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Abstract

In this paper we discuss the treatment of discontinuities in Smoothed Particle Hy-
drodynamics (SPH) simulations. In particular we discuss the difference between in-
tegral and differential representations of the fluid equations in an SPH context and
how this relates to the formulation of dissipative terms for the capture of shocks
and other discontinuities.

This has important implications for many problems, in particular related to re-
cently highlighted problems in treating Kelvin-Helmholtz instabilities across entropy
gradients in SPH. The specific problems pointed out by Agertz et al. (2007) are
shown to be related in particular to the (lack of) treatment of contact discontinu-
ities in standard SPH formulations which can be cured by the simple application of
an artificial thermal conductivity term. We propose a new formulation of artificial
thermal conductivity in SPH which minimises dissipation away from discontinuities
and can therefore be applied quite generally in SPH calculations.
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1 Introduction

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian particle method for
solving the equations of fluid dynamics (for reviews, see Monaghan 2005; Price
2004; Monaghan [1992).
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Whilst SPH is widely used in astrophysics, geophysics and engineering appli-
cations, recently |Agertz et al. (2007) have suggested that there are “funda-
mental differences” between SPH and grid-based codes, particularly relating
to the simulation of Kelvin-Helmholtz instabilities between two fluids of dif-
ferent densities. Whilst not phrased in terms of “fundamental differences”,
similar problems have been hinted at previously by other authors regarding
the treatment of large density gradients in SPH, for example in the context of
multi-phase calculations (Ritchie and Thomas, 2001; Marri and White, 2003).

The aim of this paper is to resolve these issues in the broader context of
how discontinuities in SPH are treated, starting from an understanding of
the difference between integral and differential representations of the fluid
equations in SPH (in particular the continuity equation) and thus the need for
“discontinuity-capturing” terms where differential representations are used.

The paper is structured as follows: Our basic SPH formulation is presented in
g2 and the treatment of discontinuities is discussed in §31 We propose a new
formulation for artificial thermal conductivity in SPH in §3]which is both effec-
tive at resolving contact discontinuities appropriately whilst also minimising
the dissipation of thermal energy gradients elsewhere. The general discussion
regarding discontinuties is illustrated on shock tube tests presented in §4.1],
on which the effectiveness of the new artificial thermal conductivity formu-
lation is also demonstrated. The problems relating to simulating the Kelvin-
Helmholtz instability in SPH are discussed in §4.2] based on numerical tests.
We demonstrate that, whilst there are indeed numerical issues with resolving
KH instabilities across contact discontinuities in standard SPH formulations,
application of our new term very effectively cures the problem. The results are
discussed and summarised in g5l

2 Standard variable—h SPH equations

Whilst the standard derivation of the SPH equations from a Lagrangian varia-
tional principle has been presented by many authors (e.g. Nelson and Papaloizou,
1994; Monaghan and Price, 2001; [Springel and Hernquist, 2002; IMonaghan,
2002; [Price and Monaghan, 2004b), it is instructive to repeat the derivation
here. We begin with the Lagrangian for a perfect fluid of the form (Eckart,
1960; Monaghan and Price, 2001)

L= / Epv2 — pu(p,s)|dV, (1)

where p, v and u are the fluid density, velocity and thermal energy per unit
mass respectively, the latter assumed to be a function of density and the



entropy s. This integral is discretised as a sum over SPH particles by replacing
the mass element pdV with the particle mass and the integral by a summation,
giving

N
1
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The equations of motion for particle ¢ may then be derived using the Euler-
Lagrange equations in the form

d (0L oL
dt (aVz’> o 0 (3)

provided that all of the quantities in the Lagrangian can be expressed as a
function of the particle co-ordinates r and their time derivatives r = v. In this
way the exact conservation of momentum, angular momentum and energy is
guaranteed in the resultant SPH equations because of the symmetry of the
Lagrangian with respect to translations, rotations and time respectively.

The momentum is given straightforwardly, from Equation (2), by
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The spatial derivatives in the Lagrangian are found by assuming that the
entropy is constant and thus that the thermal energy can be expressed as a
function solely of the fluid density, giving

0L . 8uj 6,0]
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where the derivative of thermal energy with respect to density is provided
by the first law of thermodynamics at constant entropy, dU= —PdV, where
V' = m/p is the particle volume such that the change in the thermal energy
per unit mass is given by

P
du = ?dp. (6)

The density in SPH is calculated by sum according to

pPi = ijw(\ri - 1"j|, h’i)v (7)
J



where in the variable smoothing length formulation h; is in turn assumed to
be a function of p;, in the form

h=n(m/p)"?, (8)

where 7 specifies the smoothing length in units of the average particle spacing
(we use n = 1.2 throughout this paper). The density summation is thus a non-
linear equation for both p and h which we solve iteratively using a Newton-
Raphson method (Price and Monaghan, 2007). Taking the time derivative of
the density sum, we find

m:_ZW ) YWy (h). ©)

where €); is a term relating to the derivative of the kernel with respect to the
smoothing length. The above is an SPH expression for the continuity equation
in the form

— =—pV -v. (10)

The spatial derivative of density is given by

ap; 1
e = g Vi) 05— ). (1)

giving, via (), (6), (@) and (@) the SPH equation of motion in the form

dv; P, P;
J v
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The most common method for integrating the energy equation in SPH is to
evolve the thermal energy, which from ([6)) evolves according to

du, B

0.7 Zm] vi — ;) - VW (hy). (13)

Alternatively the total energy e = %1)2 +u can be used, which from the Hamil-
tonian (Monaghan and Pricd, 2001) has derivative
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A third alternative in the case of an ideal gas is also possible to evolve the
entropy function S = P/p”, which evolves according to

@_7—1 du  Pdp
dt — p~t \dt p2dt)’

5 (@)
p’y—l dt diss’

=0 (no dissipation), (15)

where the subscript (du/dt)g;ss indicates the dissipative part of the evolution
of thermal energy. The latter has the advantage of placing strict controls on
sources of entropy, since S is purely advected in the absence of dissipative
terms (Springel and Hernquist, 2002). It should be noted in the context of our
later discussions that the exact advection of entropy is inherently a differential
assumption since it relies on the fact that du — P/p?dp = 0 for which there is
no corresponding integral conservation law.

