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Abstrat

We study the Shrödinger equation whih omes from the paraxial approximation of the

Helmholtz equation in the ase where the diretion of propagation is tilted with respet to

the boundary of the domain. In a �rst part, a mathematial analysis is made whih leads to

an analytial formula of the solution in the simple ase where the refration index and the

absorption oe�ients are onstant. Afterwards, we propose a numerial method for solving the

initial problem whih uses the previous analytial expression. Numerial results are presented.

We also sketh an extension to a time dependant model whih is relevant for laser plasma

interation.

1 Introdution

For the simulation of the propagation of a monohromati laser beam in a medium where the

loal refrative index is nearby a onstant, it is lassial to use the paraxial approximation of the

Maxwell equations. This approximation takes into aount di�ration and refration phenomena ;

it is intensively used for deades in optis and in a lot of models related to laser-plasma interation

in Inertial Con�nement Fusion experiments (f [4℄,[10℄, [21℄, [14℄ and the bibliography of these

referenes). Let us �rst reall brie�y the outlines of this approximation. Denote by 2πǫ the laser
wave-length, it is in the order of 1 µm and is very small ompared to the harateristi length of

the simulation domain (whih is in the order of some mm for the Inertial Con�nement plasmas).

Aording to laws of optis, the laser eletromagneti �eld may be modeled by the solution ψ of the

following Helmholtz equation (whih omes from the time envelope of the full Maxwell equations):

ǫ2∆ψ + ψ + 2iǫνtψ = 0, (1)

where we have denoted:

νt(x) = ν(x) + iµ(x),
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so νt is a omplex funtion, its real part ν orresponds to a onveniently saled absorption oe�ient
and its imaginary part µ to the variation of the refrative index (1 − 2ǫµ is equal to the square of

the refrative index n up to a multipliative onstant).

We assume also that the light propagates aording a �xed diretion de�ned by the unit vetor

k. After making the lassial WKB expansion:

ψ = u exp(
ik.x

ǫ
), (2)

equation (1) may read as 2iνtu + 2ik.∇u + ǫ∆⊥u = ǫ(k.∇)2u, where ∆⊥ is the Laplae operator

with respet to the transverse variable:

∆⊥• = ∇.[(1− k⊗ k)∇•], 1 being the unit diagonal tensor.

Assuming that u is slowly varying with respet to the longitudinal variable, we an neglet the right

hand side of the previous equation. Therefore u satis�es the lassial paraxial equation for wave

propagation:

ik.∇u+
ǫ

2
∆⊥u+ iνtu = 0, with νt = ν + iµ. (3)

For this kind of model, it is usual to handle a simulation box whih is a parallelepiped and

the laser beam is assumed to enter into the simulation box on a plane boundary denoted by Γ0.
Let us denote n the outward normal vetor to the inoming boundary Γ0. Classially, the ruial
assumption is that the laser beam enters into the simulation domain with a very small inidene

angle, that is to say the vetor k is almost equal to −n. Then, in suh a framework, (3) is a lassial

linear Shrödinger equation, the operator k.∇ plays the part of time derivative and the boundary

ondition on Γ0 whih reads u = uin (where uin is a given funtion de�ned on Γ0) plays the part of

the initial ondition. On the other hand, arti�ial absorbing boundary onditions are to be imposed

on the faes of the simulation domain parallel to the vetor k, (see for example [1℄, [7℄, [15℄). The
numerial methods are always implemented on an orthogonal mesh and are based on a splitting

with respet to the main spatial variable between the di�ration part ( ǫ2∆⊥u) and refration part

(iνtu), see [4℄, [3℄, [10℄ for example.
We address in this paper a di�erent ase where the inidene angle of k with −n is large; these

simulations are alled tilted frame simulations. This kind of simulations is of partiular interest

if one has to deal with the rossing between two beams (in the high energy laser devies, a large

number of beams are foused on the target, therefore beam rossing may be taken into aount, see

[8℄ for a survey on related laser propagation problems); an example of suh simulations in a very

simpli�ed ase may be found on Figure 13. This tilted frame model has been onsidered some years

ago by physiists for dealing with beam rossing problems (see [20℄).

Simulations in a tilted frame are also neessary for dealing with speial situations. For instane

for the propagation of a beam in a domain where the pro�le of the refrative index n is suh that

n2(x) = n20(1 − εµ(x)) (with n0 onstant smaller than 1) in a �rst subdomain D and n2(x) =
N (x.n∗) + δN (x) (where N ∈ [0, n0] depends on a one-dimension variable x.n∗

and δN is small

with respet to 1) in a seond juxtaposed subdomain DH
, one must handle the paraxial equation

(3) in subdomain D and the Helmholtz equation (1) in subdomain DH
. For the numerial solution

of (1), one has to solve a huge linear system (orresponding to the disretization of the equation

on a very �ne grid) and for handling this huge linear system, it is neessary that the variable x.n∗

orresponds to one of the main diretion of DH
. Therefore the full simulation on (D ∪ DH) has to
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be performed in a box suh that the orresponding normal vetor n must be parallel to n∗
(see [6℄

for details for this kind of simulations).

In the ase of a large inidene angle, the rude expansion ψ = U exp(−in.x/ǫ) leads to dif-

�ulties and to overome these di�ulties, it has been proposed in [13℄ to replae the transverse

Laplaian by a pseudodi�erential operator, but with this approximation, U is not slowly varying

with respet to the spatial oordinates therefore it is neessary to handle very �ne mesh -at least

10 ells per wave length- to get aurate results. One an also refer to the works in the spirit of [16℄

in the aousti framework but the appliation to the optis problems seems to be di�ult.

Here we onsider the expansion ψ = u exp(ik.x/ǫ), with u slowly varying with respet to k.x, so
we have to deal with the tilted frame Laplae operator ∆⊥ and one has to supplement the equation

(3) with a right inoming boundary ondition on Γ0. For the statement of this boundary ondition,

one assumes that a �xed plane wave ψin = uin exp(ik.x/ǫ) enters into the domain where uin is

a given funtion of the variable whih is orthogonal to k. Now, for the Helmholtz problem, the

boundary ondition is lassial and may be written as (ǫn.∇+ ik.n)(ψ−uineik.x/ǫ) = 0, then using

(2) and an asymptoti expansion with respet to the small parameter ǫ, the orresponding boundary
ondition for equation (3) may read in a natural way as:

(ǫn.∇⊥ + 2ik.n)(u − uin) = 0, (4)

where ∇⊥ = ∇− k(k.∇) denotes the gradient orthogonal to k. See [9℄ for a justi�ation of the

paraxial approximation in the speial ase we are dealing with.

If one sets x = (x, y, z) in 3D and x = (x, y) in 2D, the entrane boundary Γ0 orresponds in

this paper to x = 0. In the sequel we onsider a 2D problem but most of the ideas of this work may

be extended to the 3D ase.

Equation (3) may be reast as:

i(kx∂xu+ ky∂yu) +
ǫ

2
∆⊥u+ iνtu = 0,

and up to our knowledge, the numerial solution of this kind of equations is novel; the main di�ulty

is to handle orretly the tilted Laplae operator ∆⊥u. For the mathematial analysis of the

problem, one key result is the following (f. proposition 2). On the half-spae {(x, y) s.t. x ≥ 0},
if the oe�ient νt is a positive real onstant, after taking the Fourier transform with respet to

the y variable, the problem (3)(4) is equivalent to an ordinary di�erential equation with respet to

the x variable and it is possible to exhibit an analytial solution. This analytial formula is the

onvenient tool for numerial treatment of the di�ration part of (3) in the general ase where νt is
not onstant.

