNGF):

0 - 2 #(‘;b(vt))
afﬁ(raza t) = |—Bm — W(2) — f|9| +m ¢, t=0, (nz)eR. xR

with the boundary conditions (2.4) and (2.5). The solution of CNGF is normalization conserved and energy diminishing pro-
vided that § = 0 and W(z) = O for all z€ R, i.e.

1660 = 9o =1, SEGC.0) = -2/asC,0P <0, 30, (2.9)
which in turn implies
E(¢(.t2)) S E(o(, 1)), 0t <tz <oco (2.10)

This shows that, when time step At is sufficiently small, the above algorithm for computing symmetric and central vortex
line states in the nonlinear case is also convergent.

For the time discretization of (2.3)-(2.7), we adopt the following backward Euler scheme with projection:

Given ¢°, find ¢™*! such that

Tn+l AN . ~
", Z)At ¢"(r,2) = —Bn¢™! — (W(2) +ﬁ|¢nl2)¢n+l, (2.11)

e o OT(12) (2.12)
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For g =0, it is shown in [3] that
E(¢™") <E(¢"), n=0,1,2,.... (2.13)

Hence, the scheme (2.11) is energy diminishing for the linear case. However, (2.11) involves non-constant coefficients so it
can not be solved by a direct fast spectral solver. Therefore, we propose to solve (2.11) iteratively (for p = 0,1,2,...) by intro-
ducing a stabilization term with constant coefficient

Pn1eel(r,2) — ¢"(r,2)
At

(}n+1,0 — an’ &)m—l — ;L‘{,}) ("ign—l,p’ ¢'

= — (B + o)™ P + (ot — W(z) - B0"[*)§"2, (2.14)

nl _ &n-ﬂ
™1l
The stabilization factor «, is chosen such that the convergence of the iteration is at ‘optimal’. As the analysis in [2] shows, o,
should be chosen as
1

(2.15)

% = 5 (Dinin + Do) (2.16)
with
on = min [W(z) + fl¢"(r,2)["], by = max [W(z)+ Bl¢"(r,2)]. (2.17)
(rz)eR. xR (r2)eR, xR

3. Eigenfunctions and interpolations
3.1. Eigenfunctions of Bm

As shown in the last section, the numerical scheme for (2.3)-(2.7) requires solving, repeatedly, (2.14). Therefore, it is most
convenient to use eigenfunctions of By as basis functions. Thanks to (1.4), we only need to find eigenfunctions of B}, and B°.
We shall construct these eigenfunctions by properly scale the Hermite polynomials and generalized Laguerre polynomials
which have been widely used in solving partial differential equations [11-13,16,20,28-30].

We start with B®. Let H)(z) (I=0,1,2,...) be the standard Hermite polynomials of degree I satisfying

Hj(z) —2zH)(z) + 2IH,(z) = 0,z e R, 1=0,1,2,..., (3.1
] " Hi(2)H;(2)e % dz = vm2'llsy, 1,1 =0,1,2,..., (3.2)

where &, is the Kronecker delta.
As in [6], we define the scaled Hermite functions

hi(z) = e ¥ PH(7,2) [V 21y, /), zeR. (3.3)
It is clear that lim,_,..Ju(z) = 0.
Plugging (3.3) into (3.1) and (3.2), a simple computation shows
1., 1 1
B*hy(z) = _ih‘ (2) +§y§zzh1(z) = (I+§)yzh,(z), zeR, =0, (3.4)
fm h@hy(@)dz =5y, LI=0,1,2,... (3.5)

Hence {h;};°, are eigenfunctions of the linear operator B’ in (1.4).

We now consider B;,. To this end, we recall the definition for the generalized-Laguerre polynomials.

For any fixed m (m=0,1,2,...), let L7*(r) (k=0,1,2,...) be the the generalized-Laguerre polynomials of degree k satis-
fying [27]

2
(r%Jr (m+1 —r)%) Ln(r)+kL"(r)=0, k=0,1,2,..., (3.6)
A e Ir (LD (M dr = (Mo, kK =0,1,2,..., (3.7)
where

m

Ck’":l"(m+1)(k;m) ~[k+i). k=0,1,2,...

