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Abstract

The present paper introduces a class of finite volume schemes of increasing order
of accuracy in space and time for hyperbolic systems that are in conservation form. The
methods are specially suited for efficient implementation on structured meshes. The
hyperbolic system is required to be non-stiff. This paper specifically focuses on Euler
system that is used for modeling the flow of neutral fluids and the divergence-free, ideal
magnetohydrodynamics (MHD) system that is used for large scale modeling of ionized

plasmas.

Efficient techniques for weighted essentially non-oscillatory (WENO)
interpolation have been developed for finite volume reconstruction on structured meshes.
We have shown that the most elegant and compact formulation of WENO reconstruction
obtains when the interpolating functions are expressed in modal space. Explicit formulae
have been provided for schemes having up to fourth order of spatial accuracy.

Divergence-free evolution of magnetic fields requires the magnetic field components and
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their moments to be defined in the zone faces. We draw on a reconstruction strategy
developed recently by the first author to show that a high order specification of the
magnetic field components in zone-faces naturally furnishes an appropriately high order

representation of the magnetic field within the zone.

We also present a new formulation of the ADER (for Arbitrary Derivative
Riemann Problem) schemes that relies on a local continuous space-time Galerkin
formulation instead of the usual Cauchy-Kovalewski procedure. We call such schemes
ADER-CG and show that a very elegant and compact formulation results when the
scheme is formulated in modal space. Explicit formulae have been provided on structured
meshes for ADER-CG schemes in three dimensions for all orders of accuracy that extend
up to fourth order. Such ADER schemes have been used to temporally evolve the
WENO-based spatial reconstruction. The resulting ADER-WENO schemes provide
temporal accuracy that matches the spatial accuracy of the underlying WENO

reconstruction.

In this paper we have also provided a point-wise description of ADER-WENO
schemes for divergence-free MHD in a fashion that facilitates computer implementation.
The schemes reported here have all been implemented in the RIEMANN framework for
computational astrophysics. All the methods presented have a one-step update, making
them low-storage alternatives to the usual Runge-Kutta time-discretization. Their one-
step update also makes them suitable building blocks for adaptive mesh refinement

(AMR) calculations.

We demonstrate that the ADER-WENO meet their design accuracies. Several
stringent test problems of Euler flows and MHD flows are presented in one, two and
three dimensions. Many of our test problems involve near infinite shocks in multiple
dimensions and the higher order schemes are shown to perform very robustly and
accurately under all conditions. It is shown that the increasing computational complexity

with increasing order is handily offset by the increased accuracy of the scheme. The



resulting ADER-WENO schemes are, therefore, very worthy alternatives to the standard

second order schemes for compressible Euler and MHD flow.



1) Introduction

The accurate simulation of hydrodynamical and magnetohydrodynamical (MHD)
flows is an important topic in several areas of science and engineering. Much progress
has been made towards that goal. While second order accurate simulations have been
carried out for a while, recent advances have made it possible to go beyond second order
accuracy. Early attempts to go beyond second order have been catalogued in Harten et al
[36], Shu & Osher [50] and [51], Barth & Frederickson [12] and Suresh & Huynh [53].
Liu, Osher & Chan [42], Jiang & Shu [40] and Balsara & Shu [9] presented finite
difference weighted essentially non-oscillatory (WENO) schemes for hydrodynamics.
The WENO interpolation used in such schemes is usually coupled with a Runge-Kutta
(RK) time update strategy from Shu & Osher [50] to yield schemes that have spatial and
temporal accuracies that are well-matched. While the finite difference WENO schemes
handily meet their design accuracies, they do not take well to non-uniform or hierarchical
meshes. For that reason it is advantageous to have finite-volume WENO schemes which
can be seamlessly used as building blocks for adaptive mesh refinement (AMR)
calculations, see Berger & Colella [13] and Balsara [3]. Higher order accurate schemes
that have a finite volume-like structure have been designed for structured meshes, see
Balsara et al [7] and Balsara [6] and also for unstructured meshes, see Hu & Shu [37],
Zhang & Shu [60], Dumbser & Kaéser [28] and Dumbser et al [29]. The purpose of this
paper is to catalogue finite-volume WENO schemes that go beyond second order

accuracy on structured meshes.

As shown by Colella [17], it is also very advantageous to use schemes that have a
one-step temporal update as building blocks for AMR calculations. All of the RK
schemes from Shu & Osher [50] lack such a one-step structure. While dense output RK
schemes can be devised, it is still very desirable to have schemes that retain a simple one-
step time update. ADER (for Arbitrary Derivative Riemann Problem) schemes have seen
a fair bit of recent evolution, see Titarev & Toro [55] and [56], Toro & Titarev [57],
Dumbser, Enaux & Toro [27] and Dumbser et al [26]. Recent versions of ADER

schemes, see Dumbser et al [26], have the right kind of one-step temporal update that



makes them very convenient for higher order AMR work. Thus the further goal of this
paper is to present finite-volume ADER-WENO schemes that have a one-step temporal
update. In order to achieve balanced performance, all of the schemes presented here have
increasing spatial accuracy that is matched by a corresponding increase in temporal
accuracy. The resulting schemes are eminently well-suited for high accuracy
hydrodynamical calculations and can serve as good building blocks for block structured

AMR calculations.

Numerical magnetohydrodynamics (MHD) plays an important role in
astrophysics, aerospace, space physics and plasma physics applications. It is therefore
very interesting to develop highly accurate methods for simulating MHD phenomena.
The structure of the compressible MHD eigensystem is well-understood, Jeffrey &
Taniuti [39], Roe and Balsara [47], making it possible to develop high resolution shock-
capturing methods for this system. Most of the early work was focused on developing
higher order Godunov schemes with second order of accuracy, Dai & Woodward [20],
Ryu & Jones [48], Balsara [1,2], Falle, Komissarov & Joarder [32] and Crockett et al
[19]. The magnetic field in MHD obeys the following evolutionary equation

—ZVx(V X B) (1)

where V is the fluid velocity and B is the magnetic field. The structure of eqn. (1) is
such that the magnetic field remains divergence-free in its time-evolution, i.e. it satisfies

the constraint
V-B=0 (2)

Retaining a divergence-free aspect in the evolution of the magnetic field has been a
design goal in devising methods for numerical MHD, see Yee [59], Brackbill & Barnes
[14], Brecht et al [15] and DeVore [24]. Higher order Godunov schemes that provide

divergence-free evolution of magnetic fields have been available, see Dai & Woodward



[21], Ryu et al [49], Balsara & Spicer [10] and [11], Balsara [5] and Londrillo &
DelZanna [43]. Such schemes keep the magnetic field divergence free throughout its
evolution while offering the stability and robustness of a total variation diminishing
(TVD) scheme. Other formulations are also available that try to advect any magnetic field

divergence that might form out of the computational domain, Powell [45], Dedner et al

[22].

In his study of AMR-MHD Balsara [3] invented a divergence-free reconstruction
strategy for the magnetic field. The method was based on realizing that the magnetic field
in the interior of a zone is fully furnished by specifying its field components and their
variation within the zone-faces and imposing the divergence-free constraint from eqn.
(2). Balsara [3] also used a one-step temporal update strategy as a building block for
AMR calculations. Balsara [5] showed that the same divergence-free reconstruction is
also useful in designing very high quality second order accurate schemes for numerical
MHD. The same divergence-free reconstruction has been extended to higher orders by
Balsara [6] who used it along with an RK time-update strategy to obtain MHD schemes
that were better than second order accurate. An early version of an ADER scheme for
MHD was also presented by us in Taube et al [54]. The goal of the present paper is to
present modern ADER-WENO schemes for divergence-free MHD that have a one-step
temporal update and could serve as building blocks for AMR-MHD with spatial and
temporal accuracy that goes beyond second order. The schemes mentioned in this
paragraph have all been implemented in the RIEMANN code for astrophysical fluid

dynamics and have been successfully applied to numerous astrophysical applications.

The paper is organized as follows. In Section 2 we present the WENO
interpolation used here. Section 3 contains a description of the ADER scheme as well as
its instantiation at third order. Section 4 very briefly describes the flux calculation and the
time-update steps. Section 4 also provides a point-wise description of the whole ADER-
WENO scheme as it is implemented on a computer. Section 5 catalogues the order
property of the schemes that have been designed. Section 6 presents several stringent

hydrodynamical test problems while Section 7 does the same for MHD test problems.



2) Efficient, Multi-Dimensional WENO Reconstruction on Structured Meshes

The first step in designing a high order scheme consists of reconstructing the flow
variables within all zones in the computational domain to the desired order of accuracy.
Several good options exist in one dimension, see Jiang & Shu [40] and Balsara & Shu
[9]. The problem of carrying out a multidimensional reconstruction has been treated in
Friedrich [33], Zhang & Shu [60], Dumbser & Késer [28] and Balsara et al [7] . We
assume that each zone has a local set of coordinates given by
xy,z) € [-1/2,1/2]x[—-1/2,1/2]x[—-1/2,1/2] . The Legendre polynomials, suitably

modified for the domain [—1/2,1/2], are given by:

PO=1:P ()=x;P, ()=x" — — ;P ()=x — - x ;

12 20 3
3 3 (3)
P, x)=x' - = x*+—
s () 14 560

The polynomial basis set given in eqn. (3) is orthogonal and has a diagonal mass matrix.
Tensor products of these polynomials yield an orthogonal, modal basis set in multiple

dimensions. A variable “u” is, therefore, reconstructed to appropriate order in the zone

being considered when one has all the coefficients of the polynomial

u(x,y,z) =u, +u, P(x)+u, P(y)+u, P(2) <« second order
+ uxx P2 (X) + uyy P2 (Y) + uzz P2 (Z)
tu, P (x) P(y) + Uy, P (y) P(2) tu,, P(x) P,(2) <« third order

+ uxxx P3 (X) + uyyy P3 (y) + uzzz P3 (Z) + uxxy PZ (X) Pl (Y) + uxyy P1 (X) PZ (Y)
+ uyyz PZ (Y) Pl (Z) + uyzz PI(Y) PZ (Z) + uxxz PZ (X) I-)l (Z) + uxzz I)l (X) P2 (Z)
Tu,, P, (x) P (y) P,(2) <« fourth order
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The arrows in eqn. (4) show us the minimum sub-set of terms that are needed for
achieving the desired order of accuracy. The variable uy is the zone-averaged value of the
variable and is evolved using the governing equations. In a WENO scheme, the
remaining moments in eqn. (4) above are obtained by examining the smoothness
properties of the neighboring zones. In a pointwise WENO scheme, see Jiang & Shu [40]
and Balsara & Shu [9] the cross-terms in eqn. (4) are not needed. Since we wish to build
a finite volume scheme, we have to reconstruct all the terms including the cross terms in
eqn. (4). Several of the strategies catalogued above for carrying out a multidimensional
reconstruction can be used to obtain the moments in eqn. (4). However, as shown in
Balsara et al [7], for structured meshes it is possible to simplify the reconstruction
problem. In that paper we showed that the modes along each coordinate direction in eqn.
(4) can be obtained by using the dimension-by-dimension formulation from Jiang & Shu
[40] and Balsara & Shu [9]. In this paper we show that the expressions obtained in Jiang
& Shu [40] and Balsara & Shu [9] can be substantially simplified if cased in a modal
formulation and our goal in Sub-Section 2.1 is to catalogue that simplification. Balsara et
al [7] also presented an inexpensive strategy for obtaining the remaining cross-terms in
eqn. (4). In this paper we present an even less expensive strategy for obtaining the cross-
terms and such an advance is catalogued in Sub-Section 2.2. Sub-Section 2.3 catalogues
the divergence-free reconstruction of magnetic fields. In the vicinity of strong shocks it is
also useful to flatten the interpolated profiles, as shown by Colella & Woodward [18]. In
Appendix A we provide a simple and serviceable flattening algorithm that works with

multi-dimensional reconstruction.
2.1) One-Dimensional WENO Formulation

The formulation presented here can be used along each dimension to limit the
modes in eqn. (4) that do not contain cross-terms. Casting the problem in a modal basis
enables us to obtain expressions that are even more compact than those in Jiang & Shu

[40] and Balsara & Shu [9].

2.1.1) Third Order Reconstruction in One Dimension



Consider the reconstruction problem in a zone labeled by a subscript “0”. We start

with the neighboring zone-averaged variables {u_,,u_,u,u,u,} . A third order

reconstruction over the zone labeled “0” can be carried out by using three stencils S; , S
and S; that rely on the variables {ufz,ufl,uo} , {ufl,uo,ul} and {uo,ul,uz} respectively.