The paper is organized as follows. In Setion 2, after setting lassial energy estimates for

Problem (3) supplemented by (4), we prove the above mentioned theoretial result.

Setion 3 is devoted to the desription of the numerial sheme for solving Problem (3)(4) ; it is

based on a splitting method with respet to the spatial variable x using fast Fourier transforms on

a �rst step (for the di�ration part) and a standard �nite di�erene method on a seond step (for

the advetion and refration part).

In Setion 4, we give the numerial results on the initial problem and for a model where the

oe�ient µ in (3) is replaed by f(|u|) orresponding to the autofousing whih ours in the

laser-plasma interation (see [19℄ for instane). From a physial point of view, this term represents

a variation of the plasma eletroni density aused by the ponderomotrie fore of the laser. In

the last setion we onsider a more general model where the stationary problem (3) is replaed by

a time dependent one whih is oupled to a hydrodynami system for a suitable modeling of the

plasma behavior.
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2 Analysis of the Tilted Paraxial Equation

For reasons whih will appear in the sequel, we assume in this setion that

infxν(x) > 0. (5)

We �rst study the problem where the simulation domain is the half-spae:

D =
{

x = (x, y) s.t. x > 0
}

, Γ0 =
{

x = (0, y)
}

.

Assuming that µ is a bounded funtion, we onsider the following problem:

ik · ∇u+
ǫ

2
∆⊥u− µu+ iνu = 0 on D, (6)

(iǫn.∇⊥ − 2k.n)(u − uin) = 0 on Γ0. (7)

2.1 Energy Estimate

Let us �rst state the following lassial estimate.

Proposition 1 Let (iǫn.∇⊥ − 2k.n)uin ∈ L2(R). If u ∈ H1(D) is a solution to Problem (6) (7),

it is unique. Moreover, we have the following stability estimate, with a onstant C independent of

ν, µ:
∫∫

D

2ν|u|2 +
∫

Γ0

|k · n||u|2dy ≤ C

∫

Γ0

|(iǫn.∇⊥ − 2k.n)uin|2dy.

Proof. Let us denote D = n.∇⊥. Doing the salar produt of Equation (3) with u and taking

its imaginary part, we get:

∫

Γ0

(

|u|2k · n+
ǫ

2i
(ūDu− uDū)

)

dy +

∫∫

D

2ν|u|2dx = 0.

Aording to the boundary ondition (7) we hek that:

ǫ

2i
(ūDu− uDū) = −2k · n|u|2 + Im

(

ū(ǫD + 2ik · n)uin
)

.

Then we get:

∫∫

D

2ν|u|2dx+

∫

Γ0

|k.n||u|2dy = −Im
(

∫

Γ0

ū(ǫD + 2ik.n)uindy
)

. (8)

Aording to (8), if (iǫD − 2k · n)uin = 0, we see that
∫∫

D
2ν|u|2dx = 0, so u = 0. Therefore we get

the uniqueness of the solution of Problem (6)(7).

To obtain the stability inequality, we �rst see that Equation (8) implies:

|k · n|
∫

Γ0

|u|2 ≤
√

√

√

√

∫

Γ0

|u|2
√

√

√

√

∫

Γ0

|(ǫD + 2ik · n)uin|2.
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Using this estimate, Equation (8) leads to:

∫∫

D

2ν|u|2dx+

∫

Γ0

|k · n||u|2 ≤
√

√

√

√

∫

Γ0

|u|2
√

√

√

√

∫

Γ0

|(ǫD + 2ik · n)uin|2 ≤ 1

|k · n|

∫

Γ0

|(ǫD + 2ik · n)uin|2.

♦
By the same tehnique we get also the following estimate:

∫∫

D

2ν|u|2 +
∫

Γ0

|k.n|
2

|(iǫD + 2k.n)u

2|k.n| |2 =
∫

Γ0

|k.n|
(

|u|2 + 1

2
|(iǫD − 2k.n)uin

2|k.n| |2
)

,

whih says that the absorbing energy plus the the outgoing energy is equal to the inoming energy.

2.2 Analytial Form of the Solution in the Case νt Constant

We now assume that µ = 0 and ν is onstant for getting an analytial form of the solution to

Problem (3)(4). We denote k = (kx, ky) and g the funtion de�ned by:

2kxg = iǫky(kx∂y − ky∂x)u
in + 2kxu

in. (9)

The problem may read as:

i(kx∂x + ky∂y)u+
ǫ

2
(k2x∂

2
yy − 2kxky∂

2
xy + k2y∂

2
xx)u+ iνu = 0, on D, (10)

iǫky(kx∂y − ky∂x)u+ 2kxu = 2kxg, onΓ0. (11)

In the sequel, the Fourier variables related to x and y respetively are ξ and η. The Fourier transform
in x and y are denoted by Fx(•) and Fy(•), moreover Fy(u;x, .) denotes the Fourier transform of

u(x, .).
Here and in the sequel,

√
denotes the prinipal determination of the square root (its real part

is positive). Denote:

R−(iη) = i
kxη

ky
− i

kx
ǫk2y

(1−
√

1− 2
ǫkyη

k2x
+ 2iν

ǫk2y
k2x

).

Sine ν > 0, one an de�ne R− without ambiguity and one heks that Re(R−(iη)) < 0 for all η.
Let S ′(R) be the spae of tempered distributions.

Proposition 2 Assume that g ∈ S ′(R), then there exists a unique distribution u(x, .) ontinuous
from R+

into S ′
y(R), solution to Problem (10)(11). It is given by:

Fy(u;x, η) =
2Fy(g; η)

1 +

√

1− 2
ǫkyη
k2x

+ 2iν
ǫk2y
k2x

eR−(iη)x. (12)

It satis�es also:

(

∂x −R−(iη)

)

Fy(u;x, η) = 0.
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Proof.

The priniple is to take the Fourier transform in y of the problem, and afterwards we shall

onsider Fourier transform in x of the equation extended to the whole spae.

Let u be a solution of Problem (10)(11) and v the extension of u by zero in the whole spae:

v(x, y) = u(x, y)1x≥0. By introduing formally the funtion v in Equation (10) we get:

ik · ∇v + ǫ

2
∆⊥v + iνv =

(

(

ikx −
ǫky
2

(2kx∂y − ky∂x)
)

u(0, y)

)

δx=0 +
ǫk2y
2
u(0, y)δ

′

x=0.

The term ∂xu(0, y) is de�ned by the entrane boundary ondition (11), so we get:

ik · ∇v + ǫ

2
∆⊥v + iνv = ikxg(y)δx=0 −

ǫky
2

(

kx∂yu(0, y)δx=0 − kyu(0, y)δ
′

x=0

)

.

Assuming that u ∈ C(R+,S ′(R)), we are allowed to take the Fourier transform of this expression.

Let us de�ne P (X,Y ) as the polynomial whih haraterizes the di�erential operator of the equation,
that is to say:

P (∂x, ∂y) = i(kx∂x + ky∂y) +
ǫ

2
(k2y∂

2
xx − 2kxky∂

2
xy + k2x∂

2
yy) + iν.