Jj=1

-Laguerre functions L;! by
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() =T e AL ), (38)
4/ TC,
Plugging (3.8) into (3.6) and (3.7) a tedious but simple computation (see detail in Appendix A) leads to
ropm _ 1d d 2 m . m
BLi(r) = {—? ar\Tar) * 2r2 + 2*y 2| L3 () = 7,2k + m + DI (), (3.9)
2 / L (ML) dr = 8. (3.10)

Hence {1}, are eigenfunctions of B],. We note that the basis functions {L}'};", with m = 0 were already used in [6].
Finally, we derive from the above that

B (LY (Nhi(2)) = hi(2)B;, Ly (r) + Ly (r)B*hy(2)
=7.(2k + m+ V)L (Nh(z) + 7, (l + %) Ly (Nh(z) (3.11)
= [7,2k+m+1) +vz(1+%)}.[km(r)h;(z). (3.12)
Hence, {L}'(r)hi(z)};_o are eigenfunctions of the operator B, defined in (1.4).
3.2. Interpolation operators
In order to efficiently deal with the term |¢"|2¢"+'* in (2.14), a proper interpolation operator should be used. We shall
define below scaled interpolation operators in both r, z directions and in the (r,z) space.

Let {2} , be the Hermite-Gauss points, i.e., they are the N + 1 roots of the Hermite polynomial Hy, ; (z), and let {G%} ; be
the associated Hermite-Gauss quadrature weights [27]. We have

N A A

., Hi(Z) Hy (%) /

04 =6y, LI=0,1,...,N. 3.13
§ 5']‘51/4 r“‘zlll 1/ F‘*“zrr! s ’ 4y ’ ( )

We then define the scaled Hermite-Gauss points and weights by

A Gres
Zi=—r, w=—"—, 5=01,2,...,Nz 3.14
* V72 VT : ( )

We derive from (3.3) and (3.13) that
a)zezs

N ~
H(z) Hy(zs) .
SEU wihi(zs)hy (z5) = Eo N hl Zs/\/?z hz Zs/\/ ;O Tt /—‘ I /3 ,—mzf =4y, LI'=0,1,...,N. (3.15)

Let us denote
Yy =span{h,:k=0,1,...,N}. (3.16)
We define
C(R) — Yy such that (§f)(z) =f(z), s=0,1,...,N, V¥feC(R). (3.17)

Now, let {r’"}j o be the generalized-Laguerre-Gauss points [27,26]; i.e. they are the M + 1 roots of the polynomial LM+1( ),
and let {"},_, be the weights associated with the generalized-Laguerre-Gauss quadrature [27,26]. Then, we have

L Lnim) I (im

7ékk: :
T e

We then define the scaled generalized-Laguerre-Gauss points and weights by

—-0,1,...,M. (3.18)

P U i ji=01,...M (3.19)
Py I ey IO M |

We derive from (3.8) and (3.18) that

nre’

s M m 1(pm ,
zwmv" ) = Zm—m)mfbi”(\/f}"/%)w”(\/"}"/%):E:@}" - *;;)aw, kK=01,...M
r\'j j

Jj=0
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Let us denote

Xy =span{L} : k=0,1,.--,M}. (3.21)
We define

Iy : C(R.) — Xy;  such that (Iyf)(r") =f(r"),j=0,1,...,M, ¥f e C(R.). (3.22)
Finally, let

Xy =span{L]'(nh(z): k=0,1,2,....M, 1=0,1,2,...,N}. (3.23)
We define Ijj, : C(R; x R) — X}, such that

N z) =f(72), j=0,1,....M, s=0,1,...,N,¥f € C(R. x R). (3.24)

It is clear that Ijjy = I§; o In.
Note that the computation of the weights {", @z} from (3.19) and (3.14) is not a stable process for large m, M and N.
However, they can be computed in a stable way as suggested in the Appendix of [26].