The reconstructed polynomial is then expressed as

ux)=u, +u, R(x)+u, P(x) )
The left-biased stencil S; gives

u,==2u,+ u,/243u,/2 ,u, =(u,-2u,+u,)/2 (6)

XX

The central stencil S, gives

u, =(u, - ufl)/Z Ju =(u,—2u,+ ul)/2 (7)
The right-biased stencil S; gives

u, =-3u,/2+42u,- u,/2 ,u =(u,-2u+u,)/2 (8)

Eqns. (6) to (8) show a clear analogy to finite difference approximations. The smoothness

measure for each of the three stencils can then be written as
13
IS =u’+ ?uix 9)

In keeping with the philosophy of Dumbser & Késer [28] we do not strive to
achieve fifth order accuracy by using the optimal linear weights of Jiang & Shu [40].

Instead, we seek out stability in our reconstruction by giving the central stencil S; a linear



weight that is 100 times larger than its one-sided partners, i.e. S; and S; . Also keeping
with Dumbser & Késer [28], we raise the smoothness measures to the fourth power when
constructing non-linear stencil weights. This choice of preferring stability over an

increase in accuracy is also made for all the other WENO schemes in this section.
2.1.2) Fourth Order Reconstruction in One Dimension

Consider the reconstruction problem in a zone labeled by a subscript “0”. We start
with the neighboring zone-averaged variables {u_,u_,,u_,,u,,u,,u,,u,} . A fourth order
reconstruction over the zone labeled “0” can be carried out by using four stencils S; , S, ,

S3 and Sy that rely on the variables {u_j,u_,u_,u,} , {u,,u_,u,u} {u_,u,u,u,}

and {uo,u1 ,uz,u3} respectively. The reconstructed polynomial is then expressed as
u(X) = uO + ux Pl (X) + uxx PZ(X) +uxxx P3 (X) (10)
The stencil S; gives

u, = (-177u_+87u,-19 u ,+109 u,)/60,
u,=-5u,/2+2u,-u,/2+u, (11)
u, =(-3u ,+3u,-u,+u,)/6

The stencil S, gives

u, = (—=63u+1lu, +33u,+19u,)/60,
u, =u,/2-u,+u,/2, (12)
u, =(3u,-u, -3u,+u))/6

The stencil S; gives

10



u, = (-19u, =33 u,+63u,-11u,)/60,
u, =u /2 -u,+u,/2, (13)
u,, =(—u +3u,-3u,+u,)/6

The stencil S, gives

u, = (-109u,+177u,— 87u,+ 19 u,)/60,
u, = u,—5u,/2 +2u,-u,/2, (14)
u, =(-u,+3u,-3u,+u;)/6

The smoothness measure for each of the four stencils can then be written as

/10)* + Eu2 781

+ u 15
XXX 3 XX 2 O XXX ( )

IS =(u,+u

Eqn. (15) makes the positivity of the smoothness measure very apparent.
2.1.3) Fifth Order Reconstruction in One Dimension

Though we do not present a fifth order scheme in this paper, the one-dimensional
WENO reconstruction presented in this sub-section was used as a building block for a
very elegant ninth order pointwise WENO scheme in Balsara & Shu [9]. Because of the
utility of that scheme, it is worthwhile presenting the simple and compact expressions for
implementing that scheme in this sub-section. Thus consider the reconstruction problem

in a zone labeled by a subscript “0”. We start with the neighboring zone-averaged

variables {u_,,u_j,u,,u_,ug,u,,u,,u;,u,} . A fifth order reconstruction over the zone

labeled “0” can be carried out by using five stencils S; , S, , S3, S4 and Ss that rely on the

variables {uy,uy,u,,u,u,} , {us,u,u,u,u,} {u,u_,uy,u,,u,,
{u_,ug,u;,u,,u,} and {ug,u,,u,,u;,u,} respectively. The reconstructed polynomial is

then expressed as

11



u(X) = uO + ux Pl (X) + uxx P2 (X) +uxxx P3 (X) +uxxxx P4 (X) (16)

The stencil S; gives

.= (-462u_ +336u,- 146 u ,+27u_,+245u,)/120,
o« =(—=240u_, +262u ,-128u ,+25u , +81u,)/56,

oo = (=180 +24u ) —14u  +3u, +5u,)/12,

=(—4u_, +6u,—4u_ +u,+u,)/24

(17)

e & & €<

XXXX

The stencil S, gives

= (~192u_,+ 66u_,~11u_ +110 u, +27u,)/120,
w=(10u_ +12u ,-3u ,—44u,+25u,)/56,

o =(12u  —6u,+u ,—10u,+ 3u,)/12,

=(6u ,—4u,+u ,—4u,+ u,)/24

(18)

e & £ ¢

XXXX

The stencil S; gives

u, = (-82u +11lu,+82u,—11u,)/120,
u, =(40u_ ,-3u,-74u,+40u,—3u,)/56,
u, =(2u ,—u,-2u +u,)/12,

u,_ . =(—4u_ +u,+6u,—4u +u,)/24

XXXX

(19)

The stencil S4 gives

u, = (—27u_-110u,+192u, - 66u, + 11 u; )/120,
u, = (25u_, —44 u, +10u, +12u, -3 u, )/56,

uy =(-3u, +10u, ~12u,+6u,—u,)/12,

u,, =(u,—4u,+6u,—4u,+u,)/24

XXXX

(20)

The stencil Ss gives

12



u = (—245u,+462u, — 336u,+ 146 u,-27 u,)/120,
u, = (8lu,—240u, +262u, 128 u, +25 u,)/56,

(21)
u, =(-5u,+18u,—24u, +14u,-3u,)/12,
u,., =(u,—4u,+6u,—-4u,+u,)/24
The smoothness measure for each of the five stencils can then be written as
2
IS :(uX+uXXX/10)2+E uXX+ EuXXXX +781u)2(XX+1421461u)2(XXX (22)
3 455 20 2275

Eqn. (22) makes the positivity of the smoothness measure very apparent.

2.2) WENO Formulation for the Cross-Terms

Notice that a majority of the terms in eqn. (4) can be evaluated by dimension-by-
dimension limiting. Balsara et al [7] therefore realized that once those terms have been
obtained, the remaining cross-terms can be gathered quite efficiently by invoking smaller
stencils. While this process is not generally extensible to all orders, it also yields an
efficient strategy on structured meshes up to fourth order. In this section we catalogue a
strategy for obtaining the cross-terms in eqn. (4) that is even more efficient than the one
in Balsara et al [7] by virtue of the fact that it uses smaller stencils to gather up the cross-

terms.

2.2.1) Third Order Reconstruction of the Cross-Terms

Consider a sub-set of the full polynomial in eqn. (4) given by

u(x,y,z) = u,, +u, P(x) +u, P(y) tu, P(x)+ u, P, (y) + Uyy P (x) P (y) (23)

All the modes in eqn. (23) except for the cross-term u, can be obtained by using the

dimension-by-dimension reconstruction catalogued in the previous Sub-Section. Thus the

13



modes u,,u,, u, andu, as well as the zone-averaged value u,, are all known in the

zone of interest, which we label with a two-index subscript “0,0”. Four possible

evaluations of the u  term can then be obtained by taking all the known moments in the

zone “0,0” and including any one of the four zone averaged values

u,,,u_,u, andu_, , from the zones that lie along the diagonals of the zone of interest.

We catalogue the four possible evaluations of the cross-term u, below:

u. = ul’l— uo’o—ux—uy—uxx—u

Xy vy
u,=-u_;+ u0,0+ u, —uy+ u,+ u,, (24)
U, =—Uu_;+ Uy, -u, -+ uy+ u, + u,
uxy = u—l,—l - U’0,04_ ux+ uy _uxx _uyy
The smoothness measure for each of those stencils is given by
_ 2 2 2
IS=4u, + 4u, + u (25)

and can be used in the usual way to obtain a non-linearly weighted value for u . By

viewing the problem in the yz-plane and the xz-plane it is possible to use the formulae

developed here to obtain u,, and u,, respectively. This completes our description of

third order WENO interpolation on structured meshes.
2.2.2) Fourth Order Reconstruction of the Cross-Terms

Consider a sub-set of the full polynomial in eqn. (4) given by

u(x,y,z) = u,,+u, P (x) +u, P(y)tu, P(x)+ u,, P,(y) + Uy P (x) P(y)

(26)
+ uxxxP3 (X) +uyyy P3 (Y) +uxxyP2 (X) Pl (y) +uxny1 (X) P2 (Y)

14



All the modes in eqn. (26) except for the cross-terms u ,u  andu,  can be obtained by

Xy 2 XXy
using the dimension-by-dimension reconstruction catalogued in the previous Sub-
Section. Thus the modes u,Lu,u LU U and u,. as well as the zone-averaged value

XX 2 XXX

u,, are all known in the zone of interest, which we label with a two-index subscript

“0,0”. Fig. 1 shows us five possible stencils that can each be used to evaluate the

u,,,u, andu  cross-terms. The central stencil was added for stability reasons and has a

Xy 2 XXy

linear weight that is hundred times larger than the linear weights of the other four
directionally-biased stencils. Our choice of five stencils in Fig. 1 gives us five possible
evaluations of the cross-terms u, ,u  andu  which we catalogue below:

For stencil S; we obtain

u,=(60u,,-10u,,-10u,, - 40u,, —=30u, - 30u,
—-10u,, -10u,, +27u  +27u )/20

U, :(_20‘11,1 +10u,, +10u,, JrlOuy

(27)
-20u,, +10u,, —60u  +11lu, )/20
u, =(=20u,,+10u,, +10u,, +10u_
+10u,, =20u  +1lu, —60u, )/20
For stencil S, we obtain
u,, =(=60u,+10u ,+10u,, +40u,,—-30u,
+30u, +10u  +10u  +27u  —27u  )/20
u, =(- 20u_1’1 +10u,, +10u,, JrlOuy -20u, (28)

+10u,, +60u_ +11u )/20
uy, =(20u,,~10u,,~10u,, +10u ~10u_

+20u,, +11u +60u,,)/20

For stencil S; we obtain

15



u,, =(—=60u, +10u, ,+10u,  +40u,,+30u,
-30u, +10u +10u, -27u  +27u  )/20

u, =(20u, ,-10u, ,—10u,, +10u, +20u
—10u, +60u, +1lu, )/20

u,,=(=20u, ,+ 10y, , +10u,, +10u +10u
—20u, +11u,, +60u, )/20

For stencil S4 we obtain

u,, =(60u, -10u, —-10u, ,-40u,, +30u,
+30u, —10u, —10u —27u,  —27u  )/20

u,, =20u, ,-10u, —10u,,+10u +20u
—-10u,, -60u  +11u, )/20

u,, =20u, -10u,,-10uy, +10u, —10u
+20u,,+11u,, —60u,, )20

For the central stencil S5 we obtain

u,= ( u,,—-u,, -u, ,+ u, )/ 4
u,,~(-5u, ,+5u,,-5u, , +5u , —22u, —20u,)/20
u, =(=5u,,-5u,,+5u, , +5u,;-22u  -20u )/20

(29)

(30)

(1)

The smoothness measure for each of the u  terms in eqns. (27) to (31) is obtained by

taking the square of all possible second derivatives of eqn. (26) and integrating them over

the zone of interest, see Balsara et al [7]. It is given by

2 +u2 )

XXX XXy Xyy

1S=3(u’ +u§yy)+4(uix+u§y)+uiy +§(u

16
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The smoothness measure for each of the u  andu  terms in eqns. (27) to (31) is

obtained by taking the square of all possible third derivatives of eqn. (26) and integrating
them over the zone of interest, see Balsara et al [7]. It is given by
IS=36 (u) tuj,)+4@u +u) (33)

Both smoothness measures can be used in the usual way to obtain a non-linearly

weighted value for u, or u, andu  respectively. It is also acceptable to sum eqns.

(32) and (33) to obtain a single smoothness measure for all the cross-terms. By viewing
the problem in the yz-plane and the xz-plane it is possible to use the formulae developed

here to obtain u_,u

yz2 yyz? u

uxz s uxxz anduxzz °

yzz 2

The remainingu, term in eqn. (4) can now be obtained using a strategy that is

Xyz

similar to the one used for obtaining the u, cross-term at third order. Instead of the four

stencils using diagonal zones in the plane we build the eight stencils using the diagonal

zones in space. Thus for each of the eight stencils we use one of the values in the set
{uu,l, Uy Uy Uy, Uy s Uy s Uy, u_lﬁ_l’_l} to get u , in the element of interest

indexed by “0,0,0” .

