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G. Thömmes∗ J. Becker ∗ M. Junk† A. K. Vaikuntam ∗

D. Kehrwald ∗ A. Klar‡ K. Steiner ∗ A. Wiegmann ∗

January 22, 2008

This work has been supported by DFG grants JU440/1-3, STE 871/1 and KL
1105/9.

Abstract

We consider the lattice Boltzmann method for immiscible multiphase flow
simulations. Classical lattice Boltzmann methods for this problem, e.g. the
colour gradient method or the free energy approach, can only be applied when
density and viscosity ratios are small. Moreover, they use additional fields de-
fined on the whole domain to describe the different phases and model phase
separation by special interactions at each node. In contrast, our approach sim-
ulates the flow using a single field and separates the fluid phases by a free
moving interface. The scheme is based on the lattice Boltzmann method and
uses the level set method to compute the evolution of the interface. To couple
the fluid phases, we develop new boundary conditions which realise the macro-
scopic jump conditions at the interface and incorporate surface tension in the
lattice Boltzmann framework. Various simulations are presented to validate the
numerical scheme, e.g. two-phase channel flows, the Young-Laplace law for a
bubble and viscous fingering in a Hele-Shaw cell. The results show that the
method is feasible over a wide range of density and viscosity differences.
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1 Introduction

The study of immiscible two-phase flows is an important model problem for free
surface flows. Free surface flows with multiple fluid phases appear in a wide range of
situations in many areas of applications and industrial processes. For example, bub-
ble dynamics is crucial for the design of chemical reactors and devices for transferring
mass or heat between liquid-liquid or gas-liquid mixtures; fingering is important in
oil recovery when pressurised water is used to extract viscous crude oil from porous
rock deposits; the formation and break-up of liquid-metal jets represents a main fea-
ture in metal forming processes; droplet oscillations can be used to measure physical
material properties and interfacial dynamics of liquids and gases. Owing to the prac-
tical importance of these problems, a large body of literature has been accumulated
over the years. We mention [38, 33] for an overview of this research field.

During the last two decades, the lattice Boltzmann method (LBM) has been
developed as an alternative numerical scheme for solving the incompressible Navier-
Stokes equations. Historically, it originated from lattice gas cellular automata, which
simulate the dynamics of fluid particles on a microscopic level based on the Boltz-
mann equation in a discrete phase space using only a small number of velocities
adapted to a regular grid in space. While lattice gas automata deal with individual
particles, particle densities (also occupation numbers or particle distributions) are
the objects in the LBM model. Together with a number of simplifications this statis-
tical, mesoscopic picture has been a major improvement of LBM which contributed
to its competitiveness as a numerical solver. The main advantages attributed to
LBM are the ease of implementation (since the nonlinear Navier-Stokes equations
are replaced by the semi-linear Boltzmann equation), the simplicity in simulating
domains with complex geometry (in particular porous media), and the ease of par-
allelisation (since only local operations are performed). Chen and Doolen [9], and
Succi [42] give a concise and comprehensive summary of the LBM approach, its
applications, and the various ramifications and extensions the basic method has
undergone over the years.

Numerous combinations of conventional fluid solvers based on finite difference,
finite volume or finite element discretisations with numerical methods for free sur-
faces have been described to simulate multiphase flows. In the LBM framework,
most approaches for immiscible multiphase flows are based on the colour gradient
method [15], the method of Shan and Chen [36] or the free energy approach, and
integrate the representation and evolution of the interface in the LBM algorithm.
Recently, a hybrid method combining LBM and the front tracking method has also
been proposed [24].

The most simple and wide-spread among these approaches is the colour gradient
method of Gunstensen and Rothman [16, 17, 32]. It contains two sets of LBM
populations, one for each phase, and models phase separation and interface tension
using a recolouring step. In each node, the algorithm attempts to separate the two
phases as much as possible by redistributing the two sets of populations. Interfaces
are implicitely defined by the fluid fraction iso-surface where the content of the
two fluids is equal. In general the method is applicable only for small density and
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viscosity differences and in particular the recolouring step causes grid-dependent
artifacts at the interface [23]. A different approach was presented by Shan and
Chen [36, 37], who introduced the concept of interaction potentials. The method
in principle models miscible fluids, and immiscible flows can only approximately be
described. Swift et al. developed a LBM modification using the free energy approach
[40, 41]. They rely on a second set of populations which describes the fluid fraction
and is determined by the free energy of the system.

A variety of methods is used for computing free surface motion in areas ranging
from mechanical engineering, chemistry and medicine to computer science (see e.g.
[28]). These methods are commonly divided into two classes: interface tracking and
interface capturing. The former describes surface evolution by tracking individual
marker particles moving according to a given velocity field. It can be further sub-
divided in surface tracking methods, where the set of points constitutes the surface
[45], and volume tracking methods, where particles are distributed in space and the
surface is reconstructed from the boundary of the point cloud, e.g. in the classical
marker-and-cell method [12]. In contrast, the latter class is based on the viewpoint
of a marker field and uses a function on a fixed grid that obeys a transport equation
with a prescribed advection velocity. In this class, methods of discontinuous type
define the surface as the discontinuity set of the field, and methods of continuous
type define the surface as a contour surface (or contour line in 2D) of the field.

We apply the continuous interface capturing approach of the level set method,
which uses the signed distance to the surface as a marker function in the domain
under consideration [34, 26]. The evolution of this function over time is governed by
a PDE of Hamilton-Jakobi type that is solved numerically by appropriate schemes
for hyperbolic equations. The surface is recovered implicitly from the zero level
set of the real-valued signed distance function. In the level set framework, topology
changes are handled in a natural way. This is an interesting feature when simulating
bubble dynamics, where coalescence and break-up of bubbles can be observed in
experiments. Furthermore, the level set method can be implemented very efficiently
using the narrow-band technique, which stores the distance function only in a small
part of the grid around the surface [1]. Other techniques, e.g. the fast marching
method for (re)initialisation, further contribute to its computational performance
[2].

In the present paper, we develop a hybrid lattice Boltzmann–level set method,
i.e. an interface capturing method combined with LBM, where boundaries between
different fluid phases are represented by sharp interfaces separating the fluids to
address the difficulties experienced with the classical LBM approaches. Coupling
the level set method with LBM has several advantages. Firstly, the level set method
works on a regular, cubic lattice as LBM does, such that numerical quantities can
be represented on the same grid thus avoiding errors when transferring data from
one grid to the other. Secondly, it combines high accuracy with efficient numerical
algorithms and low memory requirements to provide the surface data, e.g. normals
and curvatures. Interface evolution is handled independently by the level set method,
where the level set function moves according to the flow field of the lattice Boltzmann
model. This allows to control fluid flow and interface separately and avoids several
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drawbacks of previous LB methods for multiphase flows. In particular, the colour
gradient method is only applicable when density differences are small and it exhibits
grid-dependent perturbations of the interface which cannot be removed in the LBM
framework [23]. The method of Chen and Shan suffers, among other things, from
mass losses. Mass loss is also an issue in the level set method, but various strategies
have been presented in the literature to address this numerical artifact [26, 43, 39].

To connect the two separate fluid phases in the LBM, we develop a new boundary
condition for the populations at the interface. The scheme can be implemented in
a similar way as the well-known bounce back boundary conditions at walls. This is
achieved by analysing the continuity or jump conditions for macroscopic quantities
velocity, pressure and stresses on the kinetic level. In this way surface tension is
correctly modeled in the LBM. Moreover, it allows us to simulate flows with large
density and viscosity differences, a major goal of our work.

Another hybrid method combining LBM with standard numerical methods for
surface computations in [24] presented a lattice Boltzmann front-tracking method
which incorporates interface tension via curvature-dependent volume forces along
the surface. The method significantly reduces the interface smearing effect of the
traditional LBM approaches mentioned above. It successfully simulated the Young-
Laplace law and capillary waves with equal viscosity and density. However, our new
approach is also able to simulate flow in with high density and viscosity differences.
Moreover, the level set method is well suited for topology changes while this is not
easily accomplished using particle methods like front-tracking.

The rest of the paper is organised as follows. In section 2 the general setup of
the two-phase flow problem is described. Section 3 contains the lattice Boltzmann
method and section 4 explains the level set method. In section 5 a new approach
for the treatment of the fluid interface within the lattice Boltzmann method is pre-
sented. At the interface, suitable LBM boundary conditions have to be prescribed
which implement the jump conditions. Moreover, the interface movement requires
a reinitialization of the populations in nodes changing their fluid phase. We also
describe how the level set algorithm is coupled with the lattice Boltzmann method.
Finally, Section 6 contains a numerical investigation of the approach and a compar-
ison with several benchmark examples. We present channel flow simulations with
two immiscible fluid layers and and compare with the analytical solutions. The
Young-Laplace experiment for the pressure difference inside a bubble is used as a
benchmark problem to validate the surface tension of the new scheme. Finally, we
investigate viscous fingering experiments in a Hele-Shaw cell. The results show that
the new scheme can successfully simulate multi-phase flows with complex geometri-
cal features and large viscosity and density differences.

2 The two-phase flow problem

We use the Navier-Stokes equations for two incompressible fluids as a mathematical
model for immiscible two-phase flow problems with free surfaces. The equations
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Figure 1: Left: Two-phase partitioning of the domain. Right: Link crossing the
interface from fluid 1 to fluid 2.

governing the flow in each phase are presented and the jump conditions coupling
the phases at interfaces are discussed in this section.

The flow domain is a bounded, open set Ω in three-dimensional space partitioned
into three subsets: Ω1 and Ω2 are open subdomains of fluid 1 and 2, respectively,
and Γ = ∂Ω1 ∩ ∂Ω2 is the interface (figure 1). It is assumed to be a sharp interface
where material properties are discontinuous and no mixing in surface layers occurs.
Throughout each subdomain material properties are constant. The subdomains and
the free surface evolve over time according to the velocity of the flow in Ω.

The evolution of the flow fields is governed by the incompressible Navier-Stokes
equations separately in each subdomain Ωi:

∇ · u(i) = 0, in Ωi (1a)

∂tu
(i) + (u(i) · ∇)u(i) = − 1

%(i)
∇p(i) + ν(i)∆u(i) + F (i), in Ωi, (1b)

with compatible boundary and initial conditions, for example

u(i)(x, t) = 0, on ∂Ωi \ Γ, (1c)

u(i)(x, 0) = u
(i)
ini(x), in Ωi. (1d)

Here, u(i) is the velocity, p(i) the pressure, ν(i) the kinematic viscosity, %(i) the mass
density and F (i) an exterior force density per unit mass in subdomain Ωi.

The system is not completely defined without boundary conditions at the in-
terface Γ. In the presence of viscosity we assume continuity of the velocities; fur-
thermore surface tension balances the jump in normal stresses. Formally this is
expressed by the following jump conditions:

[u] = 0, [T ]n = 2σκn, (2)

where T (i) = −p(i)I + 2µ(i)S(i) is the stress tensor with S
(i)
kl = 1

2(∂ku
(i)
l + ∂lu

(i)
k ),

µ(i) = %(i)ν(i), σ the surface tension, κ = 1
2(κ1+κ2) the mean curvature (for principal
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curvatures κ1, κ2) with respect to the surface normal n. As usual, brackets denote
the jump of a quantity, q, across the surface: [q](x) = limε→0(q(x+ εn)− q(x− εn)).

Note that the interface and the domains in the model depend on time. The
unknowns of the problem are the velocity u(x, t), the pressure p(x, t) and the inter-
face Γt. An algorithm for solving two-phase flow problems therefore contains three
ingredients:

1. a solver for the flow equations for u(x, t), p(x, t),

2. a scheme for computing the motion of the interface Γt, and

3. a method for coupling fluid flow and interface evolution.

In the following chapter we describe the lattice Boltzmann method for fluid flows.
In chapter 4 we present the level set method for free surface motion and chapter 5
addresses the coupling problem by introducing a new LBM boundary condition.