4. The generalized-Laguerre-Hermite pseudospectral methods

4.1. A Hermite pseudospectral method in 1D

In this section, we introduce a Hermite pseudospectral method for computing ground states of 1D BEC. In fact, when
¥, > 7, in (1.1), the 3D GPE (1.1) can be approximated by a 1D GPE [24,4]. In this case, the stationary states satisfy

1 8
Hep = { 26z2+2?zz +W(Z)+ﬁﬂ¢l] (4.1)
under the normalization condition

ww=[ﬂwmﬂnﬂ, (42)

where ¢ = ¢(z) and B, =~ By,/2n [4]. Any eigenvalue (or chemical potential) x4 can be computed from its corresponding
eigenfunction ¢ by

p= [ |l + (532 < W@ )07 + folgl | dz = (o) 43)

As described in Section 2, this nonlinear eigenvalue problem (4.1) can also be viewed as the Euler-Lagrangian equations of
the energy functional E(¢), defined as

Eo) = [ 3ol + (82 + W)l + 1o ez (44)
under the constraint (4.2). Similarly, in this case, the normalized gradient flow (2.3)-(2.7) collapses to
8 z
5 9@ D =-Fo - W2 - pilo[ o, (45)
\Llln $(z,t)=0, t=0,
— + ¢(Z’ rﬁH—‘l) 4 7
(b(za tn+l) . (]5(2, tnf ) H‘ﬁ( , n+‘1)“ ( . )
$(z,0) = ¢o(z), zeR with [|go()[| =1, (4.8)
where ¢(z,t7) = lim,_. $(z,t), [6()|* = [7, [6(2)/*dz.
Similarly, the scheme (2.14) in this case becomes:
Tn+1,p+l _
PPN —OE) (B s 0,710 4 (s — W) — By 4P, (49)

At
We now describe a pseudospectral method based on the scaled Hermite functions {h;(z)} for (4.19)-(2.15).
Let (u,v), = [, uvdz and ¢ € Yy. Forn=0,1,..., set % 0 = ¢} and o, = 1 (b}, + bf,,) With
bﬂ

he = _min W)+ pl8@P) %xiggwm+M%wH

00<Z<!

tral method for (4.19)-(2.15) is
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¢n+1,p+1 ¢ oot 1
W+(Bz+a) ol ?hl :(I}Z\'[( -W- ﬂl'qu)l )¢n_ IJ]’ )Rl OS!QN,p:O,l,, (410)
R
Bt = time, gyt -

a1l

We note that ¢} '#! can be easily determined from (4.10) as follows:
We write the expansion

N
n+1 p+1 Z ¢’n+1 p+lh ’ ¢R’(Z) _ Z c}&?h!(z) (4.11)
1=0
and
£"(2) = [i[(on — W(2) — Bi|¢R (@) (2)] = Zg Phi(2),

where the coefficients {gI P1¥  can be computed from the known function values {g"?(z;)}" , through the discrete Hermite
transform using (3.15), i.

N
g7 =) g )h(z)w} (412)
=0
Thanks to (3.4) and (3.5), we find from (4.10) that
n+1,p+1
% =— {yz(l +;) + acn} Pl g 1=0,1,...,N, (4.13)

from which we derive

Gn+1,p+1 — &)? + Atg?‘p
! 1+ Affa, + 7, (1+3)]

, 1=0,1,...,N. (4.14)
Then, ¢ and ¢7! can be determined from the second equation in (4.10).
4.2. A generalized-Laguerre pseudospectral method in 2D

We now consider the 2D BEC with radial symmetry. The physical motivation is that when y, > 7, in (1.1), the 3D GPE

(1.1) can be approximated by a 2D GPE [24]. In this case, the radial symmetric state (m = 0) and central vortex state with
index m (m=0) satisfy

tntn =3 [~ 1 2 (r ) + 0+ T+ 28l (4.15)
¢n(0) =0 (for m=0), lim ¢, (r) =0, (4.16)

under the normalization condition

Iénl? =27 " b Prdr =1, 417)

where ¢, = ¢,,(r) and B, = B/7,/27 [4]. Any eigenvalue (or chemical potential) y,, can be computed from its corresponding
eigenfunction ¢, by

oc 2
=0 [ [l (307 45 )00 + 28216, | rar = (o). 418)

Again, this nonlinear eigenvalue problem (4.15)-(4.17) can also be viewed as the Euler-Lagrangian equations of the energy
functional E(¢,,), defined by

) =7 [ [0l + (1872 + ) 0l + Bl (4.19)

under the constraint (4.17). Accordingly, the normalized gradient flow (2.3)-(2.7) collapses to
ol

2, (4.20)
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$(0,)=0 (for m#0), lim¢(r,t)=0, >0, (4.21)
o + _ ¢(r7 t;—l)