For stencil S; we obtain

11
uxyz ul 1,1 Euzzz - uxzz - uzz - uyzz - uyyz - uxxz - uxz - uz - uyz
(34)
11 11
- uyy - Euyyy - uxyy - uxy - uxxy - uy - ux - u0,0,0 - Euxxx - uxx

For stencil S, we obtain

17



11
u = u—1,1,1 + _Ouzzz - uxzz+ uzz+ uyzz+ uyyz+ uxxz - uxz + uz+ uyz

11
+ uyy + Euyyy - uxyy - uxy—i_uxxy—i_uy - ux—i_uO,O,O - Euxxx—i_uxx

For stencil S; we obtain

11
uxyz: - u1,-1,1 + Euzzz +uxzz +uzz - uyzz+uyyz+ uxxz+ uxz + uz - uyz
11
+ uyy __uyyy+uxyy - uxy - uxxy - uy+ux+u0,0,0 + _uxxx+uxx
10 10
For stencil S4 we obtain
uxyz:_ul,l,—l _Euzzz—i_uxzz—i_uzz—i_uyzz _uyyz _uxxz _uxz _uz _uyz

XXX XX

11 11
+uyy +—uyyy+uxyy+uxy+uxxy+uy+ux+u0,0,0 +Eu +u

For stencil S5 we obtain

11
Xyz ul 1,1 _uzzz+uxzz_uzz+uyzz_u _uxxz+u —u +uyz
+ +u_ +u + 1
_uyy+_uyyy uxyy_u uxxy u ux u000+ﬁuxxx_uxx

11
u :ull 1+_u +u _uzz_uyzz+uyyz+uxxz_uxz+uz+uyz

Xyz -1,1,- 1 772 X2z

11 11
_uyy _Euyyy+uxyy+uxy _uxxy _uy+ux _u0,0,0 +Euxxx _uxx

For stencil S; we obtain
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(36)

(37)

(3%)

(39)



11

uxyz:ul,-l,-l +Euzzz _uxzz _uzz+uyzz+uyyz+uxxz+uxz +uz _uyz
11 11 “40)
_uyy +Euyyy _uxyy+uxy+uxxy+uy _ux _u0,0,0 _Euxxx _uxx
For stencil Sg we obtain
B 11
uxyz__u—l,-],—l _Euzzz _uxzz+uzz _uyzz _uyyz _uxxz +uxz _uz+uyz
T (41)
+ uyy _Euyyy - uxyy+uxy - uxxy _uy - ux +u0,0,0 _Euxxx +uxx
The smoothness measure for each of the eight stencils is given by
_ 2 2 2 2 2 2 2 2 2 2
IS =36(u,, +uy, +um)+4(uXXy Uy, TUy, HU, +U, +uyzz)+uXyZ (42)

The smoothness measures can be used in the usual way to obtain a non-linearly

weighted value foru ,. This completes our description of fourth order WENO

interpolation on structured meshes.

2.3) Cataloguing Divergence-Free Reconstruction of the Magnetic Field

Divergence-free reconstruction for MHD has been detailed in Balsara [3] and [5]
for second order schemes and in Balsara [6] for higher order schemes. We therefore
present only as much detail here as is needed for understanding ADER-WENO schemes
for MHD. Consequently, the method consists of realizing that the moments of the face-
centered magnetic field components can be obtained by using the reconstruction
techniques given in the previous two Sub-Sections. Assuming a zone to be a unit cube,
the x-components of the magnetic field in the upper and lower x-faces of a zone are then

given by
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B,(x=%1/2,y,z)=B;* + B}" P,(y) + B)" P(2) <« second order
+By P,(y) + B} P(y) P(2) + B} P,(2) « third order
+B),, P(y) + B, P,(y) P(2) + B,,P,(y) P,(2) + B}, P;(2) < fourth order

yoz 222

(43)
The arrows in eqn. (43) show us the minimum sub-set of terms that are needed for
achieving the desired order of accuracy. Thus for a second order scheme we would only
use the first line in eqn. (43). For a third order scheme we would need the first and second
lines in eqn. (43). For a fourth order scheme we would use all three lines in eqn. (43).
Similar expressions for the y and z-components of the field in the appropriate zone faces

can be written as:

B, (x,y=%1/2,z)=B}* + B)" P,(x) + B)* P(2) <« second order
+BY; P,(x) + B, P,(x) P,(2) + BY P,(2) « third order
+ B, Pi(x) + B}, P,(x) P(2) + B, P,(x) P,(2) + B, P,(z) <« fourth order
(44)
B,(x,y,z=%1/2)=Bj" + B]" P(x) + B{" P,(2) <« second order
+BZ; P,(x) + B, P(x) P(y) + B, P,(y) « third order

+ By, P,(x) + B, P,(x) P(y) + B}, P,(x) P,(y) + B, P,(y) <« fourth order

XXX XXy

(45)

The moments in eqn. (43) can be obtained by limiting the x-component of the magnetic
field in the yz-plane. Similarly, the moments in eqns. (44) and (45) can be obtained by
limiting in the xz-plane and xy-plane respectively. The WENO limiting strategies
catalogued in the previous two Sub-Sections can be used to carry out the limiting. To
reconstruct the field in the interior of the zone we pick the following functional forms for

the fields:
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B.(X,y,2)=a,taP(x)+ ayP] (y) +a,P(2)

+a P,(x)+a P (x)P(y) +a,P(x) P(2) « second order
+ anyZ (Y) + axnyI (X) P2 (Y) + aZZP2 (Z) + axzzPI (X) PZ (Z) + ayz Pl (y) Pl (Z) + a'xyz Pl (X) Pl (y) Pl (Z)
+ axxxP3 (X) + axxyPZ (X) Pl (Y) + axszZ (X) Pl (Z) < thlrd Order

ta Py ta, RE)P(Y) +a, Py P(2) +a, X P(y) P(2)
+ ayzz Pl (Y) P2 (Z) + axyzz Pl (X) Pl (Y) PZ (Z) + azzzPS (Z) + axzzz Pl (X) P3 (Z)
+ a’xxxx P4 (X) + axxxy P3 (X) Pl (Y) + axxxz P3 (X) Pl (Z)

ta,, P (x) P,(y) +a,,, P,(x)P,(2) <« fourth order

(46)

By( X,¥,z)=b,+ b P (x)+ byPI (y) +b,P(2)

+b, P,(y) + b P(x) P(y) +b,,P(y) P(2) < second order
+b,,P,(x) +b, P,(x) P(y) +b,P,(2) +b,P(y) P,(z) + b, P(x) P(z) +b,, P(X) P (y) P,(2)
+b,, Pi(y) +b, P (x)P,(y) +b,,P(y) P(2) < third order

b P +b (PE) R b, RE)P(@) +b, BX)P(y) P(2)

+b,, P R@)+b, RGP P2 +b,Pi(2)+b,, Py P(2)

by P T b, B P(y) + by, Pi(y) Pi(2)

+b,,, P,(x)Py(y) + b, P,(y) P,(2) <« fourth order
(47)

Bz( X, y7 Z) = C0+ CxP1 (X) + cyPl (Y) + CZPI (Z)

tc,P(2)+ ¢, P(x)P(2)+c,P(y) P(z) « second order
te P(x) e P(x)P(2) +c, P(y) +¢,,P(y) P(2) + ¢, P(x)P(y)+c,, P(x)P(y) P(2)
+ CZZZP3 (Z) + szzPl (X) P2 (Z) + CyzzPI (Y) P2 (Z) < thlrd Order

+CouPs(X) + €, Bi(X) P(2) + ¢y, Py(X) Pi(Y) + ¢y, P(X) P(y) Pi(2)

teg,, B P(y) +c, P(X)P(y)P(z) tc , Py +c,, Py P(2)

tc,, P(2)+c,, BE)P(2)tc,, P(y)P(2)

teo, L&) P(2)+c, P(y)P(2) < fourth order
(48)

The rationale for picking this set of moments follows from Balsara [3]. As shown in

Balsara [6], eqns. (43) to (45) can be used along with the divergence-free condition in
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eqn. (2) to completely specify the coefficients in eqns. (46) to (48). Observe that eqns.
(43) to (45) only hold in the zone-faces while eqns. (46) to (48) are divergence-free to all
orders and hold at all points within the zone being considered. As a result, our evaluation

of the coefficients in eqns. (46) to (48) reconstructs the magnetic field in the whole zone.

It is worthwhile to consider eqn. (46) at third order to make two important points.
First, notice that all the linear and quadratic variations that one would require for the third
order accurate reconstruction within the unit cube are all present. As a result, although we
started with just the facial moments in eqns. (43) to (45), the divergence-free
reconstruction has enabled us to fully specify all the requisite moments for third order
accuracy within the unit cube’s interior. This observation extends to all orders. Second,

notice that the coefficients a_ , a a,,- a,, anda_, correspond to variations

xyy? Yxzzs Ay > Dyexr Ay
that are only needed for fourth order accuracy and yet they are present in the third order
reconstruction. Their presence is mandated by the divergence-free condition, not by
accuracy conditions. As a result, these terms do not need to participate in the third order
ADER time-evolution. Their contribution does, however, need to be included in the flux
evaluation in the ADER scheme as well as in the construction of Riemann solvers at zone
boundaries. We therefore say that these coefficients provide non-evolutionary terms in
the ADER update. Their contribution needs to be included wherever possible but there

are no time-evolving terms associated with them in the ADER formulation.

3) ADER-CG Formulation

In contrast to the classical ADER schemes of Titarev & Toro [55] and [56], which
needed many analytical algebraic manipulations due to the underlying Cauchy-
Kovalewski procedure, the new formulation of ADER schemes recently proposed in
Dumbser et al. [26] is based on a local weak formulation of the governing PDE in space-
time and only needs flux evaluations at point values. These new ADER schemes rely on
an iterative convergence to the actual space-time representation of the solution within
each zone. In Sub-Section 3.1 we provide the general formulation of ADER-CG schemes

(where CG stands for continuous Galerkin representation in space and time) and describe
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one iteration of the ADER scheme. In Sub-Section 3.2 we describe in detail the
implementation of the third order ADER-CG scheme in an effort to make the ADER
method easily accessible to all readers. In Appendices B and C we provide the most
essential formulae that are needed for making implementations of the second and fourth

order ADER-CG schemes respectively.
3.1) General Formulation of ADER-CG Schemes for Structured Meshes

Say we want to evolve the nonlinear time-dependent hyperbolic system of

conservation laws given by

oU oF oG oH
—t—t— =

AN AL (49)
ot ox oy oz

where U is an n-component vector of conserved variables and F =F (U), G=G(U) and
H =H (U) are flux vectors and S =S(U) is a non-stiff source term. We wish to take a

time step of size At on a mesh having zones of size Ax , Ay and 4z in each of the three
directions. Each zone can be mapped to a unit cube in space. Since ADER schemes

operate in space and time, we consider a four dimensional reference element in space-
time given by [ —1/2, 1/2]x[ —=1/2, 1/2]x[ -1/2, 1/2]x[0, 1] where the first three
coordinates span the unit cube and the fourth coordinate represents the time axis. In this
space-time element we set up the coordinates (5,77,( ,r) and make the transcriptions
u=U, f =AtF/Ax , g=AtG/Ay , h=AtH/Az and s=AtS. This allows us to write
eqn. (49) in the reference element as

ou of og oh
+—+—=

=5 (50)
or 9 on o

The ADER scheme that we describe here is a modal variant of the ADER scheme

with a continuous Galerkin representation in time (also known as ADER-CQG) described
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in Dumbser et al [26]. Such ADER-CG schemes are very efficient because they minimize
the number of flux evaluations though they have the drawback that they are not well-

suited for handling stiff source terms. We now specify a set of L basis functions

{6’| =6’,(§,77,§ ,r) ,|=1,L} in the reference element. For a general Galerkin

formulation, any reasonable set of basis functions would suffice. For an ADER-CG
scheme we make the further requirement that the first Ls elements in the set of basis
functions only have a spatial dependence and lack any dependence on time t . The

solution vector U can now be represented in this basis space as
L
u(&n,¢,t)=2.0, 6(&n.4.7) (51)
1=1

T . .
where U = (ul,.., ..U, +1,..,UL) is a vector of modes. The first Ls elements of this vector

of modes lack time-dependence so that only the last L— Lg of these modes carry the time-
evolution of the solution U . Equations similar to eqn. (51) can be formulated for the flux
components as well as the source terms. Thus the &, n and {-directional fluxes in space-

time reference element are, therefore, completely specified by providing the modal

A ~

. ¢ ¢ ¢ T A A A A A T
vectors given by fz(fl,.., s fin fL) , 0 E(gl,..,gLS,gLSH,..,gL) and

~ ~ A A AT
h (h1a-->h|_5ah|_s+1>--ah|_) respectively. Likewise, the source terms are specified by

. . ~ o n 3 n T :
providing S = (Sl,...,sLs ,SLSH,...,SL) . These flux terms and source terms can be obtained

by using U from the previous iteration. The method for doing so is illustrated at third

order in the next Sub-Section. The ADER-CG formulation consists of making a further

essential simplification that at t = 0 the solution u(¢,7,¢,7) is continuous with the
initial condition W(f,?],{ ) This simplification is advantageous because one needs to

evaluate ﬂ , 0, ,ﬁl and § for I1=1,.Ls only once at =0 , resulting in a substantial

savings in computational complexity. Thus if W is written in a modal space as
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W(&.6)= 2 6 (&n.6,7=0) (52)

then the ADER-CG simplification consists of asserting that U, =W, for I=1,..,Ls . Notice

that this assertion simultaneously relinquishes the prospect of obtaining a weak
formulation in time as well as the scheme’s ability to handle stiff source terms. (In
Balsara et al [8] and Dumbser et al [30] we present ADER schemes that retain the weak
formulation in time and can, therefore, handle stiff source terms. We refer to those

schmes as ADER-DG to show their discontinuous Galerkin aspect.)

