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Abstract

An explicit/implicit domain decomposition method is applied to the time-dependent heat-
conduction problem in a 2-d, strongly anisotropic medium (a magnetized plasma), using a 
formulation of the spatial derivatives which avoids the pollution of perpendicular by parallel 
heat fluxes. The time-stepping at the sub-domain boundaries is done using a DuFort-Frankel 
scheme, which leads to a time step limit given not by instabilities, but by the damping rate 
of numerical oscillations driven by inconsistencies in the formulation of initial conditions or 
the temporal variations in the true physical solution.  These limitations can be minimized, 
however, by aligning the subdomain boundaries as much as possible with magnetic flux 
surfaces. The time step limit depends on the ratio of the implicit grid spacing to the distance 
between subdomain boundaries (DuFort-Frankel lines in 2-d, surfaces in 3-d). 

1. Introduction

The  modelling  of  conductive  heat  transport  in  magnetized  plasmas  is  a  central  theme  in 
thermonuclear fusion research, rendered highly demanding by the extreme anisotropy of the 
heat conductivity. In previous papers [1,2] we have outlined several variants of a numerical 
scheme which minimizes the pollution of the weak heat fluxes perpendicular to magnetic field 
lines,  by  the  potentially  much  more  efficient  transport  along  them  (typical  ratio  of  heat 
conductivities in the core of a present tokamak experiment >⊥χχ // 1010 ). In fact this scheme 
has been successfully applied to realistic situations, like the 3-d problem of heat transport across 
magnetic islands and in ergodic layers [3]. In Refs. [1,2] we considered the solution to the 
stationary problem, arguing that the same treatment of the spatial derivatives could be used in 
implicit formulations of the time-dependent equation. In fact this has been successfully done in 
Refs. [4,5]. As these solutions sometimes develop boundary layers – e.g. along the border of 
magnetic islands – frequently a very high spatial resolution is required, making, at least in 3-d, 
the resulting matrices of very demanding or even prohibitive size. At the same time such a fully 
implicit scheme is difficult to implement on highly parallel systems.  

Recently Yuan and Zuo [6] have analysed a hybrid explicit/implicit algorithm similar to one 
previously proposed by Black [7], which naturally decomposes the computational domain into 
sub-domains. The time evolution at the sub-domain interfaces is calculated using a DuFort-
Frankel (DF) scheme, and the results used as Dirichlet boundary condition data for the implicit 
formulation within the sub-domains. The authors showed this scheme to be unconditionally 
stable, and presented results of a sample application to a 1-d problem. Evidently, this algorithm, 
applied in 2 or 3 dimensions, substitutes one large by a set of much smaller matrices, and is 
intrinsically  predisposed for domain decomposition. In the present paper we combine these 
ideas with the spatial discretisation of Ref.[1], and apply it to the time dependent, anisotropic 
heat transport in 2-d, magnetised plasmas. While the scheme is, as shown by Yuan and Zuo, 
unconditionally stable, the DF algorithm applied at the sub-domain boundaries  is prone to the 
excitation  of  weakly  damped  oscillations,  driven  either  by  rapid  variations  in  the  applied 
sources,  or an inconsistent initialisation of the calculations. These oscillations are, however, 



much stronger damped in this case than in a pure DF scheme, and can be controlled, provided 
the time step is chosen according to criteria given in the present paper.

