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Abstract
In this paper, a new method for calculating effective atomic radii within the generalized Born (GB)
model of implicit solvation is proposed, for use in computer simulations of bio-molecules. First, a
new formulation for the GB radii is developed, in which smooth kernels are used to eliminate the
divergence in volume integrals intrinsic in the model. Next, the Fast Fourier Transform (FFT)
algorithm is applied to integrate smoothed functions, taking advantage of the rapid spectral decay
provided by the smoothing. The total cost of the proposed algorithm scales as O(N3logN + M) where
M is the number of atoms comprised in a molecule, and N is the number of FFT grid points in one
dimension, which depends only on the geometry of the molecule and the spectral decay of the smooth
kernel but not on M. To validate our algorithm, numerical tests are performed for three solute models:
one spherical object for which exact solutions exist and two protein molecules of differing size. The
tests show that our algorithm is able to reach the accuracy of other existing GB implementations,
while offering much lower computational cost.
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1 Introduction
Accuracy and speed are two primary objectives in developing computational techniques for
modeling biomolecular systems [1] in aqueous environments where electrostatic interactions
play an important role. Explicit solvent methods adopt microscopic representations of both
solute and solvent molecules and offer an accurate description of the molecular system.
However, these methods usually entail high computational cost. In contrast, implicit solvent
simulations characterize the solvent in terms of macroscopic physical quantities such as
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dielectric constants and Debye lengths, and provide a higher speed in practical calculations
while still providing a realistic description of the solvent environment.

In implicit solvent models [2], the degrees of freedom pertaining to water are integrated out
and replaced by an effective potential energy term, ΔG, acting on the degrees of freedom of
the solvated molecule only. From the thermodynamics point of view, this effective energy term
corresponds to the free energy associated with the transfer of a solute molecule from vacuum
to solvent, and is therefore referred to as solvation free energy. In practical calculations, ΔG,
is most conveniently decomposed into two parts, ΔGpol and ΔGnp, which are referred to as
polar and nonpolar solvation energy, respectively [3]. The nonpolar part, ΔGnp, is associated
with the first step of the insertion process, at which empty space is created inside solvent and
filled with solute atoms whose charges were canceled. The polar solvation energy, ΔGpol,
corresponds to the free energy associated with charging the atoms of the neutral solute
immersed in solvent, to their actual values.

The polar solvation energy is the more computationally expensive part in ΔG and it represents
the bottleneck in computer simulations of biomolecules. In principle, ΔGpol can be found
exactly in the framework of continuous electrostatics in inhomogeneous media. Depending on
whether free ions are present in aqueous solution or not, ΔGpol is given by the solution of the
Poisson or Poisson-Boltzmann (PB) equations, respectively, in which solute is treated as a
medium of low dielectric constant, typically ε=1−10, while the solvent is assigned a high
dielectric constant ε=80 [4]. As exact analytical solutions of the PB equation exist only for a
few solute geometries, in the general case of arbitrarily shaped solutes, this equation has to be
solved numerically. Apart from the more fundamental issues concerning applicability of
continuous solvent representation at molecular length scales, the necessity to find a numerical
solution severely limits the range of problems to which PB model can be applied. Although
much progress has been made recently [5,6] in developing efficient algorithms for solving PB
equation, such as finite difference and boundary element methods, overall these methods are
still considered too slow to be applied directly in molecular dynamic simulations of
macromolecular systems. More commonly, numerical solutions of the PB equation are used
as benchmarks in developing other, faster models of electrostatic solvation.

The generalized Born (GB) theory [7,8], is one of the most successful fast though approximate
approaches to electrostatic solvation in biomolecular systems. The solvation energy ΔGpol in
GB model is represented as a pairwise summation over all atoms comprising a solute molecule,
and is therefore relatively cheap to compute, compared to solving PB equation numerically. A
critical ingredient of this model is effective atomic radius, so-called Born radius, whose
physical meaning is based on the Born solvation model of spherical ions. The accuracy of the
GB model was critically tested in relation to the PB theory, which it was designed to
approximate. Remarkably, very good agreement between the PB and GB results were reported
for model solutes of various shapes [9] as well as a large number of biomolecules of practical
interest, proteins [10–12].