Applying the Galerkin approach to eqn. (50) then gives us

06\ . 06, 06\ . o6\ A
(ogt)ae(og2) (o Shas(a g2 ) -la.a)s 3

The angled brackets in the above equation denote space-time integration over the

reference element. Eqn. (53) can then be written as
Ka+K,f+K,§+K.h=Ms (54)

where, in keeping with the usual terminology of Galerkin schemes, M is the mass matrix,

K, is the time-stiffness matrix and K., K, ~and K, are the flux-stiffness matrices. The

(j,)™ elements of these matrices can be made explicit as follows

06,
Kop=(—=2.6); K., = 91,89 s K, = ej,% ; Ko =6, 6\ . Mj,=<ej,<9,>
HT\ a7 £ PE nil: on s ’

(55)

Notice from the structure of the vector U that only the last L-Ls components are

A R A1\T
unknowns to be obtained from the ADER-CG iteration. We thus write Gas U= (uo,ul)

where G° has the first Lg components of U and G' has the last L—Lg components of U . A
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similar split can be effected for f, @,ﬁ and §. The mass matrix and the stiffness matrices

can now be written as
00 01 00 01
M{M M } » :{Ka Ka} (56)
M 10 M 11 24 K;O K;l

where o can be &£,77,4 or 7 in the above equation. Only the last L-Ls components of

eqn. (54) are useful and yield the equation

h° (57)

(58)

Thus a specification of the matrices in eqn. (58) along with eqn. (57) furnishes the entire
ADER-CG scheme. In the next Sub-Section we will explicitly show the third order

ADER-CG scheme that results from using these matrices.

Notice that the matrices M and Ka are square matrices with a rank of L—Lg while

the matrices M° and K;’ are rectangular with a dimension (L—Ls)xLs . It is interesting to

A

remark that while the K!” and K!' matrices in eqn. (58) are non-sparse, the matrices K_

and Kao are sparse at all orders. As a result, the form presented in eqn. (57) is also the one

in which the equations are most elegant. This is true both for the tensor product basis
functions that are used for logically rectilinear meshes and also for the Dubiner [25] basis

functions that are used for unstructured meshes. At an intuitive level, the sparsity of
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K £ Kﬂ and K . stems from the fact that in Legendre basis as well as in Dubiner basis the

derivative operator only couples one basis function to two other basis functions.

In an ADER-CG scheme eqn. (57) is made to converge via iteration. Our
experience has shown that we only require “M” iterations of eqn. (57) to achieve the
requisite accuracy of an M™ order scheme. Dumbser et al [26] provide an intuitive
explanation, based on contractive mappings, for this rapid convergence. There also exists
formal theory based on the Picard iteration which supports the claim that “M” iterations
are adequate for an M™ order scheme. As a result, while the ADER-CG schemes do
iterate on eqn. (57), the iteration is not very expensive. Even the most stringent test
problems presented here were always run with the minimum requisite number of ADER-

CQG iterations.

3.2) Implementation of the ADER-CG Scheme at Third Order

We start with the initial condition at t=0 which is given by expressing W(&,7,¢)

in terms of the Ls = 10 spatial basis functions as follows

+ VAV2P1(§)P0 (U)Po(g) + WP, (g)Pl (ﬂ)PO (é,) + WPy (é)PO (U)Pl(g)
+ WP, (&) Py (1) (&) + WP, ($)P,(m) Py (&) + WPy ($)Py ()P, (<)
+ WP, (E)P, ()P, (&) + WP, (£)P,(7)P (&) + WP, (£)Py ()P (<)

(39)
We can now define a space-time solution u(f,n,{ ,r) in the reference space-time

element by forming tensor products of the spatial basis set with the temporal basis set.
The temporal basis set has to be specially chosen in an ADER-CG scheme so that the first
Ls basis functions match up with those in eqn. (59). Thus our temporal basis functions are

taken to be

Q) (7)=1 , Q/(r)=7 , Q,(r)=7" , Q(r)=7" (60)
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The first three basis functions in eqn. (60) are needed for the third order scheme; the last
basis function in eqn. (60) is only needed for fourth order schemes. To obtain full third

order accuracy in space-time we use a total of L=15 basis functions. The conserved
variables u(é,n,é’ ,r) can be expressed in terms of the degrees of freedom, i.e. the

modes, and the basis functions as

+ WP ()P, ()P, (£) Qo (7) + WP, ()P ()P, () Qu(7) + WP, ()P, (7) P (£)Qy (7)
+ WP, (£)P, (17)Py (£) Qo (7) + Wiy (£)P, (1) (£)Qu(7) + WoPy (&), ()P, (£) Qo (7)
+ WP, (E)P (1) (£)Qu(7) + WP, (£)P, (7) P (£) Q0 (7) + WP ()P, (1) P (£)Q,
+0,P, ($)Py (1) Py (£) Qi (7) +6,P, (£) P, (7) P, () Q, (7)

+ 03P (£) P (7)P (£) Qi (7) + Py (£)P ()P (£)Qi () + GisPy (£)Py ()P (£)Qu(2)

Notice that eqn. (61) already incorporates the essential simplification that is built into an

ADER-CG scheme because we have set U, =W, for I=1,..,Ls .

While it is always possible to explicitly write down all the matrices from eqn.
(58), it is much easier to write down the iterative scheme that they give rise to. The

resultant ADER-CG iteration at third order is therefore given by

R S 3.
ul]__fZ_g3_h4+S]_ Eslz
2 2 2 2 5
. A ~ . 2,
Us = _2fs_gs_ o TS5, +§SIB (62)
R ; . A 2
u14:_f8_2g6_9+53+§14
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The set of equations provided in eqn. (62) completely describe one iteration the ADER-

CG scheme at third order on structured meshes.

Now that the ADER-CG iteration has been described in eqn. (62), we only need to

A

specify a strategy for obtaining the vectors f, g, h and § from the vector U . To

accomplish that, we establish a set of nodal points in space-time on the reference element.
Several choices of nodal points are possible. Realize that we have L modes so that we
could define a minimal set of L nodal points that allow us to make a one-to-one
transcription from the nodal space to the modal space. This would yield the most
economical ADER-CG scheme. Choosing a tensor product set of Gaussian quadrature
points might yield the most accurate transcription from nodal to modal space. It would
also be computationally expensive because for an M™ order scheme, this choice would
call for M* quadrature points. We prefer an intermediate strategy where we choose a set
of L, set of nodal points where L, is slightly larger than L . The node placement in this
choice has the special property that it yields compact, finite-difference like formulae for
transcribing from nodal space to modal space. For third order we have L, = 22 and the
nodes are chosen to have geometric symmetries which yield expected cancellations in
problems that have a great deal of symmetry. We have found such symmetrical node
placements even for second and fourth order ADER-CG. For third order ADER-CG the

L, nodes are given by the ordered set

{

—~

0,0,0,0); (1/2,0,0,0); (~1/2,0,0,0); (0,1/2,0,0); (0,-1/2,0,0);
0,0,1/2,0); (0,0,-1/2,0); (1/2,1/2,1/2,0); (-1/2,1/2,1/2,0);
1/2,-1/2,1/2,0); (-1/2,-1/2,1/2,0); (1/2,1/2,-1/2,0);
~1/2,1/2,-1/2,0); (1/2,-1/2,-1/2,0); (-1/2,-1/2,~1/2,0);
1/2,0,0,1/2); (=1/2,0,0,1/2); (0,1/2,0,1/2); (0,-1/2,0,1/2);
0,0,1/2,1/2); (0,0,-1/2,1/2); (0,0,0,1)}

(63)

N SN /SN /S~

Using the ordered set of nodal points we can then define an L, component vector U
which contains the nodal values of the conserved variables. The ordering of the

components of U follows that of the nodal points. Note that the first 15 elements of U
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have to be evaluated only once. Using the L, component vector U we can now define an
an L, component vector f which contains the x-directional fluxes from the hyperbolic
system in eqn. (50). The ordering of the components of f also follows that of the nodal
points. As a result the first 15 elements of f have to be evaluated only once, leading to
some of the computational efficiency of the ADER-CG scheme. The process of obtaining
the vector f from the vector f is just a matter of transcribing from nodal to modal

space and is given below.

2 = 2_f_3

f,=f,— T,

f,=f,-1,

b2t -a 2, (64)
=2, —4f+2F,

f=2f -4f+2f,

fo=(F—f -+ T+ - T, - T, +F) /2
fo=(f+f—F—F, - T, Fy+ T+ ) /2
fo=(f—f+f,—F - T, +F,-T,+F) /2

flz(_16+f_17+f_18+f_19+f_20+f_21)/3 -2 fA1

fo=2f{—F,+f

fom26-2f (65)
s =2(f—f,-f,+1)

fo=2(F— T, -, + )

fo=2(f—f, -+ %)

We point out that f is a temporary variable. Notice from eqn. (64) that the first 10

components of f have to be evaluated only once and are completely specified by the
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first fifteen components of f . The first fifteen components of f are, in turn, evaluated
only once at 1=0 before starting the ADER-CG iterations. Notice too from eqn. (65) that
the last 5 components of f will have to be re-evaluated in every ADER-CQG iteration and
only require a re-evaluation of the last seven components of f at t>0. This clear

separation between the fluxes that have to be evaluated only once at 1=0 and the much
smaller number of fluxes that have to be evaluated at t>0 yields even further
computational efficiency. A similar approach is followed for the other fluxes and the
source terms in eqn. (50). This completes our description of the ADER-CG scheme at

third order.

4) Flux Calculation , Time-Update and a Step-by-step Description of the ADER-
WENO Scheme

In Sub-Section 4.1 we describe the one-step time update and the flux calculation.
This includes the electric field calculation that is needed for MHD. In Sub-Section 4.2 we
provide a step-by-step description of the ADER-WENO scheme.

4.1) Flux Calculation and Time-Update

The MHD system can be described in conservation form of the form shown in

eqn. (49) by writing it as
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D P Vy
oV, pv:+P+B/8x — Bl/Ax
P, pv, v, — B B/dr
ol pv, P pv,. v, — B B/Ar
ol & | x| (e+P+B8x)v, — B (v-B)/4x
B, 0
B, (Vx B, —v, BX)
5. -(v. B, = v, B,)
PV PV,
PV, vy, — B B4z pv, v, — B B/Ar
pv, +P+B 81 — Bl/dxn pv,v, - B, B4z
5 pv,v, - ByB,/Ax 5| pVitP+B8z — Bldx
+ g (6‘+P+BZ/87Z)Vy - By(v-B)/4;r + 2 (8+P+Bz/8ﬂ')VZ - B,(v-B)/4x
—(Vx B, — v, Bx) (v, B, — v, B))
0 ~(v,B, - v, B,)
(Vy B, —v, By) 0

(66)

where & =p v?/2 + P/(y-1) + B’/87 is the total energy and y is the ratio of specific

heats. The Euler equations can be obtained from eqn. (66) by setting the magnetic fields

to zero.