2. Mixed implicit-explicit formulation in 2d geometry

We describe the generalization of the numerical scheme proposed in Ref. [6] to the anisotropic 
problem of heat conduction in magnetised plasmas using 2-d cylindrical coordinates ),( θr  over 
a radial interval 10 ≤≤ r . We had used this geometry in Refs.[1] and [2] to develop and test a 
spatial discretisation scheme minimizing pollution of the small heat transport perpendicular to 
field lines (in this geometry equivalent to flux surfaces) by the much larger one parallel to them. 
As argued in Ref.[1] it is expedient to have coordinate lines of one coordinate (here: r ) coincide 
approximately with flux surfaces, which can be achieved in the general case by aligning the 
system with the unperturbed field. This had been subsequently implemented in Ref.[3] for a 3-d 
magnetic field configuration, albeit still based on zero-order circular, cylindrical flux surfaces. 
In Ref.[4] the geometry was further generalized to the realistic case of a toroidal plasma with 
the non-circular unperturbed flux surfaces, corresponding to an existing tokamak. In the latter 
case,  non-orthogonal  coordinates  were  used,  with  the  unperturbed  flux  surfaces  taken  as 
effectively  radial  coordinate  surfaces.  Cylindrical  coordinates,  with  2-d  magnetic  field 
configurations but finite rB  have thus been shown to be a good model system for the numerical 
treatment of more realistic problems of anisotropic heat transport.

We focus on the treatment of the electron heat conduction term, and write the temperature 
evolution equation in the form

QqT
t

ne +⋅−∇=
∂
∂ 

2

3
,                              (1)

with  ne being  the  electron  density  and  Q the  heat  source,  neglecting  terms  arising  from 
convection and compression heating. For strongly magnetised plasmas, the main difficulties 
arise from the term involving the parallel transport in the heat flux
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 χχ   (2)

In our previous papers we considered a fully implicit solution of the heat conduction equation. 
To reduce the size of the involved matrices, we decompose the computational domain here into 
Nr sub-domains by introducing domain boundaries at various radii  ri,  i=1,2,…,Nr. Inside these 
sub-domains, we apply an implicit scheme
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defining the parallel heat fluxes at intermediate grid points following the prescription of Ref.[1].
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In this and following equations, we add an index I to the radial step size, to indicate the interval 
between  neighbouring  implicitly  treated  points.  At  the  sub-domain  boundaries,  the  heat 
conduction equation is solved in an explicit way by 

{ }
( ) ( ) ( )( )

{ } ( ) .''''
2

,0

''''
2

0,

22

3

2/1,2/12/1,2/12/1,2/12/1,2/1

2/1,2/12/1,2/12/12/1,2/12/1,2/12/1

,

11

n
ij

n
ji

n
ji

n
ji

n
ji

i

n
ji

n
jii

n
ji

n
jii

Ii

r

ji

nn

e

Qqqqq
r

e

qqrqqr
rr

e

t

TT
n

+−−+
∆

−+−+
∆

−=
∆
−

−−−++−++

−−+−−−++++

−+






θ
θ

(5)

The  relevant  heat  fluxes  q’ involved  at  the  sub-domain  boundaries  are  calculated  using a 
generalisation of the DuFort-Frankel scheme:
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The grid points involved in the computation are outlined in Fig. 1. DFN implicit intervals ( )Ir∆
are between adjacent  DF-points, so that at constant spatial resolution  ( )Ir∆  the number of 

subdomains will scale like 1−
DFN  . As in our previous papers, all heat fluxes are defined in the 

intermediate grid point, whereas temperatures are defined in integer grid points. This treatment 
ensures that no strong pollution of the perpendicular heat flux is caused by the parallel one even 
for large values of  χ||/χ⊥ and non-aligned magnetic coordinates as already proven for the full 
implicit scheme developed in Refs.[1] and [2]. The solution at the sub-domain boundaries gives 
the Dirichlet boundary condition applied for the implicit scheme in the sub-domain interior.

Equations (1)-(5) are written in the form of Refs. [1],[2] to highlight how variable coefficients 
enter the difference formulation. In the following we chose a normalisation dropping the 3/2 in 
front of the temperature time derivative, and set .1.==constne For 2-d calculations in the ),( θr

-plane, we define the magnetic field through a flux function 
ψ∇×= zeB


, which for the 2-d test applications in this paper is given by

( ) θθψ cos1005.0)(),( 422 rrrrr s −+−= ,     (7)

resulting  in  a  magnetic  island  at  the  rational  surface  sr (=0.7).  We  use  ( ) 0,,1 == trT θ , 
( ) 00,, ==trT θ  as boundary and initial condition and – for the reference case – a source given 

by ( ) ( )strQ τ/tanh14
82−= . The ramping-up of the source, with a time-constant sτ  is imposed 



so  that  the  additional  unphysical  condition  on  tT ∂∂ (taken  as  0= )  needed  to  initiate  the 
algorithm in the DF-points, is consistent with the actual solution of the problem.