Writing u0(y) = u(0, y), the Fourier transform in y of the equation in v reads:

P (∂x, iη)Fy(v;x, η) =
ǫk2y
2

{(

2ikx
ǫk2y

Fy(g; η) − i
kx
ky
ηFy(u0; η)

)

δx=0 +Fy(u0; η)δ
′

x=0

}

.

Polynomial P may be fatorized as:

P (∂x, iη) =
ǫk2y
2

(

∂x −R+(iη)

)(

∂x −R−(iη)

)

, (13)

where we de�ne R±(iη) = ikxky η − i kx
ǫk2y

(

1±
√

1− 2
ǫkyη
k2x

+ 2iν
ǫk2y
k2x

)

. Thus:

(

∂x −R+(iη)

)(

∂x −R−(iη)

)

Fy(v;x, η) =

(

2ikx
ǫk2y

Fy(g; η) − i
kx
ky
ηFy(u0; η)

)

δx=0 + Fy(u0; η)δ
′

x=0. (14)

We now show that there is a unique aeptable solution for this ordinary di�erential equation. Let

us take its Fourier transform in x:
(

iξ −R+(iη)

)(

iξ −R−(iη)

)

FxFy(v; ξ, η) =
2ikx
ǫk2y

Fy(g; η) − i(
kx
ky
η − ξ)Fy(u0; η).

Sine Re
(

iξ −R±(iη)
)

6= 0, we an divide eah side of this equation by

2
ǫk2y
P (iξ, iη) :

FxFy(v; ξ, η) =
α+(η)

iξ −R+(iη)
+

α−(η)
iξ −R−(iη)

,

where α±(η) = ±
R−(iη)−i kx

ky
η

R+(iη)−R−(iη)Fy(u0; η) ± 2ikx
ǫk2y

1
R+(iη)−R−(iη)Fy(g; η).
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If θ ∈ C\R, one knows that:

1

iξ − θ
=

{

Fx(1x≥0e
θx; ξ) if Re(θ) < 0

−Fx(1x≤0e
θx; ξ) if Re(θ) > 0.

Here Re(R+) = −Re(R−) > 0. Aording to the previous remark, sine v(x, .) = 0 for x negative,

one gets α+(η) = 0 and

Fy(u;x, η) = α−(η)eR−(iη)x
1x≥0,

so we get Fy(u0; η) = −2ikx
ǫk2y

Fy(g;η)

R+(iη)−i kx
ky

η
. Equality (12) and the last assertion follow. ♦

Notie that we an easily alulate, with this formula, the value of the derivative k · ∇u. As

soon as u is regular enough, we an perform an asymptoti expansion in ǫ and ν, and �nd: k ·∇u =
O(ǫ+ ν).

From this result, one dedues the following stability result.

Corollary 1 If g ∈ H− 1
2 (R) then the solution u to Problem (10)(11) is ontinuous from R+

into

L2
y(R), and it satis�es, for some onstant C not depending on the oe�ient ν:

||u||L∞
x (R+,L2

y(R)) ≤ C||g||
H− 1

2 (R)
.

Sine C does not depend on the absorption oe�ient ν, one an hek that if uin is smooth

enough, for x �xed, the funtion u(x, .) onverges strongly to a funtion in L2
y when ν → 0. Therefore,

one may laim that there exists a bounded solution u to Problem (10)(11), even if ν = 0.
Proof.

Let us integrate with respet to η the square modulus of both sides of Equation (12). Sine

|eR−(iη)x| = eRe(R−(iη))x ≤ 1 and:

∫

|Fy(g; η)|2(1 + |η|2)− 1
2dη = ||g||2

H− 1
2 (R)

,

it su�es to show that there exists a onstant C1 > 0, not depending on ν, suh that:

1 + |η|2 ≤ C1

∣

∣

∣

∣

1 +

√

1− 2ǫky
k2x

η + 2iǫν
k2y
k2x

∣

∣

∣

∣

4

∀η ∈ R. (15)

So, if we denote X = 1− 2ǫky
k2x
η and N = 2ǫν

k2y
k2x
, one �rst sees that:

|1 +
√
X + iN |2 = 1 +

√

X2 +N2 + 2(X2 +N2)
1
4 cos(

π

4
− ArgtanX/N

2
) ≥

√

1 +X2

(indeed the osine is nonnegative). With a = k2x
2ǫky

, we have 1 + |η|2 = 1+ a2(1−X)2 and it is easy

to hek that 1 + a2(1−X)2 ≤ C1(1 +X2) for C1 = 2a2 + 1 ; Inequality (15) follows. ♦

Remark: with the same tehniques, one an also �nd existene and uniqueness of a solution in

other spaes, for instane, if

Fy(g;η)

(1+|η|2)1/8 ∈ L2
η(R), we have u ∈ L2(D).

Sine |Fy(g; η)| ≤ C(1 + |η|2)1/2|Fy(u
in; η)|, that means that if uin is smooth enough (in H3/4

for example), the solution u belongs to L2(D).
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2.3 Remark on the Problem on the Quadrant

We now onsider the same problem (10)(11) but restrited to the quadrant {(x, y) s.t. x ≥ 0, y ≥ 0}.
To �nd a good absorbing boundary ondition on the boundary {y = 0}, we formally fatorize the

di�erential operator of Equation (10) as follows:

P (∂x, ∂y) = ǫ
k2x
2

(

∂y −A+(∂x)
)(

∂y −A−(∂x)
)

, (16)

where A+(.) and A−(.) are the roots of P onsidered as polynomials in ∂y :

A±(∂x) =
ky
kx
∂x−i

ky
ǫk2x

(

1±
√

1 +
2iǫkx
k2y

∂x + 2iǫν
k2x
k2y

)

=
ky
kx
∂x−i

ky
ǫk2x

∓ 1

ǫk2x

√

−k2y − 2iǫkx∂x − 2iǫνk2x.

The de�nition of the frational derivative is lassial and is based on Fourier transform. The

quadrant problem that we onsider onsists of Equations (10)(11) supplemented with the following

boundary ondition

∂yu−A+(∂x)(u) = 0, ∀x > 0, for y = 0. (17)

Then, we have the following result, whih is detailed in [9, 5℄ (for related boundary value problems

for lassial Shrödinger equations, see for example [12℄).

Proposition 3 Assume g ∈ H− 1
2 (R+) and its support is in (0,+∞). Let u be the solution of the

half-spae problem (10)(11). There is a unique solution U ontinuous from R+
into L2

y(R
+) of

Problem (10)(11)(17) and it satis�es

i) if ky > 0, then U = u1y≥0,

ii) if ky < 0 and if the inoming data is given by g(y) = h(y − a) with a > 0, then:

lim
a→+∞

||U − u1y≥0||L∞(R+,L2
y(R

+)) = 0.

3 Numerial Sheme

Let us onsider the domain:

D = {(x, y) : 0 ≤ x ≤ Lx, y0 ≤ y ≤ y0 + Ly}.
On this domain, we address the numerial solution of the following equation:

i(kx∂x + ky∂y)u+
ǫ

2
∆⊥u+ iνu− µu = 0, (18)

where ν = ν(x) and µ = µ(x); it is supplemented by the same boundary ondition as before on

{x = 0} :

iǫky(kx∂y − ky∂x)u+ 2kxu = 2kxg,

where g is given by Equation (9). It is the same problem as in Setion 2, exept that the oe�ients

ν and µ may be funtions of x. In the sequel, we onsider alternatively the ase where µ is a funtion

of |u|; as a matter of fat, we an take

µ = f(|u|), where f(w) = e−αw2 − 1,

with α a positive onstant (for a justi�ation of this model, see for example [19℄ [18℄ ).

