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Abstract

The hierarchical reconstruction [11] is applied to discontinuous Galerkin method
on the two-dimensional unstructured grids. We explore a variety of limiter functions
used in the construction of piecewise linear polynomials. We show that due to the
abrupt shift of stencils, the use of center biased limiter functions is essential in order
to recover the desired order of accuracy. Furthermore, we develop a WENO type
linear reconstruction in each hierarchical level. Numerical computations for scalar
and system of nonlinear hyperbolic equations are performed. We demonstrate that
the hierarchical reconstruction can generate essentially non-oscillatory solutions while
keeping the resolution and desired order of accuracy for smooth solutions.

1 Introduction

The discontinuous Galerkin (DG) method was firstly introduced by Reed and Hill [14] as a
technique to solve neutron transport problems. The DG method is a finite element method
using piecewise solution and test spaces (usually piecewise polynomials of certain degree). A
major development of the DG method was carried out by Cockburn, Shu et al. in a series
of papers [5, 4, 3, 2], in which they built a framework to solve nonlinear time dependent
hyperbolic conservation laws (1.1)

{
∂uk

∂t
+∇·Fk(u) = 0, k = 1, ..,m, in Ω× (0, T ),

u(x, 0) = u0(x), ,
(1.1)
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where Ω ⊂ Rd, x = (x1, ..., xd), d is the dimension, u = (u1, ..., um)T and the flux vectors
Fk(u) = (Fk,1(u), ..., Fk,d(u)). Since the hyperbolic conservation laws may develop discontin-
uous solutions, in their work, the explicit, total variation diminishing (TVD) Runge-Kutta
time discretizations [19] are used in time. In space, exact or approximate Riemann solvers
are used to compute the interface fluxes and the TVB projection limiters [16, 5] are used to
prevent or restrict the spurious Gibbs-like oscillations near discontinuities.

It is an active research field to seek a robust limiting method both to prevent oscillations
and to maintain the desired accuracy and resolution. In [5], the projection limiter limits the
variation between a cell edge value and its cell average by the differences between the cell
averages of the current and neighboring cells. The high order Legendre moments (order > 1)
are truncated in a cell if the non-smoothness is detected. Biswas et al. [1] proposed a moment
limiter method based on the orthogonal basis by detecting the non-smoothness from the
higher order moments to the lower order ones. The limiting process is applied when necessary
from higher to lower moments. Qiu and Shu [13] used a WENO reconstruction procedure as
a limiter to “fix” the trouble cells, where the polynomials defined at the quadrature points
are reconstructed from the WENO procedure and are projected to the finite element space
to replace the ones computed by the DG method. In [11], a non-oscillatory hierarchical
reconstruction (HR) method is introduced by Liu et al. for the staggered central DG method
to reconstruct polynomials computed by the DG method, in which the cell averages of various
orders of derivatives of a polynomial are calculated and used in the reconstruction of non-
oscillatory linear polynomials on each hierarchical stage. The coefficients of the reconstructed
linear polynomials are used to update the corresponding moments of the original polynomial.

In this paper, we extend the non-oscillatory hierarchical reconstruction method to the
DG method on the unstructured meshes and develop several new techniques on triangular
meshes. In particular, we introduce a weighted linear reconstruction for each hierarchical
step in the spirit of the harmonic average of one-sided slope approximations [22, 23], modified
ENO [17] and the WENO schemes [10, 7]. Numerical tests are presented. We show that this
method is robust and is easy to implement.

This paper is organized as follows. Section 2 describes the DG solution procedure and
the limiting procedure. Numerical tests are presented in Section 3. Concluding remarks and
a plan for future work are included in Section 4.

2 Algorithm Formulation

We use the method of lines approach to evolve the solution on the triangulated domain. The
DG method is used to compute the piecewise polynomial solution in each time level followed
by the hierarchical reconstruction to remove the spurious oscillations near discontinuities of
the solution.