For the reference case, shown in Figs. 2 and 3 we chose ⊥χχ // =107  , keeping in mind that in a 
2-d simulation  this  parameter  is  an effective  value,  related  to  the true one by the relation 
( ) ( ) ( ) ( )22222

3//2// / zrrdd BBBBB +++⋅= ⊥⊥ θθχχχχ , and hence to be taken more than 2 orders 

of magnitude smaller to simulate tokamak conditions [2]. The implicit step sizes are taken as 
( ) Ir∆ = 0.0033 and  ( ) Iθ∆ = 0.025, with  DFN = 15, and a time step  t∆  = 0.003. The spatial 
resolution is needed to reproduce the sharp transition zone at the island boundary. Fig. 2 shows 
the isocontours of temperature in the asymptotic state,  whereas Fig. 3 shows radial profiles 
through the O-point of the island, during the build-up and at a late (asymptotic) state.



3. Constraints on the utilizable time-step

The above and several other test cases showed that the mixed scheme of Ref. [6] can indeed be 
implemented  in a satisfactory way also in more than one dimension,  to solve the strongly 
anisotropic heat conduction problem in magnetic fields. The generally known drawbacks of the 
DF  scheme,  and  the  adjustable  parameters  of  the  above  mixed  scheme ( ) tx I ∆∆ , ,  but  in 

particular  DFN ,  however,  made  extensive  numerical  tests  mandatory.  To  guide  our 
understanding and to arrive at a scaling of the useable time steps  t∆ supported by an at least 
heuristic model, we explored also more extensively the 1-d situation, already discussed in the 
paper of Yuan and Zuo [6].

The DuFort-Frankel scheme for the heat conduction equation is known to be unconditionally 
stable for proper boundary conditions. Yuan and Zuo [6] have shown that this general property 
holds also for the combined DF-explicit, implicit scheme. In practice, however, the DF method 
is known to suffer from the danger of the excitation of weakly damped oscillations, e.g. by too 
rapidly varying sources or by inconsistent initial conditions. Related to this is the fact that the 
DF scheme modifies the basic type of the partial differential equation, introducing a hyperbolic 
term vanishing only for ( ) .0→∆∆ xt  We show in the following that the mixed scheme of Ref.
[6] has indeed much superior properties. To illustrate this, we consider at first the 1-d analogue 
to our 2-d problem, solving the standard heat conduction equation in the form

 .
1

enQT
r

r
rr

T
t

+
∂
∂

∂
∂=

∂
∂ χ      (8)

with  χ = 1, the same source distribution and initial and boundary conditions as above, albeit 
necessarily with only a perpendicular  heat conductivity, and no equivalent of magnetic islands. 
Similar to the above case (for the reasons discussed in the subsequent section) we ramp-up the 
source with a time-function  ( )st τ/tanh~ . For a too large time step (Fig. 4) the true solution 

),( trT is  overlaid by a damped temporal oscillation  ),(
~

trT ,  with a radial  scale length ~ 1 

(Fig.5).  Closer  inspection  reveals,  however,  that  the  function  ),(
~

trT actually  constitutes  a 
polygon in r , with pivots in the DuFort -Frankel points. This behaviour can be understood from 
an inspection of the PDE's obtained as differential approximations to the difference schemes 
[8], which take the form 
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for the case of the DF-scheme, and 
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for the implicitly treated regions. (To focus on the essentials, we carry-out this discussion, as 
well as the analysis given in the appendix in plane geometry, and ignore the source terms). 