The first five components of eqn. (66) follow a straightforward conservation form

n+1

and their one-step update from a time t" to a time t"" =t" + At in a zone labeled by

subscripts “i,j,k” is given by

— — At
Uirj}r,lk :Uir,]j,k -—|(F

At
Ax ( i+1/2, 5k — Fic1/2,j.k ) -

( ij+/2,k i,j—l/z,k)_ A7 (Hi,j,k+1/2 - Hi,j,k—l/z)

At
Ay
(67)
The overbars in eqn. (67) denote suitable averagings as will be detailed below. For eqn.
(67) to be a high order update, the fluxes in eqn. (67) have to be averaged in space and

time at the zone faces. These averages have to be obtained using quadratures having the
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appropriate accuracy. Traditionally, this has been obtained by solving a large number of
Riemann problems at a large number of quadrature points, see Cockburn & Shu [16].
This makes the time-update very expensive. A substantially simpler strategy was
presented by Dumbser et al [29] which views the flux at a face as being a linear

combination of four vectors. The four vectors are : a) the conserved variables to the left
of the zone boundary given by U, ., (V.Z.t)=u, (£=1/2,7,{,7), b) the
conserved variables to the right of the =zone boundary given by
Upinju (Vs Z.t) =, (§=-1/2,1,¢,7), c) the flux to the left of the zone boundary
given by Fi...0 ., (V,2t)=f , (§=1/2,7,{,7) Ax/At and d) the flux to the right of
the zone boundary given by Fu.,., . (Y,2.t)=f., (6§ =-1/2,17,{,7) AX/At. Let us
illustrate this for the HLL flux at any general point on the boundary “i+1/2,j,k” . Consider
a situation where the fastest left-going and right-going signal speeds at that boundary are
A, and A, respectively. In the usual way, we reset 4, =min(4,_,0) and A, =max(4g,0)

. The HLL flux at any general point on the top x-face of the zone being considered is then

given by

A
Fi+1/2,j,k(y’z’t)={/1 2 } FL;i+1/2,j,k(y’Z’t)_|:ﬂ _L;t :| FR; i+1/2,j,k(y’z’t)
R L R L

A
—{ — j|(UR§i+1/2,j»k(y’z’t)_UL;i+l/2,j,k(yazat))

(68)

The flux F,,, ;x thatis used in eqn. (67) is an average of the flux in eqn. (68) where the
averaging process is applied to the whole zone boundary being considered. The central
idea of Dumbser et al [29] consists of freezing A, and A to equal their values evaluated

at the space-time barycenters of the face under consideration. As a result, the square
brackets in eqn. (68) also become constants. This is tantamount to assuming that the same
dissipation model holds at all space-time points at the face being considered. With that

assumption, eqn. (68) becomes a linear function in the four vectors Ui, ;s Ug.iiia ik
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o Flivmjx and Fgpn 5 - Notice from eqn. (51) as well as its explicit instantiation at
third order in eqn. (61) that a space-time averaging of U ; ,;, and Ug.,,, ., is easily
done by using the ADER scheme’s space-time representation of U in the two zones that
abut the boundary “i+1/2,jk” . The ADER scheme also provides a space-time
representation of the fluxes, making it possible to obtain the space-time averages of

Fliajx and Foio - Consequently, eqn. (68) can be averaged over the upper x-face
of the zone “i,j,k” by integrating over the limits [-Ay/2,Ay/2]x[-Az/2,Az/2]x[0,At]
and dividing the integral by Ay Az At . Please recall that the non-evolutionary terms in

the magnetic field reconstruction (see last paragraph in Sub-Section 2.3) also contribute

to U imins Yrimix » Fuiejk @ad Fepo 5, - This completes our description of the

one-step update for the mass, momentum and energy densities in eqn. (66).

As first shown by Yee [59], a divergence-free evolution of the magnetic field
requires that one has a face-centered representation of the magnetic fields that is updated
using an edge-centered representation of the electric fields. As shown by Balsara &
Spicer [11], setting E =—VvxB shows us that specific components of the fluxes in eqn.
(66) are indeed the electric fields that one seeks. This enables us to use the upwinded
fluxes evaluated at the zone edges to obtain those components of the electric fields, as

shown in Balsara [5]. Thus we have a one-step update for the magnetic fields given by

Shi At (= = = =
Bx; i+1/2,j,k Bx; i+1/2,j,k 2AyAz (AZEZ; i+1/2, j+1/2,k _AZEZ; i+1/2,j-1/2,k + AyEy; i+1/2,j,k-1/2 _AyEy; i+1/2,j,k+1/2)
RN+l —_ " At vl o) ol
By; i,j-1/2,k By; i,j-1/2,k 9 AXAZ ( X; 0, j-1/2,k+1/2 AXEX; i,j-1/2,k-1/2 + AZEz; i-1/2,j-1/2,k — AZEz; i+1/2,j—1/2,k)
B —B A (AXE _AXE + AVE _AVE

z2:i,j.k+1/2 X; 0, j-1/2,k+1/2 X; 1, j+1/2,k+1/2 Y i+1/2,j.k+1/2 y; i-1/2,j.k+1/2

Z;i,j,k+1/2 _M
(69)

Just as the fluxes in eqn. (67) are space-time averages over the zone faces, the electric

fields to be used in eqn. (69) are space-time averages over the zone edges. As before, the

ADER formulation can be used to obtain these averages. Notice that four faces come
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together at each zone edge. The Riemann problems that furnish the electric fields at the
space-time center of the edge of interest are solved at space-time points within each face
that are closest to the edge center, see Fig. 1 from Balsara [5]. The actual electric field at
each edge is the arithmetic average of the electric field contributions from each of the
four faces that come together at that edge. This completes our description of the one-step

update for the magnetic fields in eqn. (1).

Balsara & Spicer [11] realized that the correct amount of upwinding for the
electric fields in (69) could be a delicate issue, a topic that has also been addressed by
Londrillo & DelZanna [43]. Notice that the electric fields are picked out by examining
the last three components of the flux in eqn. (68). When HLL fluxes are used, an
extremely simple solution to this issue is obtained by doubling the value of the third
square bracket in eqn. (68). Such a doubling should only be done when using eqn. (68) to

evaluate electric fields and, that too, only when A4, <0< A; . In all other instances, eqn.

(68) can be used straightforwardly to obtain the electric fields in eqn. (69).

4.2) Step-by-step Description of the ADER-WENO Scheme

Here we provide a step-by-step description of one time step of the ADER-WENO

scheme presented in this paper.

1) Use the WENO formulae presented in Sub-Section 2.1 and 2.2 to obtain the moments
of the face-centered magnetic field components in eqns. (43), (44) and (45). Do this
without recourse to characteristic interpolation. Once the facial moments are obtained,
use them to reconstruct the magnetic field within all the zones in of the mesh. This can be
accomplished using the formulae in Balsara [6]. This step also gives us a zone-centered

mean magnetic field evaluated with the requisite accuracy.
2) Use the WENO reconstruction formulae presented in Sub-Section 2.1 and 2.2 to obtain

the moments of eqn. (4) for each of the zone-centered quantities. For obtaining the

moments in each dimension, as described in Sub-Section 2.1, we used reconstruction in
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characteristic space. The cross-term reconstruction, described in Sub-Section 2.2, was
carried out directly in the space of conserved variables to keep the scheme inexpensive.
For some of the most stringent test problems we also followed the suggestion of Dumbser
& Kiser (2007) and reconstructed the moments from Sub-Section 2.1 twice, once in
characteristic space and once in the space of conserved variables, and took the smaller of
those moments. This helps stability without damaging the order property. The double
reconstruction, applied only to the moments that are reconstructed in a dimension-by-

dimension fashion, adds very little to the computational complexity of the scheme.

3) Use the WENO formulae presented in Sub-Section 2.1 and 2.2 to obtain the moments
of the face-centered magnetic field components in eqns. (43), (44) and (45). We are now
in a position to carry out this reconstruction in characteristic space. We now use the facial
moments to reconstruct the magnetic field within all the zones in of the mesh using the

formulae in Balsara [6].

4) Apply the flattening algorithm from Appendix A if that is desired.

5) Use the ADER-CG scheme that is detailed in Sub-Section 3.2 and Appendices B and C
to obtain the space-time representation of the flow variables within each zone. The
number of ADER iterations was always equated to the order of the scheme, i.e. we used
the minimum permissible number of ADER iterations for the time-update. As a result, we
used two, three and four ADER iterations for the second, third and fourth order schemes
respectively. We followed this practice for all the test problems presented in this paper.
We have never seen the need for using more than the minimum number of ADER
iterations in our simulations and a good reason for that, based on the Picard iteration, was

presented in Dumbser et al [26].

6) Obtain the space-time averaged values of the fluxes in eqn. (67). Similarly, obtain the

space-time averaged values of the electric fields in eqn. (69).

7) Make the one-step updates described in eqns. (67) and (69).
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Notice that after step 5) above we obtain not just the space-time representation of
the conserved variable but also all the fluxes. We have the option of storing all the flux
information. That option does add to the memory usage, but yields a faster scheme. One
also has the option of discarding the flux information and rebuilding it for step 6) as and
when it is needed. This yields an ADER scheme that uses memory much more

economically. We have chosen the latter approach in the schemes presented here.

The second order ADER-WENO scheme for MHD simulations uses characteristic
reconstruction and updates ~31,000 zones per second in three dimensions on a single core
mid-grade Intel processor. This makes it very cost-effective relative to modern,
sophisticated second order TVD schemes which also use characteristic reconstruction.
The third order ADER-WENO scheme has a computational complexity that is 2.5 times
that of the second order scheme. Likewise, the fourth order ADER-WENO scheme has a
computational complexity that is only 3 times that of the third order scheme. The
examples presented in this paper will show that the increased computational complexity
of higher order schemes is easily offset by their increased accuracy. It is also worth
pointing out that all the schemes presented here use the ADER time update and are
considerably less expensive than their counterparts that use a Runge-Kutta time update

strategy, see Balsara [6].

5) Order Property

The schemes presented here easily pass all the standard one dimensional tests for
demonstrating order of accuracy. Thus we prefer to focus on two and three dimensional
demonstrations of the order of accuracy in this section. All the two dimensional tests
were run with a CFL number of 0.45 and all the three dimensional tests were run with a
CFL number of 0.3 . A linearized Riemann solver for MHD, of the type presented in
Balsara [1,4] was used for all the tests in this section. All of the results presented in this

section use Balsara’s RIEMANN code for astrophysical fluid dynamics.

37



It is also worthwhile making a note of the reconstruction used for the second order
scheme that we present in this paper. Following Balsara [5] we used the slopes from the
r=3 WENO reconstruction of Jiang & Shu [40] for our second order scheme. As a result,
the slopes have one more order of accuracy than the accuracy that would be furnished by
a TVD-preserving limiter. This yields a very superior second order scheme. It would be
very difficult for a basic second order scheme to obtain the same accuracies as the second

order scheme presented here.
5.1) Unmagnetized Isentropic Vortex in Two Dimensions

In the unmagnetized vortex problem, presented by Balsara & Shu [9], an
isentropic vortex propagates at 45° to the grid lines in a domain with periodic boundaries
given by [-5, 5] x [-5, 5]. As the original test problem was set up for the Euler equations,
the magnetic field in all three directions is initialized to zero. The unperturbed flow at the
initialial time can be written as (p, P, vx, W, Bx, By, B:)=(1,1, 1, 1, 0, 0, 0). The ratio of

the specific heats is given by 7 =1.4. The entropy and the temperature are defined as

S=P/p"and T=P/p. The vortex is set up as a fluctuation of the unperturbed flow

with the fluctuations given by

(OVx, SW) = ie““-”)(—y, X)

(y=D&* v
oT = ——e™)

8y
0S=0

Its strength is controlled by the parameter £ which we set to & =5 according to Balsara

& Shu [9]. r is the radius from the origin of the domain and can be written as r* =x>+y>.

Please note that the problem has to be initialized in each zone using numerical quadrature
and that the accuracy of the quadrature formulae should match that of the numerical
scheme being used. Also notice that the exponential function in the velocity and
temperature fluctuations above ensures that the fluctuations are quite close to zero at the

domain boundaries. However, for the fourth order scheme the domain is increased to [-
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10, 10] x [-10, 10] due to the fact that the nonzero values of the exponential function at
the boundaries are picked up by the fourth order scheme on the smaller domain. The
stopping time was set to 10 time units for the second and third order schemes and to 20
time units for the fourth order scheme because of the bigger domain. The stopping time
was chosen so that the vortex has completed one periodic passage through the

computational domain.

TABLE I
Method Number of zones L, error L, order L., error L., order
2" order ADER CG 32x32 5.1124900 x 107 1.1677400 x 10"
64x64 1.0527400 x 10°  2.28 23322500 x 107 2.32
128x128 22522500 x 10 2.22 46105000 x 10° 234
256x256 5.4364900 x 10°  2.05 1.0438700 x 10°  2.14
3" order ADER CG 32x32 3.9555500 x 107 9.5757200 x 107
64x64 6.4692800 x 10  2.61 1.3762400 x 107 2.80
128x128 7.6747300 x 10°  3.08 1.9531200 x 10°  2.82
256x256 93029100 x 10°  3.04 24996400 x 10 2.97
4™ order ADER CG 32x32 4.5318300 x 107 2.7546100 x 10"
64x64 47962700 x 10*  3.24 3.1474100 x 107 3.13
128x128 2.3561700 x 10° 435 1.6096600 x 10° 429
256x256 8.7922100 x 107 4.74 7.2832400 x 10° 447

Table I shows the accuracy analysis for the second, third and fourth order
schemes presented here. The errors were measured using the density variable. All three
methods meet the expected order of accuracy even for a small number of zones. The third
order ADER-WENO scheme obtains an L; error norm at 128x128 zones which is
comparable to the second order ADER-WENO at 256x256 zones, which demonstrates
the advantage of a high order scheme. The fourth order scheme cannot be directly
compared to the third and second order schemes because of our use of a much larger
computational domain. We do see though that the fourth order scheme also meets its

design accuracy.