3 The lattice Boltzmann method

We use the lattice Boltzmann method to solve the incompressible Navier-Stokes
equations. In this section we give an overview of the method and the specific model
used in our implementation. We describe the collision and propagation steps and
discuss the implementation of boundary conditions.

The lattice Boltzmann method is based on a kinetic picture of fluid flow and
approximates the Boltzmann equation

∂tf + v · ∇f = J(f) + G (3)

which describes the evolution of the particle density f(x, v, t) in phase space. In
equation (3), v is the microscopic particle velocity, J(f) denotes the collision opera-
tor and G models external forces. In the LBM algorithm, the equation is discretised
with a regular grid in space and with a restricted number of velocities adapted to
this grid [9, 19, 42, 49]. We use the D3Q15 model in 3D, which has 15 velocity
vectors on a cubic grid with unit spacing including one zero velocity. The vectors
are given by the columns of the matrix

c =




0 1 0 0 1 −1 1 1 −1 0 0 −1 1 −1 −1
0 0 1 0 1 1 −1 1 0 −1 0 −1 −1 1 1
0 0 0 1 1 1 1 −1 0 0 −1 −1 −1 −1 1


 . (4)

The corresponding particle distributions are denoted by fi(x, t) = f(x, ci, t). Density
and velocity are recovered from these populations by taking the moments

ρ(x, t) =
14∑

i=0

fi(x, t), u =
14∑

i=0

fi(x, t)ci. (5)
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For the collision operator we use the well-known Bhatnagar-Gross-Krook (BGK)
approximation [3], such that the discretised evolution equation reads

fi(x + ci, t + 1) = fi(x, t)− 1
τ
(fi − f eq

i ) + Gi. (6)

The parameter τ is the relaxation parameter for the BGK collision operator and con-
trols the kinematic viscosity ν = 1

6(2τ − 1). Furthermore, the use of the equilibrium
distribution

f eq
i (f) ≡ f eq

i (ρ, u) = f∗i
(
ρ + 3ci · u +

9
2
(ci · u)2 − 3

2
u2

)
(7)

with the corresponding D3Q15 weight factors

f∗i =





4
9 , i = 0
1
9 , i = 1, 2, 3, 8, 9, 10
1
36 , i = 4, 5, 6, 7, 11, 12, 13, 14.

is crucial for obtaining the desired Navier-Stokes equations on the macroscopic level.
Using these definitions, the odd order moments of f eq

i are zero and for the second
and fourth order moments we invoke the relations (α, β, γ, ε = 1, 2, 3)

∑

i

f∗i ciαciβ =
1
3
δαβ,

∑

i

f∗i ciαciβciγciε =
2
9
(δαβδγε + δαγδβε + δαεδβγ),

such that it is easily verified that the equilibrium distribution – and hence also the
collision operator – preserves density and momentum

∑

i

f eq
i = ρ,

∑

i

f eq
i ci = u.

Provided the initialisation and the boundary conditions are sufficiently regular,
a formal asymptotic analysis with respect to the mesh size ∆x = h and the time
step ∆t = h2 shows the relation between the lattice Boltzmann variables and the
Navier-Stokes solution uNS, pNS [20]

fi = feq
i (3h2pNS/%, huNS)− 3h2τf∗i Λi : SNS + 3h2f∗i ci · vOT + O(h3). (8)

Here, Λi is defined as

Λi = ci ⊗ ci − 1
3
|ci|2I,

with the identity matrix I and the tensor product a⊗b = abT of two column vectors.
The product A : B of two square matrices is A : B = trace(ABT ). The additional
vector field vOT is a solution of a homogeneous linearised Navier-Stokes equation
and vanishes if the initial and boundary conditions are suitably constructed.

Computing the moments of the right hand side of (8), the Navier-Stokes solution
(uNS, pNS) is recovered in leading order from

ρ =
∑

i

fi = 3h2pNS/% + O(h3)

u =
∑

i

fici = huNS + h2vOT + O(h3)
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so that pressure can be obtained with first order and velocity with second order accu-
racy, provided the field vOT , which depends on the initial and boundary conditions,
vanishes

pNS =
%

3h2

∑

i

fi + O(h), uNS =
1
h

∑

i

fici − hvOT + O(h2).

In the interior of the domain, LBM alternates the collision step

f+
i = fi − 1

τ
(fi − f eq

i ) + Gi,

and the propagation step

fi(x + ci, t + 1) = f+
i (x, t + 1),

to compute the time evolution of the populations, and solves in this way the incom-
pressible Navier-Stokes equations on the macroscopic level. At the boundary of the
domain, however, this procedure cannot be applied since some populations f+

i (x, t)
involved in the propagation step are not defined. More precisely, for boundary points
xb = x + ci and directions ci pointing inward, the source point x = xb − ci /∈ Ω lies
outside the domain. These populations have to be prescribed in such a way that the
boundary conditions on the macroscopic level are fulfilled: fi(xb, t + 1) = f̃i.

The choice of boundary conditions has an important effect on the accuracy of
the numerical solution. For example, the well-known bounce back scheme for no-slip
boundary conditions at a wall is second order accurate with respect to velocity only
if the wall is midway between two nodes and first order accurate in all other cases.
There is no one-to-one relation between boundary conditions for the Navier-Stokes
equations on the macroscopic level and appropriate LBM boundary conditions on
the kinetic level. This question has been addressed by many authors who present
implementations for different types of fluid dynamical boundary conditions [21, 22,
4, 18, 50].

The widely-used bounce back rule is inspired by a simple particle reflection at
a wall to implement no-slip boundary conditions (u = 0): f̃i = f+

i∗ (xb, t), where i∗

is the index of the opposite direction ci∗ = −ci. We use the more sophisticated
Bouzidi boundary condition because it ensures second order accuracy of the velocity
for geometries of arbitrary shape [4]

f̃i =





2qf+
i∗ (xb, t) + (1− 2q)f+

i∗ (xb + ci, t), q < 0,

1
2qf+

i∗ (xb, t) + 1−2q
2q f+

i∗ (xb + ci, t), q ≥ 0.

(9)

Here q denotes the normalised distance of the interface from xb along the link ci.

We can also apply pressure boundary conditions at the inlet or outlet of a chan-
nel. For a flat inlet in the yz-plane, a pressure p0 in x-direction is imposed by
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prescribing the density ρ0 = 3h2p0/% [50]. After defining the ficticious velocity
u0 = ρ0 − (f0 + f2 + f3 + f9 + f10 + 2(f5 + f8 + f11 + f13 + f14)), we set

f1 = f8 +
2
3
ρ0u0,

fi = fi∗ +
1
12

ρ0u0 − 1
4
(ci2(f2 − f9) + ci3(f3 − f10)), i = 4, 6, 7, 12.

At the outlet an analogous procedure can be used. Further suggestions for boundary
conditions can be found for example in [21, 22, 18] and references therein.

Finally, we can add a vector-valued force per unit mass F (x, t) by setting Gi =
3f∗i ci · F ; for example, gravity in z-direction can be included by Gi = −3f∗i gci · ez.

The LBM algorithm can be summarised as follows:

1. Collision step: f+
i = fi − 1

τ (fi − f eq
i ) + Gi.

2. Propagation step: fi(x + ci, t + 1) = f+
i (x, t), for interior nodes.

3. Boundary conditions: fi(x + ci, t + 1) = f̃i(x + ci, t), if x /∈ Ω.

4 The Level Set Method

The movement of the interface between different fluid phases is handled in our ap-
proach by the level set method. This surface capturing method uses the continuous
signed signed distance function defined on a Eulerian grid and represents the in-
terface by the zero level set of this function. The level set equation of Osher and
Sethian is the basis for the approach. In this chapter we present the numerical
scheme used to solve this PDE quickly and accurately. Furthermore, we show how
the parameters describing the surface can be computed from the level set function.

4.1 The level set equation

Let Γt be the orientable free surface at time t. In the level set method, Γt is the
zero iso-surface of the level set function ϕ: for x ∈ Γt we have ϕ(x, t) = 0, and
ϕ > 0 on one side of Γt (in the direction of the normal) and ϕ < 0 on the other side.
When we choose a point x0 at time t0 we can follow its path x(t) and its velocity is
v = v(x(t)) = ẋ(t). For the level set function we can therefore deduce

ϕt + v · ∇ϕ = 0. (10)

This is the level set equation of Osher and Sethian [27] for the evolution of the free
surface.

Since the gradient ∇ϕ is perpendicular to an iso-surface, we know that the
gradient is parallel to the normal n: ∇ϕ = ||∇ϕ||n. If the level set function actually is
the signed distance to the surface in direction of the normal, we have ϕ(x(t)+sn, t) =
s for s ∈ R , so ∇ϕ · n = ϕs = 1, and hence

n = ∇ϕ. (11)

The normal therefore coincides with the gradient and, furthermore, since κ = ∇ · n,
also the mean curvature is easily deduced from the signed distance function,

κ = ∆ϕ. (12)
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4.2 Numerical scheme

The computational domain is a rectangular box, as for LBM, where the sides are
treated as periodic boundaries. The level set equation of Osher and Sethian (10) is
solved in the narrow band by the Hamilton-Jacobi WENO scheme, which is fifth-
order accurate in space. Time integration uses a second-order accurate Runge-Kutta
method [26].

In a computer implementation we can significantly reduce memory requirements
and computation time by using the narrow band technique. Since we are only inter-
ested in the movement of the isosurface {ϕ = 0}, it is sufficient to construct the level
set function only at points close to the surface. This technique does not store the
distant points at all but merely retains several bands of nodes around the current
interface (usually 5 to 10 layers are stored).

The level set function is initialised by the signed distance to a given surface Γ0.
Usually, we start with a triangulation and construct the signed distance function
from the triangulation. Of course, it is also possible to start the algorithm with
other given initial data ϕ0.

The flow field v of the level set equation (10) is determined by the external flow
field u. In principle, the movement of the isosurface can be modeled by using v = u.
The drawback of this approach is that ϕ(t) may gradually lose the signed distance
property of ϕ0 for times t > 0. Therefore, to preserve the signed distance property
during the simulation, the velocity field v is constructed using the constant velocity
extensions method of Adalsteinsson and Sethian [2], i.e:

v(t) = u(t) on Γt,

∇v(t)∇ϕ(t) = 0 in Ω.

For each grid node adjacent to the zero iso-surface, the nearest point on the
surface is determined. Then, the velocity at this projection point is computed from
the discrete flow velocity field u, taken from the lattice Boltzmann method, in the
neighbourhood by extrapolation using a linear or quadratic polynomial ansatz. Note
that u is continuous at the interface while this may not be true for its derivatives.
We therefore extrapolate separately on both sides of Γt. For the velocity v at the
projection point we take the mean value of both extrapolations and store it in the
grid node under consideration. Having constructed the velocities adjacent to the
surface, the rest of the velocity field in the narrow band is eventually constructed
via the fast marching method [1].

After several time steps, the level set {ϕ = 0} may have moved in such way
that it approaches the boundary of the narrow band. Also, after some time steps,
the function ϕ may have lost the property of a signed distance function owing to
numerical errors. In these cases, it is necessary to adjust the narrow band and
to reinitialise ϕ. In our code, reinitialisation is efficient due to the fast marching
method of Adalsteinsson and Sethian [1].
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When modelling the flow of a bubble, the mass of the modeled bubble should
be preserved. It is well known that the level set method, due to numerical errors,
tends to shrink convex iso-surfaces, i.e. it leads to mass loss. To prevent this, we
preserve the volume of e.g. Ω1 by correcting the signed distance function ϕ with the
correction term

cϕ =
Vexact − V (Ω1)

S(Γ)
, (13)

where Vexact is the known volume of Ω1, and V (Ω1) and S(Γ) are the current volume
of part Ω1 and the area of the interface, respectively. In general, cϕ ¿ h, and the
error introduced by the correction is of the same order as the interpolation error
(see also [39]).