Although the generalized Born formula for electrostatic solvation is not computationally
expensive per se, provided that the effective Born radii are given, evaluating these radii presents
a major computational challenge. The calculation of the Born radii, which requires an exterior
domain integration or an integration over the molecular volume for each atom, remains the
most expensive part in the GB theory. There are several methods including analytical and non-
analytical approaches to obtain the Born radii. The analytical pairwise GB models [13–17]
approximate the volume integral by a sum of spherical integrals centered at each atom, in which
the overlap region is compensated through an empirical correction. The spherical integrals can
then be computed analytically. Nonetheless, the non-analytical approaches usually give more
accurate results due to the deficiencies in the empirical corrections of analytical models. In one
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of the earliest and most widely accepted studies on GB model by Still et al. [18], the Born radii
were obtained by constructing a set of concentric spherical shells and summing the fractional
area of the shells inside the volume. In other papers, the Born radii were calculated by grid-
based numerical methods, such as, using volume integration of the molecule based on a cubic
grid [19], or applying the Green's function to convert the volume integral into a surface integral
[20], or the approach of numerical quadrature techniques used in the density functional theory
[21,22].

Despite much recent improvement, most grid-based calculations of Born radii available today
are not sufficiently fast to be applied in large macromolecular simulation [8]. As these methods
usually need to compute integrals individually for each atom, for a grid of O(N3) points in the
computational domain containing the molecule, a direct calculation of the volume integral has
a computational complexity of O(MN3), where M is the total number of the atoms within the
molecular volume. Even with the volume integrals reduced to surface integrals for a complexity
of O(MN2), the computational cost remains too high for large atom number M in practical
simulations. In this paper, we propose a new method to compute Born radii using the fast
Fourier transform (FFT) algorithm. Our method relies on a new formulation of the Born radius
where the singularity of the kernel function inside the exclusion sphere for each charge is
removed by a smoothing function, resulting in high efficiency and accuracy of the FFT
calculations. The Born radii for atoms located off grid sites are obtained by interpolations from
nearby grid points. The overall complexity of our algorithm is linear (apart from a logarithmic
factor) in the number of atoms comprised in a molecule, M, and the number of grid points
N3 one uses to perform FFT, O(N3 log N + M). The grid parameter N is independent of M and
is chosen such that sufficient accuracy in volume integrals over the biomolecules of interest is
achieved. By changing the smoothness of the kernel function, one can control the rate of its
spectral decay, and therefore keep the number of the grid points to a minimum. Comparing the
complexity of our algorithm to other grid-based methods, it is clear that our FFT-based method
has an advantage. As we will demonstrate later in the text in direct comparisons, this advantage
becomes more pronounced for systems with large number of atoms.

The remainder of the paper is organized as follows. In Section 2, we review the approximate
generalized Born theory. Section 3 contains a new formulation of the generalized Born radius
with smooth kernels. Then, a new FFT based fast algorithm is proposed in Section 4 while
Section 5 contains numerical validation of the proposed algorithm for one model molecule and
two protein molecules. Finally, Section 6 summarizes this paper with conclusions.

2 Generalized Born theory
In the implicit description of bio-molecules in solvent environments, we approximate solvent
as a uniform dielectric medium and the solute molecule with a lower dielectric constant and
partial charges at atomic centers. The electrostatic potential therefore satisfies the Poisson
equation

(2.1)

where ε(r) is the dielectric constant taking value εin (εin = 1 in most cases) inside the molecule
and εex outside the solute molecule (εex = 80 for water), and ρ(r) is the charge distribution

(2.2)
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with ri being the atomic position of the ith point charge of strength qi of both signs for
. If ionic salt effects are to be considered, the linearized Poisson-Boltzmann (PB)

equation will be used in (2.1) instead (with the right hand side as a linear function of ϕ(r) for
the exterior region outside the molecule). Numerical methods for the Poisson equation for
molecules of arbitrary shape include finite difference methods [23], finite element methods
[24] and boundary element methods [25,26]. Among these methods the boundary element
method has been known as one of the most effective PB solvers, when used with fast multipole
methods [27]. To compute the electrostatic solvation energy, we calculate the potential inside
the molecule for two exterior dielectric environments εex = 1 and εex = 80 for water solvent,
denote the corresponding potentials as ϕvac, ϕsol, respectively. Then, the difference of these
two potentials gives a reaction field, ϕre = ϕsol - ϕvac, based on which we define the electrostatic
solvation energy [7]

(2.3)

Because of the high computational cost of solving the PB equation directly, much effort has
been made in finding equivalent models with a reduced cost. The generalized Born (GB) theory
is accepted as the most popular substitution of the Poisson equation, which provides an
approximation to the solution of the Poisson equation with a relatively simple formula. The
starting point is the well-known Born formula [28] for the solvation energy of a single ion q
of radius R immersed in a solvent with the dielectric constant ε,

(2.4)

which can be obtained analytically from the Poisson equation. The concept of the atomic radius
R in the Born model is extended to polyatomic molecules, in which, for computational
efficiency, it is assumed that the solvation energy is represented as a sum over the pairs of all
atoms [18,29,30]

