
High-order time-splitting
Hermite and Fourier spectral methods
for the Gross–Pitaevskii equation ?

Marco Caliari a, Christof Neuhauser b, Mechthild Thalhammer b,∗

aDipartimento di Informatica, Università degli Studi di Verona, Ca’ Vignal 2,
Strada Le Grazie 15, I–37134 Verona, Italy.

bInstitut für Mathematik, Leopold–Franzens Universität Innsbruck,
Technikerstraße 13/7, A–6020 Innsbruck, Austria.

Abstract

In this paper, we are concerned with the numerical solution of the time-dependent
Gross–Pitaevskii Equation (GPE) involving a quasi-harmonic potential. Primarily,
we consider discretisations that are based on spectral methods in space and higher-
order exponential operator splitting methods in time. The resulting methods are
favourable in view of accuracy and efficiency; moreover, geometric properties of the
equation such as particle number and energy conservation are well captured.

Regarding the spatial discretisation of the GPE, we consider two approaches. In
the unbounded domain, we employ a spectral decomposition of the solution into
Hermite basis functions; on the other hand, restricting the equation to a sufficiently
large bounded domain, Fourier techniques are applicable. For the time integration
of the GPE, we study various exponential operator splitting methods of convergence
orders two, four, and six.

Our main objective is to provide accuracy and efficiency comparisons of exponen-
tial operator splitting Fourier and Hermite pseudospectral methods for the time
evolution of the GPE. Furthermore, we illustrate the effectiveness of higher-order
time-splitting methods compared to standard integrators in a long-term integration.
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1 Introduction

In the present paper, we are concerned with the numerical solution of the
time-dependent Gross–Pitaevskii Equation (GPE) [16,22]

i ~ ∂tψ(x, t) =

(
− ~2

2m
∆ + V (x) + g

∣∣∣ψ(x, t)
∣∣∣2)ψ(x, t) (1)

describing the wave function ψ : Rd × R≥0 → C of a Bose–Einstein conden-
sate. Our main objective is to compare space and time discretisations that
are based on Hermite and Fourier spectral methods and exponential splitting
methods of orders two, four, and six; moreover, we illustrate the effective-
ness of higher-order splitting methods compared to standard integrators in
a long-term integration. In most cases, we use the ground state of the GPE
as a reliable reference solution, computed by employing the Hermite spectral
decomposition and directly minimising the energy functional, see [4,9].

Over the past years, numerous works were devoted to the discretisation of
nonlinear Schrödinger equations; we mention [2,3,5,11,12,21,26,27], where a
particular emphasis is given to accuracy and the preservation of geometric
properties. For the spatial discretisation of the GPE, Hermite pseudospectral
methods are used in [3,12]; on the other hand, restricting the problem to a
bounded domain, Fourier spectral methods are applicable, see Bao et al. [2].
The favourable behaviour of the second order Strang splitting and a fourth-
order time-splitting scheme regarding accuracy, efficiency, and the conserva-
tion of geometric properties is illustrated in [2,3]. For the cubic Schrödinger
equation, numerical comparisons of different space and time discretisations
are provided by Pérez–García and Liu [21].

The present work is organised as follows. In Section 2, we restate the time-
dependent d-dimensional GPE in a normalised form. Further, we briefly dis-
cuss the special case of a harmonic potential and vanishing interaction that
leads to the time-dependent linear Schrödinger equation; in this situation, the
ground and the excited states are given by the Hermite functions. The linear
Schrödinger equation also motivates the consideration of a Hermite spectral
decomposition for the nonlinear GPE. Sections 3 and 4 are devoted to numeri-
cal discretisations of the GPE based on Hermite and Fourier spectral methods
in space and exponential operator splitting methods in time; we note that an
extension to systems of coupled GPEs is straightforward, see also Caliari
et al. [9]. In Section 5, we present several illustrations regarding accuracy,
efficiency, and the preservation of geometric properties. The numerical exper-
iments are carried out for problems in two space dimensions; however, in view
of the tensor product structure of the spatial discretisation, we expect our
conclusions to be maintained in three space dimensions as well. In Section 6,
we finally summarise our results and discuss open questions.
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The following notations are tacitly employed throughout. For a multi-index
of integer numbers m = (m1,m2, . . . ,md) ∈ Zd, the relation ≤ is understood
componentwise. For an element x = (x1, x2, . . . , xd) ∈ Rd, we denote by |x|
its Euclidean norm. As usual, the d-dimensional Laplacian is defined through
∆ = ∂2

x1
+ · · ·+∂2

xd
. The Lebesgue space L2(Ωd) of square integrable complex-

valued functions on Ωd ⊆ Rd is endowed with scalar product (· | ·)L2(Ωd) and
associated norm ‖ · ‖L2(Ωd) defined by