The reader unfamiliar with SPH should also note that in SPH evolving the
thermal energy u differs from an evolution involving the conserved total energy
e or the entropy A only by the timestepping algorithm. This is quite different
to the situation in an Eulerian code where there are additional differences due
to advection terms. In SPH an evolution using either u, e or A will conserve en-
ergy to timestepping accuracy (assuming the terms associated with smoothing
length gradients have been properly accounted for as described above).

3 Discontinuities in SPH

The treatment of flow discontinuities in numerical hydrodynamics has been the
subject of a vast body of research over the last 50 years, resulting in the devel-
opment of a wide range of high accuracy methods for shock capturing schemes
mainly applicable in the context of grid-based codes. Related to this has been
an understanding of the assumptions necessary for discontinuous solutions to
the equations of hydrodynamics (ie. shocks and contact discontinuities) to be
captured by the numerical solution. Thus for example, the difference between
a finite volume scheme and a finite difference scheme. Whilst both provide dis-
cretisations of the fluid equations on an Eulerian mesh, a finite volume scheme
uses a discretisation of the integral form of the equations, whilst the starting
point for a finite difference scheme is the discretisation of the fluid equations
in differential form. The problem with the latter is that the assumption that
the equations are differentiable immediately excludes the possibility of solu-
tions which have infinite derivatives (requiring additional mechanisms such as
dissipative terms in order to capture such solutions), whereas these solutions



are not excluded in an integral form. We discuss below how this relates to
formulation of the SPH equations.

3.1 Density sum versus density evolution

Useful insight into the difference between integral and differential formulations
of the fluid equations in SPH may be gained by considering the difference be-
tween calculating the density by summation using ([7]) and evolving the density
as a fluid variable using (). It is often assumed that these are two equivalent
ways of calculating the density in an SPH calculation since Equation (@) is
simply the time derivative of Equation () and thus that the only distinguish-
ing factor between the two is the cost associated with calculating the density
by summation separate to the evaluation of SPH forces (see, e.g. Monaghan,
1997).

In the light of our discussion above, we expect the two to differ because the
density summation represents an integral formulation of the continuity equa-
tion (that is, in using the density sum we have nowhere assumed that the
density is differentiable) whilst in taking the time derivative we have assumed
that the density is a differentiable quantity. The difference between the two
can be found by considering the continuity equation written in integral form
and smoothed over the local volume using the SPH kernel, ie.

/ l%_pt' T v (p/v/)] W(|r —r'|, h)dV’ = 0. (16)

Expanding, we have

% / PJWAV' + / V- (fV YWV =0, (17)

where W = W (|r — 1’|, h). The second term can be expanded further using

V' VW] =WV (pV)+ p'v - V', (18)
giving

a / ! /! / !/ / /__/ _

at/deV—/pv-VWdV+/V-[va]dV—O. (19)

Making use of the antisymmetry of the kernel gradient (ie. V'IW = —VW)
and using Green’s theorem to convert the last term from a volume to a surface



integral, we have

%/p'WdV’ + /p'v' -VWav' + / [pV'W]-dS = 0. (20)

Replacing the Eulerian time derivative d/0t with the Lagrangian time deriva-
tive, ie. /0t = d/dt — v - V, we find

%/p'WdV’ — /p’(v — V) - VWdV' + / [P V'W]-dS = 0. (21)

Finally, we can write the volume integrals as SPH sums by replacing pdV with
the particle mass and converting the integral to a sum, giving

d /
E ;ijij = ;m]‘(vi — Vj) . VWW — / [p/V W] . dS (22)

The above expression clearly shows that a formulation of the SPH continuity
equation in integral form would involve not only the time derivative of the
density sum in the form (@) but also an additional term which appears in the
above as a surface integral. This term in general vanishes (that is, the kernel
goes to zero at the limits of the integration volume) except at boundaries, or
equivalently, flow discontinuities. Thus we expect that SPH formulations which
evolve the continuity equation in the form (@) will differ from formulations
which utilise the density sum at such discontinuities, the latter of which should
require no special treatment. That this is indeed the case is demonstrated
in numerical tests presented in §4l In the context of our variable smoothing
length SPH formulation, it is important to note that a true “integral form” of
the density sum is only obtained when the smoothing length is also obtained
directly from the summation via iteration of the smoothing length-density
relation discussed in §2] (as opposed to simply evolving h separately using a
differential form of the continuity equation).

Regarding discontinuities in other variables (apart from density), the appear-
ance of surface integrals also provides some insight into where discontinuities,
e.g. in velocity “go missing” when deriving the SPH equations from a La-
grangian presented in §21 For example, in using the Euler-Lagrange equations
([B) we have implicitly assumed that the variation in the action vanishes at the
surface of the integration volume (that is, certain surface integrals involving
the Lagrangian are assumed to vanish). An assumption of differentiability is
also apparent from the fact that the Euler-Lagrange equations contain deriva-
tives with respect to particle coordinates and velocity and can only be derived
in this form by assuming that the variation in the action vanishes at the sur-
face of the integration volume. The reader will thus note that in our SPH



derivation in §2] a differentiated (and thus assumed differentiable) version of
the density sum was used in finding the equations of motion, leading to the
inevitable consequence that, whilst the continuity equation can be solved in an
integral form using the density summation, the SPH momentum and energy
equations derived above are clearly differential.