2.1 Spatial discretization

First, the physical domain Ω is partitioned into a collection of N triangular elements Ω =
∪Ni=1Ki and

Th = {Ki : i = 1, ...,N} . (2.1)
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Figure 1: Reference triangular element K

We choose the polynomial basis functions of degree q in an element Ki to be the monomials
of multidimensional Taylor expansions about cell centroids. For the convenience of computa-
tion, in two-dimensional space, we consider a right-triangular reference element K as shown
in Fig. 1. For example, on K, the basis functions in terms of (ξ, η) are

B = {bm(ξ − ξ0, η − η0),m = 1, ..., Nq}
= {1, ξ − ξ0, η − η0, (ξ − ξ0)

2, (ξ − ξ0)(η − η0), (η − η0)
2, ..., (η − η0)

q} ,
(2.2)

where Nq = (q + 1)(q + 2)/2, and (ξ0, η0) is the centroid of K. Any function f can be
approximated by basis functions in K as

f(ξ, η) =

Nq∑
m=1

fmbm(ξ − ξ0, η − η0) . (2.3)

The inner product of bm and bn on K is

(bm, bn) =

∫ 1

0

∫ 1−ξ

0

bmbndηdξ , (2.4)

which can be computed by

∫ 1

0

∫ 1−ξ

0

ξmηndηdξ =
1

n + 1

[
n+1∑

l=0

Cl
n+1(−1)l 1

m + l + 1

]
.

With the help of the reference element, the integration of basis functions in the (x, y)
coordinates can now be done easily. For a general triangular element Ki, the basis set in the
(x, y) coordinates is

B = {gm(x− xi, y − yi),m = 1, ..., Nq}
= {1, x− xi, y − yi, (x− xi)

2, (x− xi)(y − yi), (y − yi)
2, ..., (y − yi)

q} ,
(2.5)

where xi ≡ (xi, yi) is the centroid of Ki.
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We employ a linear transformation to map from (ξ, η) of K to (x, y) of an element Ki

x = (x2 − x1)ξ + (x3 − x1)η + x1

y = (y2 − y1)ξ + (y3 − y1)η + y1 ,
(2.6)

where (x1, y1), (x2, y2) and (x3, y3) are the coordinates of the vertices of element Ki for which
the vertices are ordered counter clockwisely so that all double integrals are evaluated in the
reference domain ∫∫

Ki

dydx =

∫∫

K

∣∣∣∣
∂(x, y)

∂(ξ, η)

∣∣∣∣ dξdη . (2.7)

The semi-discrete DG formulation of the kth equation of (1.1) is to find a piecewise
polynomial approximation solution uh (neglecting its subscript k for convenience) of degree
q such that

d

dt

∫

Ki

uhvhdx +

∫

∂Ki

Fk(uh) · nivhdΓ−
∫

Ki

Fk(uh) · ∇vhdx = 0 , (2.8)

for any piecewise polynomial vh of degree q. Here ni is the outer unit normal vector of Ki.
Let uh be expressed as

uh(x, t) =

Nq∑
m=1

um,i(t)gm(x− xi, y − yi), x ∈ Ki, i = 1, ..., N . (2.9)

For convenience, we sometimes write um,i(t) as um(t) when there is no confusion.
Taking function gn to be the basis functions in element Ki, we obtain a system of Nq

equations for Ki

Nq∑
m=1

dum

dt

∫

Ki

gmgndx+

∫

∂Ki

Fk(uh) ·nigndΓ−
∫

Ki

Fk(uh) ·∇gndx = 0 , 1 ≤ n ≤ Nq , (2.10)

by replacing uh with Eq. (2.9). Since the approximated solution uh is discontinuous be-
tween element interfaces, the interface fluxes are not uniquely determined. The flux function
Fk(uh)·ni appearing in Eq. (2.10) is replaced by a numerical flux function (the Lax-Friedrich
flux, see e.g. [18]) defined as

hk(x, t) = hk(u
in
h ,uout

h ) =
1

2
(Fk(u

in
h ) · ni + Fk(u

out
h ) · ni) +

α

2
(uin

h − uout
h ),

where α is the largest characteristic speed,

uin
h (x, t) = limy→x,y∈Kint

i
uh(y, t) ,

uout
h (x, t) = limy→x,y/∈K̄i

uh(y, t) .