In  the  mixed  formulation  described  in  section  2,  Eq.  (9)   is  solved  in  the  region 
( ) ( ) 22 ,, IiDFIiDF xxxxx ∆+≤≤∆−  around each DF point iDFx , , whereas (10) is solved in the 

remainder of the computational domain. Defining a function )(xg as 1 inside and 0 outside the 

region of validity of (9), the perturbation ),(
~

txT has to satisfy an equation of the form
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where the last two terms describe the drive of the oscillations by the time-variation of the true 
solution ).,( txT

In the appendix we describe a semi-heuristic method by which we use the observed spatial 
structure of the perturbations in our numerical experiment to derive a time-dependent solution 
for the homogeneous part of Eq. (11), which predicts a behaviour titexGtxT ωγ +⋅)(~),(

~
, with 
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with  a characteristic spatial scale of the perturbation (in the case of the mode observed in Fig. 
5, the total extent of the computational region) and 21,cc constants of ( ).1O  For comparison, a 
spectral mode ansatz for the perturbation in terms of a spatial wave-number k for a pure DF-
scheme would yield

( )
( )

( )
( ) .

2 2

2

t

kx

t

x

DF

DF
DF

∆
∆=

∆
∆−=

ω

χ
γ

              (13)

Comparing the two expressions (in particular those for the damping rate γ− ), one should note 
that the requirement to resolve a certain spatial scale will impose a fixed  ( ) Ix∆ , whereas the 
number of subdomains will be a parameter to optimize, taking into account a given computer 
architecture.   For a fixed time step and a given spatial  resolution the rate of damping will 
therefore be larger by a factor DFN  for the hybrid scheme than for the pure DF treatment.

The  scaling  of  damping rate  and oscillation  frequency  implied  by  Eq.  (12)  are  very  well 
reproduced  by  our  numerical  tests  carried  out  in  1d,  but  holds  approximately  also  in  2d 
simulations. Figures 6 and 7  show, for the 1-d case, the excellent agreement of the scaling of 
the characteristic frequency and damping rate of these perturbations with the predictions of Eq. 
(12). In the case of the damping rate, this agreement extends also to the numerical value; the 
measured frequencies are uniformly about 40% higher than those predicted by Eq. (12) for 

1~ . This is not surprising, as the spatial structure of the perturbation is not exactly a parabola 
(as assumed in the appendix) and the analytic expression obtained there also refers to a plane 
geometry. The predicted damping rate, on the other hand, does not even depend on the spatial 
scale of the perturbation and should therefore also be more robust with regard to its detailed 
structure.



In 2d, the role of anisotropy ⊥χχ // , and the dependence of the solution on the structure of the 

magnetic field  ( )θ,rB


 complicate the matter. Also here, for too large time-steps, oscillations 
appear (Fig.8). They have a more complex time-behaviour, as evidently the larger number of 
degrees  of  freedom allows  for  more  than  one oscillation  mode to  be  excited.  The  spatial 
structure  of  the  perturbation  (Fig.  9:  isocontours  of  ( ),9.3,,

~ =trT θ obtained  as  difference 

between  the  solutions  with  3103 −⋅=∆t and  4105 −⋅ respectively  at  this  instance)  closely 
resembles that of the  the true solution (Fig.2). This similarity is illustrated more quantitatively 
by radial  cuts  of  ( ),9.3,,

~ =trT θ through the O- and X-points  of  the island (Fig.10),  which 
manifest also the polygonal structure.  We carried out again a variety of numerical simulations 
testing the scaling of damping rate and oscillation frequency of these perturbations, with results 
shown in Figs.11-14.  For applying the Eq. (12) we had to define a reference heat conductivity, 

which we took as the spatial  maximum of  ( ) ( )( )⊥+= χχχ //
21max rref b .  The latter  quantity 

appears as coefficient of the 2nd time derivative in the 2-d generalisation of Eq. (11), making it 
clear  also  why  the  DuFort  -Frankel  treatment  should  be  with  respect  to  a  coordinate 
perpendicular  to  the  unperturbed  flux  surfaces.  (A  further  profit  should  accrue  if  DuFort 
-Frankel surfaces can be placed on still intact flux surfaces, like KAM-surfaces). As can be seen 
the damping rates still scale in reasonable agreement with Eq. (12), with a somewhat weaker 
dependence  on  ⊥χχ // ,  which  is,  however,  to  be  expected  as  over  large  parts  of  the 

computational region the actual value of refχ stays closer to 1. A stronger deviation is observed 

for the oscillation frequency, which according to Eq. (12) should be independent of refχ , but is 

found to scale 
4.0~ −

refχ . This is presumably due to the fact that the 2-d structure of the solution 

(and also the perturbation)  gets increasingly more pronounced with increasing  ⊥χχ // .