3.2 Artificial dissipation terms

The discussion above leads to an obvious corollary, namely given that discon-
tinuities have “gone missing” from the SPH by the assumption of differentia-
bility, how should they be recovered in the numerical solution? The simplest
approach is to add dissipation terms to the SPH equations which diffuse dis-
continuities on the smoothing scale such that they are resolved by the numer-
ical method (and thus no longer “discontinuous”). A general formulation of
such dissipative terms was presented by Monaghan (1997) in a comparison
of SPH to grid-based codes incorporating Riemann solvers. Whilst the usual
approach taken in SPH is to simply add an artificial viscosity term to the
momentum equation, Monaghan (1997) noted that, by analogy with Riemann
solvers, the evolution equation for every conservative variable should contain a
corresponding dissipation term in it’s evolution related to jumps in that vari-
able, leading naturally to formulations of dissipative terms for ultra-relativistic
shocks (Chow and Monaghan, [1997) and for Magnetohydrodynamics (MHD)
(Price and Monaghan, 20044, [2005) in SPH.

3.2.1 Hydrodynamics

For a non-relativistic gas the dissipation terms for the evolved variables in
conservative form (namely the conserved momentum and energy per unit mass,
v and e = v + u respectively) take the form (Monaghan, [1997)

d ) s?, i Vj)”" Ai'
( d‘; ) :ijav g(V 7”V]) eriVVija (23)
diss i Pij

(%) =xm T, T, 21

diss J Pij

where the bar over the kernel refers to the fact that the kernel must be sym-
metrised with respect to h, ie.

VIV = 5 (VWi (k) + TW (), 2




and the energy variable ef = lowsig(vi . f‘ij)Z + o, v

5 4;,ui Tefers to an energy
including only components along the line of sight joining the particles with
different parameters («, a,,) specifying the dissipation applied to each compo-
nent. The choice of signal speed vy, is discussed below (§3.2.3]). Note, however,
that in this paper we have deliberately distinguished between the signal ve-
locities used for the kinetic energy term vy, and that used for the thermal
energy term (vg; ), for reasons that will become clear. This differs from pre-
vious formulations (e.g. Monaghan [1997; [Price and Monaghan 2004a, 2005)
which have assumed that the same signal velocity is used to treat jumps in all

variables.

Equation (23]) in the Monaghan (1997) formulation provides an artificial vis-
cosity term similar to earlier SPH formulations (e.g. Monaghan 1992 — the two
formulations differ only by a factor of h/|r;;|). Equation (24]) is more inter-
esting, since (as discussed by Monaghan [1997) it shows that the evolution of
the total energy should contain not only a term relating to jumps in kinetic
energy (ie. the thermal energy contribution from the viscosity term) but also
a term relating to jumps in thermal energy. This is more explicitly obvious
if we consider the evolution of the thermal energy resulting from the above
formulation, ie.

du de dv
E_%_V'E’ (26)

which, using (23)) and ([24) gives

- = — 3 5 QWsig(Vij - Fij)
<dt diss ; pij 2 J ’ ’
+ auv;‘ig(u,- — U])} f'z'j : VZVVZ] (27)

The term involving (u; — u;) provides an artificial thermal conductivity which
acts to smooth discontinuities in the thermal energy. The need for such an
artificial thermal conductivity contribution in order to resolve discontinuities
in thermal energy is almost universally ignored in SPH formulations.

The effect of applying different types of dissipation to specific discontinuities
is discussed in the MHD case by Price and Monaghan (2005) and in the hy-
drodynamic case by [Price (2004). The point made in these papers is that
every physical discontinuity requires an appropriate treatment. For example
in hydrodynamics, shocks are treated by the application of artificial viscosity
terms but accurate treatment of contact discontinuities requires the addition
of artificial thermal conductivity to treat the jump in thermal energy. In the
MHD case discontinuities in the magnetic field are treated separately by the



application of artificial resistivity. We discuss the hydrodynamic case in more
detail below and in the shock tube tests presented in §4.11 In §4.2] we show how
these results have a direct bearing on the problems encountered when trying
to simulate Kelvin-Helmholtz instabilities across density jumps in SPH.

3.2.2  Interpretation of dissipative terms

The dissipation terms introduced by Monaghan (1997) can be interpreted
more generally as “discontinuity capturing” terms. Interpreted as such, for
any conservative variable (ie. such that 7, m;dA;/dt = 0) that is evolved
via a differential equation one would expect to add a dissipation term of the
general form (for a scalar quantity A)

A. .
) - Soomy A (A — Ak - VW (28)
dt diss 7 pij

where a4 is a parameter of order unity specifying the amount of diffusion
to be added to the evolution of A. The interpretation of (28) can be seen by
considering the SPH expression for the Laplacian in the form (e.g. Brookshaw,
1985)

4)) F

Pj |TZJ |

(29)

_227”] (4~

where the scalar function Fj; is the dimensionless part of the kernel gradient
such that VW;; = t;,F;; and thus t;; - VIW;; = Fj;. We then see that (28] is
simply an SPH representation of a diffusion term of the form

dA ,
_ ~ A
( dt )diss nv 7 (30>

with a diffusion parameter 1 proportional to the resolution lengt

N X QUgjg| 745 (31)

3.2.8 Choosing the signal velocity

In previous formulations (Monaghan, 1997; |[Price and Monaghan, 20041, 12005)
the signal speed vs;, used in both the artificial viscosity and conductivity

1 Note that whilst the resolution length appears as the particle spacing, this is
similar to the smoothing length since within the kernel radius |r;;|/h < 2

10



terms is chosen to be an estimate of the magnitude of the maximum signal
velocity between a particle pair, an estimate for which (for non-relativistic
hydrodynamics) is given by (Monaghan, [1997)

1 .
Usig = 3 lc; +¢j — Bvij - T5], (32)

where c¢ is the sound speed and generally 5 = 2. However, whilst using a
signal velocity based on the sound speed and relative particle velocities is
appropriate at shocks (which travel at the sound speed and involve strong
compression), it is not clear that the same signal velocity should be used to
treat contact discontinuities (where there is no compression and the motion is
at the post-shock velocity). A good example is to consider the simplest case of
two regions with different densities and temperatures in pressure equilibrium.
Applying artificial thermal conductivity using a signal velocity proportional to
the sound speed would result in a steady diffusion of the initial discontinuity
in thermal energy, which as t — oo would have completely eliminated the
temperature gradient between the two regions.