The domain and the boundary integrals in Eq. (2.10) are computed with 2q and 2q + 1
order accurate Gaussian quadrature rules respectively to preserve the (q + 1)th order of
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Figure 2: Schematic of 2D HR for cell K0

accuracy of the finite element space discretization. For a 3rd order accurate scheme, the
quadrature rule for the domain integral is

∫

Ki

g(x)dx =
3∑

i=1

g(ai)
|Ki|
20

+
3∑

1≤i≤j≤3

g(aij)
2|Ki|
15

+ g(a0)
9|Ki|
20

, (2.11)

where a0 is the centroid, ai is the vertex, and aij is the midpoint of the edge connecting ai

and aj respectively. The quadrature rule for the boundary integral is

∫ 1

−1

f(x)dx =
5f(−

√
3/5) + 8f(0) + 5f(−

√
3/5)

9
. (2.12)

2.2 Time integration

Eq. (2.10) is integrated in time using the widely used TVD Runge-Kutta methods [19]. In
particular, we use the three stage TVD Runge-Kutta method. The CFL number is chosen
to be 0.1 which is less than 1

2q+1
to satisfy the stability requirement.

2.3 Limiting by hierarchical reconstruction

Without an appropriate limiting procedure, the DG method will produce non-physical oscil-
lations in the vicinity of discontinuities. We use the hierarchical reconstruction introduced in
[11], which processes the DG solution at each Runge-Kutta stage to eliminate such spurious
oscillations. We refer to [11, 12] for the summary of the HR steps and the implementations
of HR for central and finite volume schemes.

Since we use 2nd degree polynomials in our calculations, we describe the implementation
of HR for piece-wise quadratic finite element space on the triangular elements and the new
piece-wise linear polynomial reconstruction procedure in this section.

Suppose on each element Kj ∈ {K0,K1,K2,K3} of Fig. 2, a quadratic polynomial is given
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in the form of a two-dimensional Taylor expansion

uj(x− xj, y − yj) = uj(0, 0) + ∂xuj(0, 0)(x− xj) + ∂yuj(0, 0)(y − yj)+
1
2
∂xxuj(0, 0)(x− xj)

2 + ∂xyuj(0, 0)(x− xj)(y − yj)+
1
2
∂yyuj(0, 0)(y − yj)

2 ,
(2.13)

where (xj, yj) is the element centroid of Kj. We will reconstruct a new polynomial in K0

with a point-wise error O(4x3) .
According to the algorithm, we first take the 1st partial derivative with respect to x for

uj(x− xj, y − yj) to obtain

Lj(x−xj, y−yj) = ∂xuh,j(0, 0)+∂xxuj(0, 0)(x−xj)+∂xyuj(0, 0)(y−yj), j = 0, 1, 2, 3 . (2.14)

Calculate the cell average of Lj(x− xj, y − yj) on element Kj to obtain Lj = ∂xuj(0, 0), j =
0, 1, 2, 3. We apply a non-oscillatory reconstruction procedure to the cell averages Lj, which
will be described at the end of this section, to obtain a new linear polynomial on element
K0:

L̃0(x− xj, y − yj) = ∂xũ0(0, 0) + ∂xxũ0(0, 0)(x− xj) + ∂xyũ0(0, 0)(y − yj) , (2.15)

with ∂xũ0(0, 0) = L0. We then take the 1st partial derivative with respect to y for uj(x −
xj, y − yj), j = 0, 1, 2, 3 to redefine Lj(x − xj, y − yj) = ∂yuj(0, 0) + ∂xyuj(0, 0)(x − xj) +
∂yyuj(0, 0)(y − yj), j = 0, 1, 2, 3, and perform the same reconstruction procedure to obtain
another polynomial on K0:

L̃0(x− xj, y − yj) = ∂yũ0(0, 0) + ∂xyũ0(0, 0)(x− xj) + ∂yyũ0(0, 0)(y − yj) , (2.16)

with ∂yũh,0(0, 0) = L0, the cell average of L0.
∂xxũ0(0, 0) and ∂yyũ0(0, 0) will be the corresponding new coefficients of the reconstructed

quadratic polynomial. ∂xyũ0(0, 0) appears twice in the above procedures and is finalized by
a limiter function which will be described later.