(f | g)L2(Ωd) =
∫

Ωd
f(x) g(x) dx , ‖f‖L2(Ωd) =

√(
f
∣∣∣ f)

L2(Ωd)
, f, g ∈ L2(Ωd) ;

for notational simplicity, we omit the domain in the scalar product and norm.

2 Gross–Pitaevskii equation

In the present section, we state a normalisation of the d-dimensional GPE (1)
that is obtained by a linear transformation of the spatial variable and a rescal-
ing of the wave function, see also Caliari et al. [9]; moreover, we introduce
the ground and excited state solutions of the GPE by means of a nonlin-
ear eigenvalue problem. Existence and uniqueness results for time-dependent
Schrödinger equations are found in Cazenave [10, Ch. 4 & Ch. 6].

2.1 Time-dependent Gross–Pitaevskii equation

Henceforth, we consider the following normalisation of the time-dependent
Gross–Pitaevskii equation (GPE)

i ∂tψ(x, t) =
(
− 1

2
∆ + V (x) + ϑ

∣∣∣ψ(x, t)
∣∣∣2)ψ(x, t) , t ≥ 0 ; (2a)

the equation is subject to asymptotic boundary conditions on the unbounded
spatial domain Rd, i.e., we require ψ(x, t)→ 0 as |x| → ∞. Without any loss
of generality, we further suppose the initial value ψ(·, 0) ∈ L2(Rd) to satisfy
the normalisation condition ∥∥∥ψ(·, 0)

∥∥∥2

L2
= 1 . (2b)

In the present paper, we restrict ourselves to the case of a scaled harmonic
potential V = 1

2
VH where

VH(x) =
d∑
j=1

γ4
j x

2
j , γj > 0 , 1 ≤ j ≤ d ; (2c)
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however, as indicated in Section 4, our approach extends to more general
real-valued potentials V . Also, we assume the coupling constant ϑ to be non-
negative, that is, we restrict ourselves to a defocusing condensate.

As proven in Cazenave [10, Thm 4.1.1], a fundamental property of (2) is the
preservation of the particle number∥∥∥ψ(·, t)

∥∥∥2

L2
=
∥∥∥ψ(·, 0)

∥∥∥2

L2
= 1 , t ≥ 0 , (3a)

see (2b). Moreover, the energy functional

E
(
ψ(·, t)

)
=
((
− 1

2
∆ + V + 1

2
ϑ
∣∣∣ψ(·, t)

∣∣∣2)ψ(·, t)
∣∣∣∣ψ(·, t)

)
L2

(3b)

is time-independent, that is, it holds E(ψ(·, t)) = E(ψ(·, 0)) for t ≥ 0 ; we
further require E(ψ(·, 0)) <∞.

2.2 Ground and excited states

The ground state solution of the GPE (2) is a solution of the form

ψ(x, t) = e− iµt φ(x) , x ∈ Rd, t ≥ 0 , (4a)

with µ ∈ R and φ a real-valued (positive) function that minimises the energy
functional E(ψ(·, t)) = E(φ), see (3b). Inserting (4a) into (2a) and using (3a)
yields (

− 1
2

∆ + V + ϑφ2
)
φ = µφ , µ = E(φ) + 1

2
ϑ
(
φ3
∣∣∣φ)

L2
. (4b)

Further solutions of the GPE (2) that allow a decomposition (4a) and thus
solve the nonlinear eigenvalue problem (4b) are called excited state solutions.