4.3 Calculation of Surface Properties

Generally, a higher order finite difference approach is used for computing the surface
properties like normal and curvature from the discrete level set function [34]. How-
ever, it has been found that estimating surface properties by the finite difference
approach can be inaccurate and has a slow rate of convergence with respect to the
underlying mesh width. Therefore, we use an alternative method based on weighted
least squares for estimating the desired surface properties as discussed in [47]. In
this approach, depending on the desired order of accuracy, the number of points
around the node of interest (the stencil in this context) and the degree of a local
polynomial model are chosen in advance.

Let (x̄, ȳ, z̄) be the node; wlog. we can choose the origin (0,0,0). For local
coordinates (x, y, z), the mth order local polynomial in R3 has l = (m + 1)(m +
2)(m + 3)/6 coefficients,

f(x, y, z) =
m∑

k=0

∑

p+q+r=k,
p,q,r≥0

1
(p + q + r)!

ĉ(p,q,r)x
pyqzr. (14)

Here, ĉ0 is the constant term, ĉ1, ĉ2, ĉ3 are the first derivatives, ĉ4 to ĉ9 are the second
derivatives, and the remaining terms are higher order derivatives of the polynomial.
For sufficiently smooth functions ϕ, approximate derivatives to any desired accuracy
can be obtained by an appropriate choice of mesh width h and polynomial degree
m.

When the polynomial f of degree m with l coefficients approximates ϕ on Nr ≥ l
stencil points, the coefficients c are computed by minimising

min
c
||Ac− b||22, (15)

where A ∈ RNr×l is the three-dimensional Vandermonde matrix and b ∈ Rl contains
the values of ϕ at the stencil points. The system would be solved in the standard
least squares sense by ĉ = (AT A)−1Af. In the weighted least squares approach, ĉ
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is given by (AT W 2A)−1AT W 2b, where W is a diagonal matrix of size Nr. In our
approach, we use weights based on ϕ as in [35], i.e. the diagonal entries are

Wii =
h2

h2 + |ϕi|
. (16)

Here, ϕi denotes the value of the level set function at the ith stencil point.

Once the coefficients ĉ are estimated, the next step is to determine where a
lattice link intersects the level set. An approximate intersection point Pi(x∗, y∗, z∗)
can be found by checking whether there is a sign change of ϕ in the link’s vertices
and, if so, solving f(x, y, z) = 0. Solving the equation amounts to finding the roots
of a polynomial in R. For m ≥ 5, a simple closed solution does not exist. Hence,
one forms the companion matrix of the polynomial and gets the unique intersection
point from the eigenvalues [47].

The normal at the intersection point, defined as n = ∇ϕ/||∇ϕ||2, can be approx-
imated using the local polynomial by setting n := ∇f/||∇f ||2, where the gradient is
evaluated at Pi, ∇f = ∇f(x∗, y∗, z∗).

For estimating the curvature, given by κ = ∇ · n, we would need the Hessian
of the level set function. Similar to the estimation of the normal, the Hessian is
approximated by the Hessian of the local polynomial Hf(x∗, y∗, z∗). Let t and s be
orthonormal vectors to n spanning the tangent plane. For determining the principal
curvature we construct the Weingarten matrix a [10] with

a =
[

a11 a12

a12 a22

]
=

[
t1 t2 t3
s1 s2 s3

]
Hf




t1 s1

t2 s2

t3 s3


 .

The eigenvalues of a are given by

κ1,2 =
a22 + a11

2
±

√
(a11 − a22)2

4
+ (a12)2, (17a)

and the mean curvature can then be estimated from

κ =
1
2
Trace(a) =

κ1 + κ2

2
=

a22 + a11

2
. (18)

Using this least squares approach, the estimated mean curvature is of order O(hm−1)
when the approximating polynomial is of order m.

5 Coupling of LBM and Level Set method

At the interface, suitable LBM boundary conditions have to be prescribed which im-
plement the jump conditions (2). Moreover, nodes which are crossed by the moving
interface change their fluid type such that a reinitialization of the population is re-
quired. Finally the level set algorithm has to be coupled with the lattice Boltzmann
method. These three aspects are discussed in the following subsections.
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5.1 New boundary conditions at the interface

To ensure the continuity of velocity, [u] = 0, across the interface, we use a simple
bounce back type Dirichlet condition on each side of the interface. For example, for
the point x2 in Figure 1, we set

fi(x2, t + 1) = f+
i∗ (x2, t) + 6hf∗i ci · ũ + Ri, (19)

where the prescribed velocity ũ is a linear interpolation of the velocity along the
direction ci, evaluated at the location x̃ = x1 + qci = x2 + (q− 1)ci on the interface,

ũ = qu(x2, t) + (1− q)u(x1, t).

The additional term Ri is needed for two reasons: firstly, to ensure the jump con-
ditions of the normal stress and, secondly, to correct the error terms resulting from
the bounce back treatment. We set

Ri = 6h2f∗i Λi : A, A = −q(1− q)[S]− (q − 1/2)S(2) + O(h). (20)

For a practical implementation, the symmetric velocity gradient S(2) at x2 as well as
its jump [S] at the interface point x̃ have to be computed up to first order accuracy
from the lattice Boltzmann variables. For the computation of S(k), we choose

S(k) = − 3
2τh2

∑

i

ci ⊗ ci(fi − feq
i )(t, xk) + O(h). (21)

For the jump [S] we can extract information from the interface condition. First,
because the velocity field is assumed to be smooth in each phase and Lipschitz
continuous across the interface, the tangential components of the velocity derivative
do not jump

[(t1 · ∇)u] = 0, [(t2 · ∇)u] = 0.

Expressed in terms of [S], we find

[S] : t1 ⊗ t1 = 0, [S] : t1 ⊗ t2 = 0, [S] : t2 ⊗ t1 = 0, [S] : t2 ⊗ t2 = 0. (22)

We remark that (22) expresses four components of the matrix representation of [S]
with respect to the local basis (t1, t2, n). In fact, any matrix B can be expressed
with respect to some orthonormal basis (b1, b2, b3) in the form

B =
3∑

k,l=1

(B : bk ⊗ bl)bk ⊗ bl

which follows easily by applying the right hand side to a general vector x and using
Einstein’s summation convention

(B : bk ⊗ bl)bk ⊗ bl x = (B : bk ⊗ bl)bk(x · bl) = (B : bl ⊗ x)bk

= trace(BxbT
k )bk = ((Bx) · bk)bk = Bx.
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Moreover, we have for any B and general vectors a, b

B : a⊗ b = trace(BabT ) = (Ba) · b = a · (BT b) = BT : b⊗ a

Noting that [S] = [S]T , we obtain with (22)

[S] = ([S] : n⊗ n)n⊗ n +
2∑

k=1

([S] : n⊗ tk)(n⊗ tk + tk ⊗ n)

so that the required product with Λi is

Λi : [S] = ([S] : n⊗ n)((n · ci)2 − |ci|2/3) +
2∑

k=1

2([S] : n⊗ tk)(n · ci)(tk · ci). (23)

The remaining three components of [S] with respect to the basis (t1, t2, n) are related
to the stress conditions at the interface. Using [T ] = −[p]I + 2[µS], we first note
that

[µS] : n⊗ n = [p] + 2κσ, [µS] : n⊗ tk = 0, k = 1, 2.

Then, using the relation [µS] = [µ]S̄ + µ̄[S] with averages S̄ = 1
2(S(1) + S(2)) and

µ̄ = 1
2(µ(1) + µ(2)), we find

[S] : n⊗ n =
1
2µ̄

(
[p] + 2σκ

)− [µ]
µ̄

S̄ : n⊗ n,

[S] : n⊗ tk = − [µ]
µ̄

S̄ : n⊗ tk.

(24)

Algorithm for LBM interface boundary conditions:
The product Λi : [S] is computed with (23) and (24) using the curvature information,
the approximated pressure jump

[p] ≈ 1
3h2

(ρ(x1, t)%(1) − ρ(x2, t)%(2))

and the averaged symmetric velocity gradient S̄ = (S(1) +S(2))/2 with S(i) obtained
approximately according to (21). Again Using (21), also the required product Λi :
S(2) is approximated. Combined with the prefactors involving the scaled interface
distance q, the quantity Ri in (20) is completely determined in terms of the lattice
Boltzmann variables and can be used in (19) in connection with the interpolated
velocity ũ.

The consistency of this interface condition can be checked using the asymptotic
expansion approach presented in [21]. The basic idea is to insert the truncated
expansion (8) into the interface condition and Taylor expand the expression around
the interface point x̃. In these expansions, one has to work with the appropriate left
and right derivatives because, in general, derivatives jump across the interface. The
expansion of fi and ũ in (19) at x̃ yields

6(1−q)hf∗i ci([uNS]+h[vOT ])−6h2f∗i Λi : (q(1−q)[SNS]+(q−1/2)S(2)
NS) = Ri +O(h3)
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Since Ri contains no first order contributions in h, we conclude that ci · [uNS] = 0 for
all directions ci crossing the interface so that [u] = 0. Similarly, the jump condition
for the field vOT , which satisfies a homogeneous linearised Navier-Stokes equation,
turns out to be [vOT ] = 0 because Ri contains only quadratic expressions in ci. Next,
the term involving S

(2)
NS cancels with the associated approximation contained in Ri.

The remaining equality between Λi : [SNS] and the corresponding term in Ri implies
the stress conditions.

Remark 1 The derivation of the new interface conditions is not restricted to the
choice of the D3Q15 model in our implementation. For simualations in three di-
mensions, other lattice Boltzmann models, e.g. D319 or D3Q27, could alternatively
be used. This affects the number of links intersecting the interface and, hence, the
amount of data computed at the interface. For these models the runtime would, in
general, slightly increase.

5.2 Refill methods

Since we are dealing with a free-surface problem, fluid nodes can change their type
(from fluid 1 to fluid 2, and vice versa) when the interface Γt moves. Then the popu-
lations have to be reinitialised or refilled. Different procedures for accomplishing this
refill have been proposed and analysed in [5, 6]. We choose the Equilibrium/Non-
equilibrium refill, which produced the best results in these tests. The refill procedure
consists of four steps:

1. Interpolate density and velocity from interior neighbours.

2. Compute the corresponding equilibrium.

3. Copy the nonequilibrium part from a direct interior neighbour.

4. Reinitialise by adding equilibrium and nonequilibrium parts.

Suppose we choose an inward pointing direction ci in a boundary point x = xb ∈ Ω1,
e.g. the direction of smallest angle with the surface normal. Then the density is
interpolated using the three nearest neighbours in the interior of subdomain Ω1:

ρ̃ = 3ρ(x− ci, t + 1)− 3ρ(x− 2ci, t + 1) + ρ(x− 3ci, t + 1).

Interpolation of the velocity uses two neighbours and the velocity uΓ at the interface
point xΓ, which is taken from the level set method:

ũ =
2

q2 + 3q + 2
uΓ +

2q

q + 1
u(x− ci, t + 1) +

2q

q + 2
u(x− 2ci, t + 1).

Here, q = ||xΓ − x1||/||ci|| is the distance to the interface normalised by the link
length. The new equilibrium f eq

i (ρ̃, ũ) is then added to the nonequilibrium part
copied from the direct neighbour, fneq

i (x− ci, t + 1). Of course, the same procedure
is also applied in the second subdomain Ω2.
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5.3 Coupling of the two methods

A simulation is started by creating the initial interface Γ0 from a triangulation
in stereo lithographic format (STL). The level set code then creates the surface
description for LBM: the links intersecting the interface, the normalised distance q
along the links, the normal, the tangential vectors t1, t2, and the principal curvatures
κ1, κ2. Moreover, the velocity of the intersection point is passed. With this data the
LBM computes the flow field and applies the new boundary condition to couple the
two fluid phases. After a prescribed number of time steps, LBM passes the current
velocity field to the level set code. The level set function is conveyed according to
this field over the same time interval and passes the new geometry information to
LBM. This completes a step of the combined algorithm and the simulation proceeds
by alternating LBM and the level set method until termination.

m

LBM

m−1

q, n, v, ... 

surface motion

u, F, ...