A much better approach suggested by the shock tube results discussed in §4.1]
is to apply artificial conductivity only in order to eliminate spurious pressure
gradients across contact discontinuities. In order to do so we require a signal
velocity which vanishes when the pressure difference between a particle pair
is zero. We propose the following

| P — Bl
I g1 33
=5 (3)

which is constructed to have dimensions of velocity and to be zero once pres-
sure equilibrium is reached. We find that this is a very effective approach to
introducing artificial thermal conductivity into SPH in a controlled manner to
appropriately treat contact discontinuities without the side-effect of unwanted

diffusion elsewhere. This is particularly the case in the Kelvin-Helmholtz tests
discussed in §4.2

3.2.4 Reducing dissipation away from discontinuities

The key problem with using dissipative terms for capturing discontinuities is
that such terms also tend to dissipate gradients which are not purely discontin-
uous. This is a particular problem in relation to artificial thermal conductivity,
since whilst shocks are continually steepened by the propagating wave, a gra-
dient in thermal energy, once diffused, will remain diffused forever. The art
is therefore to come up with well-designed switches that turn the dissipation
terms off away from discontinuities.

11



In this paper we adopt the artificial viscosity switch suggested by Morris and Monaghan
(1997), where the viscosity parameter « is different for every particle and
evolved according to a simple source and decay equation of the form

da; Oy — Qi

=L fmns, 1

such that in the absence of sources S, a decays to a value a,,;, over a timescale
7. The timescale 7 is calculated according to

h;
T, —
Cvsig7

(35)

where h is the particle’s smoothing length, vy;, is the maximum signal propaga-
tion speed for particle i (ie. the maximum over pairs involving i of the pairwise
Usig defined in Equation B2) and C is a dimensionless parameter which we set
to C = 0.1 which means that the value of o decays to «,;, over ~ 5 smoothing
lengths. In general we also impose a maximum value of o, = 1 throughout
the evolution. In the dissipation terms (23]) and (27) the average value on the
particle pair v = 0.5(cv; + ;) is used to maintain symmetry.

The source term S is chosen such that the artificial dissipation grows as the
particle approaches a shock front. We use, as in Morris and Monaghan (1997),

S =max(—V -v,0), (36)

such that the dissipation grows in regions of strong compression.

A similar switch for the artificial thermal conductivity was introduced by
Price and Monaghan (2005) (see also [Price 2004), where the controlling pa-
rameter «,, is evolved according to (34]) with the minimum value o, ., set to
zero and a source term based on a second derivative of the thermal energy,

S
' Vuite

(37)

where h is the smoothing length, € is a small number to prevent divergences for
small u and the second derivative term is computed using the standard SPH
formulation for the Laplacian (Equation 29)). Note that the decay timescale T
in this case is kept the same as for the viscosity, ie. using (32]). In this paper
we find that the combination of our new vg;, and the above switch are very
effective at turning the conductivity off away from discontinuities (in fact with

the new v, the switch is almost unnecessary).
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3.8 Alternative approaches

Ritchie and Thomas (2001) (hereafter RT01) suggested an alternative ap-
proach to dealing with problems with contact discontinuities in multiphase
calculations based on a smoothed estimate of pressure. In their formulation
the SPH force equation takes the form (modified here slightly to assume an
adiabatic equation of state and in the form of the symmetry of the kernels
with respect to the smoothing length)

Y- Tm, [U—WWMH VWi (hy)] (38)

at (pi <p—y>

which, translated, is an SPH form of

(39)

dv; VP P
— | =+ =V1].
il [p+pv]

The mean density (p) used in the force term is derived from a smoothed
pressure estimate, in the form

<Pz‘> _ Zj ijjVVz'j(hi).

(pi) = (v — Dus u,

(40)

The motivation behind this formulation was to compute the pressure force
without the SPH density explicitly appearing in the equations, in order to
better handle pressure profiles across strong density gradients. We compare
the results of this formulation with the standard SPH equations (and to our
formulation using artificial thermal conductivity) in §42| (note that for the
comparison in this paper we use the smoothing length calculated by iteration
with the usual SPH density estimate as described in §2)). We indeed find an
improvement in pressure continuity at discontinuities using their formulation,
though at the expense of considerable particle noise at the interface.

Marri and White (2003) have also proposed a modified SPH formulation for
multiphase flows, in the form of several somewhat ad-hoc criteria for exclud-
ing particles from one another’s neighbour lists. It is however difficult to see
how their method can be adopted into a consistent Lagrangian formulation
of the SPH equations, particularly since the total energy and/or momentum
could arbitrarily change between timesteps as particle pairs are excluded (or
not) from the calculation. Furthermore the first of their exclusion criteria is
that the density contrast should be greater than 10, whereas problems with
resolving the Kelvin-Helmholtz ability occur for much smaller density ratios

13



(as demonstrated in §4.2) where their proposed modifications would have no
effect. Thus we do not consider their formulation any further here.

4 Tests

Whilst there are many problems for which the incorporation of an artificial
thermal conductivity in SPH is a crucial requirement (e.g. Rosswog and Price
(2007) find significantly improved results on Sedov blast wave tests when such
a term is incorporated), conciseness limits us to the consideration of two par-
ticular cases. We first consider a one dimensional shock tube problem in order
to illustrate the ideas presented in this paper, before applying the method to
simulations of the Kelvin-Helmholtz instability across a contact discontinuity
(similar to those performed by |Agertz et al| (2007)), to show that the prob-
lem highlighted by these authors is very effectively cured by our new artificial
thermal conductivity formulation.