O(r tnar) == (1, ) = ot (4.22)

o(r,0) = ¢o(r), 0<T1<oo, with [¢y()] =1, (4.23)

where ¢(r,t;) = lim,_. ¢(r, ), lp()|? = 2x Jo |¢(r)]*rdr. The scheme (2.14) in this case becomes:

f;bm']‘pﬂ _ d)n{r)
=
We now describe a pseudospectral method based on the scaled generalized-Laguerre functions {L}(r)} for (4.24)-(2.15).
Let (u,v), 5, = J5, uvrdr and ¢y, € Xjy. Forn=0,1,..., set ¢}, = ¢}, and &, = (b, + b].,) with

min
n : 2 n 2
brin = N [B|d3 ('], Do = Max B2} (r)[7]-

—(By, + o)™ 4 (ot — By|¢"[F) "2 (4.24)

Then, the generalized-Laguerre pseudospectral method for (4.24)-(2.15) is
find ¢}, "?"" € X such that

_EM|
g
L
=

In|E
g
L
[=>)

0 50 100 150 200 0 50 100 150 200 250 300
M M

imetric and central vortex states of 2D BEC with radial symmetry by using (4.25) for different m and g,: (a) , = 10;
00.
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¢n+1,p+1 qu T n+1,p+1 ym _ m Gn+1p m 0 k —-0.1 4.2
M I B ) LY = (Tl = BlGRPIETLLT)  0<k<M, p=01,..,  (425)
R, \+

Tn+1 Sn+1p n+1 ~R4_1

oy =limey ", ¢y ==
e

The function ¢}, "' can be easily determined from (4.25) as follows:
We write the expansion
Snilprl M e O
oy TT(r) = Zd’f TRLT), oy = ZfﬁEL?(T) (4.26)
k=0 -0

Table 1
Radius mean square a,, energy E, = E(¢) and chemical potential M= 1(¢!) of the symmetric and central vortex states of 2D BEC with radial symmetry and
M = 50 for 8, = 10 with different index m

m oy Ey = E(¢) g = pd)
0 1.26187099 1.59231902 2.06375207
i 1.53661556 236118811 2.69167784
2 1.81131962 3.28087973 3.54606849
g 2.05852636 4.23753202 446481551
4 2.28243553 5.20951367 5.41148881
5 2.48787557 6.18952687 6.37311430
6 2.67849796 7.17435364 7.34381582
7 2.85697868 8.16233006 8.32050594
8 3.02530922 9.15249908 9.30138980
g 3.18500597 10.14426648 10.28534445
10 3.33724995 11.13724135 11.27162695
15 4.01410239 16.11302510 16.22417440
20 4.59329096 21.09833182 21.19526717
25 5.10766022 26.08820593 26.17529928
30 5.57500370 31.08068376 31.16044271
40 6.40859067 41.07006163 41.13943156
50 7.14581945 51.06277304 51.12499344
60 7.81391854 61.05737347 61.11428672
70 8.42930019 71.05316613 71.10593791
Table 2

Radlus mean square o,, energy E; = E(¢ ) and chemical potential y, = u(¢7) of the symmetric and central vortex states of 2D BEC with radial symmetry with
=50 for 8, = 1000 with different index m

m Gy E; = E(zﬁ%) K= #(9’%’)

0 3.46002488 11.97177422 17.88864690
i 3.48804397 12.16645295 18.01329019
2 3.54187594 12.54488754 18.28085868
g 3.61096998 13.03908997 18.65105895
4 3.68987248 13.61513463 19.10081655
5 3.77523196 14.25239728 19.61440987
6 3.86485616 14.93711583 20.18040284
7 3.95722132 15.65959765 20.79002576
8 4.05126566 16.41275862 21.43646734
9 4.14623407 17.19126236 22.11432074
10 4.24157906 17.99099505 22.81921308
5! 471325107 22.21474032 26.64340068
20 5.16463355 26.67344552 30.79661542
25 5.59169606 31.26707242 35.14839763
30 5.99555631 35.94670464 39.63069139
40 6.74285862 45.46615497 48.84438714
50 7.42403523 55.11631738 58.26543378
60 8.05269647 64.84594441 67.81460909