We then perform Step 2 of the algorithm. We compute the cell average of uh,j(x−xj, y−
yj), j = 0, 1, 2, 3 to obtain uh,j and compute the cell averages of the polynomial

R̃0(x−x0, y−y0) =
1

2
∂xxũ0(0, 0)(x−x0)

2 +∂xyũ0(0, 0)(x−x0)(y−y0)+
1

2
∂yyũ0(0, 0)(y−y0)

2

(2.17)
on elements {K0,K1,K2,K3} to obtain R0, R1, R2, R3 respectively. Redefine Lj = uh,j −
Rj, j = 0, 1, 2, 3. The same reconstruction procedure is applied to the cell averages {Lj} to
obtain new coefficients ∂xũ0(0, 0) and ∂yũ0(0, 0). Finally let the new coefficient ũ0(0, 0) = L0

to ensure conservation.
Now we describe the reconstruction procedure. In [12], three types of limiter functions are

used in the reconstruction procedure, and are applied to the candidates of new coefficients
of various orders from solving linear equations such as Eq. (2.21). The minmod limiter
function defined by

m(c1, c2, ..., cr) =





min{c1, c2, ..., cr}, if c1, c2, ..., cr > 0 ,
max{c1, c2, ..., cr}, if c1, c2, ..., cr < 0 ,
0, otherwise ,

(2.18)
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gives a MUSCL reconstruction [22, 24]; the limiter function defined by

m2(c1, c2, ..., cr) = cj, if min{|c1|, |c2|, ..., |cr|} , (2.19)

gives the ENO [6] reconstruction; and the center biased minmod limiter mb and ENO limiter
m2b can be formulated as

mb(c1, c2, ..., cr) = m
(
(1 + ε)m(c1, c2, ..., cr),

1
r

∑r
i=1 ci

)
,

m2b(c1, c2, ..., cr) = m2

(
(1 + ε)m2(c1, c2, ..., cr),

1
r

∑r
i=1 ci

)
,

(2.20)

where ε > 0 is a small perturbation number. The reconstruction procedure using these
limiter functions works very well on the rectangular and staggered grids [12]. However, our
numerical experiments show that on the unstructured triangular mesh, this reconstruction
procedure with minmod and ENO limiter functions fails to give the desired order of accuracy.
The reason of failure stems from the abrupt shift of stencils which reduces the smoothness
of the numerical flux [15, 17]. While the reconstruction procedure with the center biased
minmod limiter function with a large value of ε gives the desired order of accuracy, the large
value of ε introduces significant overshoots and undershoots. See Sec. 3 for the numerical
results of test problems.

To remedy the abrupt shift of stencils, we introduce a new weighted combination of
functions which follows the line of [22, 23, 17, 10, 7]. The new reconstruction procedure
proceeds as follows.

Take the reconstruction of polynomial (2.15) as an example. In detail, we form three sten-
cils {K0,K1,K2}, {K0,K1,K3} and {K0,K2,K3}. On the first stencil, we solve the following
equations for ∂xx

˜̃u0,1(0, 0) and ∂xy
˜̃u0,1(0, 0)

1

|Kj|
∫

K0

L̃0(x−xj, y−yj)dxdy = L0+∂xx
˜̃u0,1(0, 0)(x−xj)+∂xy

˜̃u0,1(0, 0)(y−yj) = Lj , (2.21)

where j = 1, 2, similarly for the other two stencils.
Denote the linear polynomials computed from these three stencils to be L0,1(x− xj, y −

yj), L0,2(x−xj, y−yj) and L0,3(x−xj, y−yj) respectively. The corresponding coefficients of
these linear polynomials are ∂xx

˜̃u0,1, ∂xy
˜̃u0,1; ∂xx

˜̃u0,2, ∂xy
˜̃u0,2; and ∂xx

˜̃u0,3, ∂xy
˜̃u0,3 respectively.

The reconstructed linear polynomial (2.15) is a convex combination of these computed
polynomials, i.e.,

L̃0(x− xj, y − yj) =
3∑

r=1

wrL0,r . (2.22)

The weight wr depends on L0,r and satisfies

wr ≥ 0,
3∑

r=1

wr = 1 (2.23)

for stability and consistency. Other considerations for designing the weights are that when a
stencil contains a discontinuity of the solution, the corresponding weight will be essentially
0, and the weights are smooth functions of involved cell averages. The weights are set as
follows:

wr =
αr∑3
s=1 αs

, r = 1, 2, 3, (2.24)

7



where αs are to be defined later. Let

dr =
1/θr∑3
s=1 1/θs

, (2.25)

where θr is the condition number of the corresponding stencil, which is ||A||||A−1||, where
A is the coefficient matrix of systems of Eq. (2.21), || · || denotes the 1−norm. This choice
of dr puts the condition numbers of stencils into consideration and the candidates of new
coefficients computed from a ”bad” stencil have less weights. Let

αr =
dr

1 + hβr

, (2.26)

where
βr = (∂xx

˜̃u0,r(0, 0))2 + (∂xy
˜̃u0,r(0, 0))2 . (2.27)

After the weights wr are computed, the new coefficient ∂xxũ0 is defined to be

∂xxũ0 =

{ ∑3
r=1 wr∂xx

˜̃u0,r, if Lmin < L0 < Lmax,
0, otherwise.