The above tests refer to cases, in which the time variation of the true, physical solution of Eq. 
(1) drives the numerical oscillations, with a spatial distribution given either by the global scale, 
or – in case of the sudden switch-on of a spatially more restricted source (in practice, e.g. the 
application  of  ECRH-heating)  –  a  smaller  scale   .  The best  confirmation  of  the range of 
applicability of the expressions (12)  was, however, obtained by 1 and 2-d runs with improper 
initialisation, taking, from the very beginning of the calculations a finite source strength ( )trQ , , 

but  initiating  the  DF  points  with  ( ) ( ) .00,,,, ,, ==∆− θθ jDFjDF rTtrT  This  led  to  strong 

oscillations with a characteristic  dimension  ( ) DFr∆~ ,  with  the same damping rate as the 

global oscillations, but a frequency scaling now like ( ) ( ) ( ) DFI rrt ∆∆∆⋅ ~ω .

One remarkable property of Eq. (12) is the fact that the damping rate for the induced numerical 
oscillations is independent of their spatial scale. This implies that the problem will lead to more 
severe time-step limitations if smaller scale physical variations are to be resolved. As practical 
criterion we can formulate that the damping of numerical oscillations should be on a shorter 
time-scale than the physical one. Taking – for a physical perturbation on a scale  the associated 
physically relevant time scale as ,2 χτ  ≈  this requests:
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1
2 22
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 , which can be reformulated as a time-step criterion:
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Another form of a time-step criterion can be derived by demanding that the oscillations excited 
with a spatial  scale    should be critically damped: using the expressions of Eq. (12)  this 

requirement 1>− ωγ takes – up to a factor ( )21 2cc - again the same form as Eq. (14).

To  test  this  conclusion  numerically  in  the  1-d  case  we  imposed  a  source  that  produces 

asymptotically a spatially localized temperature distribution  
22)5.0(),( σ−−=∞→ retrT . Taking 

for this case and ( ) 40,0025.0 ==∆ DFI Nr  a time-step 310−=∆t , which would be sufficient to 
produce a monotonic approach to the asymptotic solution for the model source distribution used 
in the earlier tests, yields a temporal behaviour of ( )tT ,0  with a strong oscillation overlaid to 
the physical excursion (Fig.  15). An oscillation persists also for a time-step reduced by a factor 
of 2; a time step of 1/4th of the original one suffices, however, to give essentially the physically 
correct  solution,  approximately  in  agreement  with  the  ratio  of  the  space-scales  of  the 
dominating perturbations for the two cases (Fig. 5 and Fig. 16). For ramp-up rates exceeding a 
few (less than 10) t∆ , these oscillations do not depend on the rate of rise of the source.. 
Expression  (12)  explains  also  the  particular  importance  of  a  consistent  start-up  of  the 
calculations. As the DF points require a specification also of the time derivative of ( )0,, =trT θ
, any specification not consistent with the actual solution excites a perturbation with a spatial 
scale ( ) IDF rN ∆~ , posing a rather stringent requirement for critical damping. Our method – to 

start  with  ( ) 00,, ==trT θ ,  ( ) 00,, =∂=∂ ttrT θ ,  and  to  ramp-up  the  source  from initially 
uniformly  zero  to  its  intended  value  within  a  few  t∆  was,  however,  very  successful  in 
eliminating this problem.  It is in fact, of more general applicability than might appear apparent. 
Due to the linearity of the problem, it can be applied to start-up with any initial distribution 

( ) ( )θθ ,0,, rTtrT o==  for  any  source  distribution  ( )trQ ,,θ ,  by  obtaining  first,  through 

differentiation, a fictitious source  ( )θ,rQs , satisfying the stationary heat conduction equation 

for  ( )θ,rTo  and  applying  the  algorithm  described  in  this  paper,  using  a  source 
( ) ( )sss tQQQ τtanh⋅−+ . Evidently, in that case,  ( ) 00,, =∂=∂ ttrT θ gives an initialisation in 

the DF-points consistent with the actual solution of the PDE.