We next consider the special case where the parameter ϑ vanishes and the
potential V is given by the scaled harmonic potential VH, see (2c). In this
situation, the GPE (2) reduces to the linear Schrödinger equation

i ∂tψ(x, t) = 1
2

(
− ∆ + VH(x)

)
ψ(x, t) , t ≥ 0 ,

and, as well known, the Hermite functions with associated eigenvalues

Hm(x) =
d∏
j=1

(
Hmj

(xj) e−
1
2

(γjxj)2
)
, λm =

d∑
j=1

γ2
j

(
mj + 1

2

)
, (5a)

solve (4b) for ϑ = 0, that is, for any m ≥ 0 it holds

1
2

(
− ∆ + VH

)
Hm = λm Hm ; (5b)
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here, we let Hmj
denote the Hermite polynomial of degreemj, normalised with

respect to the weight function wj(xj) = e− (γjxj)2 . The Hermite functions (Hm)
form an orthonormal basis of the function space L2(Rd); in particular, it holds
(Hk |Hm)L2 = δkm with Kronecker delta δkm.

3 Pseudospectral methods

In the following, we discuss two approaches for the spatial discretisation of
the GPE that are based on Hermite and Fourier spectral decompositions of
the solution, respectively.

3.1 Hermite pseudospectral method

In this section, we let m ∈ Zd be a multi-index with non-negative components,
i.e., we suppose m ≥ 0 ; hence, for a family (am) we write∑

m

am =
∑
m≥0

am

for short. Using that the Hermite functions (Hm) form an orthonormal basis
of the function space L2(Rd), the representation

ψ(·, t) =
∑
m

ψm(t) Hm , ψm(t) =
(
ψ(·, t)

∣∣∣Hm

)
L2
, (6a)

follows, see also Section 2.2; besides, due to Parseval’s equality, the identity∥∥∥ψ(·, t)
∥∥∥2

L2
=
∑
m

∣∣∣ψm(t)
∣∣∣2 (6b)

is valid. Truncating the infinite sum in (6a) yields

ψM(·, t) =
∑

M
m

ψm(t) Hm =
∑

m≤M−1

ψm(t) Hm (7a)

with coefficient vector ψ(t) = (ψm(t))m≤M−1 given by (6a); the above rela-
tion (6b) implies

∥∥∥ψM(·, t)
∥∥∥2

L2
=
∣∣∣ψ(t)

∣∣∣2 =
∑

M
m

∣∣∣ψm(t)
∣∣∣2 . (7b)

Results on the approximation error of the Hermite spectral method are found
in Boyd [7, Ch. 17.4]. For computing numerically the coefficients ψm(t) given
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by (6a), we apply the following approximation

ψm(t) =
∫

Rd
ψ(x, t) Hm(x) dx ≈

∑
M

k

ωk e |ξk|
2

ψ(ξk, t) Hm(ξk) (8)

with ξk = (ξk1 , . . . , ξkd
) and ωk = ωk1 · . . . · ωkd

; here, ξkj
and ωkj

denote
the nodes and weights of the Gauss–Hermite quadrature formula relative to
wj(xj) = e− (γjxj)2 .

3.2 Fourier pseudospectral method

In order to apply Fourier techniques for the spatial discretisation of (2), we
restrict the unbounded domain to a bounded set Ωd; for simplicity, we assume
Ω = [− a, a ] to be a symmetric interval with a > 0 chosen sufficiently large.
For the remainder of this section, we denote bym ∈ Zd a multi-index of integer
numbers; the Lebesgue space L2(Ωd) is endowed with the scalar product

(f | g)L2 =
∫

Ωd
f(x) g(x) dx , f, g ∈ L2(Ωd) ,

and corresponding norm. In contrast to (5b), we now employ the eigenvalue
decomposition

− 1
2

∆ Fm = λm Fm

involving the Fourier basis functions (Fm) and associated eigenvalues (λm)
that are given by

Fm(x) =
d∏
j=1

Fmj
(xj) , Fmj

(x) = 1√
2a

e imjπ( 1
a
x+1), λm = 1

2 a2 π
2

d∑
j=1

m2
j ;

in particular, it holds (Fk |Fm)L2 = δkm. Therefore, similarly to (6a), the
representation

ψ(·, t) =
∑
m

ψm(t) Fm , ψm(t) =
(
ψ(·, t)