The interesting problems involve a very small oe�ient ν, and it may be neessary to have α
su�iently small so that there is no blow-up of the solution.
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3.1 Desription of the Sheme

Let us set :

ν = ν0 + ν1 with ν0 = inf ν,

so ν0 is a onstant and ν1 a funtion of x. One disretizes the problem aording to a regular grid,

we denote by δx, δy the spae step in the two diretions and by n and j the indies orresponding
respetively to x and y; then unj ≈ u(nδx, jδy).

The numerial method is based on a spae marhing tehnique aording to the x variable and

a splitting with respet to this variable. Aording to Proposition 2, when the value of un is known,

it would be possible to evaluate a �rst intermediate value uinter by solving on [xn, xn + δx] the
following equation:

(kx∂x + ky∂y)u− i
ǫ

2
∆⊥u+ ν0u = 0.

it would be given by F(uinter) = F(un)eR−(iη)δx
(here we denote F = Fy).

As a matter of fat, in order to have an aurate treatment of the advetion term, we prefer to

perform the following simple splitting : at eah spae step [xn, xn + δx], one solves suesively

kx∂xu− i
ǫ

2
∆⊥u+ ν0u = 0,

kx∂xu+ ky∂yu+ (ν1 + iµ)u = 0.

3.1.1 Initialization

For the initial ondition, reall that

g = iǫ
ky
2kx

(kx∂y − ky∂x)u
in + uin,

where the input data uin = uin|x=0 is a smooth funtion of the transverse variable Y = k⊥ · x =
kxy − kyx whih values zero around the orner points y = y0 and y = y0 + Ly, so one an take its

Fourier transform.

To determine the boundary value u0 of u, we use Formula (12)

F(u0) =
2F(g)

1 +

√

1− 2
ǫkyη
k2x

+ 2iνin
ǫk2y
k2x

. (19)

That is to say, (u0j )j is obtained by taking the FFT (Fast Fourier Transform) of g, dividing this

funtion of η by the funtion 1 +

√

1− 2
ǫkyη
k2x

+ 2iνin
ǫk2y
k2x

and then taking the IFFT (Inverse Fast

Fourier Transform) of the result.

Generally, the input data uin is a sum of Gaussian funtions whose half-height width is in the

order of a harateristi length Ls whih is the typial value of the spekle width (a spekle is a hot

spot inside the laser beam) and Ls is generally larger than 20 times ε. Then one heks that for

values of ǫ/Ls less than 0.1, the term iǫky(kx∂y − ky∂x)u
in
that appears in the previous formula for

g is a orretive term and it is possible to take simply g equal to uin.

9



3.1.2 First stage: Fourier transform

The �rst stage is to solve

kx∂xu− i
ǫ

2
∆⊥u+ ν0u = 0, (20)

and we proeed from un to un#. Pratially, from Proposition 2, we get immediately :

F(un#) = F(un)e(R−(iη)+iη
ky
kx

)δx.

In fat, we have

R−(iη) + iη
ky
kx

= − 2ν0

kx(1 +

√

1− 2
ǫkyη
k2x

+ 2iν0
ǫk2y
k2x

)

− 2iηǫ(η − iν0ky)

k3x(1 +

√

1− 2
ǫkyη
k2x

+ 2iν0
ǫk2y
k2x

)2
. (21)

Notie that this formula may be used even if ν0 is equal to zero, provided that the square root of

the omplex quantity is well de�ned.

So, after a FFT on (un), we multiply it by e(R−(iη)+iη
ky
kx

)δx
and then apply an inverse FFT. We

denote

(

un#j
)

the value of the intermediate funtion, in the ell (n, j).

3.1.3 Seond stage: �nite di�erene sheme

Boundary onditions on the edges {y = 0} and {y = L}
It is well known that for this kind of propagation model, the boundary treatment is sensitive; see

for example [2℄ for the ase of wave equations. In our ase the problem is somehow di�erent sine

there is a privileged diretion of propagation: as we use a FFT tehnique, the key point at eah stage

of the spae marhing sheme is to fore the values of the numerial solution to be negligeable on

both edges. Therefore we use a damping method whih is well known by physiists who address this

kind of problem [15℄. The priniple is to introdue in a strip near eah edge an arti�ial absorbing

oe�ient denoted by B; it dereases progressively on the �rst �ve ells near the edge and is very

large on the edge. More preisely, if νn1,j denotes the value of ν1 in ell (n, j), one replaes νn1,j by
νn1,j +Bj where the arti�ial oe�ient Bj is de�ned by

Bj = bβ5−j
if j ≤ 5

= bβ5−Jmax+j
if Jmax − j ≤ 5

= 0 elsewhere,

(22)

with β typially in the order of 10 to 100. The numerial tests below (with a harateristi value

of b in the order of 0.1 to 1) show that this tehnique leads to get a vanishing value of the solution

on the edges. One heks on Table 3 that the value of the solution (outside the arti�ial absorbing

layers) is almost independant from the hoosen values of b and β. Indeed, near the boundary, the
main step is the advetion one and it is ruial to have a numerial solution whih is negligible near

the boundary ell, in order to avoid a spurious ray to appear on the opposite boundary, due to the

FFT. Notie that, aording to the advetion sheme by spae marhing, the modi�ation in the

arti�ial layer at position xn has no signi�ant impat on the value outside the arti�ial layer at

position xn+1.
First order sheme.
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In this stage, we solve on [xn, xn + δx] the following equation:

kx∂xu+ ky∂yu+ ν1(x
n)u+ iµu = 0. (23)

To do this, we use standard �nite di�erene methods. Assume that ky > 0 (the ase ky < 0 is

similar). We onsider an upwind method, given that the CFL stability riteria θ ≤ 1 must be

heked, where

θ =
ky
kx

δx

δy
.

The initial value is now un#j and we get the �nal value un+1
j by setting

kx
δx

(un+1
j − un#j ) +

ky
δy

(un#j − un#j−1) +

(

νn1,j + iµnj

)

(
un#θj + un+1

j

2

)

+Bju
n+1
j = 0, (24)

where un#θj = θun#j−1 + (1 − θ)un#j . It is the value of the funtion on the harateristi line passing

by (xn+1, yj); for the �rst ell, we set u
n#
−1 = 0.

For the nonlinear model where the term µ is replaed by f(|u|), the oe�ient µnj has to be

replaed by f(|un#θj |) .

Seond order sheme

When θ = 1, the previous sheme gives very aurate results, but in real ases it is not possible

to impose this ondition, one has θ < 1 and results are muh worse (see Table 2). We improve the

numerial sheme when θ < 1 by using a seond order sheme as in all advetion problems. To do

this, we hoose a �ux-limiter method (see [17℄), with the Van Leer funtion as limiter (tests prove

it to be the best one: see Figure 5 and Setion 3.3.1). That is to say, we introdue the funtion φ
whih depends on the ratio λ of the gradient of the funtion u# in two neighboring ells:

φ(λ) =
|λ|+ λ

1 + |λ| . (25)

We have to solve simultaneously two salar equations (one for the real and one for the imaginary

part) with the same �ux limiter, so we have to hoose one single signi�ant quantity to estimate

the �ux limitor: we hoose the energy of the laser, i.e. |u|2, and evaluate φ in terms of |uj |2 and

not of |uj |:

λj =
|u#j |2 − |u#j−1|2

|u#j+1|2 − |u#j |2
.