4.1 One dimensional shock tube problem

For the first test we consider a one dimensional shock tube problem where
an initial discontinuity in pressure and density is set up at the origin. We
set up the problem with conditions to the left of the discontinuity given by
(pr, Pr,vr) = (1.0,1.0,0.0) and conditions to the right given by (pr, Pr,vg) =
(0.125,0.1,0.0) with v = 5/3. Equal mass particles are used such that the
particle separation varies according to the density. We choose the spacing to
the right of the origin as Ar = 0.01 which results in a spacing to the left
of the origin of A, = 0.00125, giving a total of 450 particles in the domain
x = [—0.5,0.5]. Most importantly we set up the problem using unsmoothed
initial conditions in all variables. Using smoothed initial conditions effectively
smoothes the initial contact discontinuity throughout the evolution and the
problems discussed below do not become apparent (for a discussion of this
point, see [Price 2004).

It may be noticed in passing that the need for artificial thermal conductivity
in this problem has already also been discussed in some detail by [Price (2004),
which we are essentially repeating here because it has a direct bearing on the
behaviour of Kelvin-Helmholtz instabilities across contact discontinuities and
thus to the |Agertz et all (2007) “problem”.

To proceed in the order of the discussion given in §3] we will first begin by

examining the difference between calculating the density in SPH by direct
summation in the form (7) and by evolving the continuity equation in the
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Fig. 1. Results of the one dimensional shock tube problem with purely discontinu-
ous initial conditions using differential forms of the SPH equations. Artificial viscos-
ity has been applied uniformly and the density (and smoothing length) have been
evolved using the SPH form of the continuity equation. The contact discontinuity is
unresolved in the density and results in a spurious ‘blip’ in the pressure profile and a
slight overshoot in the thermal energy. The shock is smoothed to several resolution
lengths by the artificial viscosity term.

form (@). We first consider the evolution in “differential form”, that is, using
the continuity equation. We apply only artificial viscosity in the form (23) with
a constant coefficient & = 1 (to keep things simple). The results are shown
at t = 0.2 in Figure [Il where the SPH particles are indicated by the points
and may be compared to the exact solution given by the solid line. Whilst
the shock is smoothed to several resolution lengths by the artificial viscosity
term, immediately visible is a large ‘blip’ in the pressure profile around the
contact discontinuity because of the unresolved gradient in density and a slight
overshoot in the thermal energy at the same location.

A significant improvement in the density gradient is obtained by using the
density summation instead of evolving the continuity equation, shown in Fig-
ure 2l In the light of the discussion presented in §3.1] we expect no problem
with the density discontinuities in this case because the density summation
represents an integral formulation of the continuity equation (put another way,
the density summation is the exact solution to the SPH continuity equation
which finds the change in density due to a change in the particle positions).

15



Fig. 2. As in Figure[llbut where the density has been calculated by direct summation
which represents an integral formulation of the continuity equation in SPH. The
density gradient at the contact discontinuity is much closer to the exact solution,
although there remain problems with the thermal energy gradient and hence the
pressure.

That indeed this is the case is demonstrated in Figure 2] which shows that
using the density summation the density gradient is well resolved across the
contact discontinuity. However, a spurious blip in the pressure is still apparent
due to the overshoot in thermal energy.

The reader who is familiar with so-called “high-resolution shock capturing”
grid based codes may object at this point that the shock profiles in Fig-
ure [2] appear excessively smoothed compared to the best grid-based results.
Although it may be countered that the shock width in a numerical simulation
is a somewhat meaningless quantity (since the real shock width is many orders
of magnitude smaller than the resolution length of any numerical code), re-
cent efforts (Inutsuka, 2002; (Cha and Whitworth/, [2003) have shown that such
methods can also be utilised in an SPH context. The main objection to doing
so (raised for example by Monaghan 1997) is that Godunov schemes are more
difficult to implement when the equation of state is non-trivial (though meth-
ods exist — e.g. [Colella_and Glaz [1985), whereas artificial dissipation terms
are easily applied in all contexts regardless of the degree of complication in
the physics or the equation of state [for example in an SPH context, the M97
formulation of the artificial dissipation terms presented above has been readily
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applied to magnetohydrodynamics (Price and Monaghan, 2004a, 2005) and to
ultra-relativistic flows (Chow and Monaghan, [1997)].

To show that our key conclusions are not affected by the particular form of the
“discontinuity capturing terms”, Figure [3] shows the results using the simplest
(first-order) Godunov-SPH scheme suggested by |Cha and Whitworth (2003)
(that is, where we have simply replaced P; and P; in the SPH force equation
with P*, the solution to the Riemann problem treating particles ¢ and j as
the left and right states, also using P* in the thermal energy equation) in-
stead of artificial viscosity. The results are almost indistinguishable to those
using artificial viscosity (Figure ) apart from a slightly larger smearing of
the rarefaction (no artificial viscosity is applied to rarefactions in standard
SPH) but critically also produce a similarly discontinuous pressure at the
contact discontinuity (a similar result may be observed in the tests performed
by |Cha and Whitworth [2003). This is easily understood since in the simplest
Godunov-SPH formulation only the jump in pressure has been addressed by
the scheme and pressure should be constant across a contact discontinuity. It is
therefore apparent that even in this case some additional treatment is required
to address discontinuities in thermal energy. [Inutsuka (2002) finds similar re-
sults using Godunov-SPH unless an integral formulation for the momentum
equation is used based on a polynomial interpolation of density.

Thus, regardless of the exact form of the “discontinuity capturing terms”,
the key point remains that every evolution equation in SPH resulting from
a differential formulation requires a term which treats discontinuities in that
variable. In the present case the missing piece is in the energy equation which
takes the form of an artificial thermal conductivity. The results of this problem
using the density summation and including an artificial thermal conductivity
term of the form (27)) using the new signal velocity (which we expect to diffuse
the gradient in thermal energy until the pressure is continuous) are shown in
Figure [l The artificial viscosity has also been applied using the switch given
in §3.2.4] such that « is a time variable parameter which responds to the
convergent velocities, demonstrating that the use of such a switch nonetheless
supplies the necessary dissipation of kinetic energy at a shock front. From
Figure[ we see that in this case all of the gradients in all of the variables follow
the exact solution and, most importantly, unlike in all of our previous results,
the pressure is now continuous (and constant) across the contact discontinuity.
The continuity of pressure turns out to be of crucial importance in simulating
Kelvin-Helmholtz instabilities across such discontinuities (see below).
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Fig. 3. As in Figure 2 (with the density calculated by direct summation) but using a
Godunov-SPH scheme instead of applying artificial viscosity. The results are almost
indistinguishable from Figure [2] except for a slightly larger smearing of the rarefac-
tion in the present case (where artificial viscosity is not normally applied). The
same problem regarding the thermal energy gradient at the contact discontinuity is
apparent even in this case.