∣∣∣Fm

)
L2
, (9)

follows for elements in L2(Ωd); as before, the coefficients (ψm(t)) satisfy (6b).
For some integer M1 ≥ 0 we henceforth set M = 2M1. Truncating the infinite
sum in (9) yields

ψM(·, t) =
∑

M
m

ψm(t) Fm =
∑

−M1≤m≤M1− 1

ψm(t) Fm ; (10)

the coefficient vector ψ(t) = (ψm(t))−M1≤m≤M1− 1 fulfills relation (7b). Results
on the favourable approximation behaviour of the Fourier spectral method are
found in Boyd [7, Ch. 2]. For computing numerically the coefficients ψm(t)
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given by (9), we apply the trapezoidal rule

ψm(t) =
∫

Ωd
ψ(x, t) Fm(x) dx ≈ ω

∑
M

k

ψ(ξk, t) Fm(ξk) ; (11)

here, we set ξk = (ξk1 , . . . , ξkd
) with equidistant grid points ξkj

= 1
M1

a kj and
further ω = ( 1

M1
a)d.

4 Time-splitting methods

In this section, we introduce exponential operator splitting methods for the
time integration of evolutionary nonlinear Schrödinger equations such as (2).
For a detailed treatment of splitting and composition methods for ordinary
differential equations, we refer to [13,20]. In particular for the GPE, the
favourable behaviour of a second-order Strang type splitting and a fourth-
order splitting scheme regarding accuracy, efficiency, and the preservation of
geometric properties is confirmed by numerical experiments given in [2,3]; a
convergence analysis for Strang type splitting methods is provided by Caliari
et al. [8], see also Lubich [18].

In order to state the considered numerical method class, it is convenient to
formulate the partial differential equation (2a) as an abstract ordinary differ-
ential equation; more precisely, suppressing the spatial variable in the equation
and setting u(t) = ψ(·, t), we obtain an initial value problem of the form

u′(t) =
(
A+B

(
u(t)

))
u(t) , t ≥ 0 , u(0) given . (12)

Exponential operator splitting methods rely on a decomposition of the right-
hand side of the differential equation into two parts in such a way that the
resulting differential equations

v′(t) = Av(t) , t ≥ 0 , v(0) given , (13a)

w′(t) = B
(
w(t)

)
w(t) , t ≥ 0 , w(0) given , (13b)

are solvable in a favourable way. Regarding the Hermite and Fourier pseu-
dospectral methods, we distinguish the following approaches

Hermite : A = 1
2
i
(
∆− VH

)
, B

(
u(t)

)
= − i

(
V − VH + ϑ

∣∣∣u(t)
∣∣∣2) ,

Fourier : A = 1
2
i∆ , B

(
u(t)

)
= − i

(
V + ϑ

∣∣∣u(t)
∣∣∣2) ,

see also (2).
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On the one hand, the solution of the initial value problem (13a) equals

v(t) = etA v(0) , t ≥ 0 . (14a)

The evaluation of v relies on the representation of the initial value with respect
to the Hermite and Fourier basis functions, see Section 3; more precisely,
provided that v(0) can be decomposed into the basis functions (Bm), where
Bm = Hm or Bm = Fm, respectively, the exact solution value at time t ≥ 0
is given by

v(t) =
∑
m

vm e− i t λm Bm , t ≥ 0 , v(0) =
∑
m

vm Bm . (14b)

For the numerical evaluation of v(t), we collocate (13a) at the nodes (ξk)
and approximate the coefficients (vm) by means of the Gauss–Hermite and
the trapezoid quadrature formula, respectively, see (8) and (11). Clearly, the
numerical approximation to v(t) can be evaluated at any x; however, much
less computational effort is required if v(t) is evaluated numerically at the
quadrature nodes. In fact, for the Hermite pseudospectral method the val-
ues Hm(ξk) can be stored; for the Fourier pseudospectral method the Fast
Fourier Transform is applicable. On the other hand, regarding the initial value
problem (13b), the exact solution is available; namely, due to the fact that the
differential equation for w leaves |w(t)| invariant, it follows B(w(t)) = B(w(0))
and thus

w(t) = etB(w(0))w(0) , t ≥ 0 , (14c)

see also Caliari et al. [8]. In the numerical computation, we again collocate
the equation at the quadrature nodes (ξk); then, the approximate solution is
obtained by a rapid componentwise multiplication.