(2.5)

Here fGB is a function of the distance rij between atoms i and j and their ‘effective Born radii’
Ri and Rj. To be consistent with the Born result for one particle and for two particles at a large
separation, fGB has to interpolate between Ri and rij as the interparticle distance tends to zero
and infinity respectively. In this paper, we use the expression of Still et al. [18]

, which clearly satisfies these two conditions. The resulting
solvation energy

(2.6)

contains atomic positions, atomic charges and effective Born radii as input. The Still's formula
for GB solvation energy was shown to be very accurate in test calculations of a large number
of model solutes [9,10]. While positions and charges are readily available for a given
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configuration of the solute molecule to evaluate its solvation energy, the Born radii have to be
calculated separately. The physical meaning of the effective Born radius Ri of atom i in a solute
molecule, is that it corresponds to the radius of the sphere centered at this atom, whose solvation
energy is equal to the solvation energy this molecule would have if all its charges were canceled
except for the charge on the target atom. Using this definition allows Born radii to be computed
directly by solving the PB equation numerically for a solute of arbitrary shape. As we noted
earlier, however, numerical solutions entail significant computational cost, which makes the
direct evaluation of Ri impractical.

Much effort has been invested recently in developing approximate analytical formulations for
Born radii, which avoid solving the PB equation directly [10,18,21,31]. Historically, the first
such formulation approximated electric displacement created by charge i inside a solute
molecule of arbitrary shape as coming from a point charge in homogeneous medium, that is
being Coulombic in form [7,15]. Termed accordingly as the Coulomb-field approximation
(CFA), this GB formulation provides a simple expression for the Born radii as a volume integral

(2.7)

where Ωex denotes the exterior domain outside the molecule, and ri is the location of the atom
i within the molecule. The CFA is known to overestimate the Born radii of atoms, especially
those located near the surface of the solute [9,21], and much better models have been introduced
recently [9,10]. Nevertheless, we use this approximation in the present work as it is most widely
accepted in the literature and available in software packages [8]. The main purpose of this paper
is to prove that an algorithm based on the FFT can be adapted for use in the GB theory of
solvation. Once the methodology is available to compute Born radii within the CFA, it will be
a matter of technicality to extend it to more accurate approximations. Therefore, our starting
point here is Eq. (2.7).

Typically, the integral over the exterior of a macromolecule in Eq. (2.7) is rewritten as an
integral over the interior domain Ωin excluding a small sphere Si with a radius ai centered at
the position of the charge (see Bashford and Case [7]),

(2.8)

where the value of the integration outside  is used. Due to the
arbitrary shapes of the molecule, there is no analytical formula for Ri, and therefore, a numerical
integration or approximate analytical formula is required.

3 A new formulation for the generalized Born radius with smooth kernels
In this section, we introduce a new method to calculate the generalized Born radius where the
singularity of the kernel around the atom site in (2.8) is replaced by a smoothing function,
which will be called “a smoother”. We rewrite Eq.(2.7) in the following form

(3.1)
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where we assume the excluded sphere Si, embedded inside the molecule (Fig. 1(a)), has a
common radius ai = a for every atom i. G is a smoothed version of the function 1/r4 inside the
excluded sphere Si, i.e.

(3.2)

where the smoother  produces a n-th order continuity of G(r) at r = a. For example,

(3.3)

(3.4)

(3.5)

Note that a larger n will lead to a faster decay in the spectral of G(r) in the Fourier frequency
domain, such a fast decay will be an important factor in the efficiency of the proposed method
for calculating the Born radius with the FFT. The first integration on the right hand side of
(3.1) can be calculated analytically as

(3.6)

In Eq. (3.6), the first integral on the right equals to  while the second term is the integral of

the smoother  inside ,  and  when
n = 1, 2 and 3, respectively.

If the smoother radius a here is taken as the atomic radii, for instance, the van der Waals radius
in literature, then, the sphere Si is completely inside Ωin. In fact the radius a can be chosen
arbitrarily. If the sphere Si is not completely inside Ωin, as illustrated in Fig. 1(b). Eq. (2.7) will
be rewritten as

(3.7)

in which Ai is the portion of Si outside Ωin. Since the center of Si is inside Ωin, the integration
over the region Ai is not singular, and can be calculated by a numerical quadrature or by an
approximate analytical formula to be discussed below.
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3.1 Analytical formula for the integration over Ai
We consider the integral in Ai for Eq. (3.7), which can be written in the form of a local spherical
coordinate system with the origin located at ri as