(2.28)

Here Lmin = min{Lj : j = 0, · · · , 3}; Lmax = max{Lj : j = 0, · · · , 3}. Lmin < L0 < Lmax

is an extreme value detector, which is used to further reduce oscillations. The candidate
coefficient ∂xyũ0 is determined similarly.

The reconstruction of function (2.16) follows the above procedure. After the reconstruc-
tion of functions (2.15) and (2.16), ∂xxũ0 and ∂yyũ0 are the corresponding new coefficients
respectively for the function u0(x − x0, y − y0) as in (2.13). However, the reconstruction
of functions (2.15) and (2.16) leaves us two choices for the coefficient ∂xyu0, each of which
comes from (2.15) and (2.16) respectively. We use the center biased ENO limiter function
m2b to determine the new coefficient ∂xyũ0 from them, in which ε is set to be 0.01.

In Step 2 of HR, for the linear reconstruction involving ∂xu0 and ∂yu0, the following
weight from [18] is used:

αr =
dr

(ε + βr)2
, (2.29)

where βr is the “smoothness indicator” of the rth stencil similar to those in the WENO
scheme,

βr = (∂x
˜̃u0,r(0, 0))2 + (∂y

˜̃u0,r(0, 0))2 , (2.30)

∂x
˜̃u0,r(0, 0) and ∂y

˜̃u0,r(0, 0)) are the first degree coefficients determined in stencil r by an
equation similar to (2.21). ε is introduced to avoid the denominator to become 0. Note that
in Step 2 it also can adopt the weight

αr =
dr

1 + (βr)2
(2.31)

which is similar to the form of Eq. (2.26). We found that weight (2.31) gave slightly bigger
overshoot/undershoot.
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A function similar to Eq. (2.28) is used to determine the new coefficients ∂xũ0(0, 0) and
∂yũ0(0, 0) for the function u0(x−x0, y−y0) as in (2.13). However, the extreme value detector
(i.e., the ”0” case in (2.28)) is not applied here.

The reason that we choose different forms of weights is as the following: since the low
order coefficients are more accurate and less sensitive to the shift of stencils, we can put
more weights to the smoother stencil to damp out oscillations effectively without the loss
of accuracy. On the other hand, the high order coefficients (∂xxu, ∂xyu, ∂yyu in the present
paper) are less accurate and are more sensitive to the shift of stencils. We therefore want
these high order coefficients to be closer to the mean values of the ones computed on different
stencils where the solution is smooth, to reduce the abrupt shift of stencils.

Moreover, an error analysis shows that wr∂xx
˜̃u0,r is of O(h) where there is a discontinuity,

which damps the oscillation to the required approximation error size of the second degree
coefficients. In fact, Since ∂xx

˜̃u, ∂xy
˜̃u and ∂yy

˜̃u are of O( 1
h2 ) at discontinuities,

√
βr is between

O(1) if the solution is smooth, and O( 1
h2 ) if there is a discontinuity. Therefore αr is between

O(h3) and O(1) from Eq. (2.26). And wr∂xx
˜̃u is of O(h) at a discontinuity, provided that

at least one of the other stencils is in smooth region.
When all stencils are in non-smooth region, Eq. (2.28) effectively damps out spurious

oscillations. Our numerical experiments show that solutions to equations like Eq. (2.21)
have the same sign most of the time as long as the DG solution is smooth, because the
solutions to Eq. (2.21) are O(4x) approximations to the gradient.

For systems, we perform the reconstruction on the conservative variables (component-
wise) and achieve satisfactory results.

2.4 Local limiting procedure

Since shock waves or contact discontinuities are all local phenomena, in principle the limiting
procedure only needs to be applied to a small region covering the discontinuities. To speed
up the computation, we use a local limiting procedure which adopts the limiter in [2] to
identify “bad cells”, i.e., cells may have oscillatory solution on them.