The basic idea of exponential operator splitting methods is to compose the
solutions of (13) in a suitable way. A widely used scheme is based on the
second-order Strang [23] or symmetric Trotter [29] splitting; for a step size
h > 0 and an initial value u0 ≈ u(0), approximations un to the exact solution
values u(nh), n ≥ 0, are given by the recurrence formula

un = e
1
2
hB(Un) Un , Un = ehA e

1
2
hB(un−1) un−1 , or (15a)

un = e
1
2
hA e

1
2
hB(Un) Un , Un = e

1
2
hA un−1 , (15b)

respectively. We note that for the Fourier spectral method the solution (14a)
satisfies the periodic boundary conditions imposed implicitly by the spectral
approximation; therefore, this is also true for the auxiliary stage Un and the
numerical solution value un in (15b).

Higher-order exponential operator splitting methods for (12) can be cast into
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the following form

un = e bshB(Un,s) Un,s ,

Un,1 = ea1hA un−1 , Un,j = eajhA e bj−1hB(Un,j−1) Un,j−1 , 2 ≤ j ≤ s ,
(16)

with real coefficients aj, bj ∈ R, 1 ≤ j ≤ s. Example methods of orders two,
four, and six were proposed in [6,17,19,24,30]. As shown in Thalhammer [28],
any splitting method retains its classical convergence order for time-dependent
linear Schrödinger equations, provided that the initial value and the potential
fulfill suitable regularity requirements. The numerical experiments presented
in Section 5.2 and the theoretical analysis for the second-order Strang type
splitting (15) given in [8,18] indicate that this result is also true for nonlinear
Schrödinger equations with sufficiently regular solutions; however, extending
the convergence analysis to general exponential operator splitting methods is
out of the scope of the present work.

We finally note that the total particle number (3a) is preserved by exponential
operator splitting methods (16) applied to the GPE (2) ; this follows from the
conservation of the L2-norm when solving the differential equations in (13).

5 Numerical experiments

In this section, we present several numerical experiments comparing time-
splitting spectral methods when applied to the two-dimensional GPE (2) in-
volving a harmonic potential. Our experiments mainly rely on the computation
of the ground state and its propagation, see Caliari et al. [9]. Consequently,
making use of the fact that the solutions are even functions, it would be pos-
sible to reduce the number of required basis functions for the Hermite and
Fourier spectral methods; however, in our presentation, we did not take into
account this reduction. For the Fourier spectral method, we henceforth set
Ω = [−15, 15].

The numerical experiments were implemented in MATLAB; the code is avail-
able from the authors on request. In the Hermite case, we compute and store
once and for all the values Hm(ξk); in two space dimensions, it is then possi-
ble to evaluate each of the double sums in (7a) and (8) by two matrix–matrix
multiplications at a cost of O(M3). For the Fourier transforms (10) and (11)
the MATLAB–functions ifft2 and fft2 of cost O(M2 logM) are used. The
long-term computations were carried out on the Opteron cluster1 of the High
Performance Computing Consortium at the University of Innsbruck.

1 See http://unix-docu.uibk.ac.at/zid/systeme/unix-hosts/hc-cluster/ for
further details.
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Fig. 1. Spatial error of the Hermite (left picture) and Fourier (right picture) spectral
method.

5.1 Spatial error

In order to illustrate the accuracy of the Hermite and Fourier spectral meth-
ods, we use the ground state solution of the two-dimensional GPE (2) com-
puted with 256 × 256 degrees of freedom as reference solution ψ, see (4a);
we choose V (x) = VH(x) = 1

2
(x2

1 + x2
2). For the Hermite spectral method,

we evaluate ψ(x, 0) at the Gauss–Hermite quadrature points corresponding to
M = 2i, 4 ≤ i ≤ 8. We then compute an approximation ψ̃M(x, 0) to ψM(x, 0)
by means of (7a), where the spectral coefficients are obtained from (8). Fi-
nally, the difference ‖ψ̃M(·, 0) − ψ(·, 0)‖L2 is computed through (7b). The
same approach is employed for the Fourier spectral method. First, the ref-
erence solution ψ(x, 0) is evaluated at 256× 256 equidistant grid points in the
square [−15, 15]× [−15, 15]; then, an approximation corresponding toM = 2i,
4 ≤ i ≤ 8, is determined by (10) and (11), and, finally, the error is computed
through (7b).