Figure 2: Data exchange between LBM and the level set method at time step n.
LBM passes the current flow field u, while the level set method computes the de-
scription for new surface points (e.g. distance q, normal n, velocity v).

6 Numerical Results and Examples

In this section we test the lattice Boltzmann method coupled with the level set
method in a few different situations. First, channel flows of two immiscible fluid
layers with known analytical solution are simulated. Then we verify the correct
implementation of surface tension in the Young-Laplace bubble experiment. Finally,
in a Hele-Shaw cell, interface motion in viscous fingering experiments is investigated.

6.1 Couette and Poiseuille channel flows

We simulated channel flows with two fluid layers in a channel along the x-axis. In
this case the analytical solution only depends on the ratio of dynamic viscosities.
Furthermore, the presence of surface tension should have a stabilising effect on the
interface, which in this setup is subject to viscous stresses, and preserve its flat
shape.

First we simulated a Couette flow with fixed lower wall at y = −1 and upper wall
at y = 1 moving with constant velocity v0 = 0.16 in x-direction. At the walls no-slip
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Figure 3: Velocity profile for a Couette channel flow with viscosities µ1 = 4
6 (left,

x < 0) and µ2 = 1
6 (right, x > 0).

boundary conditions were implemented using the bounce back method, and periodic
boundary conditions were applied at the inflow and outflow. The densities of the
fluids were ρ1 = ρ2 = 1 and the surface tension coefficient was σ = 0.016. Starting
with fluids at rest, after an initial phase the flow should approach a stationary
solution. By imposing continuity of the velocity [v] = 0 and the shear stress [µ∂xv] =
0, a linear velocity profile was derived from the Navier-Stokes equations

v(x) =





v0

( µ1

µ1+µ2
x + µ2

µ1+µ2

)
, x ≥ 0,

v0

( µ2

µ1+µ2
x + µ2

µ1+µ2

)
, x < 0,

where µ1 denotes the dynamic viscosity in the lower fluid and µ2 the viscosity in
upper fluid. We simulated the flow in a quadratic domain [−1, 1]2 in the xy-plane
with N nodes in x- and y-direction. In the 3D code we used 8 nodes in z-direction
and imposed periodic boundary conditions along this axis. Figure 3 shows excellent
agreement with the analytical solution of the resulting velocity profile on a grid with
N = 32 nodes across the channel after T = 1000 time steps. This is also confirmed
by the convergence analysis in Figure 4. In the figure the relative velocity error in
the maximum norm

e∞ =
maxi |vi − v(xi)|

maxi |v(xi)|
is plotted versus the grid spacing h = 2

N for N = 16, 32, 64, 128. As expected, our
numerical experiments also showed that results were independent of σ. Moreover,
flows with different density values, in particular ratios up to 1:1000, could be sim-
ulated and produced the same results when the kinematic viscosities in the LBM
were adjusted accordingly to simulate given dynamic viscosities.

As a second example we considered two-phase Poiseuille flows. Here, both walls
(y = 1 and y = −1) were at rest and the flow was driven by a pressure difference
∆p0. At the walls we used bounce back no-slip boundary conditions and pressure
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Figure 4: Grid convergence for Couette channel flows with three different viscosity
ratios: 1 : 4, 1 : 20, and 1 : 100.

boundary conditions were applied at the inflow and outflow. The densities and
the surface tension coefficient were the same as before. The stationary solution
of the Navier-Stokes equations consists of two quadratic velocity profiles matched
continuously at the interface

v(x) =





∆p0

2µ2

(
x2 − µ1−µ2

µ1+µ2
x− 2µ2

µ1+µ2

)
, x ≥ 0,

∆p0

2µ1

(
x2 − µ1−µ2

µ1+µ2
x− 2µ1

µ1+µ2

)
, x < 0.

A comparsion of the numerical and analytical velocity along the x-direction for a
grid with N = 64 nodes across the channel after T = 1000 time steps is displayed
in Figure 5.

An error analysis in Figure 6 reveals that convergence deteriorates when the
viscosity ratio becomes large. This indicates that higher grid resolution is necessary
to observe grid convergence when the viscosities differ significantly.

6.2 Young-Laplace experiment for a bubble

To validate the implementation of surface tension in the new method we used the
Young-Laplace experiment for the pressure difference inside a bubble as a benchmark
problem. The pressure p inside a spherical bubble of radius r surrounded by a
second fluid is proportional to the surface tension coefficient σ according to the
Young-Laplace law

p =
2σ

r
= 2σκ, mean curvature κ =

1
2
(κ1 + κ2). (25)

We consider a unit cube [0, 1]3 containing a bubble of radius r = 0.25 at the
centre. For the simulations we used an equidistant grid of N nodes in each co-
ordinate direction and periodic boundary conditions at the sides of the cube. The
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Figure 5: Velocity profile for a Poiseuille channel flow with viscosities µ1 = 0.4 (left)
and µ2 = 0.1 (right).
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viscosities were chosen equal, νi = 1/6, and the densities were ρ1 = 1 and ρ2 = 1000.
Simulations were started with zero pressure difference and stopped when the initial
fluctuations were reduced sufficiently.

Figure 7 shows a time series of initial pressure oscillations, which are in gen-
eral quickly damped until the final value is attained when the viscosities are not
exceedingly high. For our choice of viscosity it could be assumed that oscillations
had sufficiently subsided when simulations were stopped at t = 500 on a grid with
N = 16 (correspondingly, according to the diffusive scaling, t = 2000 for N = 32,
and t = 8000 for N = 64). Grid convergence of the pressure error is shown in Figure
8. We note that the order of convergence is influenced by the order of the curva-
ture reconstruction. This is expected since the Young-Laplace pressure is sensitive
to curvature errors produced by the level set method. For the orders 3 and 4 in
curvature reconstruction we observe approximately second order convergence of the
pressure.

A numerical artifact observed with many numerical methods is the appearance
of spurious currents at the interface. This is true in our case as well. Figure 9 shows
an example for N = 32. However, the spurious currents decrease when the grid is
refined and convergence in the maximum norm can be established. In particular,
for curvature reconstruction of order 3 and 4, first order convergence is achieved.

In [39] it has been verified that the capillary number Ca = νρ1U/σ correspond-
ing to the velocity U of the spurious currents is constant with respect to the non-
dimensional Laplace number La = rσρ/µ2. This could also be confirmed in our
simulations. We varied the surface tension σ and recorded the maximum norm of
the spurious velocities on a grid with N = 16. The results using curvature recon-
structions of order 2, 3, and 4, respectively, are summarised in Table 1. For higher
curvature orders the spurious velocities and hence the capillary number become
smaller, but within each of the three sets of simulations Ca has approximately the
same value. We note that simulations with high density ratios or kinetic viscosity
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Figure 9: (Left) Spurious velocities at the interface. (Right) Grid convergence for
spurious currents at the interface for surface reconstruction orders 2 (-.), 3 (- -) and
4 (-).

order 2 order 3 order 4
σ U Ca U Ca U Ca

10−3 8.1949(−8) 1.3658(−5) 4.3563(−8) 7.2605(−6) 1.8941(−8) 3.1568(−6)
10−4 8.1971(−9) 1.3662(−5) 4.3557(−9) 7.2595(−6) 1.8947(−9) 3.1578(−6)
10−5 8.1974(−10) 1.3662(−5) 4.3557(−10) 7.2595(−6) 1.8947(−10) 3.1578(−6)
10−6 8.1974(−11) 1.3662(−5) 4.3557(−11) 7.2595(−6) 1.8947(−11) 3.1578(−6)

Table 1: Independence of Ca from σ (and therfore from La). Results for three
different orders of curvature reconstruction.
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ratios can be successfully performed. However, accuracy deteriorates and spurious
currents increase when the ratio attains excessively large values. Moreover, our nu-
merical experiments indicate that the results depend also on internal parameters of
the implementation, e.g. the grid refinement of the level set grid with respect to the
LBM grid or the order of curvature reconstruction for the calculation of curvature
in the level set method. Based on this experience we feel that using third order
curvature and a level set grid that coincides with the LBM grid produces the best
results. The accuracy of the triangulation used to initialise the level set function
turned out not to be of significant importance for the result at the final time.

6.3 Viscous fingering

When a fluid of low viscosity pushes a second fluid of high viscosity owing to a
pressure gradient or to gravity, the interface is prone to instabilities which lead to
the penetration of the first fluid into the domain of the second in the form of a finger
or tongue. A prime example is the use of water to drive oil out of porous rocks (see
[44]). An experimental model setup for the study of the so-called viscous fingering
is the Hele-Shaw cell where the flow domain consists of a narrow gap between two
parallel plates. It was first described by Hele-Shaw [13] and the analysis of the
fingering instability started with the seminal paper of Saffman and Taylor [31] .
Since the governing equations for the gap-averaged velocity are similar to Darcy’s
law, the Hele-Shaw cell also serves as a 2D model for flow through porous media,
where the flow is governed by Darcy’s law. The investigation of interface formation
in immiscible flows with and without surface tension effects has revealed that this can
be used as a generic model problem for analytical studies as well as for benchmarking
numerical simulations of free surfaces [7, 14, 48, 25, 30]

In our simulations we considered the flow in the narrow gap between the plates
and investigated the finger by assuming that the tip can be fitted by an exponential
shape as described in [30]. We used a channel [0, 32]× [−1, 1] with aspect ratio 16:1
using 16N grid points in x-direction, and N in y-direction. At the inlet (outlet),
a pressure pin = 0.032 (pout = −0.032) was applied in x-direction to simulate a
pressure gradient. At the walls (y = ±1) we imposed the usual no-slip boundary
conditions. In z-direction periodic boundary conditions were applied. An initial
interface perturbation in the form of a sine shape, y(x) = 1 + 0.5 cos(πx), was
prescribed at the beginning. We assumed a driving fluid of viscosity ν1 = 0.1 and
a second fluid of higher viscosity ν2 = 1. The densities of the fluids were the same,
ρ1 = ρ2 = 1, and a surface tension coefficient σ = 0.016 was chosen.

Figure 10 shows the contour of the resulting viscous finger at several time steps.
The velocity of the finger tip was U = 0.032 and the corresponding capillary number
was Ca = ρ2ν2U/σ = 2. An exponential function is plotted for comparison using an
ansatz in the form

y(x) = ±(ek(x−x0)) − β),

with parameters β = 0.67, taken from Figure 7 in [30], and q = 0.7165 obtained
from the relation

2q − sin 2q + Ca(4q2 − 4 cos2 q) = 0,
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Figure 10: Viscous fingers at time steps t = 15000, 30000 and 60000.

such that k = q/(1 − β) = 2.1712. For x0 we take the position of the finger tip.
In the plots of the finger tips, good agreement with the expected exponential shape
is observed. In this simulation the interface experiences strong deformation and
stretching. We compared the volume of the two fluid phases over the course of
the fingering experiment with the volume influx at the inlet. It revealed that there
was excellent agreement of the recorded volume with the predicted volume from the
influx with a deviation of less than 1%.

Remark 2 In all the simulations presented here mass no mass conservation prob-
lems appeared. However, we report that mass loss was observed when studying rising
bubbles. In this situation mass correction as discribed above was necessary. These
results will be presented in a subsequent publication.

In the simulation it was furthermore observed that the points on left which
touched the walls moved slightly to the right. This numerical artifact was produced
by the fact that the wall did not lie on the cell centres but on cell edges. Owing to
the domain periodicity in the level set method, the velocity extrapolation did not
produce zero velocity of the level set function at the wall. The artifact was corrected
in a post-processing step by shifting the finger shape to the left. We note, moreover,
that the finger width coincides better with the theoretical value at points further
away from the tip. This reflects the fact that the asymptotic analysis leading to the
exponential shape assumes an infinitely long finger [30].