(3.8)

where  when r is in Ai and zero elsewhere. If we assume that the sphere Si
is much less than the volume of the molecule and the portion of the molecular surface can be
approximated by a plane, then, Ai is a spherical cap of the sphere Si. This assumption reduces
the three dimensional integral to an one dimensional one

(3.9)

where s (s < a) is the shortest distance from ri to the plane approximating the portion of the

molecular surface inside Ai and . We have

(3.10)

and

(3.11)

(3.12)

(3.13)

4 A FFT-based Algorithm for the Born Radii
In this section, we present a new FFT-based algorithm to calculate the GB radii. The main tool
will be the FFT for the evaluation of the second integral on right hand sides of Eqs. (3.1) and
(3.7), which takes on the form,

(4.1)

Once Φ(r) is calculated on grid lattice points, the value Φ(ri) corresponding to the ith off grid
lattice atom can be obtained by a simple interpolation from the nearby data on the lattice sites
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surrounding the atom. In order to use the FFT, we define an indicator function for the molecular
volume domain Ωin

(4.2)

then, the integral in (4.1) can be extended to the full space as

(4.3)

which is a convolution fit for evaluation by the Fourier transform

. We will show later how the transform can be implemented by
the discrete fast Fourier transform (FFT) in 1D case (3D case will be done dimension by
dimension).

The FFT-based method to be proposed will give Φ(rijk) on the grid lattice sites rijk = (xi, yj,
zk), 0 ≤ i, j, k ≤ N at a cost of O(N3 log N). Then, Φ(rα) for the α-th off grid lattice site atom
can be obtained by an interpolation from Φ(rijk) at a cost of O(M) = 8M, for instance, with a
linear interpolation for M atom sites. In this paper, we use a weighted average of surrounding
eight grid points by taking the inverse of the square of the distance as weights, which gives a
better accuracy than the linear interpolation, namely

(4.4)

where

(4.5)

and δ is a small positive number to avoid a division by zero. Here, N is independent of M and
only depends on the shape of the molecule Ωin, i.e., the lattice should be fine enough to resolve
the boundary of the molecule within a prescribed accuracy. Therefore, the total complexity is
O(N3 log N + M).

4.1 Decay conditions for the smoother's spectral - 
The decay conditions of the smoother G and indicator function f in the Fourier frequency space
will affect the cost of calculating the convolution (4.3) by the Fast Fourier transforms. Let us
consider the 1D analog of (4.1) for the evaluation of

(4.6)

for x ∈ V = (−b, b) and
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(4.7)

Let f(x) be the indicator function for domain V defined in (4.2), then, the one-dimensional
convolution corresponding to (4.1) is

(4.8)

Applying the Fourier transform, we have

(4.9)

with

(4.10)

(4.11)

and, then, using the inverse Fourier transform, we have

(4.12)

Due to the fact that f(x) is discontinuous at x = ±b and G(x) is Cn-continuous at x = ±a with the
smoother , the decay conditions of  and  are

(4.13)

(4.14)

If we further smooth the indicator function f(x), for example in the vicinity of x = b, using

 arctan  with λ a large real number, higher order of decay for  can
also be obtained.

4.2 Calculation of Φ(xj) in one dimensional case
We will follow two steps in the calculation of (4.8).
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• Step 1: Using the decay condition of the Fourier transform of the smoother ,
integral in (4.12) can be truncated to a finite interval [−Ωπ, Ωπ], and the resulting
integral will be approximated by a N point quadrature rule using

.

• Step 2: Each , , defined by (4.10) (4.11), only involves integral over a finite
interval due to the compact support of f(x) and rapid decay of G(x), and will be
approximated by another N point quadrature.

Both steps can be implemented by the FFT, which has an O(NlogN) complexity of evaluating

the following two transforms between data  and discrete Fourier

coefficients 

(4.15)

(4.16)

Let ε be an error tolerance of the whole algorithm, against which we truncate the integral over
ξ ∈ (−∞, +∞), i.e.,

(4.17)

with the truncation parameter Ω defined as follows based on the decay condition (4.13)(4.14)

(4.18)

An N-point rectangle quadrature rule to the integral in (4.17) yields

(4.19)

where  and N will be selected based on the Shannon sampling rate of

 in the ξ variable

(4.20)
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Remark 1 In principle, the selection of N should also depend on the oscillatory behavior of
the spectral function . In case a larger N is needed to resolve the oscillations in

, we can achieve that by increasing the size of L.

4.2.1 Computing —Next, we will calculate the
value of Φ(xj) at N points inside the interval [−L, L]. Again, the size of N will be based on the

Shannon sampling rate  for function e±iΩπx in the x-variable, which gives again

(4.21)

Let

(4.22)

then

(4.23)

which can be evaluated by one FFT at a cost of O(N log N).