4.2 Kelvin-Helmholtz instabilities across a contact discontinuity

Finally, we consider the problem of Kelvin-Helmholtz instabilities across a
density jump, on which recent problems have been highlighted by |Agertz et al.
(2007). We set up the problem in two spatial dimensions, using equal mass
particles in a periodic box in the domain —0.5 < x < 0.5, —0.5 <y < 0.5. The
particles are placed on a uniform cubic lattice in separate regions such that
p = 2 for |y| < 0.25 and p = 1 elsewhere, where to ensure symmetry in the
initial conditions we first set up particles in the domain y > 0 and then reflect
the initial particle distribution across the y = 0 axis. The regions are placed
in pressure equilibrium with P = 2.5 and we use an ideal gas equation of state
P = (y—1)pu with v = 5/3 such that there is a corresponding jump in thermal
energy at the contact. As in the one dimensional tests, the initial gradients
in density and thermal energy are not smoothed in any way (although we do
first calculate the density by summation before setting the thermal energy to
ensure that pressure is at least continuous in the initial conditions). Periodic
boundary conditions are implemented using ghost particles.
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Fig. 4. As in Figure 2] (with the density calculated by direct summation) but also
with an artificial thermal conductivity term added using the new pressure-jump
dependent signal velocity. Artificial viscosity has been applied using the switch
discussed in §3.2.41 The density and thermal energy gradients are in this case both
resolved across the contact discontinuity and most importantly the pressure across
the contact is continuous, unlike in any of our previous results.

A cartesian shear flow is setup in the z—direction with velocity v, = 0.5 for
ly| < 0.25 and v, = —0.5 elsewhere. Such a configuration is known to be
unstable to the Kelvin-Helmholtz instability at all wavelengths. In this paper
we seed the instability at a particular wavelength by applying a small velocity
perturbation in the y direction given by

Asin[—-2m(z +0.5)/A] |y — 0.25] < 0.025, (1)
v, =
" | Asin[2r(z +0.5)/A] |y +0.25] < 0.025.

where we use A = 1/6 and A = 0.025.

A textbook analysis of the incompressible Kelvin-Helmholtz instability (e.g.
Choudhuri [1998), applicable here since the velocities are smaller than the
sound speed, shows that the characteristic growth timescale of the instability

between two shearing layers of densities p and p’ is given by

TKH = 27T/W> (42)
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/
W= v el (43)

For the setup described above, p = 1,p' = 2,v, = 0.5 and v, = —0.5, giving
Tk = 0.35 in the units of our simulation for a perturbation of wavelength
A = 1/6. For the case where the density ratio is 10:1 (ie. p = 1,p’ = 10) we
have 7y = 0.58 for A = 1/6.

We define the resolution in the simulations according to the particle spacing in
the least-dense region. For the 2:1 density ratio we show results using particle
spacing of A = 1/256 and A = 1/512 in this region, resulting in a total of
97,928 and 393, 160 particles respectively. For the 10:1 case we show results
using A = 1/256 in the less-dense region, resulting in a total of 359, 604 par-
ticles. We find that the resolution in the low-density region has an important
effect on the resolution of the vortex rolls created by the Kelvin-Helmholtz
instability. Whilst it would be possible to set up the problem using unequal
mass particles (and thus equal resolution in both regions), it would be rather
contrived to do so since a density gradient involving equal mass particles is
the situation which naturally occurs in SPH simulations.

The results of simulations performed using the setup described and a 2:1
density ratio are shown in Figure [ for four different cases (top to bottom),
with results shown at 7y = 1,2,4,6,8 and 10 (left to right). The four cases
are, as indicated in the figure: 1) (top) using no artificial viscosity or thermal
conductivity; 2) using artificial viscosity, applied uniformly with a = 1, 8 = 2;
3) using the RT01 method with artificial viscosity applied using the switch
described in §324L 4) using the usual SPH formulation applying thermal
conductivity with a,, = 1 and our new signal velocity; and finally 5) as in case
4) but including both thermal conductivity and artificial viscosity (applied
using switches). Case 2 thus represents the SPH formulation currently most
widely used (that is, using artificial viscosity with o = 1, 8 = 2) whilst case 5
represents the formulation we are proposing for general use.

The differences between the five cases presented in Figure [l are striking.
Firstly, in the absence of any dissipation (case 1, top row of Figure [l), whilst
there is some growth in the velocity perturbation, mixing between the two
layers is inhibited by what can only be described as an “artificial surface ten-
sion” in the dense fluid which results in blobs concentrating into well-defined
features. This is particularly obvious in an animation of the simulation where
blobs of dense fluid can be seen to separate and condense into increasingly
spherical “bubbles” as time advances. Adding artificial viscosity (case 2) does
not improve the situation, but rather makes things worse by suppressing the
initial growth in the velocity perturbation for 7y < 6 whilst showing simi-
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lar surface tension effects at later times. This is in agreement with the results
found by |Agertz et all (2007) where reducing the artificial viscosity resulted in
an increased tendency for layers mix but does not remove the fact that SPH,
in its standard form, clearly has a problem with Kelvin-Helmholtz instabilities
across density jumps.

Use of the RT01 formulation (third row of Figure Bl here shown with viscosity
applied using the Morris & Monaghan switch) improves things to some ex-
tent, showing some Kelvin-Helmholtz-instability like features, though at the
expense of considerable particle noise at the interface (a close-up of which is
shown in the top left panel of Figure []).