To check the correctness of the shape obtained on this rather coarse grid, we
computed the results on two finer grids with N = 32 and N = 64, respectively, and
confirmed the grid convergence of the finger shape (Figure 11).
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Figure 11: Grid convergence of the finger shape.

7 Summary and Conclusions

We have developed a lattice Boltzmann method for immiscible two-phase flows which
modifies the populations at the interface such that the interface conditions for the
macroscopic quantities e.g. velocity u, pressure p and stress S, and surface tension
effects are naturally incorporated in the LBM framework. Coupled with the level set
method, which handles interface evolution, the new algorithm allows for the com-
putation of flows with complex geometrical features and large viscosity and density
differences. Numerical results for typical two-phase flow problems demonstrate the
validity of this approach and verify its stability and accuracy.

In contrast to conventional approaches for immiscible multiphase flows and sur-
face tension in the LBM framework, e.g. the colour gradient method of Gunstensen
et al. [16, 17], or the approach of Shan and Chen [36, 37], in the new method, phase
boundaries are represented by sharp interfaces separating the different fluid phases.
In this way the typical interface smearing effect of these methods is completely
avoided. Interfaces are described by the level set function and moved according to
the flow in the lattice Boltzmann model using the level set method. In this way
several drawbacks of previous methods are overcome. In particular, the colour gra-
dient method is only applicable when density differences are small and it exhibits
grid-dependent perturbations of the interface which cannot be removed in the LBM
framework [23]. The method of Chen and Shan suffers, among other things, from
mass losses. This is also true for the level set method, but various strategies have
been presented in the literature which successfully remedy this numerical problem.
As an alternative to the mass correction presented here a particle level set method
could be used. This will be investigated in future work.

Additionally, the new approach has the computational advantage of smaller
memory requirements since only one set of populations is needed in LBM, while
in the colour gradient method each phase has its own populations. In the approach
of Shan and Chen the potential field has to be stored on the whole 3D grid, whereas
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we use the memory efficient narrow band technique, which effectively stores and
computes the level set function only in a small layer around the interface, for the
level set method [1].

In comparion with the the hybrid LBM in [24], we mention, in particular, that
our new approach is also able to simulate flow in complex geometries with high
density and viscosity differences. Moreover, the level set method is well suited for
topology changes while this is not easily accomplished using particle methods like
front-tracking.

Future work in the realm of free-surface multiphase flows will focus on appli-
cations of the method to the simulation of Rayleigh-Taylor instability and bubble
dynamics including break-up and coalescence of bubbles.

References

[1] D. Adalsteinsson, and J. A. Sethian. A fast level set method for propagating
interfaces. J. Comput. Phys., 118(2):269-277, 1995.

[2] D. Adalsteinsson, and J. A. Sethian. The fast construction of Extension Veloc-
ities in Level Set Methods. J. Comput. Phys., 148(2):2-22, 1999.

[3] P. Bhatnagar, E. Gross, and M. Krook. A model for collision processes in gases
I: small amplitude processes in charged and neutral one-component systems.
Phys. Rev., 94:511, 1954.

[4] M. Bouzidi, M. Firdaouss, and P. Lallemand. Momentum transfer of a
Boltzmann-lattice fluid with boundaries. Physics of Fluids, 13(11):3452-3458,
2001.

[5] A. Caiazzo. Asymptotic Analysis of lattice Boltzmann method for Fluid-
Structure interaction problems. PhD Thesis, Kaiserslautern (Germany) and
Pisa (Italy), 2007.

[6] A. Caiazzo. Analysis of lattice Boltzmann nodes initialisation in Moving Bound-
ary problems. submitted to Progress in Computional Fluid Dynamics, 2007.

[7] J. Casademunt. Viscous fingering as a paradigm of interfacial pattern formation:
Recent results and new challenges. Chaos, 14(3): 809-824, 1997.

[8] H. Chen, S. Chen, and W. Matthaeus. Recovery of the Navier-Stokes equations
using a Lattice-gas Boltzmann method. Physical Review A, 45:5339–5342, 1992.

[9] S. Chen and G.D. Doolen. Lattice Boltzmann method for fluid flows. Ann.
Rev. Fluid Mech., 30:329–364, 1998.

[10] Do Carmo, M.P. Differential geometry of curves and surfaces. = Prentice-Hall,
Englewood cliffs, New jersey, 1976

25



[11] A. De Masi, R. Esposito, and J.L. Lebowitz. Incompressible Navier Stokes and
Euler limits of the Boltzmann equation. CPAM, 42:1189, 1989.

[12] F. H. Harlow, and J. E. Welch. Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface. Phys. Fluids, 8:2182-2189, 1992.

[13] H. J. S. Hele-Shaw. On the motion of a viscous fluid between two parallel plates.
Nature, 58:34-36, 1898.

[14] J. M. Guevara-Jordan, and J. Glimm. A mixed finite element method for Hele-
Shaw cell equations. Comput. Geosciences, 1:35-58, 1997.

[15] A. K. Gunstensen. Lattice-Boltzmann studies of multiphase flow through
porous media. PhD thesis, MIT, 1992.

[16] A. K. Gunstensen, D. H. Rothman, S. Zaleski, and G. Zanetti. Lattice Boltz-
mann model of immiscible fluids. Physical Review A, 43(8):4320-4327, 1991.

[17] A. K. Gunstensen, and D. H. Rothman. Microscopic Modeling of Immiscible
Flows in Three Dimensions by a Lattice Boltzmann Method. Europhys. Lett.,
18(2):157-161, 1998.

[18] Z. Guo, C. Zheng, and B. Shi. An extrapolation method for boundary conditions
in lattice Boltzmann method (sic). Physics of Fluids, 14(6):2007-2010, 2002

[19] X. He and L.S. Luo. Lattice Boltzmann model for the incompressible Navier-
Stokes equation. J. Stat. Phys., 88:927–944, 1997.

[20] LLP07 M. Junk, A. Klar, and L. Luo. Asymptotic Analysis of the Lattice
Boltzmann Equation. J. Comp. Physics, 210(2):676-704, 2005.

[21] M. Junk, and Z. Yang. One-point boundary condition for the lattice Boltzmann
method. Phys. Rev. E, 72, 2005.

[22] M. Junk, and Z. Yang. Outflow boundary conditions for the lattice Boltzmann
method. submitted, 2006.

[23] D. Kehrwald. Numerical Analysis of Immiscible Lattice BGK. Dissertation,
Fachbereich Mathematik, Universität Kaiserslautern, 2002.

[24] P. Lallemand, L. S. Luo, and Y. Peng. A Lattice Boltzmann Front-Tracking
Method for Interface Dynamics with Surface Tension in Two-Dimensions. sub-
mitted, 2007.

[25] J. W. McLean, and P. G. Saffman. The effect of surface tension on the shape
of fingers in a Hele Shaw cell. J. Fluid Mech., 102:455-469, 1980.

[26] S. Osher, and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Springer, New York, 2003.

[27] S. Osher, and J. Sethian. Fronts propagating with curvature-ependent speed:
Algorithms based on Hamilton-Jacobi formulations. J. Comp. Phys., 79:12-49,
1988.

26



[28] S. J. Osher, and G. Tryggvason (editors). Numerical Methods for Multiphase
Flows. J. Comp. Phys. (Special Issue), 169:249-762, 2001.

[29] Y.H. Qian, D. d’Humieres, and P. Lallemand. Lattice BGK models for the
Navier Stokes equation. Europhys. Letters, 17:479-484, 1992.

[30] D. A. Reinelt, and P. G. Saffman. The penetration of a finger into a viscous
fluid in channel and tube. SIAM J. Sci. Stat. Comput., 6(3):542-561, 1985.

[31] P. G. Saffman, and Sir G. Taylor. The penetration of a fluid into a porous
medium or Hele-Shaw cell containing a more viscous liquid. Proc. Roy. Soc. A,
245), 312-329, 1958.

[32] K. Sankaranarayanan, I. G. Kevrekidis, S. Sundaresan, J. Lu, and G. Tryg-
gvason. A comparative study of lattice Boltzmann and front-tracking finite-
difference methods for bubble simulations. Intl. J. Multiphase Flow, 29(1),
109-116, 2003.

[33] R. Scardovelli, and S. Zaleski. Direct numerical simulation of free-surface and
interfacial flow. Ann. Rev. Fluid Mech., 31,567-603, 1999.

[34] J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge
Univ. Press, 1996.

[35] J. A. Sethian, and A. Wiegmann. Structural boundary design via level set and
immersed interface method. J. Comp. Phys. 163:489-528, 2000.

[36] X. Shan and H. Chen. Lattice Boltzmann model for simulating flows with
multiple phases and components. Phys. Rev. E, 47(3):1815, 1993.

[37] X. Shan and H. Chen. Simulation of nonideal gases and liquid-gas phase tran-
sition by the Lattice Boltzmann equation. Phys. Rev. E, 49(4):2941, 1994.

[38] W. Shyy, H. S. Udaykumar, M. M. Rao, and R. W. Smith. Computational
Fluid Dynamics with Moving Boundaries. Taylor & Francis, 1996.

[39] A. Smolianski. Finite-Element/Level-Set/Operator-Splitting (FELSOS) Ap-
proach for Computing Two-Fluid Unsteady Flows with Free Moving Interfaces.
Int. J. Num. Meth. Fluids, 48(3), 231-269, 2005.

[40] M. R. Swift, W. R. Osborn, and J. M. Yeomans. Lattice Boltzmann simulation
of nonideal fluids. Phys. Rev. Letters, 75:830-833, 1995.

[41] M. R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans. Lattice
Boltzmann simulations of liquid-gas and binary fluid systems. Phys. Rev. E,
54(5):5041-5052, 1996.

[42] Sauro Succi. The Lattice Boltzmann Equation for Fluid Dynamics and beyond.
Clarendon Press, Oxford, 2001.

[43] M. Sussmann, A second order coupled level set and volume of fluid for com-
puting growth and collapse of vapor bubbles. J. Comput. Phys., 187:110-136,
2003

27



[44] G. Tryggvason, and H. Aref. Numerical experiments on Hele Shaw flow with a
sharp interface. J. Fluid Mech., 136:1-30, 1983.

[45] G. Tryggvason, B. Brunner, A. Esmaeli, D. Juric, N. Al-Rawahi, W. Tauber,
J. Han, S. Nas, and Y.-J. Jan. A front-tracking method for the computations
of multiphase flow.. J. Comput. Phys., 169(2):708-759, 2001.

[46] A. K. Vaikuntam, and A. Wiegmann Estimation of signed distance functions
from surface triangulations. in preparation, 2007.

[47] A. K. Vaikuntam, and A. Wiegmann Accurate estimation of surface parmeters
from the level set functions by a least squares approach To be submitted to
Journal of Scientific Computation, 2007.

[48] N. Whitaker. Some Numerical Methods for the Hele-Shaw Equations. J. Com-
put. Phys., 111:81-88, 1993.

[49] D. A. Wolf-Gladow. Lattice-Gas Cellular Automata and Lattice Boltzmann
Models. An Introduction. Springer, 2000.