We now replae, in the �rst order sheme, the term derivative in y, u#j − u#j−1, by Fj −Fj−1 where

the �ux Fj is de�ned as:

Fj = u#j +
1

2
(1− θ)(u#j+1 − u#j )φ(λj).

The seond order sheme is now:

kx
δx

(un+1
j − un#j ) +

ky
δy

(Fn
j − Fn

j−1) +

(

νn1,j + iµnj

)

(
un#θj + un+1

j

2

)

+Bju
n+1
j = 0. (26)
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3.1.4 Numerial method for two-ray model

One may also onsider a more omplex model with two rays rossing eah other, with two di�erent

propagation vetors k1
and k2

(one with positive and one with negative y−omponent: k1y > 0 and
k2y < 0.) To do so, it is neessary to evaluate the nonlinear term f(|u|). Theoretially, the laser

energy is:

|Ψ|2 = |u1eik
1·x
ǫ + u2ei

k
2·x
ǫ | = |u1|2 + |u2|2 + 2Re

(

u1u2∗ei
(k1−k

2)
ǫ

·x).

But we are in the framework of W.K.B. approximation and we do not model the �utuation of the

solution at the wavelength level. Hene, the term f has to be taken on a funtion w orresponding

to the variation of the index of refration, whih is here the average value of |u| over a wavelength:

w =
√

|u1|2 + |u2|2.

One onsiders the following model, for p = 1, 2:

ikp · ∇up + ǫ

2
∆p

⊥ + iνup = f(
√

|u1|2 + |u2|2)up.

The �rst stage of the previous sheme is the same as before : for eah ray, we onsider Equation

(20) with its own propagation diretion k1
or k2

. The interation between the two rays hanges

only the nonlinear term of the seond stage.

3.2 Properties of the sheme

3.2.1 Stability

Let us denote ||vn||2l2 =
∑

j
|vnj |2δy.

Proposition 4 The numerial �rst order sheme is monotone dereasing for the l2-norm, i.e. the

following inequality stands

∀n ∈ N , ||un||l2 ≤ ||un+1||l2 . (27)

Moreover, the previous inequality is strit if ν 6= 0.

Proof.

1. First stage: Fast Fourier Transform

Let us denote by ζ the disrete variable assoiated to η. On the one hand, sine

un# = IFFT

(

e

(

R−(iζ)+iζ
ky
kx

)

δxFFT (un)

)

and sine the FFT onserves the l2-norm, we have:

||un#||l2 = ||e
(

R−(iζ)+iζ
ky
kx

)

δxFFT (un)||l2 .

On the seond hand, the inequality Re
(

R−(iζ)
)

≤ 0 implies that

|e
(

R−(iζ)+iζ
ky
kx

)

δx| ≤ 1,
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with an equality i� ν0 = 0. We dedue that:

||e
(

R−(iζ)+iζ
ky
kx

)

δxU(ζ)||l2 ≤ ||U(ζ)||l2 ,

and onlude:

||un#||l2 ≤ ||un||l2 ,

with ||un#||l2 = ||un||l2 i� ν0 = 0.

2. Seond stage: upwind sheme

For the �rst order sheme, Relation (24) gives us that:

un+1
j =

kx
δx
un#j − ky

δy
(un#j − un#j−1)− 1

2

(

νn1,j + iµnj
)

un#θj
kx
δx

+ 1
2

(

νn1,j + iµnj
)

+Bj

Provided that

kx
δx
un#j − ky

δy
(un#j − un#j−1) =

kx
δx
un#θj , we obtain:

un+1
j =

kx
δx

− 1
2

(

νn1,j + iµnj
)

kx
δx

+ 1
2

(

νn1,j + iµnj
)

+Bj

un#θj . (28)

Sine the modulus of the multipliative oe�ient in the right-hand side is smaller than one,

this leads to ||un+1||l2 ≤ ||
(

un#θj
)

j
||l2 . By the triangle inequality:

||
(

un#θj
)

j
||l2 ≤ θ||

(

un#j−1

)

j
||l2 + (1− θ)||

(

un#j
)

j
||l2 ≤ ||un#||l2 ,

whih onludes the proof.

♦
In the linear ase, that is the ase where µ is a data and not a funtion of |u|, the sheme is

obviously onsistent, so Proposition 4 implies the onvergene of the sheme.

Conerning the seond order sheme modifying the advetion step, it is well known (f [17℄)

that the e�et of this tehnique with a �ux-limiter is to allow small CFL−numbers with a better

auray (than the �rst order sheme) without generating spurius osillations. These assertions will

be on�rmed by numerial tests we have performed (see Setion 3.3.1).

3.2.2 Comparison with the lassial Shrödinger equation

If ky → 0, Equation (18) redues to the lassial Shrödinger equation, in the ase µ = f(|u|) :

i∂xu+
ǫ

2
∂2yyu+ iνu− f(|u|)u = 0, (29)

with a very simple boundary ondition (notie that g → uin)

u|x=0 = uin. (30)

Proposition 5 If ky → 0, the solution given by the numerial sheme onverges to the solution of

the lassial Shrödinger problem (29 )(30).
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Proof.

* Initializing. Formula (19) used in the sheme shows that

lim
ky→0

F(u;x = 0) = F(g),

so the boundary ondition tends to u|x=0 = g, whih is Equation (30).

* First stage. If ky tends to zero, i.e when the ray tends to be perpendiular to the boundary,

Formula (21) shows that:

lim
ky→0

R−(iη) + iη
ky
kx

= −ν − i
ǫ

2
η2,

so un# given by the �rst stage is the solution of the lassial Shrödinger equation without potential:

i∂xu+
ǫ

2
∂2yyu+ iνu = 0,

whih is the limit of the advetion-Shrödinger equation.

* Seond stage. It orresponds to a lassial disretization of the ordinary di�erential equation:

∂xu+ ν1u+ if(|u|)u = 0.

In other words, the sheme is a lassial splitting between dispersion and refration in the Shrödinger

equation (29). ♦

3.3 Numerial results

Let us reall that the laser energy density is equal to |u|2. Moreover, the physial meaning of the

absorption oe�ient ν is the following: with a onstant value of ν, if there would be no di�ration

operator, the laser intensity (integrated on a line orthogonal to the propagation diretion) would

derease by a fator 1/e2 on a propagation distane equal to 1/ν.
We now give the standard numerial values used for the numerial tests.

1. For the inoming boundary ondition on the edge x = 0, we take a Gaussian of amplitude 1
entered at a point (0, y0) i.e. u

in = exp(−(kx(y − y0)− kyx)
2/L2

s) with Ls = 2.5 µm; whih
orresponds to the typial half-width of a spekle of a laser beam.

2. For the inidene angle, we take −450, then k = (−
√
2
2 ,

√
2
2 ).

3. ǫ = 0.05 µm, the wavelength of the laser is 2πǫ ≈ 0.31 µm.