The results in case 4 (adding artificial thermal conductivity via the method
discussed in §3.2.4) are substantially different. In this case there is a clear
development of the classical Kelvin-Helmholtz instability (although still on a
slower overall timescale than expected from analytic theory), with growth in
the A = 1/6 mode visible at Txy ~ 2 which is subsequently overtaken by a
growth in the A\ = 1/2 mode at 74y ~ 6. The relative growth rate of the
two modes is, however, in good agreement with theory (that is, a factor of ~3
difference). Finally, case 5 demonstrated that the dramatic improvement in
the results found using the artificial thermal conductivity are not significantly
changed by the turning the artificial viscosity back on (which has been applied
exactly as in the shock tube test presented in Figure M), largely because the
Morris and Monaghan (1997) switch (§3.2.4]) is very effective at turning off
the artificial viscosity where there is no compression.

An understanding of these results is provided by a plot of the pressure dis-
tribution in the same set of simulations, shown in Figure [6l In cases 1 and 2
the boundary between the two fluids is clearly delineated by a ridge of high
and low pressure. This pressure “blip” at the interface is exactly analogous to
that observed in the one dimensional shock tube problems (e.g. Figure 2)) and
is similarly cured by the same solution. Using the RT01 method (case 3) the
pressure boundary is much less delineated, though considerably noisier, giving
an improved mixing between the layers compared to the standard SPH formu-
lation, at the expense of particle noise. Applying the usual SPH method with
our artificial thermal conductivity term (cases 4 and 5) results in a smooth
interface and correspondingly good mixing between the layers and a nice KH
instability.

To examine the effect of numerical resolution on the results, the five cases
discussed above are presented at higher resolution (using A = 1/512 in the
least-dense component) in Figure[7l Comparison of case 1 (top row) shows that
the artificial surface tension effect is not significantly modified by simply using
more particles, although the size scale of the “blobs” and “bubbles” of dense
fluid which break off into the less-dense component are somewhat smaller.
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Fig. 5. Results of the Kelvin-Helmholtz instability test using a density ratio of 2:1
and an initial particle spacing of A = 1/256 in the least-dense component. Results
are shown using (from top to bottom): 1) no artificial viscosity or thermal con-
ductivity, 2) artificial viscosity applied uniformly, 3) using only artificial thermal
conductivity applied using our new signal velocity and 4) with both artificial vis-
cosity and thermal conductivity, where viscosity is applied exactly as in the shock
tube problem presented in Figure [l
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Fig. 6. Pressure distribution in the Kelvin-Helmholtz instability test shown in Fig-
ure[5l Note in particular the regions of high and low pressure delineating the bound-
ary between the two fluids in the absence of conductivity similar to the pressure
blip observed around the contact discontinuity in Figure 2
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Fig. 7. Results of the Kelvin-Helmholtz instability test using a density ratio of 2:1 as
in Figure [ but here using an initial particle spacing of A = 1/512 in the least-dense
component. The results are similar to Figure Bl namely that adding the artificial
thermal conductivity term gives a dramatic improvement in SPH’s ability to resolve
the Kelvin-Helmholtz instability.
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Fig. 8. Zoom up of selected panels from Figures [ and [ at 75 = 2, highlighting
the vortex rolls produced using the RT01 formulation (left panels) to a standard
SPH formulation using our thermal conductivity term (right panels). The RT01
method works by effectively blurring the discontinuity, which though it helps to
resolve the Kelvin-Helmholtz instability, also results in considerable particle noise
at the interface.

Again, adding artificial viscosity acts to suppress the growth of velocity per-
turbations (case 2, second row), although in this case some perturbations are
visible at earlier times compared to Figure [ suggesting that the effect of
viscosity is lessened (which we expect since the artificial viscosity diffusion
coefficient is linearly proportional to the particle spacing). The RT01 method
also improves at this resolution, showing clear growth in both the A = 1/6
mode and the A = 1/2 mode (the latter not well resolved in the lower resolu-
tion RT01 run in Figure (), though the interface remains considerably noisy
(see close-up shown in the lower left panel of Figure [§]).

In case 4 (applying artificial thermal conductivity using our new vy ) the
Kelvin-Helmholtz instability is in this case well-resolved for both the A = 1/6
and the A\ = 1/2 modes, with well-resolved vortex rolls. The perturbation
is also much stronger at earlier times (ie. Txy = 1) compared to the lower
resolution version in Figure [l Similar results are again found for case 5, in-
dicating that our proposed “generic formulation” gives good results both for
this test and on shock-tube problems. The results are also much cleaner than
those obtained using the RT01 formulation, visible in Figure {]), though their
formulation has the merit of being non-dissipative.

Whilst the tests presented above have been performed, for efficiency, using a
density ratio of 2:1 between the two fluids, to ensure that our results are not de-
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Fig. 9. Results of the Kelvin-Helmholtz instability test using a density ratio of 10:1
with an particle spacing of A = 1/256 in the least-dense component, shown at the
times corresponding to those shown in |Agertz et all (2007) (kg = 1/3,2/3 and
1). The SPH calculations are in good agreement with the grid-based calculations
presented in that paper, although the vortex rolls are slightly less well resolved due
to the lower resolution employed in the low density fluid.

pendent on the particular value of the density ratio employed, we have also per-
formed a series of calculations using a density ratio of 10:1 (as in|Agertz et al.
(2007)). The results of this test are shown at early times in Figure @ which may
be directly compared to the corresponding figure in [Agertz et al. (2007). In
particular the results show very good agreement both with the analytic growth
timescale and also with the grid-based calculations presented in |Agertz et al.
(2007), although the vortex rolls are slightly less well resolved in the present
case due to the slightly lower resolution employed in the low density fluid
(which differs by a factor of two from the two dimensional equivalent of the
grid based calculations in the paper because we have used a box twice as large
in ). The results at later times are shown in Figure[[(l Again the development
of the A = 1/6 mode is clearly seen followed by the A = 1/2 mode, exactly as
in the 2:1 density ratio case (note that we have scaled the times in units of
Ti g in both cases). Thus we can confirm that our results represent a dramatic
improvement over the SPH results discussed in |Agertz et all (2007).