The results displayed in Figure 1 show that for M ≤ 128 and ϑ ≤ 100 the
Hermite spectral error is smaller than the Fourier spectral error. Further, for
the Hermite spectral method it is possible to retain the original solution only
up to a Hermite transform error of about 10−14, even using the same degree
of freedom 256×256, whereas the Fourier transform error is of the magnitude
of the machine precision.

The Gauss–Hermite quadrature nodes and weights are obtained as solutions
of an eigenvalue problem, see Gautschi [14,15] and references therein; fur-
thermore, the Hermite functions are computed through a recurrence relation.
Numerical experiments showed that it would be possible to reduce the Hermite
transform error by using variable precision arithmetic for the computation of
the quadrature nodes and weights; however, due to the additional computa-
tional effort required, we did not further exploit this approach.
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Fig. 2. Computation time of the Hermite and Fourier spectral methods in one (left
picture) and two (right picture) space dimensions.

We finally note that the artificial boundary conditions introduced by the
Fourier spectral method seem to have no effect on the approximation of the
ground state.

5.2 Temporal order

We next determine the convergence orders of various exponential operator
splitting methods [6,17,19,23,24,29,30] when applied to the two-dimensional
GPE (2) with harmonic potential V (x) = VH(x).

To this purpose, we consider the time evolution of the ground state ψ(x, 0) up
to a final time T = 1, see also (4a). First of all, we verified the reliability of
our code comparing the two numerical reference solutions obtained for 128×
128 Hermite and Fourier basis functions, respectively, and the time step size
h = 2−11 with the exact solution given by ψ(x, T ) = e− iµT ψ(x, 0). We then
computed the temporal convergence orders in a standard way for different
time step sizes ranging from 2−9 to 1. An accuracy comparison of different
time-splitting spectral methods with respect to a common reference solution
will be given in Section 5.3.

The results obtained for ϑ = 1 and ϑ = 100, respectively, are displayed in
Figures 3 and 4; the slope of the dashed-dotted line reflects the expected clas-
sical order. We refer to the fourth- and sixth-order splitting schemes by the
initials of the authors and their orders of convergence. In particular, the parti-
tioned Runge–Kutta methods PRKS6 and PRKS10 as well as the Runge–Kutta–
Nyström methods SRKNb6, SRKNb11, and SRKNa14 by Blanes and Moan [6,
Table 2 and 3] are denoted by BM4-1, BM6-1 and BM4-2, BM6-2, BM6-3, re-
spectively; we note that the schemes SRKNb6 (BM4-2) and SRKNa14 (BM6-3)
are claimed to be favourable in view of their small error constants.
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Fig. 3. Temporal orders of various time-splitting Hermite (first row) and Fourier
(second row) spectral methods when applied to the two-dimensional GPE (2) with
ϑ = 1.

10
−3

10
−2

10
−1

10
0

10
−10

10
−5

10
0

step size

er
ro

r

 

 

Strang
McLachlan

10
−3

10
−2

10
−1

10
0

10
−10

10
−5

10
0

step size

er
ro

r

 

 
Y
S
M
BM4−1
BM4−2

10
−3

10
−2

10
−1

10
0

10
−10

10
−5

10
0

step size

er
ro

r

 

 
Y
KL
S
BM6−1
BM6−2
BM6−3

10
−3

10
−2

10
−1

10
0

10
−10

10
−5

10
0

step size

er
ro

r

 

 

Strang
McLachlan

10
−3

10
−2

10
−1

10
0

10
−10

10
−5

10
0

step size

er
ro

r

 

 
Y
S
M
BM4−1
BM4−2

10
−3

10
−2

10
−1

10
0

10
−10

10
−5

10
0

step size

er
ro

r

 

 
Y
KL
S
BM6−1
BM6−2
BM6−3

Fig. 4. Temporal orders of various time-splitting Hermite (first row) and Fourier
(second row) spectral methods when applied to the two-dimensional GPE (2) with
ϑ = 100.