4.2.2 Calculation of —As sup(f) ⊂ [−L, L], we have

(4.24)

which will also be approximated by an N−point rectangle quadrature rule

(4.25)

where .

As N = 2ΩL, we have for 

(4.26)

which can be evaluated by one FFT at a cost of O(N log N).
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The values for  can be obtained by analytical formulae as to be shown later.

4.2.3 Algorithm I - 1D case—The following steps form the flow of the algorithm in the 1-
D case.

• Step 1. For an n-th order smoother  in (3.2) and an error tolerance ε > 0, choose
the truncation parameter Ω by

(4.27)

and set

(4.28)

•
Step 2. Compute  using the FFT according to (4.26).

•
Step 3: Compute  using one FFT
according to (4.23).

4.3 Calculation of Φ(xm, yn, zl) in three dimensional case

4.3.1 Analytical expression for —The 3-D Fourier transform  can be found
analytically. We consider the three-dimensional Fourier transform of G(r) defined by

(4.29)

which is a spherical symmetric function of ξ due to the spherical symmetry of G(r) in the spatial
domain. Therefore, the Fourier transform at a radial distance ρ (by letting ξ = (0, 0, ρ)) is

(4.30)

where ρ = |ξ|, and (r, θ, ψ) is the spatial spherical coordinate system with x = r cos θ sin ψ, y =
r sin θ sin ψ and z = r cos ψ. Integration in ψ and substitution of the piecewise definition of G
(r) yields

(4.31)

The second term II can be integrated to give

(4.32)
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where μ = aρ, and 1F2(α; β, γ; x) is the hypergeometric function

with  as the rising factorial.

For the first integral in (4.31), we have, for n = 1, 2 and 3,

(4.33)

(4.34)

(4.35)

In Fig. 2, the spectral  and  with different choices of smoother are plotted where Gn denotes
a Cn continuity. We remark that In is not convergent at μ = 0 due to higher order infinitesimal
of the denominator than the numerator in In. Therefore, In(0) should be calculated by an
extrapolation, for example for a first order accurate extrapolation, we can use

.

4.3.2 Algorithm II - 3D case—Let the molecule be contained in a rectangular box of size
[−Lx, Lx]×[−Ly, Ly]×[−Lz, Lz]. If the smallest box that contains the molecule is [−a, a] × [−b,
b] × [−c, c], then, due to the periodicity of the FFT, the computational box [−Lx, Lx]×[−Ly,
Ly] × [−Lz, Lz] should be chosen such that Lx ≥ 2a, Ly ≥ 2b, and Lz ≥ 2c to avoid the overlap
of the images of f and G.

The following steps form the flow of the algorithm in the 3-D case.

• Step 1. For an n-th order smoother  in (3.2) and an error tolerance ε > 0, choose
the truncation parameter Ω by

(4.36)

and set

(4.37)
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• Step 2. compute

, using one 3-D FFT for the following sums at a cost of O(NxNyNz log(NxNyNz)).

(4.38)

where .

• Step 3: Compute

, using one 3-D FFT for the following sums at a cost of O(NxNyNz log(NxNyNz)).

(4.39)

Remark 2 In the 3-D case, the function f(x, y, z) is the indicator function of the solute molecule,
therefore, Nx, Ny, Nz should be large enough so the boundary of the solute molecule is well
resolved on the NxNyNz–lattice grid to ensure a prescribed accuracy in the Fourier transform
(4.38).

Remark 3 In (4.38)(4.39), only the simplest rectangle quadrature rules are used. In fact, higher
order equally spaced Newton-Cotes formula could be used and the FFT could still be
applicable.

5 Validation of the FFT-based Algorithm
5.1 A model molecule - numerical accuracy

To test the accuracy and speed of the proposed method, we first implement a test example by
taking a dimensionless unit sphere

as the interior region of a molecule. A window function  is used as the smoother in (4.7).
For the spherical geometry, the 3D exterior integral (2.7) can be computed exactly due to the
radial symmetry of the sphere, i.e.

(5.1)

where ri (ri < 1) is the distance between the ith atom and the origin.

We test the accuracy of the FFT-based algorithms by computing the relative error in Ri for a
uniformly distributed 100 charges along a radial direction. In cases where part of the sphere
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Si for a charge is outside the molecule, we can obtain the height of the spherical cap Ai in (3.7)
and the distance between the charge and the molecular surface analytically. In practical
calculations, this can be done by defining a level set function C(r) [32,33] as in the next section,
which is a signed distance function (being greater or less than 0 when r is inside or outside the
molecule, respectively). The distance function C(r) on a 3-D grid can be evaluated by a fast
sweeping algorithm [34] with a complexity O(NxNyNz) with NxNyNz grid points. As the interior
region in this test model molecule can be parameterized, the exact normal direction to the
surface is known and, therefore, it is straightforward to compute the distance along that
direction for the charges close to the boundary.