[50] Q. Zou, and X. He. On pressure and velocity boundary conditions for the lattice
Boltzmann BGK model. Physics of Fluids, 9(6):1591-1597, 1997

28



Published reports of the 
Fraunhofer ITWM

The PDF-files of the following reports 
are available under: 
www.itwm.fraunhofer.de/de/
zentral__berichte/berichte

1.	 D. Hietel, K. Steiner, J. Struckmeier
A Finite - Volume Particle Method for  
Compressible Flows
(19 pages, 1998)

2.	 M. Feldmann, S. Seibold
Damage Diagnosis of Rotors: Application 
of Hilbert Transform and Multi-Hypothe-
sis Testing
Keywords: Hilbert transform, damage diagnosis,  
Kalman filtering, non-linear dynamics
(23 pages, 1998)

3.	 Y. Ben-Haim, S. Seibold
Robust Reliability of Diagnostic Multi- 
Hypothesis Algorithms: Application to  
Rotating Machinery
Keywords: Robust reliability, convex models, Kalman fil-
tering, multi-hypothesis diagnosis, rotating machinery, 
crack diagnosis
(24 pages, 1998)

4.	 F.-Th. Lentes, N. Siedow
Three-dimensional Radiative Heat Transfer 
in Glass Cooling Processes
(23 pages, 1998)

5.	 A. Klar, R. Wegener
A hierarchy of models for multilane vehicu-
lar traffic  
Part I: Modeling
(23 pages, 1998)

Part II: Numerical and stochastic investigations
(17 pages, 1998)

6.	 A. Klar, N. Siedow
Boundary Layers and Domain Decompos-
ition for Radiative Heat Transfer and Diffu-
sion Equations: Applications to Glass Manu-
facturing Processes
(24 pages, 1998)

7.	 I. Choquet
Heterogeneous catalysis modelling and  
numerical simulation in rarified gas flows 
Part I: Coverage locally at equilibrium 
(24 pages, 1998)

8.	 J. Ohser, B. Steinbach, C. Lang
Efficient Texture Analysis of Binary Images
(17 pages, 1998)

9.	 J. Orlik
Homogenization for viscoelasticity of the  
integral type with aging and shrinkage
(20 pages, 1998)

10.	 J. Mohring
Helmholtz Resonators with Large Aperture
(21 pages, 1998)

11.	 H. W. Hamacher, A. Schöbel
On Center Cycles in Grid Graphs
(15 pages, 1998)

12.	 H. W. Hamacher, K.-H. Küfer
Inverse radiation therapy planning -  
a multiple objective optimisation approach
(14 pages, 1999)

13.	 C. Lang, J. Ohser, R. Hilfer
On the Analysis of Spatial Binary Images
(20 pages, 1999)

14.	 M. Junk
On the Construction of Discrete Equilibrium 
Distributions for Kinetic Schemes
(24 pages, 1999)

15.	 M. Junk, S. V. Raghurame Rao
A new discrete velocity method for Navier-
Stokes equations
(20 pages, 1999)

16.	 H. Neunzert
Mathematics as a Key to Key Technologies
(39 pages (4 PDF-Files), 1999)

17.	 J. Ohser, K. Sandau
Considerations about the Estimation of the 
Size Distribution in Wicksell’s Corpuscle 
Problem
(18 pages, 1999)

18.	 E. Carrizosa, H. W. Hamacher, R. Klein,  
S. Nickel

Solving nonconvex planar location prob-
lems by finite dominating sets
Keywords: Continuous Location, Polyhedral Gauges,  
Finite Dominating Sets, Approximation, Sandwich Algo-
rithm, Greedy Algorithm
(19 pages, 2000)

19.	 A. Becker
A Review on Image Distortion Measures
Keywords: Distortion measure, human visual system
(26 pages, 2000)

20.	 H. W. Hamacher, M. Labbé, S. Nickel,  
T. Sonneborn

Polyhedral Properties of the Uncapacitated 
Multiple Allocation Hub Location Problem 
Keywords: integer programming, hub location, facility 
location, valid inequalities, facets, branch and cut
(21 pages, 2000)

21.	 H. W. Hamacher, A. Schöbel
Design of Zone Tariff Systems in Public 
Transportation
(30 pages, 2001)

22.	 D. Hietel, M. Junk, R. Keck, D. Teleaga
The Finite-Volume-Particle Method for  
Conservation Laws
(16 pages, 2001)

23.	 T. Bender, H. Hennes, J. Kalcsics, M. T. Melo, 
S. Nickel

Location Software and Interface with GIS 
and Supply Chain Management
Keywords: facility location, software development, 
geographical information systems, supply chain man-
agement
(48 pages, 2001)

24.	 H. W. Hamacher, S. A. Tjandra
Mathematical Modelling of Evacuation  
Problems: A State of Art
(44 pages, 2001)

25.	 J. Kuhnert, S. Tiwari
Grid free method for solving the Poisson 
equation
Keywords: Poisson equation, Least squares method,  
Grid free method
(19 pages, 2001)

26.	 T. Götz, H. Rave, D. Reinel-Bitzer,  
K. Steiner, H. Tiemeier

Simulation of the fiber spinning process
Keywords: Melt spinning, fiber model, Lattice 
Boltzmann, CFD
(19 pages, 2001)

27.	 A. Zemitis 
On interaction of a liquid film with an obstacle
Keywords: impinging jets, liquid film, models, numeri-
cal solution, shape
(22 pages, 2001)

28.	 I. Ginzburg, K. Steiner
Free surface lattice-Boltzmann method to 
model the filling of expanding cavities by 
Bingham Fluids
Keywords: Generalized LBE, free-surface phenomena, 
interface boundary conditions, filling processes, Bing-
ham viscoplastic model, regularized models
(22 pages, 2001)

29.	 H. Neunzert
»Denn nichts ist für den Menschen als Men-
schen etwas wert, was er nicht mit Leiden-
schaft tun kann« 
Vortrag anlässlich der Verleihung des 
Akademiepreises des Landes Rheinland-
Pfalz am 21.11.2001
Keywords: Lehre, Forschung, angewandte Mathematik, 
Mehrskalenanalyse, Strömungsmechanik
(18 pages, 2001)

30.	 J. Kuhnert, S. Tiwari
Finite pointset method based on the projec-
tion method for simulations of the incom-
pressible Navier-Stokes equations
Keywords: Incompressible Navier-Stokes equations, 
Meshfree method, Projection method, Particle scheme, 
Least squares approximation  
AMS subject classification: 76D05, 76M28
(25 pages, 2001)

31.	 R. Korn, M. Krekel
Optimal Portfolios with Fixed Consumption 
or Income Streams
Keywords: Portfolio optimisation, stochastic control, 
HJB equation, discretisation of control problems
(23 pages, 2002)

32.	 M. Krekel
Optimal portfolios with a loan dependent 
credit spread
Keywords: Portfolio optimisation, stochastic control, 
HJB equation, credit spread, log utility, power utility, 
non-linear wealth dynamics
(25 pages, 2002)

33.	 J. Ohser, W. Nagel, K. Schladitz
The Euler number of discretized sets – on the 
choice of adjacency in homogeneous lattices 
Keywords: image analysis, Euler number, neighborhod 
relationships, cuboidal lattice
(32 pages, 2002)



34.	 I. Ginzburg, K. Steiner 
Lattice Boltzmann Model for Free-Surface 
flow and Its Application to Filling Process in 
Casting 
Keywords: Lattice Boltzmann models; free-surface phe-
nomena; interface boundary conditions; filling pro-
cesses; injection molding; volume of fluid method; in-
terface boundary conditions; advection-schemes; up-
wind-schemes
(54 pages, 2002)

35.	 M. Günther, A. Klar, T. Materne, R. Wegener
Multivalued fundamental diagrams and stop 
and go waves for continuum traffic equations
Keywords: traffic flow, macroscopic equations, kinetic 
derivation, multivalued fundamental diagram, stop and 
go waves, phase transitions
(25 pages, 2002)

36.	 S. Feldmann, P. Lang, D. Prätzel-Wolters
Parameter influence on the zeros of net-
work determinants
Keywords: Networks, Equicofactor matrix polynomials, 
Realization theory, Matrix perturbation theory
(30 pages, 2002)

37.	 K. Koch, J. Ohser, K. Schladitz 
Spectral theory for random closed sets and es
timating the covariance via frequency space
Keywords: Random set, Bartlett spectrum, fast Fourier 
transform, power spectrum
(28 pages, 2002)

38.	 D. d’Humières, I. Ginzburg
Multi-reflection boundary conditions for  
lattice Boltzmann models
Keywords: lattice Boltzmann equation, boudary condis-
tions, bounce-back rule, Navier-Stokes equation
(72 pages, 2002)

39.	 R. Korn
Elementare Finanzmathematik
Keywords: Finanzmathematik, Aktien, Optionen, Port
folio-Optimierung, Börse, Lehrerweiterbildung, Mathe-
matikunterricht
(98 pages, 2002)

40.	 J. Kallrath, M. C. Müller, S. Nickel
Batch Presorting Problems: 
Models and Complexity Results
Keywords: Complexity theory, Integer programming, 
Assigment, Logistics
(19 pages, 2002)

41.	 J. Linn
On the frame-invariant description of the 
phase space of the Folgar-Tucker equation 
Key words: fiber orientation, Folgar-Tucker equation, in-
jection molding
(5 pages, 2003)

42.	 T. Hanne, S. Nickel 
A Multi-Objective Evolutionary Algorithm 
for Scheduling and Inspection Planning in 
Software Development Projects 
Key words: multiple objective programming, project 
management and scheduling, software development, 
evolutionary algorithms, efficient set
(29 pages, 2003)

43.	 T. Bortfeld , K.-H. Küfer, M. Monz,  
A. Scherrer, C. Thieke, H. Trinkaus

Intensity-Modulated Radiotherapy - A Large 
Scale Multi-Criteria Programming Problem 
Keywords: multiple criteria optimization, representa-
tive systems of Pareto solutions, adaptive triangulation, 
clustering and disaggregation techniques, visualization 
of Pareto solutions, medical physics, external beam ra-
diotherapy planning, intensity modulated radiotherapy
(31 pages, 2003)

44.	 T. Halfmann, T. Wichmann
Overview of Symbolic Methods in Industrial 
Analog Circuit Design 
Keywords: CAD, automated analog circuit design, sym-
bolic analysis, computer algebra, behavioral modeling, 
system simulation, circuit sizing, macro modeling, dif-
ferential-algebraic equations, index
(17 pages, 2003)

45.	 S. E. Mikhailov, J. Orlik
Asymptotic Homogenisation in Strength 
and Fatigue Durability Analysis of Compos-
ites
Keywords: multiscale structures, asymptotic homoge-
nization, strength, fatigue, singularity, non-local con-
ditions
(14 pages, 2003)

46.	 P. Domínguez-Marín, P. Hansen,  
N. Mladenovi ́c , S. Nickel

Heuristic Procedures for Solving the  
Discrete Ordered Median Problem
Keywords: genetic algorithms, variable neighborhood 
search, discrete facility location
(31 pages, 2003)

47.	 N. Boland, P. Domínguez-Marín, S. Nickel,  
J. Puerto

Exact Procedures for Solving the Discrete 
Ordered Median Problem
Keywords: discrete location, Integer programming
(41 pages, 2003)

48.	 S. Feldmann, P. Lang
Padé-like reduction of stable discrete linear 
systems preserving their stability 
Keywords: Discrete linear systems, model reduction, 
stability, Hankel matrix, Stein equation
(16 pages, 2003)

49.	 J. Kallrath, S. Nickel
A Polynomial Case of the Batch Presorting 
Problem 
Keywords: batch presorting problem, online optimization, 
competetive analysis, polynomial algorithms, logistics
(17 pages, 2003)

50.	 T. Hanne, H. L. Trinkaus
knowCube for MCDM –  
Visual and Interactive Support for  
Multicriteria Decision Making
Key words: Multicriteria decision making, knowledge 
management, decision support systems, visual interfac-
es, interactive navigation, real-life applications.
(26 pages, 2003)

51.	 O. Iliev, V. Laptev
On Numerical Simulation of Flow Through 
Oil Filters
Keywords: oil filters, coupled flow in plain and porous 
media, Navier-Stokes, Brinkman, numerical simulation
(8 pages, 2003)

52.	 W. Dörfler, O. Iliev, D. Stoyanov, D. Vassileva
On a Multigrid Adaptive Refinement Solver 
for Saturated Non-Newtonian Flow in  
Porous Media
Keywords: Nonlinear multigrid, adaptive refinement, 
non-Newtonian flow in porous media
(17 pages, 2003)