\8.63876455 74.62828335 77.44968607
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and

g"(2) = Il(em — ool () a7 (1) 1—2 L),
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where the coefficients {g*}}' ; can be computed from the known function values {gni’(rjt")}}‘i o through the discrete general-

ized-Laguerre transform using (3.20), i.e.,

"”—Zg 2L () w]

Thanks to (3.9) and (3.10), we find from (4.25) that

¢n+1,D+1 d’
Tk 7[},r(2k+m+l)+an] n+1p+l +g2'pa k:[)?]r"':N:
from which we derive
qn+lp+l _ "JBE + Afgﬂ’p —
k T 1At + 9,2k +m+ 1)) k=01,....N.
a : . . . . b o

(4.27)

(4.28)

(4.29)

¢d (1
o2 (1)

C o014 : ; d oo

0 and (d) f, = 10,000.

tes of 2D BEC with radial symmetry form = 0,1,3,5,10, 15 (in the order of decreasing of peak values) and different
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Then, ¢%;! and ¢};" can be determined from the second equation in (4.25).
4.3. A generalized-Laguerre—Hermite pseudospectral method in 3D

We are now in position to describe the generalized-Laguerre-Hermite pseudospectral method for computing symmetric
and central vortex line states of 3D BEC with cylindrical symmetry.
Let (U, V), 5, .2 = J5 Ji, uvrdr dz and ¢f), € Xjy. Forn=0,1,---, set ¢j\'° = ¢,y and o, = 4 (bp,

min T bnmax) with
Bon = min [W(2)+Bl¢in(r,2)["], bhy = max [W(z)+ Bdfy(r2)).
(r2)eR. xR (rz)eR; xR

min

Then, the generalized-Laguerre-Hermite pseudospectral method for (2.14), (2.15) is: find ¢}y ?"' € X7, such that for
0<k<MO0LILK<Np=0,1,...,

n+1p+l
(MNM"”W (B +- ) " LY ()2 )) = (Il — W@ — Bléiw) )l "L LE (D) (430)
R, xR e
Tn+1 : n+1 n+1 orl
i A
The function ¢}y ?*' can be easily determined from (4.30) as follows:
We write the expansion
M N
e Zvﬁ:“ PR, S = Y Sl (D), (431)
k=0 =0
and
) M N
g (r,2) = Iy [( — W(2) — Blop (1 D)) P (r,2)] = > ) &P L (1)
k=0 =0

where the coefficients {§;”} can be computed from the known function values {g”P(r’“ z;)} through the discrete generalized-
Laguerre transform and discrete Hermite transform using (3.20) and (3.15), i.

& = Z Zg”“ (17, 2) Ly (17 hy(zs) (4.32)
s=0 j=0
Thanks to (3.9) and (3.10) and (3.4) and (3.5), we find from (4.30) that
G n+1,p+1 _a) 1
S~ [ (2k+m+1)y, (1 +§) + o | TP g, (4.33)
a - ' - b 22— -
5l —x— B =10 —4f
—o—B,=100 -6
-8+
,10 b
_ _-10f
Zo Zo
Y Wo_gt
w®-15F w®
£ £ 14p
16}
-20
,18 L
-20
-25
-22
0 10 20 30 40 50 60 70 20 40 60 80 100 120 140 160
N N

nd states of 1D BEC with W(z) =V, sinz(nz/4) by using (4.10) for different g, and Vjy: (a) Vo = 0 and (b) V, = 25.
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49%2)
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Fig. 4. Ground states of 1D BEC with #;, = 200 and W(z) =V, sinz(nz/4) for different V,: (a) Vo = 0; (b) V, = 10; (c) Vp = 50 and (d) V, = 200.

from which we derive

Gl pHl _ o + At

) . 4.34
ki 1+ At[on +9,2k+m+1) +7y,(1+3)] -

Then, ¢7%! and ¢j;y can be determined from the second equation in (4.30).