Denote
uin

h (x) = ū + ũ ,

where x is the middle point on an edge, ū is the cell average value, and ũ is the variation.
We first compute

m(ũ, µ4ū) ,

where m is the minmod function, 4ū = ū1 − ū, ū1 is the cell average value of the adjacent
element sharing the edge, and µ > 1. We take µ = 1.2 in our numerical runs. If the minmod
function returns other than the first argument, this cell is identified as a “bad cell”, and
the computed DG solution is regarded to be oscillatory and marked for reconstructions.
The limiting process is applied to these elements while keeping the computed DG solutions
unchanged for other elements.
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Figure 3: Mesh for accuracy test of scalar equations and for the Riemann problems.

3 Numerical Examples

We first study the limiter functions and test the capability of the method to achieve the
desired 3rd order accuracy, using the scalar Burgers equation and the Euler equation for gas
dynamics. In the two-dimensional space, the Euler equation can be expressed in conservation
form

ut + f(u)x + g(u)y = 0 , (3.1)

where u = (ρ, ρu, ρv, E), f(u) = (ρu, ρu2 + p, ρuv, u(E + p)), and g(u) = (ρv, ρuv, ρv2 +
p, v(E+p)). Here ρ is the density, (u, v) is the velocity, E is the total energy, p is the pressure,
and E = p

γ−1
+ 1

2
ρ(u2 + v2). γ is equal to 1.4 for all test cases. We then test problems with

discontinuities to assess the non-oscillatory property of the scheme, again using the Euler
equation for gas dynamics.

3.1 Numerical Errors for Smooth Solutions

We start with the two-dimensional Burgers’ equation with a periodic boundary condition:

∂tu + ∂x(
u2

2
) + ∂y(

u2

2
) = 0, in (0, T )× Ω ,

u(t = 0, x, y) = 1
4

+ 1
2
sin(π(x + y)), (x, y) ∈ Ω ,

(3.2)

where the domain Ω is the square [−1, 1]× [−1, 1]. At T = 0.1 the exact solution is smooth.
For simplicity, the uniform triangular meshes are obtained by adding one diagonal line in
each rectangle. The structure of the mesh is shown in Fig. 3. The errors presented are those
of the cell averages of u.

ENO limiter function

The accuracy results are shown in Table 1 for reconstruction with the ENO limiter
function. The accuracy results are shown in Tables 2, 3, and 4 for reconstruction with
center biased ENO limiter function. This test problem shows that the ENO reconstruction
of piecewise quadratic polynomial is 2nd order accurate, since the abrupt shift of stencils
reduces the desired order of accuracy of the method. As expected, this problem can be
remedied by a center biased selection of stencils which is also confirmed by this numerical
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Table 1: Accuracy for 2D Burgers equation with ENO limiter.

h L1 error order L∞ error order
1/4 1.82E-1 - 9.28E-2 -
1/8 6.11E-2 1.57 3.17E-2 1.55
1/16 1.89E-2 1.69 1.39E-2 1.19
1/32 5.06E-3 1.90 5.96E-3 1.22

Table 2: Accuracy for 2D Burgers equation with biased ENO limiter (2.20),ε = 0.1.

h L1 error order L∞ error order
1/4 1.66E-01 - 8.53E-2 -
1/8 5.05E-2 1.72 2.81E-2 1.60
1/16 1.45E-2 1.80 1.23E-2 1.19
1/32 3.68E-3 1.99 5.25E-3 1.23

Table 3: Accuracy for 2D Burgers equation with biased ENO limiter, ε = 1.

h L1 error order L∞ error order
1/4 1.22E-01 - 6.28E-2 -
1/8 2.72E-2 2.17 1.68E-2 1.90
1/16 6.69E-3 2.02 5.16E-3 1.70
1/32 1.81E-3 1.88 2.04E-3 1.34

Table 4: Accuracy for 2D Burgers equation with biased ENO limiter, ε = 3.

h L1 error order L∞ error order
1/4 8.61E-2 - 4.95E-2 -
1/8 1.55E-2 2.47 1.12E-2 2.14
1/16 1.49E-3 3.38 2.29E-3 2.29
1/32 1.51E-4 3.30 5.13E-4 2.16

11



Figure 4: Mesh for accuracy test for the Euler equations.

test. We clearly see that the order of accuracy is improved with respect to increasing values
of ε for the center biased ENO limiter.