53.	 S. Kruse
On the Pricing of Forward Starting Options 
under Stochastic Volatility
Keywords: Option pricing, forward starting options, 
Heston model, stochastic volatility, cliquet options
(11 pages, 2003)

54.	 O. Iliev, D. Stoyanov
Multigrid – adaptive local refinement solver 
for incompressible flows
Keywords: Navier-Stokes equations, incompressible flow, 
projection-type splitting, SIMPLE, multigrid methods, 
adaptive local refinement, lid-driven flow in a cavity 
(37 pages, 2003)

55.	 V. Starikovicius 
The multiphase flow and heat transfer in 
porous media 
Keywords: Two-phase flow in porous media, various 
formulations, global pressure, multiphase mixture mod-
el, numerical simulation
(30 pages, 2003)

56.	 P. Lang, A. Sarishvili, A. Wirsen
Blocked neural networks for knowledge ex-
traction in the software development process
Keywords: Blocked Neural Networks, Nonlinear Regres-
sion, Knowledge Extraction, Code Inspection
(21 pages, 2003)

57.	 H. Knaf, P. Lang, S. Zeiser 
Diagnosis aiding in Regulation 
Thermography using Fuzzy Logic 
Keywords: fuzzy logic,knowledge representation,  
expert system
(22 pages, 2003)

58.	 M. T. Melo, S. Nickel, F. Saldanha da Gama
Largescale models for dynamic multi
commodity capacitated facility location 
Keywords: supply chain management, strategic  
planning, dynamic location, modeling
(40 pages, 2003)

59.	 J. Orlik 
Homogenization for contact problems with 
periodically rough surfaces
Keywords: asymptotic homogenization, contact problems
(28 pages, 2004)

60.	 A. Scherrer, K.-H. Küfer, M. Monz,  
F. Alonso, T. Bortfeld

IMRT planning on adaptive volume struc-
tures – a significant advance of computa-
tional complexity
Keywords: Intensity-modulated radiation therapy 
(IMRT), inverse treatment planning, adaptive volume 
structures, hierarchical clustering, local refinement, 
adaptive clustering, convex programming, mesh gener-
ation, multi-grid methods
(24 pages, 2004)

61.	 D. Kehrwald
Parallel lattice Boltzmann simulation  
of complex flows
Keywords: Lattice Boltzmann methods, parallel com-
puting, microstructure simulation, virtual material de-
sign, pseudo-plastic fluids, liquid composite moulding
(12 pages, 2004)

62.	 O. Iliev, J. Linn, M. Moog, D. Niedziela,  
V. Starikovicius

On the Performance of Certain Iterative 
Solvers for Coupled Systems Arising in Dis-
cretization of Non-Newtonian Flow Equa-
tions
Keywords: Performance of iterative solvers, Precondi-
tioners, Non-Newtonian flow
(17 pages, 2004)

63.	 R. Ciegis, O. Iliev, S. Rief, K. Steiner 
On Modelling and Simulation of Different 
Regimes for Liquid Polymer Moulding 
Keywords: Liquid Polymer Moulding, Modelling, Simu-
lation, Infiltration, Front Propagation, non-Newtonian 
flow in porous media 
(43 pages, 2004)



64.	 T. Hanne, H. Neu
Simulating Human Resources in  
Software Development Processes
Keywords: Human resource modeling, software pro-
cess, productivity, human factors, learning curve
(14 pages, 2004)

65.	 O. Iliev, A. Mikelic, P. Popov
Fluid structure interaction problems in de-
formable porous media: Toward permeabil-
ity of deformable porous media
Keywords: fluid-structure interaction, deformable po-
rous media, upscaling, linear elasticity, stokes, finite el-
ements
(28 pages, 2004)

66.	 F. Gaspar, O. Iliev, F. Lisbona, A. Naumovich, 
P. Vabishchevich 

On numerical solution of 1-D poroelasticity 
equations in a multilayered domain
Keywords: poroelasticity, multilayered material, finite 
volume discretization, MAC type grid
(41 pages, 2004)

67.	 J. Ohser, K. Schladitz, K. Koch, M. Nöthe
Diffraction by image processing and its ap-
plication in materials science
Keywords: porous microstructure, image analysis, ran-
dom set, fast Fourier transform, power spectrum, 
Bartlett spectrum
(13 pages, 2004)

68.	 H. Neunzert
Mathematics as a Technology: Challenges 
for the next 10 Years
Keywords: applied mathematics, technology, modelling, 
simulation, visualization, optimization, glass processing, 
spinning processes, fiber-fluid interaction, trubulence 
effects, topological optimization, multicriteria optimiza-
tion, Uncertainty and Risk, financial mathematics, Mal-
liavin calculus, Monte-Carlo methods, virtual material 
design, filtration, bio-informatics, system biology
(29 pages, 2004)

69.	 R. Ewing, O. Iliev, R. Lazarov, A. Naumovich
On convergence of certain finite difference 
discretizations for 1D poroelasticity inter-
face problems 
Keywords: poroelasticity, multilayered material, finite 
volume discretizations, MAC type grid, error estimates 
(26 pages,2004)

70.	 W. Dörfler, O. Iliev, D. Stoyanov, D. Vassileva 
On Efficient Simulation of Non-Newto-
nian Flow in Saturated Porous Media with a 
Multigrid Adaptive Refinement Solver 
Keywords: Nonlinear multigrid, adaptive renement, 
non-Newtonian in porous media
(25 pages, 2004)

71.	 J. Kalcsics, S. Nickel, M. Schröder 
Towards a Unified Territory Design Approach 
– Applications, Algorithms and GIS Integration
Keywords: territory desgin, political districting, sales 
territory alignment, optimization algorithms, Geo-
graphical Information Systems
(40 pages, 2005)

72.	 K. Schladitz, S. Peters, D. Reinel-Bitzer,  
A. Wiegmann, J. Ohser 

Design of acoustic trim based on geometric 
modeling and flow simulation for non-woven 
Keywords: random system of fibers, Poisson line pro-
cess, flow resistivity, acoustic absorption, Lattice-
Boltzmann method, non-woven
(21 pages, 2005)

73.	 V. Rutka, A. Wiegmann
Explicit Jump Immersed Interface Method 
for virtual material design of the effective 
elastic moduli of composite materials 
Keywords: virtual material design, explicit jump im-
mersed interface method, effective elastic moduli, 
composite materials
(22 pages, 2005)

74.	 T. Hanne
Eine Übersicht zum Scheduling von Baustellen
Keywords: Projektplanung, Scheduling, Bauplanung, 
Bauindustrie
(32 pages, 2005)

75.	 J. Linn
The Folgar-Tucker Model as a Differetial 
Algebraic System for Fiber Orientation 
Calculation 
Keywords: fiber orientation, Folgar–Tucker model, in-
variants, algebraic constraints, phase space, trace sta-
bility
(15 pages, 2005)

76.	 M. Speckert, K. Dreßler, H. Mauch,  
A. Lion, G. J. Wierda

Simulation eines neuartigen Prüfsystems 
für Achserprobungen durch MKS-Model-
lierung einschließlich Regelung
Keywords: virtual test rig, suspension testing, 
multibody simulation, modeling hexapod test rig, opti-
mization of test rig configuration
(20 pages, 2005)

77.	 K.-H. Küfer, M. Monz, A. Scherrer, P. Süss,  
F. Alonso, A. S. A. Sultan, Th. Bortfeld,  
D. Craft, Chr. Thieke 

Multicriteria optimization in intensity  
modulated radiotherapy planning 
Keywords: multicriteria optimization, extreme solu-
tions, real-time decision making, adaptive approxima-
tion schemes, clustering methods, IMRT planning, re-
verse engineering 
(51 pages, 2005)

78.	 S. Amstutz, H. Andrä 
A new algorithm for topology optimization 
using a level-set method
Keywords: shape optimization, topology optimization, 
topological sensitivity, level-set
(22 pages, 2005)

79. N. Ettrich
Generation of surface elevation models for 
urban drainage simulation
Keywords: Flooding, simulation, urban elevation  
models, laser scanning
(22 pages, 2005)

80.	 H. Andrä, J. Linn, I. Matei, I. Shklyar,  
K. Steiner, E. Teichmann

OPTCAST – Entwicklung adäquater Struk-
turoptimierungsverfahren für Gießereien 
Technischer Bericht (KURZFASSUNG)
Keywords: Topologieoptimierung, Level-Set-Methode, 
Gießprozesssimulation, Gießtechnische Restriktionen, 
CAE-Kette zur Strukturoptimierung
(77 pages, 2005)

81.	 N. Marheineke, R. Wegener
Fiber Dynamics in Turbulent Flows  
Part I: General Modeling Framework 
Keywords: fiber-fluid interaction; Cosserat rod; turbu-
lence modeling; Kolmogorov’s energy spectrum; dou-
ble-velocity correlations; differentiable Gaussian fields
(20 pages, 2005) 

Part II: Specific Taylor Drag  
Keywords: flexible fibers; k-e turbulence model; fi-
ber-turbulence interaction scales; air drag; random 
Gaussian aerodynamic force; white noise; stochastic 
differential equations; ARMA process 
(18 pages, 2005)

82.	 C. H. Lampert, O. Wirjadi 
An Optimal Non-Orthogonal Separation of 
the Anisotropic Gaussian Convolution Filter
Keywords: Anisotropic Gaussian filter, linear filtering, ori-
entation space, nD image processing, separable filters
(25 pages, 2005)

83.	 H. Andrä, D. Stoyanov
Error indicators in the parallel finite ele-
ment solver for linear elasticity DDFEM 
Keywords: linear elasticity, finite element method, hier-
archical shape functions, domain decom-position, par-
allel implementation, a posteriori error estimates
(21 pages, 2006)

84.	 M. Schröder, I. Solchenbach
Optimization of Transfer Quality in  
Regional Public Transit
Keywords: public transit, transfer quality, quadratic  
assignment problem
(16 pages, 2006)

85.	 A. Naumovich, F. J. Gaspar 
On a multigrid solver for the three-dimen-
sional Biot poroelasticity system in multi-
layered domains 
Keywords: poroelasticity, interface problem, multigrid, 
operator-dependent prolongation
(11 pages, 2006)

86.	 S. Panda, R. Wegener, N. Marheineke
Slender Body Theory for the Dynamics of 
Curved Viscous Fibers 
Keywords: curved viscous fibers; fluid dynamics; Navier-
Stokes equations; free boundary value problem; asymp-
totic expansions; slender body theory
(14 pages, 2006)

87.	 E. Ivanov, H. Andrä, A. Kudryavtsev
Domain Decomposition Approach for Auto-
matic Parallel Generation of Tetrahedral Grids
Key words: Grid Generation, Unstructured Grid, Delau-
nay Triangulation, Parallel Programming, Domain De-
composition, Load Balancing
(18 pages, 2006)

88.	 S. Tiwari, S. Antonov, D. Hietel, J. Kuhnert,  
R. Wegener 

A Meshfree Method for Simulations of In-
teractions between Fluids and Flexible 
Structures
Key words: Meshfree Method, FPM, Fluid Structure 
Interaction, Sheet of Paper, Dynamical Coupling
(16 pages, 2006)

89.	 R. Ciegis , O. Iliev, V. Starikovicius, K. Steiner
Numerical Algorithms for Solving Problems 
of Multiphase Flows in Porous Media
Keywords: nonlinear algorithms, finite-volume method, 
software tools, porous media, flows
(16 pages, 2006)

90.	 D. Niedziela, O. Iliev, A. Latz
On 3D Numerical Simulations of Viscoelastic 
Fluids
Keywords: non-Newtonian fluids, anisotropic viscosity, 
integral constitutive equation 
(18 pages, 2006)



91.	 A. Winterfeld
Application of general semi-infinite Pro-
gramming to Lapidary Cutting Problems
Keywords: large scale optimization, nonlinear program-
ming, general semi-infinite optimization, design center-
ing, clustering
(26 pages, 2006)