5.2) Magnetized Isodensity Vortex in Two Dimensions
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The magnetized isodensity vortex problem described in Balsara [5] consists of a
magnetized vortex moving across a domain given by [-5, 5] x [-5, 5] at an angle of 45°
for a time of 10 units. As before, for the fourth order scheme the domain is increased to [-
10, 10] x [-10, 10] and the simulation time is increased to 20 units. Periodic boundaries
are used for the domain and it is initialized with an unperturbed flow of
(o, P,v,,v,, B,, B))=(,1,1,1,0,0). The ratio of the specific heat is set to y=5/3.
The vortex is set up as a fluctuation of the unperturbed flow in the velocities and the

magnetic field given by:

(6V,, 6V, ) =§e°'5“‘“>(—y, X)
(6B,, 68,) =2=e" ") -y, x)
27

According to Balsara [5] the pressure fluctuation can be written as

1w, el LK o ae)
OP =— ()’ (1-rH)e"™) ——(—)’e
87r(27z) ( ) 2(27z)

and the density is set to unity.

TABLE II
Method Number of zones L, error L, order L, error L, order
2" order ADER CG 32x32 7.8294900 x 107 1.2119700 x 10™
64x64 22175500 x 10®  1.82 3.0823400 x 107 1.98
128x128 5.4236600 x 10*  2.03 6.8924200 x 10°  2.16
256%256 1.3477000 x 10*  2.01 1.6531500 x 10°  2.06
3" order ADER CG 32x32 5.5966400 x 107 1.0136700 x 10"
64x64 9.7810500 x 10 2.51 1.7964500 x 107 2.50
128x128 1.2692200 x 10*  2.95 23763700 x 10° 292
256x256 1.5983600 x 10°  2.99 2.9869600 x 10*  2.99
4" order ADER CG 32x32 5.3198700 x 107 2.8849000 x 10™!
64x64 4.7436200 x 10*  3.48 3.1605200 x 102 3.19
128x128 17658600 x 10° 4,75 8.9386200 x 10*  5.14
256%256 1.0736400 x 10°  4.04 5.4681200 x 10°  4.03
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Table II shows the error measured in the x-component of the magnetic field. All
three schemes meet the design order of accuracy even at a small number of zones. As in
the previous test problem we see that the third order scheme at 128x128 zone resolution
shows the same L error as the second order scheme at 256x256 zone resolution. This
illustrates the utility and cost-effectiveness of the higher order schemes because the third
order scheme easily offsets its slightly greater computational complexity (relative to the
second order scheme) by delivering a comparably accurate solution on a mesh that has

half as many zones in each direction.
5.3) Torsional Alfven Wave Propagation in Three Dimensions

The previous test problems used flows that were exact, equilibrium structures of
the governing equations. While torsional Alfven waves also satisfy the governing
equations, they are susceptible to parametric instabilities. These instabilities exist at low
values of plasma-f3 , see Goldstein [34] and Del Zanna et al [23], and also at high values
of plasma-f , see Jayanti & Hollweg [38]. The instabilities can of course be suppressed
by numerical dissipation and all schemes have such numerical dissipation. As a result,
second order schemes do not show these instabilities till the Alfven wave is very highly
resolved. However, higher order schemes can pick up on the slightest amount of
numerical noise and propagate it as a true fluctuation. Since the torsional Alven waves
are susceptible to physical growth of such fluctuations, they will be treated as such by the
numerical scheme. To avoid such deleterious effects, we carry out this test problem at

very high values of plasma-3 where the growth of such instabilities is suppressed.

The problem consists of initializing a torsional Alfven wave along the x axis of

an (x/ , y/ ,Z ) coordinate system with the following variables

2
=1 ,P=1000, &=—(x"-21t
p —(x'-2¢)
v =1 2V, =gcos® , v, =gsin®

B, =+4np , By =—¢&4np cos® , B, =—&/47p sin P
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where we take £=0.02 and 1=+/3 . We utilize the magnetic vector potential when
initializing the magnetic field in a divergence-free fashion on a three dimensional mesh.

The magnetic vector potential is given by
— _ _ / .
A, =0,A =¢i pl/rcos® , A =\l4mp y + &l p/7sin®

Please note that the magnetic vector potential has to be assigned to each zone’s edges
using numerical quadrature . Also note that the accuracy of the quadrature formula should
match the accuracy of the scheme. An application of Stokes law in integral form at each

face then yields the magnetic field component in that face.

The actual problem is solved on a unit cube with periodic boundary conditions in
the (x,y,z) coordinate frame which is rotated relative to the (x/ , y/ ,Z ) coordinate system.

The rotation matrix is given by A so that we have

cosy cosgp—cosfsingsiny  cosysing+cosfcosgsiny  siny sin @
A =| —siny cosg—cosfsingcosy —sinysing+cosédcosgcosy cosy sinf

sin @sin ¢ —sin @ cos ¢ cosé

where ¢=-7/4 , stinfl(— 2/3) and y =sin™ ((\/5—\/6)/4) . As a result, the

position vector I’ in the primed frame transforms to the position vector r in the unprimed
frame as r = A r’ . Other vectors transform similarly. The effect of the rotation is to make
the wave propagate along the diagonal of the unit cube. The wave propagates at a speed
of 2 units and the problem is stopped at a time of NE) / 2 by which time it has propagated

once around the unit cube.

Table 111
Method Number of zones L, error L, order L., error L, order
2" order ADER CG 8x8x8 3.46872 x 107 5.17784 x 107
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16x16x16 2.13576 x 107 0.70 337639 x 10~ 0.62

32x32x32 421518 x 107 2.34 6.61278 x 107 2.35

48x48x48 1.42618 x 107 2.67 223978 x 107 2.67
3" order ADER CG 8x8x8 3.56780 x 107 533670 x 107

16x16x16 1.67602 x 107 1.09 2.58530 x 107 1.05

32x32x32 2.62382 x 107 2.68 413702 x 107 2.64

48x48x48 7.92737 x 10* 2.95 1.25713 x 107 2.94
4™ order ADER CG 8x8x8 2.64017 x 107 3.99367 x 107

16x16x16 1.31645 x 107 432 2.04612 x 107 4.29

32x32x32 6.06938 x 10° 4.44 1.02099 x 10™* 433

48x48x48 1.30835 x 107 3.79 242201 x 107 3.55

Table III shows the accuracy analysis for the second, third and fourth order schemes
presented here. The errors were measured using the x-component of the magnetic field.
All three methods meet the expected order of accuracy even for a small number of zones.
Compared to the second and third order schemes we see that the fourth order scheme has
reached a very high accuracy of one part in 10° on the 48x48x48 zone mesh. The fourth
order scheme shows a slight evidence for parametric instability at 48x48x48 zone
resolution since it has picked up extremely tiny, numerically generated errors in the
pressure and propagated them. The second and third order schemes never reach the same
small value of the error on the meshes that are displayed but on very high resolution
meshes we have been able to verify that they too pick up slight traces of the parametric

instability.

Since all three schemes were run on the same problem, we can cross-compare the
errors in the second, third and fourth order schemes using this accuracy analysis
presented in Table III. Notice that on a resolution starved mesh, such as the 16x16x16
mesh in Table III the fourth order scheme offers almost an order of magnitude
improvement in accuracy over the second and third order schemes. We also see that the
fourth order scheme at 16x16x16 zone resolution is already as accurate as the second
order scheme at 48x48x48 zone resolution. The 48x48x48 zone calculation at second
order takes 12 times longer to complete than the 16x16x16 zone calculation at fourth

order, thus illustrating the advantage of using a higher order scheme.
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5.4) Density Wave Propagation in Three Dimensions

This test problem consists of propagating a density wave with a sinusoidal profile
along the diagonal of the same unit cube that was described in the previous sub-section.

Now the parameters in the (x/ , y/ ,Z ) coordinate system are given by

2r
=l+esin® ,P=1, d=""(x'-t),
p —(x'-1)
v, =1 ,Vy/ZO,VZ/ZO,Bx/ZO,By/ZO,B =0

z

where we take £=0.2 and 2=+/3 . The density profile and velocities are then rotated
into a periodic unit cube using the rotation matrix described in the previous Sub-section.
The problem is stopped at a time of NE) by which time the density wave has propagated

once around the unit cube.

Table IV
Method Number of zones L, error L, order L., error L., order
2" order ADER CG 8x8x8 6.09811 % 107 9.64241 x 107
16x16x16 1.58837 x 107 1.94 243894 x 107 1.98
32x32x32 3.63924 x 107 2.13 5.69284 x 107 2.10
48x48x48 1.58011 x 107 2.06 247718 x 107 2.05
3" order ADER CG 8x8x8 530213 x 10~ 8.25208 x 10
16x16x16 9.48506 x 107 248 1.37539 x 107 2.59
32x32x32 1.29720 x 107 2.87 2.07369 x 107 2.73
48x48x48 3.95625 x 10™* 2.93 5.80456 x 10 3.14
4™ order ADER CG 8x8x8 1.76010 x 107 2.90944 x 107
16x16x16 4.50487 x 10 5.29 8.94523 x 10* 5.02
32x32x32 1.56149 x 10° 4.85 3.61468 x 10° 4.63
48x48x48 2.50965 x 107 4.51 6.80014 x 107 4.12

Table IV shows the accuracy analysis for the second, third and fourth order schemes
presented here. The errors were measured using the density variable. All three methods
meet the expected order of accuracy even for a small number of zones. Since all three

schemes were run on the same problem, we can cross-compare the errors in the second,
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third and fourth order schemes using this accuracy analysis. We see that the fourth order
scheme at 16x16x16 zone resolution provides a more accurate result that the second order
scheme at 48x48x48 zone resolution, again underscoring the advantages of using higher

order schemes.

6) Hydrodynamical Test Problems

In this section we present several stringent hydrodynamical test problems. The
schemes we have presented operate accurately and robustly on all of these problems. This
illustrates the utility of our methods for simulating hydrodynamical flows. The

RIEMANN code was used for all these tests.

6.1) Interacting Blast Problem in One Dimension

The interacting blast problem was presented by Woodward and Colella [58]. We
used the fourth order ADER-WENO scheme with the linearized Riemann solver to
compute this problem using exactly the same parameters as the original authors of this
problem. The CFL number was set to 0.8. Fig. 2 shows the density variable of a
simulation with 400 zones as diamonds. The solid line is the converged density profile of
a simulation using 1600 zones. We see that the left-going contact discontinuity is
captured well in the simulation using 400 zones. We further note that all the flow

structures in the 400 zone simulation are very close to the converged simulation.

6.2) Shock-Entropy Wave Interaction in One Dimension

The one dimensional shock-entropy wave interaction problem was first presented
by Shu & Osher [51]. It consists of a Mach 3 shock interacting with a density
disturbance. That generates a flow field that is a combination of discontinuities and
smooth structures. Therefore the problem is a good model for the interactions occurring
in simulations of compressible turbulences. Additionally it represents the amplification of

entropy fluctuations as they pass through a shock. These interactions of smooth structures
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with shocks pose a problem for TVD schemes as the damaging effects of the TVD
limiters are maximal in these cases. Jiang & Shu [40] made a detailed study showing that
the r = 3 WENO scheme performs superior to a well-designed TVD scheme. They
concluded that the r = 3 WENO scheme using 800 zones outperformed the TVD scheme
using 2000 zones substantially. We computed the problem using several ADER-WENO
schemes with the linearized Riemann solver at a CFL number of 0.8. To highlight the
role of TVD limiters, we even ran a simulation using the MC limiter of vanLeer for the
spatial interpolation and the ADER scheme for the time-evolution. The computational

domain spans [-1, 1] and was set up with 200 zones. The initial condition is given by

(Pus PV, ) =(3.857143,10.3333,2.629369)  x<—-0.8
(Prs Pas V) = (140.25in(57%),1,0) Xx>—-0.8

The simulation was stopped at 0.47 time units.