4. ν0 = ν1 = 5.10−4 µm−1. Notie that the larger the absorption oe�ient, the easier the

numerial simulation (indeed the laser energy dereases faster with respet to the propagation

distane).

5. We take α = 5.10−2
. It depends on the eletroni density of the plasma: in the vauum α

would be null. This size order orresponds either to a dense plasma or to a high laser intensity

- sine we have taken a normalized value of the intensity orresponding to a maximum value

of uin equal to 1.

6. For the de�nition of the boundary layer B, given by (22), we take b = 0.1 and β = 50.
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Figure 1: Referene ase: δx = δy = 0.05,
CFL = 1. Then Lfoc = 59.7, Max(|u|2) =
2.14.
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Figure 2: 1st order sheme onvergene with

CFL = 1 as a funtion of ell size δx (see

Table 1).

Number of points 26 27 28 29 210 211

Mesh size δx = δy 1.6 0.8 0.4 0.2 0.1 0.05

Error on energy Σj,n||unj |2 − |uref,nj |2|δxδy/|uref |2 46 % 32% 15% 6% 2% -

Fousing distane Lfoc 82.7 61.4 59.5 59.4 59.9 59.7

Error on fousing distane 38% 2.9% 0.4% 0.6% 0.3% -

Maximum of energy Maxn,j(|unj |2) 1.74 2.16 2.13 2.13 2.14 2.14

Error on the maximum of energy 19% 0.7% 0.4% 0.4% 0.07% -

Table 1: Convergene of the sheme, with CFL = 1. The last olumn represents the fully onverged

referene ase uref .

All our �gures represent the laser energy |u|2.
To be easier to read, our examples are variations with respet to the ase de�ned by the previous

numerial values of the oe�ients and omputed with a CFL number θ equal to 1 (see Figure 1).

With these assumptions, the sheme onverges very well as the disretization step dereases (see

Table 1). Due to the α oe�ient, fousing ours: the beam fouses and reahes a maximum, then

dereases. Notie that it may even fous several times for larger values of α. All our omparisons
are made with this referene ase, denoted uref , in the fully onverged situation (with mesh size

δx = 0.05, orresponding to 211 points on a domain length Lx = 100.)

3.3.1 Convergene of the sheme

Convergene of the �rst order sheme

We �rst take the CFL number equal to 1, whih is the ase where the �rst and the seond order

shemes are equivalent. To verify the onvergene of the sheme, we have three possible indiators.
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CFL 0.5 0.6 0.75 0.875 1 1

Error on energy Σj,n||unj |2 − |uref,nj |2|δxδy/|uref |2 19 % 17% 14% 9% 2% -

Fousing distane 43.1 49.1 55.6 48.0 59.9 59.7

Error on fousing distane 28% 18% 7% 19% 0.3% -

Maximum of energy 1.08 1.18 1.42 1.72 2.14 2.14

Error on the maximum of energy 50% 45% 34% 20% 0.07% -

Table 2: Convergene of the �rst order sheme with ell size δy = 0.1 and various CFL. The last
olumn represents the fully onverged referene ase already seen uref (with δy = 0.05). We see

that the fousing phenomenon is very poorly aptured (huge error on the maximum of energy as

soon as CFL < 1).

A �rst indiator is the total energy in the physial domain of interest (that is to say, outside the

arti�ial absorbing layer) whih is equal to the l1−norm of the energy: we denote it by

|u|2 = Σn,j|unj |2δxδy.

So we ompare this quantity to the orresponding one of the fully onverged ase |uref |2; in the

two �rst tables, we give the values of the relative error Σn,j||unj |2−|uref,nj |2|δxδy/|uref |2 for di�erent
ases. Now, if we want to ompare for instane the e�ets of the variation of the inidene angle,

two other indiators are more relevant in the framework of the nonlinear model. One is given by the

fousing distane: we an look for the fousing maximal point Lfoc and we measure the distane

from Lfoc to the origin of the ray. A last indiator is the maximal value of the energy. These last

two indiators are quite sensitive. For the nonlinear model, the numerial results are illustrated by

Figure 2 for the referene ase ; the estimates of the indiators are lose to the ones of the referene

ase when the spatial step dereases (see Table 1).

Thus, we may onlude that when CFL = 1, we reah an aurate result even for δx = δy = 0.4,
and that the fousing phenomenon is very well aptured.

If CFL number dereases, the auray beomes bad and even the fousing disappears: see

Table 2 and Figures 3 and 4. (Of ourse, if the CFL number is stritly larger than 1, the omputed

solution blows up).

Convergene of the seond order sheme

We tested three di�erent funtions for the �ux limiter: the �rst one is the Van Leer �ux funtion

de�ned by (25), the seond one is a onvex ombination of Lax-Wendro� and Beam-Warning �ux

limiter funtions, de�ned by

φ(λ) =







0 if λ ≤ 0
λ if 0 ≤ λ ≤ 1
1 if 1 ≤ λ,

(31)

the third one is the Superbee funtion de�ned by

φ(λ) =























0 if λ ≤ 0
2λ if 0 ≤ λ ≤ 1

2
1 if 1

2 ≤ λ ≤ 1
λ if 1 ≤ λ ≤ 2
2 if 2 ≤ λ.

(32)

16



x

y

0 10 20 30 40 50 60 70 80 90 100

−80

−60

−40

−20

0

20

40

60

Figure 3: First order sheme with CFL = 0.6,
δx = 0.1, δy = 0.17. No fousing observed:

the onvergene of the sheme is poor.
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Figure 4: First order sheme: error on the

maximum of energy, as a funtion of CFL (see

Table 2).

We always apply these �ux limiter funtions at λ = |u|2 and not at the real or imaginary part

of the solution. As learly shows Figure 5, it appears that the Van Leer �ux funtion is the one

whih gives the most aurate results. It is partiularly lear in terms of the error on the maximum

of energy : even for small CFL, its estimate is quite aurate ontrarily to the �rst order sheme

(for CFL = 0.5 , the error is only about 3% with seond order sheme but about 50% with �rst

order one).

The smaller the CFL is, the more points are needed to get a orret approximation, as illustrates

a omparison between Figures 7 and 8. It is however performed even with 29 points (that is, with

δx = 0.2) for CFL = 0.6 for instane, ontrarily to the sheme of order one, where no fousing at

all is observed if CFL = 0.6 even for δx = 0.1 for instane (see Figure 3).

In�uene of the arti�ial boundary layer

In the de�nition of the arti�ial absorbing layer B given by (22), we make b and β vary, with

�xed ell sizes δx = δy = 0.2 and all the other parameters given by the referene ase. We look at

the value of the total energy for eah value of b, β (the referene values being b = 0.1, β = 50.) The
results are given in Table 3. We hek that the sensitivity to the exat values of these oe�ients is

very weak; but it is ruial to have b 6= 0, elseif spurious re�exions may appear on the boundaries.