We summarize our results in Tab 1, which shows the maximum and average errors for different
window sizes and grids in a spatial region [−L, L]3 with L = 2. We remark that there are several
sources for errors in the calculations of Born radius Ri. The first source is the error in numerical
quadrature involved in (4.23) (Step 3 in the FFT-based Algorithms). The second source comes
from the interpolation of Born radii for atoms at off-lattice sites using the neighboring grid
points. And the last source results from the treatment of atoms whose small sphere has a portion
Ai outside the molecule and an approximation for the shape of Ai is used in (3.7). These three
different sources of error depend on the parameters of our algorithm in a non-trivial way. In
what follows we investigate their effect in detail. For the sake of comparison, we also
implement the solution of the grid-based GB method [21] with a Cartesian grid [−1, 1]3, which
directly sums the data at the centers of grid boxes for the numerical integration. This method
is well known for its high accuracy, especially for solutes with complicated surface geometry.

Tables 1 and 2 contain the numerical errors for our FFT-based method and the original grid-
based method, respectively. It is seen that at the largest grid spacing h=0.125, the error is large
for all sizes of the smoothing window radius a considered. Both FFT and grid-based integration
yield errors well over 1%. For increasing values of a, the error is seen to decrease gradually.
In the FFT-based calculations, this decrease is due to the faster decay in the spectral of the
window function at larger a. In the grid-based integration, small size of the window function
a can not be efficiently resolved in a volume integration using a grid of comparable spacing
h ∼ a. Note that for the smallest a=0.1, the FFT calculation yields a ∼ 3% error which is a
significant improvement over the grid-based calculation generating a 68% error. Comparing
the results of FFT and grid-based calculations for h=0.125 it is clear that the main source of
error is space integral discretization and that the error is unacceptably large.

As the grid spacing h is reduced, the Born radii computed using our algorithms become more
accurate. At h=0.0625, both FFT and grid-based errors show a tendency to decrease with
increasing a, echoing the results observed for a larger h=0.125. On a grid of higher resolution,
h=0.03125, that tendency is reversed for the largest a considered. In the FFT calculation, the
error jumps from 0.56% at a=0.2 to 0.76% at a=0.25. In the grid-based calculation, a similar
increase is from 0.28% to 0.38%. That a non-linear behavior with a is observed signals that
the dominant error in Born radii present at larger h due to the numerical quadrature, has become
comparable to the error resulting from the treatment of surface atoms at the smaller h=0.0315.
For the surface atoms, the approximation involved in calculating the volume of spheres
overlapping with the solute becomes worse for larger a. Consequently, the total error in Ri
grows. Analyzing the last rows in Tabs. 1 and 2 we conclude that for a sufficiently fine grid
network, it is possible to find a size of the window function a such that the cumulative error
in Ri reaches a minimum. For both FFT and grid-based algorithms the minimum error is well
below 1%. The error is slightly higher, 0.49%, in the FFT algorithm than in its grid-based
counterpart, 0.19%, highlighting the importance of the intrinsic numerical errors present in the
former algorithm that go beyond space discretization. Nevertheless, Tabs. 1 and 2 clearly show
that the new algorithm proposed in this paper is sufficiently accurate to yield reliable Born
radii for a spherical solute.
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To evaluate the cost-efficiency of our FFT algorithm, time-performance tests were carried out
in comparison to the grid-based method. The results of these tests are summarized in Fig. 3,
which shows the CPU times for both methods implemented on a notebook PC with AMD 1.90
GHz double CPUs and 2G memory. As expected, the FFT-based algorithm incurs a much less
computational cost. It is seen in Fig. 3 that for the grid size h = 0.0625, where the average error
in Ri is below 1% (See Tab. 1), the FFT algorithm becomes faster than the grid-based method
when the number of atoms in a solute molecule reaches 600. Typically, proteins of moderate
sizes contain more than 600 atoms. It is clear, therefore, that for such proteins the new method
proposed here becomes advantageous. For a system composed of about 4000 atoms, the speed
improvement of our algorithm reaches one order of magnitude. For larger systems, the
improvement is even more dramatic. For instance, starting at approximately 5000 atoms, FFT
calculations on a finer mesh h = 0.03125 with much improved accuracy, become faster than
the grid-based calculations on a coarser mesh of h=0.0625. We conclude from this analysis,
that the FFT algorithm offers a much better performance over the grid-based methods, and
should therefore become the method of choice in GB calculations of large solute molecules.