4. Conclusions

We have shown that the mixed explicit/implicit scheme proposed by Yuan and Zuo can be 
successfully combined with the spatial discretisation of Günter et al. for the solution of 2-d, 
strongly anisotropic heat conduction problems, provided certain constraints on the time step are 
respected. We expect this to hold also in 3-d, and efforts for the practical implementation into 
the code described in Refs. [3,5] are under way. The method breaks the original coefficient 
matrix for the solution at the new time-step, with zyx NNN ⋅⋅⋅≈ 27 non-vanishing entries, into 

DFx NN / matrices with each zyDF NNN ⋅⋅⋅≈ 27  elements, leaving the total number of elements 
approximately  constant,  but  evidently  facilitating their  distribution  and parallel  solution  on 
several  nodes.  The  method appears  ideally  suited  for  problems  of  perturbed,  magnetically 
confined plasmas,  where  a  fully  implicit  treatment  on the nested  magnetic  surfaces  of  the 
original equilibrium configuration can be combined with a mixed implict/explicit  treatment 
along the coordinate perpendicular to them. The method is unconditionally stable, but imposes a 
time-step constraint of the type 
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∆∝∆ max  to avoid spurious oscillations of the solution, where effχ is an effective 

heat conductivity perpendicular to the boundaries of the fully-implicitly treated subdomains. It 

is approximately given by  ( ) ( )( )⊥+=
⊥

χχχχ //
21 reff b ,  and  illustrates also the benefit derived 

from  an  approximate  alignement  of  the  subdomain  boundaries  with  the  unperturbed  flux 
surfaces. 

Appendix

To obtain practical guidance for the choice of the time-step t∆  and the number of DF points, 
lines or surfaces, respectively in 1, 2, or 3 dimensions, we need to relate these parameters to the 
observed temporal oscillations.  The heuristic analysis described below refers to a 1-d situation, 
and derives the justification of its use in the more general 2-d case from the numerical tests and 
the comparison of their results.

We start from the homogenous part of Eq. (11)
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with the definition of  ( )xg given in section 3. We apply separation in time and investigate a 
particular spatial perturbation with a global scale-length  , using the numerical observation of 

( )txT ,
~

 taking the spatial shape of a polygon with vanishing T
x

~
2

2

∂
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over the region with .0=g  

We therefore make an ansatz ( ) ( ) ( )xGtTtxT o ⋅= ~
,

~
, with ( )xG  defined as polygon, with pivots in 

the  DF-points,  given  by ( ) ( )( )2
,, 1 axxG jDFjDF −= .  This  corresponds  approximately  to  the 

oscillating perturbation in Fig. 5. We use the function  ( )xG  now also as trial function in a 

Galerkin  approach,  multiplying  Eq.  (A1)  with  it  and  integrating  over  the  interval  [ ]a,0 . 

Evaluating the first and second terms gives only ( )( ) 2
ax DF∆ -corrections to the expressions for 

the continuous function ( )( )2/1 ax− . The 4th term vanishes for the chosen trial function. The 
essential  features  of the DF enter  through the third term,  whose contribution is  attenuated, 
however, by the small interval around the DF points over which ( ) 0≠xg . By this procedure, the 
PDE (A1) becomes a 2nd order DE in time
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The above procedure – using the approximate spatial form of the numerically found dominating 
perturbation as a trial function to construct a Galerkin procedure – can be applied also to other 
perturbations, excited, e.g. by a bad initialisation of the DF points. The resulting expressions for 
damping rates and frequencies take the general form 
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already described in the text, with   the characteristic space scale of the perturbation. Common 
to all the perturbations is their nearly polygonal form, with straight sections connecting the DF 
points.
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Figure Captions

 

Fig.1: Grid points involved in the computation of the heat fluxes at point (i+1/2,j+1/2) required 
for  the  DuFort-Frankel  scheme  used  along  the  sub-domain  boundary  at  r=ri (along  the 
“DuFort-Frankel line”).