3.3.2 Variation of several parameters

• Variation of the absorption oe�ient

The numerial sheme an also be used with no absorption (ν = 0), it still works and give good

results. The repartition of ν0 and ν1 hanges very little the solution, as shows Table 4. In eah

ase, the referene is taken for ν0 = ν1 =
ν
2 . The table shows the results only for the omparison on
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Figure 5: Error on the maximum of energy as

a funtion of CFL, for δy = 0.1, for 3 di�erent
�ux limiters.
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in the referene ase, exept Lx and Ly).
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Figure 7: CFL = 0.8, seond order sheme

with Van Leer �ux limiter: error on the fo-

using phenomenon as a funtion of the ell

size δx.
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Figure 8: CFL = 0.6, seond order sheme

with Van Leer �ux limiter: error on the fo-

using phenomenon as a funtion of the ell

size δx.
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β = 10 β = 30 β = 50 β = 100

b=0 29% 29% 29% 29%

b=0.1 0.08% 0.02% 0 0.02%

b=0.2 0.03% 0.03% 0.05% 0.07%

b=0.5 0.08% 0.14% 0.15% 0.16%

b=1 0.19% 0.22% 0.23% 0.23%

Table 3: Inidene of the variation of the boundary layer B on the di�erene between the total energy

of eah ase and the one of the referene ase (b = 0.1 and η = 50): Σj,n||unj |2−|uref,nj |2|δxδy/|uref |2.
The results of this table show that the in�uene is negligible, as soon as b is not zero.

ν0
ν = 0 ν0

ν = 0.1 ν0
ν = 0.3 ν0

ν = 0.5 ν0
ν = 0.7 ν0

ν = 0.9 ν0
ν = 1

referene ase:

ν = 10−3, α = 0.05 0.3% 0.2% 0.1% - 0.1% 0.2% 0.3%

ν = 10−3, α = 0.5 6.2% 5.0% 2.5% - 2.5% 5.0% 6.2%

ν = 10−2, α = 0.05 0.5% 0.4% 0.2% - 0.2% 0.4% 0.5%

ν = 10−2, α = 0.5 8.9% 7.2% 3.6% - 3.7% 7.4% 9.3%

Table 4: In�uene of the repartition between ν0 and ν1 in di�erent ases: perentage of error on

total energy, de�ned by Σj,n||unj |2 − |uref,nj |2|δxδy/|uref |2.

the total energy; indeed, the fousing distane remains ompletely unhanged in any ase, and the

maximum of energy hanges by less than 0.3% in the worst ase.

When the absorption oe�ient is larger, the problem is easier to solve sine the laser energy

dereases when x inreases: for instane in the referene ase, if we set ν = 10−2
instead of ν = 10−3,

the ray is rapidly totally absorbed, and no fousing is observed.

The in�uene of the repartition between ν0 and ν1 inreases with α, as shows Table 4.

• Variation of the inidene angle

To test whether the sheme is aurate for various angles, we make it vary from 50 to 700, all the
other parameters being onstant: see Table 5. We hek that the indiators for the fousing distane

and the maximum of energy are well estimated, sine they depend very few on the inidene angle.

• Variation of ǫ
If all other oe�ients are �xed, the larger ǫ beomes, the more important the di�usion phe-

nomenon is (and the larger the domain must be to obtain a onverging solution), and, in the

nonlinear ase, the smaller the fousing distane beomes. A limit value of ǫ is experiened, above
whih no fousing phenomenon (for the nonlinear equation) is observed. In our referene ase for in-

stane, the limit is around ǫ = 0.17, see Figure 6, but this limit depends of ourse on all parameters,

espeially α and ν.
From a physial point of view, all our asymptoti analysis is built on the assumption ǫ = o(1) :

else, our equation is no more a valid approximation of the envelope of Helmholtz equation, given

by (1). Hene, we have to assume ǫ << 1 : larger values are meaningless.
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Inidene angle 50 30o 450 600 700

δx 0.23 0.16 0.2 0.16 0.02

δy 0.02 0.1 0.2 0.27 0.06

Maximum of energy 2.17 2.16 2.13 2.10 1.99

Error on the maximum of energy 1.5% 0.8% 0.43% 2.2% 9.7%

Fousing distane 59.2 59.7 59.35 59.9 60.2

Error on the Fousing distane 0.9% 0.01% 0.6% 0.34% 0.96%

Table 5: Variation of the inidene angle: in�uene on the fousing distane and on the maximum

of energy. As usual, the errors refer to the fully-onverged referene ase.

• Variation of α.
The parameter α represents a nonlinear e�et, and indues autofousing and �lamentation of

the beam. The larger it is, the more aurate the fousing phenomenon beomes, as illustrated in

Figure 9.

It ould be interesting to evaluate the value of α for whih a fousing phenomenon appears: in

our referene ase, it is for α ≥ 0.02. On the other hand, one may hek that if α is large enough,

several fousing points appear and a breaking of the beam ours (see Figure 11). This phenomenon

depends of ourse also on the absorption oe�ient ν and on the di�usion oe�ient ǫ.

3.3.3 Remark on arti�ial damping

We wish to hek now that there is no arti�ial damping due to the numerial sheme; in other

words, that in the seond stage the derease of the l2− norm of the solution has the right value.

Using the notations of Setion 3.2, this right value is given by the equality:

||un+1||l2 = e−2ν1δxkx||un#||l2 .

Going bak to Equation (28), we an write it under the form (assuming no arti�ial boundary layer:

Bj = 0)

un+1
j =

1− a− ib

1 + a+ ib
un#θj ,

where we set a = δx
2kx

νn1,j and b =
δx
2kx

µj . Sine the harateristi value of the oe�ient a is 10−4

(or smaller) and, in the worst ase, the harateristi value of µ is in the order of 1, so that we an
hoose

δx
2kx

to have b small, we see that

|1− a− ib

1 + a+ ib
|2 = 1− 4a

1

1 + b2
+ o(a2),

whih is very lose to the right value e−4a = 1 − 4a + o(a2). The only damping may then ome

from the fat that

∑

j
|un#θj |2 may be signi�antly smaller than

∑

j
|un#j |2, due to a large di�erene

between un#j and un#j−1. To hek this numerially, we test the ase ν = 0 : Figure 10 shows that

even in a di�ult ase with a large α = 1.5, the global energy ||un||2l2 is onserved.
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Figure 9: In�uene of α on the maximum

of energy (obtained in the fousing phe-

nomenon). Standard hypothesis.The autofo-

using, whih is a nonlinear e�et, is more

signi�ant when α inreases.
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Figure 10: α = 1.5, ν = 0 : we de�ne the

energy En = Σj|unj |2.δy. This piture shows

(En −E0)/E0
as a funtion of xn = nδx : the

energy En
dereases by less than 2% during

the whole trajetory.

3.3.4 Two-ray model

We have also performed omputations for the two-ray model whih is desribed above at Setion

3.1.4 using two funtions u1 and u2; an illustration is given by Figure 12. The interation between

the rays is only given by the nonlinear term f(w) with w2 = |u1|2 + |u2|2 as above. To analyse its

exat in�uene, one an ompare the result given by the previous model with the two-ray interation

and the result given by a simple superposition of two independant rays (obtained with the one-ray

model). One may see then that the energy beomes larger with the two-ray interation: on the ase

of Figure 12 for instane, Max(|u1|2 + |u2|2) = 12.3 instead of 10.6 if the rays do not interat.

4 Extension to a Time-Dependent Interation Model

We now address a model where a tilted paraxial equation is oupled with a hydrodynami model in

order to study �lamentation. Under the hypothesis of a small inidene angle, this model has been

extensively used by physiists for a long time and it is also addressed in [4℄,[3℄,[10℄ for example and

the referenes therein (for a derivation of this model, see [18℄ for example).

4.1 The Model and the Numerial Method

Modeling of the plasma.