In the example of a spherical solute, the Born radii are known exactly, and, in principle, there
is no need to evaluate Ri using grid-based approach; FFT calculations could be compared to
the known solutions directly. For an arbitrarily shaped solute, however, the exact solution is
not known and it is the grid-based solutions that serve as the reference point for comparison
with the FFT algorithm. In view of this, it makes sense to compare FFT and grid-based solutions
for a spherical solute, to estimate the level of agreement one can expect between the two
methods for an arbitrarily shaped solute. Figure 4 presents such analysis for the radius of the
smoothing function a=0.2. It is visually apparent from the Born radii plotted in this figure, that
the results of the FFT algorithm agree well with those of the direct grid summation. The smaller
the grid spacing h the better the agreement is observed. To characterize the agreement between
the two data sets quantitatively, we use the standard correlation coefficient, defined as

(5.2)

where E is the mathematical expectation, X and Y are FFT radii and grid-based radii,
respectively. The correlation coefficients we observe are very high, ρ=0.9936, 0.9994 and
0.9999 for h = 0.125, 0.0625 and 0.03125, respectively.

5.2 Effective Born Radii for Proteins
A thorough investigation on the performance of the new FFT-based algorithm proposed in this
work to large set of proteins is underway and its results will be reported in a separate
publication. Here in this paper we present our results for two proteins, immunoglobulin binding
protein [35]( PDB access code 3GB1 ) and human cyclophilin A [36] ( PDB access code
1OCA ). These two proteins differ in size significantly, containing 56 amino acids, 855 atoms
and 165 amino acids, 2503 atoms, respectively, and thus serve well the aim of critically testing
the performance of our algorithm. The indicator function which defines the molecular domain
is generated by the solvent accessible surface with a probe radius of 1.5 Å. The fast sweeping
method [34] with 8N3 operations is used to obtain the distance function from grid points to the
surface. In order to smooth the step-like discontinuity of the indicator function across the
surface, a smoothing procedure based on a time dependent heat equation [37] is employed with
the indicator function as the initial condition so that there are 2−4 grid points across the
molecule boundary. We remark that smoothing treatment is also often used in generalized Born
models [22] and for the purpose of avoiding numerical instability in finite difference Poisson-
Boltzmann solvers [38]. In our FFT implementation, a cubic box of dimension L=32 Å was
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used for protein 3GB1 and a box of dimension L=40 Å for protein 1OCA. In Figs. 5 and 6, we
plot the FFT results for different window size a, in comparison with the reference calculations
of the effective Born radii using the macromolecular modeling package CHARMM [39]. In
the reference computations, the grid-based version of the molecular volume GB formulation
(GB/MV) of Brooks and colleagues [21] was used, with the grid spacing set at 0.2 Å. Atomic
charges and radii were adopted from the PARAM22 version of the CHARMM force field
[40] and all calculations were done in the Coulomb-field approximation.

Overall, the agreement between the Born radii obtained by our FFT-based algorithm and those
derived in CHARMM is good. Some scatter is seen in Fig. 5 and 6 but in general, it is clear
that the two methods produce well correlated data. As mentioned previously, there are several
factors contributing to the numerical error in Ri, with one of them being how atoms close to
molecular surface are treated. A direct consequence of this approximation is that large window
radii a should lead to large errors for surface atoms. This is exactly the trend we observe for
both proteins in Figs. 5 and 6. As the window radius a is increased, the atoms with small Ri,
that is those close to the surface, deviate more from the diagonal than do the atoms buried
inside the protein and whose Born radii are large. The surface atoms place an upper limit on
how large a one is allowed to adopt and still obtain accurate values for Ri. Much will depend
on the geometry of a solute of interest, in deciding on what radius a is optimal. The extent of
correlation observed between FFT results and those obtained in CHARMM are summarized
in Tab. 3 for protein 3GB1 and in Tab. 4 for protein 1OCA. For the smaller protein 3GB1, it
is seen that for all but the smallest value of a considered, 3 Å, and a fine integration mesh
h=0.5Å, the correlation coefficient ρ > 0.95 is comparable to the values reported in the literature
for other GB implementations [21]. The correlation is even better for the larger protein 1OCA,
where for all values of a tested, ρ > 0.96. It is not clear at the moment, what causes this
improvement. Importantly, Tabs 3 and 4 show that ρ is not very sensitive to a as long as this
parameter is larger than 4 Å. This observation gives hope that a value of a between 4 and 6 Å
would be acceptable for a large data set of proteins in our planned forthcoming systematic
study of the FFT-algorithm for more proteins.