Fig. 2  Temperature contours for the asymptotic solution (t = 3.9) of our reference case, in a  
projection on a plane θ,r system.

Fig.3 Radial profiles of temperature through the O-point of the island for the reference case,  
during the build-up (t=0.05, 0.15) and at t= 3.9.

Fig 4  Time development of ( )trT ,0=  in a 1-d case, with ( ) Ir∆  = 0.0025, DFN = 40, and time 
steps t∆ = 0.002 (solid line) and = 0.01 (dotted), respectively.

Fig.5 Radial profile of the perturbation ( )8.1,
~ =trT for a time step t∆ = 0.01. The insert shows 

the true solution in the asymptotic state.

Fig 6  Results of numerical tests (circles) and the prediction of Eq. (12) (dashed line) for the  
damping  rate  of  the  perturbation  ( )trT ,0

~ = .  Shown  is  ( ) 2t∆⋅γ  as  function  of  DFN .  (no 
correction factor applied)

Fig.7  Results of numerical tests (circles) and the prediction of Eq. (12) (dashed line) for the 
oscillation frequency of the perturbation ( )trT ,0

~ = . Shown is ( )t∆⋅ω  as function of DFN . The 
dashed curve corresponds to Eq. (12) for a value of =0.59. 
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Fig 8  Time development of ( )trT ,0=  in the 2-d reference case, for time steps 3103 −⋅=∆t and 
4105 −⋅ , respectively.

Fig.9   isocontours  of  ( ),9.3,,
~ =trT θ obtained  as  difference  between  the  solutions  with 

3103 −⋅=∆t and 4105 −⋅ , respectively.

Fig.10  Radial cuts of ( ),9.3,,
~ =trT θ  for 3103 −⋅=∆t through the O- and X-points of the island.

Fig 11  Damping rate γ  of slowest decaying  fluctuations from 2-d calculations (squares) with  
different DFNt,∆ , for 7

// 10=⊥χχ   , corresponding, for the magnetic configuration used, to a 

41=refχ . The dashed line corresponds to ( ) DFNt 72 108.4 −⋅=∆⋅γ , whereas a straightforward 

evaluation of Eq. (12) predicts DFN6103 −⋅ .

Fig 12  Oscillation frequency ω  (squares) of slowest decaying  fluctuations for the cases of 

Fig.11. The dot-dashed curve corresponds to ( ) DFNt 0027.0=∆⋅ω .

Fig 13  Scaling of the damping rate of the slowest decaying mode  with refχ for various DFNt,∆

in logarithmic representation. The dashed line corresponds to ( ) 85.02 ~ −∆⋅ refDFNt χγ .

Fig 14  Scaling of the oscillation frequency of the slowest decaying mode  with refχ for various 

DFNt,∆ in logarithmic representation. The dashed line corresponds to ( ) 42.0~ −∆⋅ refDFNt χω .

Fig 15 1-d solution for a narrow source:  ( )tT ,0  for time steps of 3104 −⋅=∆t (dashed line) and 
310− (solid line). 

Fig 16  Profile of  the perturbation  )26.0,(
~ =trT  for the case of  Fig.  15 and  3104 −⋅=∆t .  

Insert: stationary solution. 