Fig. 3 shows the density profile of the third and fourth order ADER-WENO
schemes as well as the TVD scheme using 200 zones as diamonds and the reference
solution, which was calculated on an 800 zones grid, as a solid line. We note that the
density profile of the fourth order scheme has almost converged to the reference solution
and shows all the extrema that are seen in the reference solution even though it uses a 200
zone grid. Furthermore we see that the scheme needs no more than 11 points between
extrema in the density variable immediately after the shock. The third order scheme is
quite close to the reference solution while the TVD scheme misses the reference solution
by a wide margin. Therefore we note, that the solution of the ADER-WENO schemes
converged to the reference solution using a small number of points. This shows that the
third order ADER-WENO scheme converges faster to the reference solution than a lower

order scheme and has the smaller error if the number of zones is kept constant.

6.3) Resolution Study of the Forward Facing Step Problem in Two Dimensions
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This test problem was first presented by Woodward and Colella [58]. Cockburn
and Shu [16] carried out a resolution study using schemes of increasing order of
accuracy. Increasing the resolution enabled them to capture important details such as the
roll up of the vortex sheet via Kelvin-Helmholtz instability. They also showed that more
accurate schemes were able to capture the vortex sheet roll-up with smaller number of
zones. Our purpose is to make a similar resolution study and to prove that the schemes
are accurate and perform robustly on this stringent problem. We therefore simulated this
test problem using the fourth order ADER-WENO scheme with increasing resolution as

shown in Fig. 4.

The problem consists of a two-dimensional wind tunnel that spans a domain of [0,
3]1x [0, 1]. A forward-facing step is set up at a location given by the coordinates (0.6,0.2).
Inflow boundary conditions are applied at the left boundary, where the gas enters the
wind tunnel at Mach 3.0 with a density of 1.4 and a pressure of unity. The right boundary
is an outflow boundary. The walls are set to be reflective boundaries. The singularity at
the corner was treated with the same technique that Woodward and Colella [58]
suggested. The simulation was run until a time of 4.0 time units and the ratio of specific

heats is given by 1.4.

Fig. 4 shows the density at the final time at a resolution of 240x80, 480x160 and
960x320. All of the three simulations were run with a fourth order scheme and a
linearized Riemann solver. The CFL number was set to 0.4. All the shocks are properly
captured on the computing grid and have sharp profiles. The vortex sheet that emanates
from the Mach stem is correctly resolved with only a few zones across the sheet. We
notice that the vortex sheet shows little or no spreading over the length of the
computational domain. At a resolutions of 960x320 and 480x160 the roll up of the vortex
sheet is clearly visible. An exceptionally good second order scheme would need at least a
resolution of 960x320 zones to start showing evidence of the vortex sheet’s roll-up. Such
a second order scheme operating on this problem with a resolution of 960x320 zones

would furnish the same solution quality as the fourth order scheme does at a resolution of
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480x160. This demonstrates the ability of the high order schemes to provide a better

resolution at a smaller number of zones.

6.4) Resolution Study of the Double Mach Reflection of a Strong Shock in Two

Dimensions

This problem was presented by Woodward and Colella [58]. We use the exactly
the same setup for the test problem as the authors did. A Mach 10 shock hits a reflecting
wall which spreads from X=1/6 to x=4 at the bottom of the domain given by [0, 4] x
[0, 1]. The angle between the shock and the wall is 60°. At the start of the computation
the position of the shock is given by (X, y)=(1/6,0). The undisturbed fluid in front of the
shock 1is initialized with a density of 1.4 and a pressure of 1. The exact post-shock
condition is used for the bottom boundary from x=0 to X=1/6 to mimic an angled
wedge. For the remaining boundary at the bottom of the domain we used a reflective
boundary condition. The top boundary condition imposes the exact motion of a Mach 10
shock in the flow variables. The left and right boundaries are set to be inflow and outflow

boundaries.

Fig. 5 shows the density variable at t=0.21n [0, 3] x [0, 1] as in Woodward and

Colella [58]. The upper panel shows a resolution of 960 x 240 zones, the second panel
shows a resolution of 1920 x 480 zones. The two panels at the bottom show a blow-up of
the region around the double Mach stem for both computations. All the plots show 30
contours equally distributed from p =1.3965 to p=22.682. We used the fourth order

ADER-WENO scheme with an HLL Riemann solver for both simulations.
Notice that the fourth order ADER-WENO scheme resolves all the structures that

are shown in Cockburn & Shu [16]. According to Cockburn & Shu [16] a second order

scheme would need at least four times as many zones in each direction to resolve the
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instability and for such a simulation it would need more CPU time than the fourth order

scheme. That demonstrates the efficiency of the higher order schemes presented here.

7) MHD Test Problems

We present several stringent MHD test problems in this section. The MHD
schemes we have presented operate accurately and robustly on all of these problems
showing the utility of our methods. The RIEMANN code for astrophysical simulations
was used for all of these MHD tests.

7.1) MHD Riemann Problems in One Dimension

First we present one of the Riemann problems from Ryu & Jones [48]. It is set up
on a 400-zone mesh spanning the domain given by [-0.5, 0.5]. The initial conditions are

given by

(PP, oYy 15V, 5B, 5B, ) =(1.08,0.95,1.2,0.01,0.5,3.6,2.0) x<0
(Prs PasVy oYy Vs s By s By ) = (1.0,1.0,0,0,0,4.0,2.0) X >0

The x-component of the magnetic field is given by B, =2 . The simulation was stopped

at a time of 0.2 and the ratio of specific heats was set to 5/3. As this is a non-coplanar
problem it generates seven waves, which are a right-going fast shock, a right-going
rotational discontinuity, a right-going slow shock, a contact discontinuity, a left-going
slow-shock, a left-going rotational discontinuity and a left-going fast shock. Ryu & Jones
[48] also provide the exact solution for this Riemann problem. We simulated the problem
using the fourth order ADER-WENO scheme using an HLL Riemann solver and a CFL
number of 0.8. Fig. 6 shows the density, the pressure, x-velocity, y-velocity, z-velocity
and the y- and z-component of the magnetic field. All the shock profiles are properly
captured within a few zones. We note that our high order scheme captures slow shocks
with only a few zones across them. In Balsara [2] it was shown that profiles of slow

shocks sometimes have a little more than the optimal number of zones across them if
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TVD schemes for MHD are used. In Fig. 6 we see that the fourth order ADER-WENO
scheme resolves the slow shock as a sharp profile. Therefore we note that the
representation of slow shocks is improved by high order schemes. We also see that the
contact discontinuity and the rotational discontinuity profiles are captured with a few
zones. Notice the small number of zones between the rotational discontinuity and the
corresponding slow shock. The ability of the scheme to resolve every discontinuity as a
sharp profile is necessary to distinguish the rotational discontinuity from the slow shock

and to maintain a high accuracy.

Our next Riemann problem comes from Dai & Woodward [21]. It is set up on a

400-zone mesh spanning the domain given by [-0.5, 0.5]. The initial conditions are given

by

(P PV, LY, oY, 1B, 4B, ) =(1.0,1.0, 36.87, —0.155, —0.0386, 4.0, 1.0) X <0
(Prs PasVy oYy oYy s By o By g) = (1.0, 1.0, —36.87, 0, 0, 4.0, 1.0) X >0

The x-component of the magnetic field is given by B, =4 . The simulation was stopped

at a time of 0.03 and the ratio of specific heats was set to 5/3. The problem consists of
two very high Mach number streams of magnetized fluid rushing towards each other. It
can be thought of as the MHD equivalent of the Noh problem. The resolved state consists
of two fast magnetosonic shocks of Mach number 25.5 propagating out of the interaction
region. We simulated the problem using the fourth order ADER-WENO scheme using an
HLL Riemann solver and a CFL number of 0.8. Fig. 7 shows the density, the pressure, x-
velocity, y-velocity, z-velocity and the y- and z-component of the magnetic field. All the
shock profiles are properly captured within a few zones and do not display any post-
shock oscillations. This problem, along with a few other problems presented in this
section, demonstrates that higher order schemes can successfully tackle problems with
very strong shocks while simultaneously giving us the advantages of high resolution,

high accuracy and low numerical dissipation.
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7.2) Numerical Dissipation and Long-Term Decay of Alfven Waves in Two

Dimensions

In several fields, like astrophysics or space physics, one is interested in the
evolution of waves to simulate certain problems such as turbulence. The Alfven wave
decay test problem first presented by Balsara [5] examines the dissipation of torsional
Alfven waves in two dimensions. In this test problem torsional Alfven waves propagate
at an angle of tan™'(1/r)=tan ' (1/6) =9.462° to the y-axis through a domain given by [-
/2, 1/2] x [-1/2, /2] with r = 6. The domain was set up with 120 x 120 zones and has

periodic boundary conditions. The pressure and density are uniformly initialized as P, =1
and p,=1. The unperturbed velocity and unperturbed magnetic field are given by
vV, =0 and B, =1. The amplitude of the Alfven waves is parametrized by a velocity

fluctuation ¢, which is set to 0.2. Different test problems can be set up by changing these
values. The simulation was stopped at 129 time units by which time the waves had
crossed the domain several times. The CFL number was set to 0.4. The direction of the

wave propagation along the unit vector can be written as

A 1 o r 2
) = I+ J.
Todrr 4l A+

The phase of the waves is given by

B
@ :i—ﬂ(nxx+ n,y—V,t), where V, = —

y 47p, ‘

The velocity is given by

Vv =(V,h, —é&n, cos A + (Von, —é&n, cos @) ]+ &sin ¢I2 .

The magnetic field is given by
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B = (B,n, +&n, /47p, cos I + (Byn, —&n,\/47p, cos @) | —erl4np, sin ¢k .

The corresponding vector potential is given by

A~ N4

27

n, /4 ~
NP sin @)k

A &
cos gl +(—B,n, x+Byn,y +—
2

and it is used to initialize the magnetic field.

The dissipation of the numerical scheme can be measured in the decay of the
maximum values of the z-component of the velocity and the magnetic field. The r.m.s.
values of the velocity and the magnetic field decay in the same fashion as the maximal
values of these quantities do. For this reason they are not presented here. Kim et al. [41]
showed that these plots give a good qualitative understanding of numerical viscosities
and resistivities in a numerical scheme. In Fig 8 the maximum z component of the
velocity and of the magnetic field are plotted at every time step in a log-linear plot. We
used the HLL and linearized Riemann solvers with the second, third and fourth order
ADER-WENO schemes. It can be seen that with increasing order of accuracy the
numerical dissipation of the scheme reduces significantly independent of the Riemann
solver that is used. This makes the higher order schemes more favorable for simulations
of complex phenomena that involve wave propagation. Further it can be noted that the
linearized Riemann solver is substantially less dissipative than the HLL Riemann solver
in both measured quantities. But this effect decreases with increasing order of accuracy
because the improved reconstruction significantly reduces the difference in flow variables
at the zone boundaries where the Riemann problem is solved. We therefore see that it is

acceptable to use less expensive Riemann solvers as the order of the scheme is increased.
7.3) The Rotor Problem in Two Dimensions

The two dimensional rotor problem was presented in Balsara & Spicer [11] and in

Balsara [5]. Here we describe a version of this test problem. The computational mesh has

52



200 x 200 zones and spans the domain [-0.5,0.5]%[-0.5,0.5]. A dense and rapidly
spinning cylinder is set up in the center of an initially stationary, light ambient fluid. The
ambient fluid is initially static. A uniform magnetic field initially threads the two fluids.
Its value is set to 2.5 units. The pressure in both fluids is set to unity. The density in the
ambient fluid is uniformly set to unity, while the constant density in the rotor is 10 units
out to a radius of 0.1. A linear taper is applied to the density between a radius of 0.1 and
0.13 so that the density in the rotor decreases linearly to the value of the density in the
ambient fluid. Therefore the taper needs six zones to join the density of the two fluids.
That number should be kept fixed if the resolution is increased or decreased. The initial
angular velocity of the rotor is uniform out to a radius of 0.1. At this radius the toroidal
velocity has a value of one unit. The toroidal velocity decreases linearly from one unit to
zero between a radius of 0.1 and 0.13 so that it joins the velocity of the ambient fluid at a
radius of 0.13. The ratio of specific heats is given by 5/3. The Courant number was set to
0.4. The fourth order ADER-WENO scheme with the linearized Riemann solver was
applied to this problem. In Fig. 9 the density, the pressure, the Mach number and the
magnitude of the magnetic field are shown at a time of 0.29 units. Balsara & Spicer [11]
provided a detailed physical description of this problem. The results presented in Fig. 9
show a good consistency with the descriptions in Balsara & Spicer [11]. We therefore
conclude that the multidimensional limiting presented in this paper works well for

numerical MHD.