We also test the center biased minmod limiter function. The test results show the same
behavior as that of the center biased ENO limiter, and ε needs to take a slightly bigger value
to achieve the 3rd order accuracy. However, we found that both the center biased limiters
are not stable for the shock wave problems with too large ε.

WENO type reconstruction

The accuracy results are shown in Table 5 for WENO type reconstruction. The 3rd order
accuracy is achieved.

Table 5: Accuracy for 2D Burgers equation with WENO type reconstruction.

h L1 error order L∞ error order
1/4 3.36E-2 - 4.31E-2 -
1/8 3.92E-3 3.10 9.51E-3 2.18
1/16 3.49E-4 3.39 1.88E-3 2.34
1/32 4.46E-5 2.99 5.44E-4 1.79

For the remaining test problems we will use the WENO type reconstruction.

3.2 Accuracy test for smooth inviscid compressible flow

A two-dimensional test problem [18] for the Euler equations is used, for ideal gas with
γ = 1.4. The exact solution is given by ρ = 1 + 0.5 sin(x + y − (u + v)t), u = 1.0, v = −0.7
and p = 1. The convergence test is conducted on irregular triangular meshes on the spatial
domain [0, 1] × [0, 1] from the time T = 0 to T = 0.1, see Fig. 4 for a typical mesh. The
triangle size is roughly equal to a rectangular element case of 4x = 4y = h, as indicated in
Table 6. The accuracy results are shown in Table 6. The errors presented are those of the
cell averages of density.
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3.3 Riemann problems of Euler equations

The unsteady compressible inviscid flow problems are considered as test cases. The two
dimensional triangular DG methods with HR are applied to one-dimensional shock tube
problems. We consider the solution of the Euler equations in a rectangular domain of [−1, 1]×
[0, 0.2] with a triangulation of 101 vertices in the x-direction and 11 vertices in the y-direction.
The uniform triangular meshes are used, see Fig. 3. The periodic boundary condition is used
in the y-direction, and the flow-through boundary conditions are used at the two ends of the
boundaries in the x-direction. The initial value of the velocity component in the y-direction
is zero. Figures 5(a) and 5(b) are obtained by interpolating the numerical solution data
along the horizontal line y = 0.1 on 101 equally spaced points.

The first case is the Sod problem [21]. The initial data is

(ρ, u, p) =

{
(1, 0, 1), if x ≤ 0
(0.125, 0, 0.1), if x > 0 .

(3.3)

The density at t = 0.40 is shown in Fig. 5(a).
The second case is the Lax problem [8]. The initial data is

(ρ, u, p) =

{
(0.445, 0.698, 3.528), if x ≤ 0
(0.5, 0, 0.571), if x > 0 .

(3.4)

The density at t = 0.26 is shown in Fig. 5(b).

3.4 Shu-Osher problem

The Shu-Osher problem [20] is tested. It is the Euler equations with an initial data

(ρ, u, p) =

{
(3.857143, 2.629369, 10.333333) if x ≤ −4
(1 + 0.2 sin(5x), 0, 1) if x ≥ −4 .

(3.5)

We consider the solution of the Euler equations in a rectangular domain of [−5, 5]× [0, 0.1]
with a triangulation of 301 vertices in the x-direction and 4 vertices in the y-direction. The
uniform triangular meshes are used. The initial value of the velocity component in the
y-direction is zero. The density at t = 1.8 is shown in Fig. 6.

Table 6: Accuracy for 2D Euler equation with smooth sine evolution, on triangular meshes.

h L1 error order L∞ error order
1/8 1.03E-5 - 4.37E-5 -
1/16 1.40E-6 2.88 6.31E-6 2.79
1/32 1.79E-7 2.97 1.15E-6 2.46
1/64 1.94E-8 3.21 1.81E-7 2.67
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3.5 2D Riemann problem

A two-dimensional Riemann problem [9] for the Euler equations is computed. The computa-
tional domain is [0, 1]× [0, 1]. The initial states are constants within each of the 4 quadrants.
Counter-clock-wisely from the upper right quadrant, these states are labelled as (ρi, ui, vi, pi),
i = 1, 2, 3, 4. Initially, ρ1 = 1.1, u1 = 0, v1 = 0, p1 = 1.1; ρ2 = 0.5065, u2 = 0.8939, v2 = 0,
p2 = 0.35; ρ3 = 1.1, u3 = 0.8939, v3 = 0.8939, p3 = 1.1; ρ4 = 0.5065, u4 = 0, v4 = 0.8939,
p4 = 0.35. The density profile is plotted at T = 0.25 in Fig. 7, with 30 equally spaced
contours. The density profile along x = 0.8 is plotted in Fig. 8. The unstructured triangular
mesh is used. The triangle edge length is roughly equal to 1/400.