	3. Constraints on the utilizable time-step
	The above and several other test cases showed that the mixed scheme of Ref. [6] can indeed be implemented in a satisfactory way also in more than one dimension, to solve the strongly anisotropic heat conduction problem in magnetic fields. The generally known drawbacks of the DF scheme, and the adjustable parameters of the above mixed scheme, but in particular , however, made extensive numerical tests mandatory. To guide our understanding and to arrive at a scaling of the useable time steps supported by an at least heuristic model, we explored also more extensively the 1-d situation, already discussed in the paper of Yuan and Zuo [6].
	The DuFort-Frankel scheme for the heat conduction equation is known to be unconditionally stable for proper boundary conditions. Yuan and Zuo [6] have shown that this general property holds also for the combined DF-explicit, implicit scheme. In practice, however, the DF method is known to suffer from the danger of the excitation of weakly damped oscillations, e.g. by too rapidly varying sources or by inconsistent initial conditions. Related to this is the fact that the DF scheme modifies the basic type of the partial differential equation, introducing a hyperbolic term vanishing only for  We show in the following that the mixed scheme of Ref.[6] has indeed much superior properties. To illustrate this, we consider at first the 1-d analogue to our 2-d problem, solving the standard heat conduction equation in the form
	  								    (8)
	with = 1, the same source distribution and initial and boundary conditions as above, albeit necessarily with only a perpendicular  heat conductivity, and no equivalent of magnetic islands. Similar to the above case (for the reasons discussed in the subsequent section) we ramp-up the source with a time-function . For a too large time step (Fig. 4) the true solution is overlaid by a damped temporal oscillation , with a radial scale length ~ 1 (Fig.5). Closer inspection reveals, however, that the function actually constitutes a polygon in , with pivots in the DuFort -Frankel points. This behaviour can be understood from an inspection of the PDE's obtained as differential approximations to the difference schemes [8], which take the form 
							                         (9)
	for the case of the DF-scheme, and 
							                      (10).
	Comparing the two expressions (in particular those for the damping rate ), one should note that the requirement to resolve a certain spatial scale will impose a fixed , whereas the number of subdomains will be a parameter to optimize, taking into account a given computer architecture.  For a fixed time step and a given spatial resolution the rate of damping will therefore be larger by a factor  for the hybrid scheme than for the pure DF treatment.
	In 2d, the role of anisotropy , and the dependence of the solution on the structure of the magnetic field  complicate the matter. Also here, for too large time-steps, oscillations appear (Fig.8). They have a more complex time-behaviour, as evidently the larger number of degrees of freedom allows for more than one oscillation mode to be excited. The spatial structure of the perturbation (Fig. 9: isocontours of obtained as difference between the solutions with and respectively at this instance) closely resembles that of the  the true solution (Fig.2). This similarity is illustrated more quantitatively by radial cuts of through the O- and X-points of the island (Fig.10), which manifest also the polygonal structure.  We carried out again a variety of numerical simulations testing the scaling of damping rate and oscillation frequency of these perturbations, with results shown in Figs.11-14.  For applying the Eq. (12) we had to define a reference heat conductivity, which we took as the spatial maximum of . The latter quantity appears as coefficient of the 2nd time derivative in the 2-d generalisation of Eq. (11), making it clear also why the DuFort -Frankel treatment should be with respect to a coordinate perpendicular to the unperturbed flux surfaces. (A further profit should accrue if DuFort -Frankel surfaces can be placed on still intact flux surfaces, like KAM-surfaces). As can be seen the damping rates still scale in reasonable agreement with Eq. (12), with a somewhat weaker dependence on , which is, however, to be expected as over large parts of the computational region the actual value of stays closer to 1. A stronger deviation is observed for the oscillation frequency, which according to Eq. (12) should be independent of , but is found to scale . This is presumably due to the fact that the 2-d structure of the solution (and also the perturbation)  gets increasingly more pronounced with increasing  .
	Fig 4  Time development of  in a 1-d case, with  = 0.0025, = 40, and time steps = 0.002 (solid line) and = 0.01 (dotted), respectively.
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	Fig 8  Time development of  in the 2-d reference case, for time steps and , respectively.
	Fig 11  Damping rate  of slowest decaying  fluctuations from 2-d calculations (squares) with different , for   , corresponding, for the magnetic configuration used, to a . The dashed line corresponds to , whereas a straightforward evaluation of Eq. (12) predicts .