92.	 J. Orlik, A. Ostrovska
Space-Time Finite Element Approximation 
and Numerical Solution of Hereditary  
Linear Viscoelasticity Problems
Keywords: hereditary viscoelasticity; kern approxima-
tion by interpolation; space-time finite element approx-
imation, stability and a priori estimate
(24 pages, 2006)

93.	 V. Rutka, A. Wiegmann, H. Andrä
EJIIM for Calculation of effective Elastic 
Moduli in 3D Linear Elasticity
Keywords: Elliptic PDE, linear elasticity, irregular do-
main, finite differences, fast solvers, effective elas-
tic moduli
(24 pages, 2006)

94.	 A. Wiegmann, A. Zemitis
EJ-HEAT: A Fast Explicit Jump Harmonic 
Averaging Solver for the Effective Heat 
Conductivity of Composite Materials
Keywords: Stationary heat equation, effective ther-
mal conductivity, explicit jump, discontinuous coeffi-
cients, virtual material design, microstructure simula-
tion, EJ-HEAT
(21 pages, 2006)

95.	 A. Naumovich
On a finite volume discretization of the 
three-dimensional Biot poroelasticity sys-
tem in multilayered domains
Keywords: Biot poroelasticity system, interface problems, 
finite volume discretization, finite difference method
(21 pages, 2006)

96.	 M. Krekel, J. Wenzel
A unified approach to Credit Default Swap
tion and Constant Maturity Credit Default 
Swap valuation
Keywords: LIBOR market model, credit risk, Credit De-
fault Swaption, Constant Maturity Credit Default Swap-
method
(43 pages, 2006) 

97.	 A. Dreyer
Interval Methods for Analog Circiuts
Keywords: interval arithmetic, analog circuits, tolerance 
analysis, parametric linear systems, frequency response, 
symbolic analysis, CAD, computer algebra
(36 pages, 2006)

98.	 N. Weigel, S. Weihe, G. Bitsch, K. Dreßler
Usage of Simulation for Design and Optimi-
zation of Testing
Keywords: Vehicle test rigs, MBS, control, hydraulics, 
testing philosophy
(14 pages, 2006)

99.	 H. Lang, G. Bitsch, K. Dreßler, M. Speckert
Comparison of the solutions of the elastic 
and elastoplastic boundary value problems
Keywords: Elastic BVP, elastoplastic BVP, variational 
inequalities, rate-independency, hysteresis, linear kine-
matic hardening, stop- and play-operator
(21 pages, 2006)

100.	M. Speckert, K. Dreßler, H. Mauch
MBS Simulation of a hexapod based sus-
pension test rig
Keywords: Test rig, MBS simulation, suspension, 
hydraulics, controlling, design optimization
(12 pages, 2006)

101.	 S. Azizi Sultan, K.-H. Küfer
A dynamic algorithm for beam orientations 
in multicriteria IMRT planning
Keywords: radiotherapy planning, beam orientation 
optimization, dynamic approach, evolutionary algo-
rithm, global optimization
(14 pages, 2006)

102.	T. Götz, A. Klar, N. Marheineke, R. Wegener
A Stochastic Model for the Fiber Lay-down 
Process in the Nonwoven Production
Keywords: fiber dynamics, stochastic Hamiltonian sys-
tem, stochastic averaging
(17 pages, 2006) 

103.	Ph. Süss, K.-H. Küfer
Balancing control and simplicity: a variable 
aggregation method in intensity modulated 
radiation therapy planning
Keywords: IMRT planning, variable aggregation, clus-
tering methods 
(22 pages, 2006)

104.	A. Beaudry, G. Laporte, T. Melo, S. Nickel
Dynamic transportation of patients in hos-
pitals
Keywords: in-house hospital transportation, dial-a-ride, 
dynamic mode, tabu search 
(37 pages, 2006)

105.	Th. Hanne
Applying multiobjective evolutionary algo-
rithms in industrial projects
Keywords: multiobjective evolutionary algorithms, dis-
crete optimization, continuous optimization, electronic 
circuit design, semi-infinite programming, scheduling
(18 pages, 2006)

106.	J. Franke, S. Halim
Wild bootstrap tests for comparing signals 
and images
Keywords: wild bootstrap test, texture classification, 
textile quality control, defect detection, kernel estimate, 
nonparametric regression
(13 pages, 2007)

107.	 Z. Drezner, S. Nickel
Solving the ordered one-median problem in 
the plane
Keywords: planar location, global optimization, ordered 
median, big triangle small triangle method, bounds, 
numerical experiments
(21 pages, 2007)

108.	Th. Götz, A. Klar, A. Unterreiter,  
R. Wegener

Numerical evidance for the non-existing of 
solutions of the equations desribing rota-
tional fiber spinning
Keywords: rotational fiber spinning, viscous fibers, 
boundary value problem, existence of solutions
(11 pages, 2007)

109.	Ph. Süss, K.-H. Küfer
Smooth intensity maps and the Bortfeld-
Boyer sequencer
Keywords: probabilistic analysis, intensity modulated 
radiotherapy treatment (IMRT), IMRT plan application, 
step-and-shoot sequencing
(8 pages, 2007)

110.	 E. Ivanov, O. Gluchshenko, H. Andrä,  
A. Kudryavtsev

Parallel software tool for decomposing and 
meshing of 3d structures
Keywords: a-priori domain decomposition, unstruc-
tured grid, Delaunay mesh generation
(14 pages, 2007)

111.	 O. Iliev, R. Lazarov, J. Willems
Numerical study of two-grid precondition-
ers for 1d elliptic problems with highly  
oscillating discontinuous coefficients
Keywords: two-grid algorithm, oscillating coefficients, 
preconditioner 
(20 pages, 2007)

112.	 L. Bonilla, T. Götz, A. Klar, N. Marheineke,  
R. Wegener

Hydrodynamic limit of the Fokker-Planck-
equation describing fiber lay-down pro-
cesses
Keywords: stochastic dierential equations, Fokker-
Planck equation, asymptotic expansion, Ornstein-
Uhlenbeck process
(17 pages, 2007)

113.	 S. Rief
Modeling and simulation of the pressing 
section of a paper machine
Keywords: paper machine, computational fluid dynam-
ics, porous media
(41 pages, 2007)

114.	 R. Ciegis, O. Iliev, Z. Lakdawala
On parallel numerical algorithms for simu-
lating industrial filtration problems
Keywords: Navier-Stokes-Brinkmann equations, finite 
volume discretization method, SIMPLE, parallel comput-
ing, data decomposition method 
(24 pages, 2007)

115.	 N. Marheineke, R. Wegener
Dynamics of curved viscous fibers with sur-
face tension
Keywords: Slender body theory, curved viscous bers 
with surface tension, free boundary value problem
(25 pages, 2007)

116.	 S. Feth, J. Franke, M. Speckert
Resampling-Methoden zur mse-Korrektur 
und Anwendungen in der Betriebsfestigkeit
Keywords: Weibull, Bootstrap, Maximum-Likelihood, 
Betriebsfestigkeit
(16 pages, 2007)

117.	 H. Knaf
Kernel Fisher discriminant functions – a con-
cise and rigorous introduction
Keywords: wild bootstrap test, texture classification, 
textile quality control, defect detection, kernel estimate, 
nonparametric regression
(30 pages, 2007)

118.	O. Iliev, I. Rybak
On numerical upscaling for flows in hetero-
geneous porous media
Keywords: numerical upscaling, heterogeneous porous 
media, single phase flow, Darcy‘s law, multiscale prob-
lem, effective permeability, multipoint flux approxima-
tion, anisotropy
(17 pages, 2007)

119.	 O. Iliev, I. Rybak
On approximation property of multipoint 
flux approximation method
Keywords: Multipoint flux approximation, finite volume 
method, elliptic equation, discontinuous tensor coeffi-
cients, anisotropy
(15 pages, 2007)

120.	O. Iliev, I. Rybak, J. Willems
On upscaling heat conductivity for a class of 
industrial problems
Keywords: Multiscale problems, effective heat conduc-
tivity, numerical upscaling, domain decomposition
(21 pages, 2007)



121.	 R. Ewing, O. Iliev, R. Lazarov, I. Rybak
On two-level preconditioners for flow in 
porous media
Keywords: Multiscale problem, Darcy‘s law, single 
phase flow, anisotropic heterogeneous porous media, 
numerical upscaling, multigrid, domain decomposition, 
efficient preconditioner
(18 pages, 2007)

122.	M. Brickenstein, A. Dreyer
POLYBORI: A Gröbner basis framework 
for Boolean polynomials
Keywords: Gröbner basis, formal verification, Boolean 
polynomials, algebraic cryptoanalysis, satisfiability
(23 pages, 2007)

123.	O. Wirjadi
Survey of 3d image segmentation methods
Keywords: image processing, 3d, image segmentation, 
binarization
(20 pages, 2007)

124.	S. Zeytun, A. Gupta
A Comparative Study of the Vasicek and the 
CIR Model of the Short Rate
Keywords: interest rates, Vasicek model, CIR-model, 
calibration, parameter estimation
(17 pages, 2007)

125.	G. Hanselmann, A. Sarishvili 
Heterogeneous redundancy in software 
quality prediction using a hybrid Bayesian 
approach
Keywords: reliability prediction, fault prediction, non-
homogeneous poisson process, Bayesian model aver-
aging
(17 pages, 2007)

126.	V. Maag, M. Berger, A. Winterfeld, K.-H. 
Küfer 

A novel non-linear approach to minimal 
area rectangular packing
Keywords: rectangular packing, non-overlapping con-
straints, non-linear optimization, regularization, relax-
ation 
(18 pages, 2007)

127.	 M. Monz, K.-H. Küfer, T. Bortfeld, C. Thieke 
Pareto navigation – systematic multi-criteria-
based IMRT treatment plan determination
Keywords: convex, interactive multi-objective optimiza-
tion, intensity modulated radiotherapy planning
(15 pages, 2007)

128.	M. Krause, A. Scherrer
On the role of modeling parameters in IMRT 
plan optimization
Keywords: intensity-modulated radiotherapy (IMRT), 
inverse IMRT planning, convex optimization, sensitiv-
ity analysis, elasticity, modeling parameters, equivalent 
uniform dose (EUD)
(18 pages, 2007)

129.	A. Wiegmann
Computation of the permeability of porous 
materials from their microstructure by FFF-
Stokes
Keywords: permeability, numerical homogenization, 
fast Stokes solver
(24 pages, 2007)

130.	T. Melo, S. Nickel, F. Saldanha da Gama
Facility Location and Supply Chain Manage-
ment – A comprehensive review
Keywords: facility location, supply chain management, 
network design
(54 pages, 2007)

131.	 T. Hanne, T. Melo, S. Nickel
Bringing robustness to patient flow 
management through optimized patient 
transports in hospitals
Keywords: Dial-a-Ride problem, online problem, case 
study, tabu search, hospital logistics 
(23 pages, 2007)

132.	R. Ewing, O. Iliev, R. Lazarov, I. Rybak,  
J. Willems

An efficient approach for upscaling proper-
ties of composite materials with high con-
trast of coefficients
Keywords: effective heat conductivity, permeability of 
fractured porous media, numerical upscaling, fibrous 
insulation materials, metal foams
(16 pages, 2008)

133.	S. Gelareh, S. Nickel
New approaches to hub location problems 
in public transport planning
Keywords: integer programming, hub location, trans-
portation, decomposition, heuristic
(25 pages, 2008)

134.	G. Thömmes, J. Becker, M. Junk, A. K. Vai-
kuntam, D. Kehrwald, A. Klar, K. Steiner,  
A. Wiegmann

A Lattice Boltzmann Method for immiscible 
multiphase flow simulations using the Level 
Set Method
Keywords: Lattice Boltzmann method, Level Set 
method, free surface, multiphase flow
(28 pages, 2008)

Status quo: January 2008