3.6 2D shock vortex interactions

This test case is taken from [18] to investigate the ability of the scheme to resolve the vortex
and the interaction. The computational domain is [0, 2]× [0, 2]. A stationary Mach 1.1 shock
is positioned at x = 0.5 and normal to the x-axis. Its left state is (ρ, u, v, P ) = (1, 1.1

√
γ, 0, 1).

The vortex is described by a perturbation to the velocity (u, v), temperature (T = P
ρ
) and

entropy (S = ln P
ργ ) of the mean flow and has the values:

ũ = ετeα(1−r2) sin θ ,

ṽ = −ετeα(1−r2) cos θ ,

T̃ = − (γ−1)ε2e2α(1−r2)

4αγ
,

S̃ = 0 ,

(3.6)

where τ = r
rc

and r =
√

(x− xc)2 + (y − yc)2. The strength of the vortex ε is equal to 0.3.
rc = 0.05 and α = 0.204. The density profile in [0, 2]× [0, 1] is plotted at T = 0.35 in Fig. 9,
with 30 equally spaced contours. The unstructured triangular mesh is used. The triangle
edge length is roughly equal to 1/100.

3.7 Double Mach reflection

The Double Mach reflection problem is taken from [25]. We solve the Euler equations in
a rectangular computational domain of [0, 4] × [0, 1]. A reflecting wall lies at the bottom
of the domain starting from x = 1

6
. Initially a right-moving Mach 10 shock is located at

x = 1
6
, y = 0. The shock makes a 600 angle with the x axis and extends to the top of the

computational domain at y = 1. The reflective boundary condition is used at the wall. The
region from x = 0 to x = 1

6
along the boundary y = 0 is always set with the exact post-shock

solution, so is the left-side boundary. At the right-side boundary, the flow through boundary
condition is used. At the top boundary, the flow values are set to describe the exact motion
of the initial Mach 10 shock.

We test our method on unstructured triangular meshes with the triangle edge length
roughly equal to 1

300
and 1

500
respectively. The density contour of the flow at the time t = 0.2

in [0, 3] × [0, 1] is shown with 30 equally spaced contour lines. Fig. 10 is the contour plot
with triangle edge length 1

300
. Fig. 11 is the contour plot with triangle edge length 1

500
. The
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“blown-up” portion around the double Mach region is shown in Fig. 12 to see that the fine
details of the complicated flow structure under the triple Mach stem is captured.

Strong shocks of the double Mach problem introduce the negative pressure problem due
to the undershoots. To fix this problem, we employ a scaling technique to remove the
negative pressure. If at a quadrature point of an element, the negative pressure remains
after reconstruction with the reconstructed polynomial uh, We redefine the new polynomial
u∗h to be: u∗h = ūh + 0.5(uh − ūh), where ūh is the cell average value of uh. The negative
pressure is removed after 1 or 2 iterations of the scaling normally.

4 Concluding Remarks

We have developed the HR reconstruction procedure and used it as a limiter for the discontin-
uous Galerkin method on the unstructured triangular meshes. The HR reconstruction with
the WENO type reconstruction of piecewise linear polynomials maintains the desired order
of accuracy and resolution, and effectively reduces spurious oscillations for discontinuous
solutions.

In the future, we will experiment with more sophisticated troubled-cell indicators, and
further study the WENO type reconstruction for piecewise polynomials of higher degree.
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Figure 5: Shock tube problems: Density, (a) Sod problem (b) Lax problem
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(a)

Figure 9: 2D shock vortex interaction. Pressure contour at t = 0.35 with 30 equally spaced
contour lines from 1.02 to 1.5.

Figure 10: Double Mach reflection: density contour, t = 0.2, h = 1
300

Figure 11: Double Mach reflection: density contour, t = 0.2, h = 1
500
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(a) (b)

Figure 12: Double Mach reflection problem. Blown-up region around the double Mach stems.
Density ρ. (a) Third-order P 2 with element edge length 1

500
; (b) Third-order P 2 with element

edge length 1
300

.
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