The Hermite and Fourier space discretisations show a similar behaviour. As
expected, for ϑ = 1 the temporal convergence order is clearly obtained for each
splitting method. As soon as the nonlinear part increases, i.e. for ϑ = 100, the
error increases; furthermore deflections in the temporal order might occur for
larger time step sizes.
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Fig. 5. Efficiency of various time-splitting Hermite (first row) and Fourier (second
row) spectral methods when applied to the two-dimensional GPE (2) with ϑ = 1.
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Fig. 6. Efficiency of various time-splitting Hermite (first row) and Fourier (second
row) spectral methods when applied to the two-dimensional GPE (2) with ϑ = 100.

In order to illustrate the efficiency of the considered splitting methods, we
further include the temporal error versus the total number of the spectral
transformations reflecting the principal computational cost in the time in-
tegration, see Figures 5 and 6; the displayed results confirm the favourable
behaviour of the schemes BM4-2 and BM6-3. Although the cost of the Fast
Fourier Transform in two space dimensions is O(M2 logM) compared with a
cost of O(M3) for the Hermite transform, in the present situation, for values
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Fig. 7. Numerical solution ψ(x1, 0, t) of the GPE (“breathing”) for ϑ = 1 up to a
final time T = 13. Slice along x2 = 0.

M ≤ 128, the latter turns out to be comparable or even faster; this behaviour
is well-known, see Boyd [7, Ch. 10] and also observed in Figure 2 (right pic-
ture), where the mean computational cost of a single spectral transform in
two space dimensions is given.

5.3 Long-term integration

In order to illustrate the effectiveness of higher-order time-splitting Fourier
and Hermite spectral methods in long-term integrations, we consider the two-
dimensional time-dependent GPE (2) with harmonic potential V (x) = 2VH(x)
and ϑ = 1 on the time interval [0, T ] where T = 400; as initial value we
choose the ground state of the GPE with harmonic potential V (x) = VH(x) at
t = 0. Following Dion and Cancès [12] we call this experiment breathing ;
for 0 ≤ t ≤ 13 the solution is displayed in Figure 7.

Among the previously considered time-splitting methods, we select the widely
used Strang splitting as well as the methods SRKNb6 (BM4-2) and SRKNa14

(BM6-3) by Blanes and Moan [6]. A reference solution is computed by
means of scheme SRKNa14 with 128 × 128 degrees of freedom and a temporal
step size corresponding to N = 217 time steps. For different combinations of
degrees of freedom and temporal step sizes, constrained to be equal to powers
of two, we compute the global error in the L2-norm and the total number of
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tol. method d.o.f. #transf. ∆pn ∆E