Finally, to evaluate the time performance of our FFT-based algorithm, for comparison, we
carried out grid-based calculations using the same set of grid parameters (comparison with
CHARMM would not be appropriate here as CHARMM does more than just calculation of
Ri). The results of this comparison, presented in Tab. 4, show that the FFT approach is 5 times
faster than the grid-based approach for protein 3GB1, and 14 times faster for protein 1OCA.
These speed improvements are in line with what we observed for the spherical solute and they
clearly demonstrate the advantage of using the FFT-based algorithm for Born radii proposed
in this work when computing GB solvation energy of large proteins.

6 Conclusions
In this paper, we have proposed a fast FFT-based algorithm to calculate the effective Born radii
in the generalized Born model of implicit solvation. The algorithm relies on a new formulation
for the GB radii using a smooth kernel in the definition of the GB radii via a convolution
integral. Using the fast spectral decay of the smooth kernel in the Fourier space and the FFT
to calculate the convolution integral on a grid, the GB radii at grid lattice sites are obtained at
a cost of O(N3 log N) with N independent of the number of atoms M inside the molecule, only
dependent on the geometry of the bio-molecule and the spectral decay of the kernel through
(4.37) (see also Remark 2). The GB radii for off grid lattice sites are obtained by a simple
interpolation at a cost O(M). Thus, the total cost for finding the GB radius using the FFT-based
method for M atoms using a N3 grid is O(N3 log N + M), thus yielding significant speed
improvement over traditional grid based methods, as demonstrated by numerical tests of model
spherical and protein solute molecules.
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Fig. 1.
An illustration of how integration in eqs.( 2.7) and ( 3.7) is carried out for atoms at grid points
in the interior of a solute and near its surface. A small sphere Si is drawn around each grid point
that is: (a) fully inside the molecule and (b) partially outside of the molecule where Ai is the
outlying part of Si
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Fig. 2.
Smoothed f(x) (top left), smoothed kernel G(r) (bottom left) and their Fourier transforms
(right). Gn refers to a smoothed kernel using the smoother , a = 0.2
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Fig. 3.
CPU time vs. number of atoms for three settings of our new FFT-based algorithm with a
smoother , a = 0.2 and the average relative error less than 1.0%. Grid-based: h = 0.0625;
FFT 1: h = 0.0625; FFT 2: h = 0.03125. All tests were done for a model spherical solute of
radius 1.
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Fig. 4.
Born radii derived using our new FFT-based algorithm vs. grid-based radii computed for a
model spherical solute of radius 1 using the smoother , a = 0.2. The correlation
coefficients are 0.9936, 0.9994 and 0.9999 for h = 0.125, 0.0625 and 0.03125, respectively.
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Fig. 5.
Born radii computed using our new FFT-based algorithm vs. grid-based radii obtained in
CHARMM [39] for immunoglobulin binding protein (PDB access code 3GB1 ). In FFT
calculations, 1283 grid points in domain [−32 Å, 32 Å]3 were used. Results for different
smoothers  are shown in (a) a = 3.0 Å; (b) a = 4.0 Å; (c) a = 4.5 Å; (d) a = 5.0 Å
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Fig. 6.
Same as Fig. 5 but for the human cyclophilin A (PDB access code 1OCA). In the FFT
calculations, 1283 grid points in domain [−40 Å, 40 Å]3 were used. Results for different
smoothers  are shown in (a) a = 4.0 Å; (b) a = 5.0 Å; (c) a = 5.5 Å; (d) a = 6.0 Å
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Table 3

The correlation coefficients between Born radii computed for protein 3GB1 using the new FFT-based algorithm
proposed in this work and those obtained using grid-based integration within CHARMM [39]. CPU time for both
types of calculations is also shown.

Corr. Coef. CPU time (s)

h=1 Å h=0.5 Å h=1 Å h=0.5 Å

FFT, a = 3.0 Å 0.945 0.931 4.64 38.78

FFT, a = 4.0 Å 0.950 0.953 4.59 39.79

FFT, a = 4.5 Å 0.949 0.956 4.67 38.82

FFT, a = 5.0 Å 0.948 0.957 4.68 40.01

Grid-based 22.11 191.04
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Table 4

Same as Tab. 3 but for the protein 1OCA

Corr. Coef. CPU time (s)

h=1.25 Å h=0.625 Å h=1.25 Å h=0.625 Å

FFT, a = 4.0 Å 0.969 0.962 4.59 39.99

FFT, a = 5.0 Å 0.974 0.973 4.57 40.04

FFT, a = 5.5 Å 0.974 0.975 4.57 40.00

FFT, a = 6.0 Å 0.973 0.975 4.61 40.09

Grid-based 64.13 529.73
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