5 Discussion and Conclusions

In this paper we have discussed several issues related to the treatment of
discontinuities in SPH which have been shown to have a direct bearing on
the recent problems highlighted by |Agertz et all (2007) relating to simulating
the Kelvin-Helmholtz instability across density jumps. The difference between
integral and differential forms of the SPH equations was discussed, with the
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Fig. 10. Results of the Kelvin-Helmholtz instability test, as in Figure [l but using a
density ratio of 10:1 applying our new dissipation formulation.

conclusion that whilst the continuity equation can be formulated in an integral
form by using the density sum, the SPH momentum and energy equations are
derived assuming that the equations are differentiable. This leads to the re-
quirement for diffusion terms in both the momentum and energy evolution to
capture discontinuities associated with each variable. Whilst discontinuities in
momentum are treated by the application of artificial viscosity, discontinuities
in thermal energy (e.g. at a contact discontinuity) were shown to require the
application of an artificial thermal conductivity term, though this is largely
ignored in many SPH calculations. This leads to problems at contact discon-
tinuities such as those found by |Agertz et all (2007) because of the resultant
discontinuous pressure profile.

The reason for the “artificial surface tension” effect was observed to be a
“ridge” or “blip” in the pressure at the interface between the two fluids in the
standard SPH formulation (Figure[@]). This pressure “blip” is exactly the cause
of the “gap” in the particle distribution discussed by |Agertz et all (2007). It
is interesting therefore to note that in formulations of physical surface ten-
sion (e.g. Hou et al![1994) the surface tension coefficient is directly related to
the magnitude of the pressure jump at the interface by the Laplace-Young
condition,

[P] = TR, (44)

where [P] = P — P’ is the pressure jump normal to the interface, 7 is the
surface tension coefficient and « is the interfacial curvature.

The presence of artificial surface tension in SPH can also be understood as
a consequence of the exact advection of entropy by SPH particles (which as
discussed in §2lis a differential rather than integral conservation law) using the
following thought experiment (Springel 2005, private communication): Con-
sider a two-phase distribution of SPH particles where each phase contains
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particles of different entropy placed in a close box in pressure equilibrium.
Because entropy is locally conserved there is no difference between a configu-
ration in which the two phases are separated into distinct spatial regions and
a configuration in which the two are completely mixed. However if there is
spurious energy associated with the interface (ie. the pressure is not contin-
uous) then the unmixed configuration is energetically preferred, leading to a
tendency for low entropy fluid to form discrete blobs exactly as observed in
the Kelvin-Helmholtz tests presented in Figures B and [[l The effect can be re-
moved by enforcing pressure continuity across interfaces as we have proposed
above, which in our case is enforced by adding a small amount of entropy
mixing (ie. an artificial thermal conductivity) at the interface. Note that this
argument applies equally to SPH formulations evolving the thermal or total
energies since such formulations differ only in relation to timestepping pro-
vided the variable smoothing length terms have been accounted for, and even
without these terms the errors in the entropy evolution are small.

To remedy this problem we have presented new formulation for artificial ther-
mal conductivity in SPH (§3.2.4]) which acts to equalise pressure at a contact
discontinuity but which minimises dissipation elsewhere. This term, when ap-
plied to the Kelvin-Helmholtz problem was found to give excellent results
in good agreement with both analytic estimates and the grid-based calcula-
tions presented in |Agertz et all (2007). We expect this term to be very effec-
tive at turning off artificial thermal conductivity for hydrodynamic problems
where pressure gradients always represent non-equilibrium features. However,
for simulations where other physical effects are included (e.g. gravity) it is pos-
sible to have pressure gradients that are nonetheless in equilibrium because
of additional forces in the system. Thus the signal velocity we have proposed
may require some modification in this case (for example using the “net pres-
sure difference” accounting for both pressure and gravity between the particle
pair) although we do not envisage that it would be difficult to do so.

It is important to note that problems with Kelvin-Helmholtz instabilities oc-
cur because of entropy gradients which are not treated correctly, not density
gradients as has often been assumed. Thus a corollary to our results is that
no special treatment is required in order to capture Kelvin-Helmholtz insta-
bilities in isothermal flows (as often used in astrophysics) since in this case no
entropy gradient is present.

It is worth briefly discussing alternative approaches to the problems described
above which would be interesting to explore. The first is that, since the prob-
lem at contact discontinuities appears an “artificial surface tension” effect, a
fruitful approach might be to try to formulate an “inverse surface tension”
which counteracts the effect of the surface created by the gradient in particle
number density in the manner of the SPH surface tension formulation recently
introduced by [Hu and Adams (2006). The advantage would be that this would
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be a truly dissipation-less approach to tackling contact discontinuities, going
some way towards actually accounting for the surface integral terms which
have “gone missing” from the standard SPH formulation by the assumption
of differentiability. A second approach would be to try to actually calculate
the surface terms associated with discontinuities in momentum and thermal
energy (for example [Kats (2001) presents a Lagrangian variational principle
which incorporates discontinuities by retaining surface integral terms). Thirdly
our expectation based on the results presented in [[nutsuka (2002) is that the
formulation of Godunov-SPH which accounts for the surface integral terms
should also give good results for the Kelvin-Helmholtz instability problem
because of the continuity of pressure across the contact discontinuity.

In summary, based on the fact that the Kelvin-Helmholtz instability is strongly
inhibited across density jumps in “standard” SPH formulations (adopting only
an artificial viscosity term) and the effectiveness with which our proposed
signal velocity turns off artificial thermal conductivity where it is not needed
(at least for non-self-gravitating calculations), we suggest that the “generic
formulation” of dissipation terms presented in this paper should be generally
adopted as standard procedure in SPH calculations.
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