< 10−2 Hermite 2 32× 32 16384 2.6 · 10−11 4.2 · 10−6

< 10−2 Fourier 2 64× 64 32768 3.6 · 10−13 1.6 · 10−6

< 10−2 Hermite 4 32× 32 6144 9.7 · 10−12 1.1 · 10−5

< 10−2 Fourier 4 64× 64 12288 1.7 · 10−13 9.1 · 10−7

< 10−2 Hermite 6 32× 32 14337 2.3 · 10−11 3.2 · 10−8

< 10−2 Fourier 6 64× 64 7169 1.1 · 10−13 6.8 · 10−6

< 10−2 Hermite rk4 32× 32 65532 2.1 · 10−5 1.2 · 10−4

< 10−2 Fourier rk4 64× 64 524284 6.4 · 10−10 3.7 · 10−9

< 10−2 Hermite ode45 32× 32 208376 2.6 · 10−8 1.5 · 10−7

< 10−2 Fourier ode45 64× 64 1132436 5.6 · 10−12 3.1 · 10−11

< 10−4 Hermite 4 32× 32 12288 1.9 · 10−11 2.6 · 10−9

< 10−4 Fourier 4 128× 128 12288 1.6 · 10−12 1.8 · 10−9

< 10−4 Hermite 6 32× 32 14337 2.3 · 10−11 3.2 · 10−8

< 10−4 Fourier 6 128× 128 14337 2.0 · 10−12 2.5 · 10−8

< 10−4 Hermite rk4 32× 32 131068 6.5 · 10−7 3.8 · 10−6

< 10−4 Fourier rk4 128× 128 524284 6.4 · 10−10 3.7 · 10−9

< 10−4 Hermite ode45 32× 32 208376 2.6 · 10−8 1.5 · 10−7

< 10−4 Fourier ode45 128× 128 1411226 1.3 · 10−9 9.4 · 10−7

< 10−6 Hermite 4 64× 64 24576 1.0 · 10−10 1.1 · 10−10

< 10−6 Fourier 4 128× 128 49152 6.7 · 10−12 1.2 · 10−11

< 10−6 Hermite 6 64× 64 28673 1.2 · 10−8 2.1 · 10−10

< 10−6 Fourier 6 128× 128 28673 4.2 · 10−12 8.7 · 10−12

< 10−6 Hermite rk4 64× 64 524284 6.4 · 10−10 3.7 · 10−9

< 10−6 Fourier rk4 128× 128 524284 6.4 · 10−10 3.7 · 10−9

< 10−6 Hermite ode45 64× 64 509816 3.6 · 10−10 2.1 · 10−9

< 10−6 Fourier ode45 128× 128 1411448 2.2 · 10−12 1.1 · 10−11

Table 1
Time integration of the GPE (“breathing”) with ϑ = 1 up to T = 400. For a tolerance
(tol.), the degree of freedom (d.o.f.), the number of transformations (#transf.), the
particle number conservation error (∆pn = |‖ψ(·, 0)‖2L2 − ‖ψ(·, T )‖2L2 |), and the
energy conservation error (∆E = |E(ψ(·, 0))− E(ψ(·, T ))|) are reported.

spectral transformations; further, we measure the particle number (3a) and
energy (3b) conservation with respect to the initial values. For certain toler-
ances, the optimal performances corresponding to the smallest values of the
required degrees of freedom and the number of spectral transformations are
displayed in Table 1.

In the present situation, for any time integration method, the number of basis
functions required for the Hermite spectral method is always smaller than the
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number of basis functions required for the Fourier spectral method; moreover,
in many cases, the number of Hermite spectral transformations is smaller
than the number of Fourier spectral transformations. This observation is in
accordance with Figures 3 and 5 showing that the Hermite spectral method is
slightly more accurate. Comparing the time-splitting methods, the fourth and
sixth-order schemes, which behave in a similar manner, require less spectral
transformations than the second-order Strang splitting and thus are more
efficient; moreover, for the Strang splitting, it was not possible to reach a
tolerance smaller than 10−4 within the maximal number of 215 timesteps. For
each time-splitting spectral method, the particle number and the energy are
well preserved.

We also performed this long-term integration using two standard explicit
methods; we chose a constant step size Runge–Kutta method of order four, see
also Dion and Cancès [12], and further the adaptive Runge–Kutta method
by Dormand and Prince implemented in the MATLAB-routine ode45. As
the stiffness of the problem restricts the maximal temporal step size, the time-
splitting methods outperform the explicit Runge–Kutta methods.

For larger values of ϑ, additional experiments not reported here showed that
the Fourier spectral method becomes favourable; moreover, smaller time step
sizes are required in order to reach the prescribed tolerances, see also Sec-
tion 5.1. The influence of ϑ on the convergence behaviour of time-splitting
spectral methods should be investigated further.

6 Conclusions and future work

We devoted the present paper to high-accuracy discretisations of the time-
dependent GPE (2), based on Hermite and Fourier pseudospectral methods
and exponential operator splitting methods. In particular, we presented nu-
merical comparisons regarding accuracy and efficiency. In most of our experi-
ments, we used the ground state solution of (2) as a reliable reference solution.

As expected, our numerical experiments showed that the spectral methods
perform well regarding accuracy, efficiency, and preservation of geometric
properties. For the time integration, we compared the second order Strang
splitting with fourth and sixth-order splitting methods given in Blanes and
Moan [6]; the higher-order schemes proved to be superiour when low toler-
ances are required or a long-term integration is carried out. Furthermore, each
time-splitting method outperformed the explicit Runge–Kutta methods in the
“breathing” experiment.

Following [18,28], it remains open to provide a stability and convergence anal-
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ysis for high-order exponential operator splitting methods when applied to
the time-dependent GPE (2). Furthermore, it is of interest to investigate the
accuracy of time-splitting methods when the nonlinear part increases.
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