By taking the ritial density (depending only on the laser wave length) as a referene density,

one de�nes a non-dimension eletron density N = N(t,x) ; so the plasma may be haraterized

only by this quantity, the plasma veloity U = U(t,x) and the eletron density Te(t,x).
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Figure 11: α = 1.5, ν = 0 : high fousing.

One observes a breaking of the beam in three

sub-beams.

Figure 12: 2 beams rossing with inidene

angles ±300, α = 0.05, and L = 5 for the

initial gaussian funtions.

Then, the simplest model is the following one. The pressure P = P (N,Te) is assumed to be a

smooth funtion of the density N and of the eletron temperature Te (whih is assumed to be a

very smooth �xed funtion of the position x ), for example P (N,Te) may be the sum of two terms

equal to N3
and NTe up to multipliative onstants. Then one onsiders the following barotropi

Euler system:

∂

∂t
N +∇(NU) = 0, (33)

∂

∂t
(NU) +∇(NUU) +∇(P (N,Te)) = −Nγp∇|Ψ|2. (34)

The term γp∇|Ψ|2 orresponds to a ponderomotive fore due to a laser pressure (the oe�ient
γp is a onstant depending only on the ion speies).

Modeling of the laser beam.

The laser �eld Ψ = Ψ(t,x) is a solution to the following frequeny wave equation (whih is of

Shrödinger type):

2i
1

c

∂

∂t
Ψ+

1

k0
∆Ψ+ k0(1−N)Ψ + iν⋄Ψ = 0, (35)

where the real oe�ient ν⋄ is related to the absorption of the laser intensity by the plasma and c
the light speed.

Assume that the mean value of the plasma density is quite onstant and denoted Nm, so we set:

N(x) = Nm + δN(x),

where δN is small with respet to 1. Then one an make the paraxial approximation ; that is to say

the laser beam is now haraterized by the spae and time envelope of the eletri �eld U = U(t,x)
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and we set:

Ψ(t,x) = U(t,x)eik0K.x, where K =
√

1−Nmk.

Therefore, if one sets ǫ = 1
k0

√
1−Nm

, by the same proedure as mentioned in the introdution, one

heks that U satis�es:

√

1−Nm(ik.∇U +
ǫ

2
∆k

⊥U) + i
ν⋄

2
U − k0δN

2
U + i

1

c

∂U
∂t

= 0. (36)

It is neessary to supplement equation (36) with the same boundary ondition as in the model

of setion 1 (and with an initial ondition).

Numerial method.

We onsider a mesh of �nite di�erene type as above. The numerial treatment of the barotropi

Euler system (33)(34) is a lassial one, we have hosen a Lagrange-Euler method, see [3℄ for details.

To deal with (36), aording to the large value of the speed of light, one must perform a time inpliit

disretization. So at eah time step, one solves �rstly the Euler system with a ponderomotive fore

evaluated with the previous value of |U|2. Seondly, using the obtained values of N and of δN, one
has to solve (36) ; if uini and u denote the values of the �eld U at the beginning and the end of

time step, one searhes u solution to:

ik.∇u+ iνu+
ǫ

2
(∆k

⊥u)− µu =
i

c
√
1−Nm

uini

δt
, (37)

where we have set:

µ =
k0δN

2
√
1−Nm

, ν =
1

c
√
1−Nm

1

δt
+

1

2
√
1−Nm

ν⋄.

That is exatly the equation studied in setion 3, but a right hand side term has been added. So

the numerial method is the same as desribed above ; the only modi�ation is the adding of the

right hand side term in the transport stage. Notie that the index of refration (1−N) is equal to
(1− 2ǫµ)(1−Nm).

>From a pratial point of view, the numerial method for (36) has been implemented in a

parallel way in the HERA plateform for plasma hydrodynamis in 2D and in 3D; the parallel solver

and the domain deomposition tehniques are the same as the ones detailed in [3℄.

4.2 Numerial Results

Reall that from a pratial point of view, in the transverse pro�le of a laser beam, one distinguishes

a lot of small hot spots, alled spekles, whose intensity is very large ompared to the mean intensity

of the beam. The shape of eah individual spekle is a Gaussian funtion whose width is about

a few mirometers. We present here the results of a 2D numerial simulation. One addresses a

simulation box whih is 600 µm long and 300 µm wide, the laser propagates with an inidene angle

of 190. The inoming boundary ondition α = α(y) is independent of time and mimis a laser beam

whose width is equal to 40µm with �ve spekles ; eah spekle is modeled by a entered Gaussian

funtion h and is haraterized by a random phase ζk, that is to say α(y) = Σ5
k=1akh(y − yk)e

iζk ,
where the αk are random and the ak are lose to eah other. The plasma has an initial density

equal to Nm = 0.15 and the temperature is equal to 35. 106 Kelvin. The mesh onsists of 4 millions

of ells and the time step is in the order of 0.1 pioseond (it is determined at eah time step by

the Courant-Friedrihs-Levy ondition related to the sound speed of the plasma). The initial value
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Figure 13: Snapshot of the laser intensity at the time 2.6 ps, 3.9 ps, 5.3 ps and 6.6 ps ( from the top-left to

the bottom-right).

of the laser intensity is zero, the plasma is progressively grabed by the ponderomotive fore and on

Figure 13, we have plotted the laser intensity at di�erent times. At the �rst snapshot (at time 2.6
ps), the plasma is not grabed enough, so the value of µ is small; the autofousing e�et is very low

but not negligible: instead of �ve di�erent spekles at the inoming boundary one noties only four

spekels at the rear side (one of the four has a larger intensity) and a little spreading of the beam

may be observed. At the seond snapshot, the position of the four spekles has hanged and the

plasma is more grabed - sine the energy density is larger in one spekle. On the two last snapshots,

we may hek that the spreading of the beam at the rear side of the simulation box beomes larger

when the time inreases. Moreover the on�guration is not stationary, this situation is harateristi

of the so-alled �lamentation instability.

Conlusion

A mathematial analysis has lead to an analytial form of the solution of the tilted paraxial equation

in the simple ase where the refration index and the absorption oe�ients are onstant. After-

wards, we proposed a numerial method for solving the initial problem whih uses the previous

analytial form. The sheme has the property to yield a lassial sheme when inidene angle

beomes zero and the equation redues to the lassial paraxial one. The numerial method is illus-

trated by some results on toy problems. We have also given extensions of this model, whih have

enlarged the apability of our plateform HERA for laser propagation in a plasma (see [3℄ and [14℄

for examples of simulations performed with HERA). This numerial method may be also extended

in the ase where the unit vetor K depends slowly on the one-dimension spatial variable x.n, for
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instane if one has to deal with an equation of the following type

iK.∇u+ i
1

2
(∇.K)u+

1

2k0
∆k

⊥u− µu+ iνu = 0, on D.

The paraxial equation in a tilted frame may be also onsidered in a �rst region where the plasma

density is slowly varying with respet to the spatial variable and oupled with another model in a

neighbor region where the plasma density is strongly varying: in that region the laser is no more

haraterized by the time-spae envelope of the fast osillating eletri �eld but by the wave equation

(35) (see [6℄, for results obtained in HERA with this model). For simulating suh a physial tilted

beam, a lassial paraxial model without aounting for the inidene angle would lead to searh a

the solution whih would be highly osillating with respet to the spae variable and therefore to

inrease dramatially the mesh size to get aurate results.
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