5. Numerical results

We now present some numerical results by using the numerical methods introduced in previous sections to demonstrate
the spectral accuracy of the methods and to compute symmetric and central vortex states in BEC. To quantify the numerical
results of a state ¢(x) with [|¢(-)||> = [« |p(X)[?dx = 1, we define the condensate widths along the r- and z-axes as g, and ; by

o2 = fRd Cpx)dx, a=xyz o> =0>+a’ (5.1)

Example 1. Symmetric and central vortex states of 2D BEC with radial symmetry, i.e. we take y, =1 in (4.20).
e scheme (4.25) with time step At = 0.1. Let ¢%,(r) be the numerical ‘exact’ symmetric or
ined numerically by using M = 300 in (4.25) and denote its energy as E; = E(¢%,). Similarly,
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let ¢M(r) be the numerical solution of the symmetric or central vortex state which is obtained numerically by (4.25) and
denote its energy as EM = E(¢M). Fig. 1 plots the errors In |Eg — Eg' | vs. M for different m and B,. In addition, Table 1 lists radius
mean square oy, energy E(¢™) and chemical potential u(¢") with M =50 and g, = 10 for different m, and Table 2 lists
similar results for 8, = 1000. Fig. 2 depicts ¢& (r) for different m and g,.

From Figs. 1 and 2, Tables 1 and 2 and additional numerical results not shown here for brevity, we can draw the following
conclusions for our numerical method and the symmetric and central vortex states of 2D BEC with radial symmetry: (i) the
scheme (4.25) is spectrally accurate for computing symmetric and central vortex states of 2D BEC with radial symmetry (cf.
Fig. 1); (ii) for fixed §,, when the index m increases, the radius mean square o;, energy per particle Eg, chemical potential y,
and vortex core size r. (distance between the origin and the position where ¢% (r) attains its peak value) increase (cf. Tables 1,
2, Fig. 2); (iii) for fixed m, when g, increases, the radius mean square g;, energy per particle E; and chemical potential u,
increase, but the vortex core size r. decreases and (iv) for any fixed g, > 0, we have

$9(r.2)

99o(r.2)

ine states of 3D BEC with cylindrical symmetry with y, = 1, ¥, = 4, W(z) = 0 and § = 200 for different m: (a) m = 0;

View PDF
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Table 3
Radius mean square o; and o;, energy E; = E(¢%) and chemical potential g, = 1(¢7%,) of the symmetric and central vortex line states of 3D BEC with cylindrical
symmetry for = 200 with different index m

m Or 0z Eg = E(¢,) by = ()
0 2.06682393 0.452574559 6.55486039 8.54323597
1 216965987 0.446595216 6.95925961 8.83813666
2 23204757 0.440390694 7.60644575 9.36924565
3 248315265 0.435085574 8.36376363 10.0262063
4 2.64661629 0.430634629 9.18307689 10.7606954
5 2.80687303 0.426872062 10.0414999 11.5470093
6 2.96249246 0.423650384 10.9265064 12.3699915
7 3.11305802 0.420856913 11.8305741 13.2200656
8 3.25861254 0.418405487 12.748872 14.0908206
9 3.3993583 0.416232548 13.6781349 14.9778087
10 3.53559224 0.414288234 14.6160647 15.8778101
15 4.15911019 0.406919394 19.3895928 20.5066343
20 4.70805515 0.401912034 24.2422615 25.2600451
25 5.20285443 0.398207476 29.1360907 30.0799082
30 5.65646951 0395313022 34.0546463 34.940335
40 6.47197512 0.391006775 43.9357019 44,7343135
50 7.19779494 0.387893321 53.851271 54.5864518
60 7.85800817 0.385497866 63.7871598 64.4732469
70 8.46758734 0.38357611 73.736239 74.3827466

(¢B)<E(¢%’)< < E(¢8) <= u(df) < u(dh) <--- < puldy) <
E(¢%.4) mE(¢5) +1, w(dh.) = uldh)+1, m>1,

i E(st) .

mooo U($5)

m+1

Example 2. Ground state of 1D BEC, i.e. we take 7, = 1, W(z) = V, sin®(mz/4) with V, a constant in (4.5).

We solve the problem by the scheme (4.10) with time step At = 0.1. Let ¢#(z) be the numerical ‘exact’ ground state which
is obtained numerically by using N = 200 in (4.10) and denote its energy as E; = E(¢*). Similarly, let ¢"(z) be the numerical
solution of the ground state which is obtained by (4.10) and denote its energy as Eg = E(¢"). Fig. 3 plots the errors In |Eg — Eg |
vs. N for different §; and V. In addition, Fig. 4 depicts ¢#(z) with 8, = 200 for different V. The results in Fig. 3 demonstrates
the spectral accuracy of the method (4.10) for computing ground state of 1D BEC.

Example 3. Symmetric and central vortex line states of 3D BEC with cylindrical symmetry, i.e. we take y, =1, y, =4 and
W(z) =0 in (2.3).

We solve the problem by the scheme (4.30) with time step At =0.1. Let ¢%(r.z) be the numerical solution of the
symmetric or central vortex state which is obtained numerically with M = 60 and N = 60 in (4.30). Fig. 5 depicts ¢%,(r,2)
with g = 200 for different m. In addition, Table 3 lists radius mean square o, and o, energy E(¢%,) and chemical potential
(¢%) with g, = 200 for different m.

From Fig. 5, Table 3 and additional numerical results not shown here for brevity, we can draw the following conclusions
for the symmetric and central vortex line states of 3D BEC with cylindrical symmetry: (i) for fixed g, when the index m in-
creases, the radius mean square in r-direction o, energy per particle E,, chemical potential g, and vortex core size r. increase
(cf. Table 3 and Fig. 5), but the radius mean square in z-direction o, decreases (cf. Table 3); (ii) for fixed m, when g increases,
the radius mean square o, and g, energy per particle E; and chemical potential y, increase, but the vortex core size r, de-
creases; (iii) for any fixed g = 0, we have

E(¢5) < E(¢%) < --- <E(¢n) <--- = W(F) < W(eF) <--- < p(ef) <
E( m+1)NE(¢§n)+17 nu( mf‘l)mnu'(qb;gn)‘i"la m>>1=

lim E¢m) _ 4

moa JU( )

6. Concluding remarks

We developed in this paper a new generalized-Laguerre-Hermite pseudospectral method for computing symmetric and
central vortex line states of 3D BEC with cylindrical symmetry. The new method takes advantage of the cylindrical symmetry
so that only an effectively 2D problem needs to be solved. The method is based on appropriately scaled generalized-La-
guerre—Hermlte functions and the backward Euler time integrator for the normalized gradient flow. Hence it is spectrally

ble and efficient in practical computation for all m = 0. In fact, the method can be easily ex-
d central vortex states in rotating BEC [8], multi-component BEC [31] and spin-1 BEC [7,5].
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Appendix A. Derivation of (3.9) and (3.10)

When m = 0, (3.9) and (3.10) were derived in [6]. For any fixed m><0, letting z = y,r? and differentiating (3.8) with respect
to r, we obtain
(m+1)/2
c(l:] Lm( ) yr
r ncr

<2 [ m— 3,7 @) + 20 TR (1)

Multiplying r at the both sides of (A.1) and then differentiating with respect to r, we get

d ,y(m+1)/2 -2/2 m+1 Tm 2,.m+3 d Tm
o (gt = =T i - miEpe) - 2 L IR G)
7@

2
P — (m+ 2 + 2

d -~ d -~
s m =3 G IR + 2+ 2 ST )

=172 R
=T e [ (2t — 2y, (m + D) + M) (2)
nCy
m+1 d-~ m+3 d2 Tm
+4y, ™ m 41 - y,rz)d—zL (@) + 4y*r gz Lk (2)
Zmz m2\ =, d~, d? - m
,Tc?e* /2 (?fﬂ*z%(erUJrrT)Lk (z)+4yr((m+l —z)ﬁLk (z) + dzzL (z ))] (A.2)

Plugging (A.2) into the left hand of (3.9] noticing (3.6), we have

L0 (e

1/2_m/2 N
_ _WZ Kyfrz —2y,(m+1) +m—2)Lkm(z) + 4y, ((m+ 1- )dg I"(2) +z(;121_m( )H
2,/nCy r
m2 yi}/zszz PN
+ (f+*? r) e *2L7(2)
w2 2" ) et
y}/?-zm/z

_ 2\/5@64/2[ 27,(m + DL} (2) - 49,k (2)|

=72k +m -+ 1)L7(r). (A.3)
Similarly, plugging (3.8) into (3.10), noticing (3.7), we obtain
2n f L7 (r)Lg (ryrdr
0

o0 N‘)m 1)/2 ym+1)/2
:Zn/ r e~ 2Lm(y p2) I pmeiT sz”‘(y rA)rdr

f () "Le () LE ,r)d (7,7)

E

\/_

- [ Plreipee-

>v

C?akk-’ = 5”( (A4)

1
Jeren
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