7.4) The Blast Problem in Two Dimensions

Balsara & Spicer [11] first presented the two dimensional blast problem. It is set
up by following the prescription in Balsara & Spicer [11]. The fourth order ADER-
WENO scheme with the HLL Riemann solver was applied to a mesh having 200 x 200
zones and covering the domain [-0.5,0.5]%[-0.5,0.5]. In Fig. 10 the logarithm (base 10) of
the density, the logarithm (base 10) of the pressure, the magnitude of the velocity and the
magnitude of the magnetic field are shown at a time of 0.01. A detailed physical
description of the problem is given in Balsara & Spicer [11]. We see that the results that

we present are consistent with that description. Notice that the plasma-f is 0.000251 in
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the ambient medium. An almost circular, fast magnetosonic shock propagates through the
ambient plasma and it is the fastest wave structure in this problem. The propagation of
this extremely strong shock at all angles to the initial magnetic field in the low-3 ambient
plasma makes this a challenging test problem. In Fig. 10 we see that the positivity of the
pressure variable is maintained even in regions where the strong shock propagates
obliquely to the mesh. This is a direct result of using the divergence-free reconstruction
to obtain the volume-averaged magnetic fields at the zone centers. Therefore we conclude
that the divergence-free reconstruction presented in §2.3 provides a significant

improvement in the simulation of low-3 plasmas.
7.5) The Blast Problem in Three Dimensions

The present problem extends the previous problem to three dimensions. The
problem is initialized on the domain given by [-0.5,0.5]%[-0.5,0.5]%[-0.5,0.5] using a

151x151x151 zone mesh. The primitive variables are specified by

(P,P,V,.V,.V,,B,,B,,B,) = (1, 1000, 0, 0, 0,1000/+/3, 1000//3, 1000//3) for r<0.1
=(1, 0.1, 0, 0, 0, 1000/~/3, 1000//3, 1000/+/3) for r>0.1

The ratio of specific heats is given by 1.4. The Courant number was set to 0.3 and the
problem was run to a time of 0.01 . The problem was run using a fourth order ADER-
WENO scheme with an HLL Riemann solver. Please note that the present blast problem
in three dimensions is substantially more stringent than similar blast problems that have

been presented in the literature.

Fig. 11 shows the logarithm (base 10) of the density, the logarithm (base 10) of
the pressure, the magnitude of the velocity and the magnitude of the magnetic field in the
central xy-plane at the final time of the simulation. We see that an almost spherical fast
magnetosonic shock propagates through the low-3 ambient plasma. While this shock is a
nearly infinite shock, the fourth order scheme handles it without problem. All structures

are crisply captured and there is no sign of undue oscillations anywhere on the
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computational mesh. The pressure remains positive throughout the simulation showing

the utility of the divergence-free reconstruction in the simulation of low- plasmas.

8) Conclusions

We have presented a new class of ADER-WENO schemes for high order
evolution of hyperbolic systems of conservation laws. The methods are very general and
can be used for several hyperbolic systems. In the present paper we have applied them
with success to Euler and MHD flows. Below we make a point-wise catalogue of the

advances reported in this paper:

1) A very efficient finite volume WENO reconstruction strategy has been presented for
structured meshes. We have shown that the most elegant and compact formulation of
WENO reconstruction obtains when the interpolating functions are expressed in modal
space. Explicit formulae have been developed for spatial reconstruction that go up to

fourth order of accuracy.

2) The most essential aspects of divergence-free reconstruction of magnetic fields have
been discussed in this paper. Further details for carrying out such a reconstruction have
been reported in Balsara [6]. It is shown here that the reconstruction naturally furnishes
all the moments of the magnetic field within a zone consistent with retaining a specified

order of accuracy.
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3) A general purpose flattener algorithm has been presented in Appendix A. The
algorithm detects regions with strong shocks and suitably stabilizes higher order schemes

in those regions.

4) ADER-CG schemes, especially as they are compactly formulated in modal space, are
reported here. Sub-Section 3.1 presents a general purpose formulation that makes it
possible to design ADER-CG schemes in modal space for structured and unstructured
meshes. For structured meshes we have explicitly demonstrated that the modal
formulation yields the most compact and elegant formulation. It is also worth mentioning
that on unstructured meshes the use of Dubiner [25] bases yields a similarly compact and

elegant formulation of ADER-CG schemes.

5) Sub-section 3.2 presents a detailed instantiation of the third order ADER-CG scheme.
This is done with the intent of facilitating its easy implementation by other practitioners.
Appendices B and C present the most essential details for ADER-CG schemes at second

and fourth orders respectively.

6) The one-step update of the resultant ADER-WENO schemes makes them lower
storage alternatives to the multi-stage Runge-Kutta time discretizations that have been
used in the past. The ADER-WENO schemes also bypass the reconstruction step that is
needed in each stage of the multi-stage Runge-Kutta time discretization, making them the
more efficient alternative. The ADER-WENO schemes are also free of the Butcher

barriers that seem to occur in Runge-Kutta time discretizations, see Spiteri & Ruuth [52].

7) The one-step update of the ADER-WENO schemes makes them desirable building
blocks for AMR calculations.

8) Section 5 presents several examples showing that the ADER-WENO schemes meet

their design accuracies in two and three dimensions for Euler and MHD flows.
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9) Sections 6 and 7 present several stringent test problems in one, two and three
dimensions. The tests span Euler and MHD flows. Several of our test problems are very
demanding on the numerical scheme because they require an ability to capture delicate
flow structures accurately in the presence of almost infinite shocks. The higher order
schemes along with the divergence-free reconstruction strategies for treating magnetic

fields that we have presented here perform very well on all of those tests.

10) It is shown that the increasing computational complexity with increasing order is
handily offset by the increased accuracy of the scheme. The resulting ADER-WENO
schemes are, therefore, very worthy alternatives to the standard second order schemes for

compressible Euler and MHD flow.
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Appendix A) Flattening Algorithm in the Vicinity of Strong Shocks

In this appendix we describe the flattening algorithm used in the vicinity of strong
MHD shocks. As shown by Colella & Woodward [18] and Balsara [4], such algorithms
are useful for producing practical higher order schemes with a broad range of good

operation. We construct the undivided divergence of the velocity in each zone and call it

Ax (V-V) . - The zones are labeled by a subscript “i,j,k” on a three dimensional mesh. In

L),

each zone we also construct the largest magnetosonic speed of the MHD waves relative
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to the mean flow in that zone and call it 4, = \/ ( 7 Pyt Bf’j’k (47[)) / Pijx - Ineach zone

1

we construct A

m; ij,

« Which is the minimum of 4;, in the zone of interest and the

neighboring zones that abut it. Thus in two dimensions we evaluate A

m; i),k

by scanning

nine zones and in three dimensions we scan twenty seven zones. Making a comparison

between Ax (Vsv) "

L,

and A4, then enables us to detect strong shocks. We therefore

construct the detector function as

s =min (1, abs ((Ax (Vev), + 8 A0 /(8 Aige) ) B(=( % (Vov), + 6 2,050

where H(x) is the Heaviside function and is unity for x>0 and zero for x<0 . J is a

positive number that is set to be of order unity. Notice that the detector function d;;, is
zero in the vicinity of smooth flow or even in the presence of moderately compressive
shocks. It only deviates from 0 and goes smoothly to unity only in the vicinity of strongly
compressive shocks. This threshold is important for retaining the order property. In some
problems there might be a tendency for generating strong rarefactions which can also
become problematical. In that case we can modify the above detector function to include
rarefactions as

ij

d;;, =min ( 1, abs ( —‘AX (V-V) i

+ 0 A )/(5 Auiss) ) H(_(_‘AX (VeV),

+ 6 i)

In zones with a non-zero strong shock detector function we modify the modes in
eqns. (4), (43), (44) and (45). Except for the piecewise linear variation in eqn. (4), we

prefer to multiply all the higher moments (i.e. the ones with quadratic or cubic variation)
by (l—di,j,k) so that those zone-centered moments are effectively zero in the vicinity of
strong shocks. Likewise, when limiting the x-component of the magnetic field in eqn.

(43) for the face (i+1/2, I k) we multiply the higher moments with

(1-d,

1,j’k)(l—dm’j’k )/ (2—di,j’k—diﬂ’j’k) , 1.e. the reciprocal sum derived from the two
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abutting zones. A similar approach can be taken for limiting the y and z-components of

the magnetic fields in eqns. (44) and (45).

It was felt that even in the vicinity of strong shocks one should not obliterate
structure altogether. For that reason, we felt that terms that have linear variations in eqns.
(4), (43), (44) and (45) should be blended with some fraction of a slope limiter. The
detector function should also be active in a zone that is about to be run over by a strong
shock in the next step. For such reasons, our treatment of the first moments is modified a

little. In a dimension-by-dimension fashion we make the modification:

if ((diJ,k >0)and(d,,;, =0)and (P, > Piﬂjj’k))then iy =digs

ij.k

if ((d,;, >0)and (d, ,;, =0)and (P, >P,;, ))then d, ;, =d,

Then say that u_ is the slope from eqn. (4) evaluated from a WENO scheme and 1 is
the slope evaluated using a MinMod limiter. We then reset u_ in the vicinity of a strong

shock as follows
u <« (l—diﬂ.,k)ux + x di’j’k u,

where y <1. A similar flattening algorithm for treating the first moments can be

instituted in the other two directions.

For second and third order schemes we use 6 =1.5 and y =1. For fourth order

schemes we usually use 6 =0.75 and y =0.5.

The detector function described here can also play an important role when using a
linearized Riemann solver. As shown by Quirk [46], linearized Riemann solvers are
susceptible to a carbuncle instability when grid-aligned strong shocks are present.

Einfeldt et al [31] also showed that linearized Riemann solvers do not function well in the
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presence of strong rarefactions. In both situations, a simple solution consists of blending
in some fraction of an HLL flux and this is the approach we have used here. As a result,
at strong shocks or rarefactions, the flux function consists of just the HLL flux while in
weak shocks or rarefactions, the flux function is given entirely by the linearized Riemann
solver. Using the detector function we provide a linear blend of the two in intermediate
situations. Other approaches for curing the linearized Riemann solvers have been
presented in Pandolfini & D’Ambrosio [44], Hanawa et al [35] and references therein but
we have not explored them here. When building a detector function for linearized
Riemann solvers one has the option of using not just the undivided divergence of the
velocity but also the difference in wave speeds of any given wave family on either side of

the Riemann problem.

Appendix B) Implementation of the ADER-CG Scheme at Second Order of

Accuracy

For second order ADER-CG schemes we start with

The resultant ADER-CG iteration at second order is therefore given by
. A 2,
G, = —f, =g, —h, +§ + 555

The nodal to modal transcription can be carried out by picking a small number of

symmetrically placed nodes in the reference element. We pick the nodal points

£(1/2,0,0,0); (~1/2,0,0,0); (0,1/2,0,0);(0,~1/2,0,0);
(0,0,1/2,0); (0,0,-1/2,0); (0,0,0,1)}
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The nodal to modal transcription of the fluxes at t=0 is given by
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The nodal to modal transcription of the fluxes at ©>0 is given by
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Appendix C) Implementation of the ADER-CG Scheme at Fourth Order of
Accuracy

For fourth order ADER-CG schemes we start with
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The resultant ADER-CG iteration at fourth order is therefore given by

62



f . g 1 R 8
4, =—-u _f 92 4 b _fos 4 S
21 10 2 10 g, 10 4 | 707
f i h S, 3
G, =——2¢ _ Jos _The o S 2 g
- 2 2 2 2 77
A f27 gzs ﬁ29 Azz 4 .
G,=—-2L - =B _ B 2, _§
2 3 3 3 077
. : . ~ . 3 .
4, =-2 fs—gg—hm+sz—ﬁs27
. - . A N 3
uzsz_fs_ZQ(,_ 9+S3_Eszs
. . . ~ . 3 .
u26:—1°10—gg—2h7+s4—ﬁs29
A £ @33 ﬁss §24 34
O, =—f, — =2 - 5 + 2 4 =§
27 30 5 ) > 5 7
f h 8 3
a —_ 3 _4 _ﬁ+£+_§
28 > 95 > > 5 %
. f g - S 3
Uy =— 235 _%_ 32+?+§Sz9
. ; . ~ . 2,
uso__3f11_914_h15+55+gs30
. ; . ~ . 2,
u31:_f16_3912 _h17+56+5331
. : . ~ . 2
u32:_f18 — O 3 h13 + 5, + 5 S5
. : . ~ 5 2,
u33__2f14_2gl6_h20+88+§533
A A P N & 2’\
u34——f20—2g17—2h19+sg+§s34
. ; . A . 2
U35——2f15—920—2h18+810+gs35

The nodal to modal transcription can be carried out by picking a small number of

symmetrically placed nodes in the reference element. We pick the nodal points
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£(0,0,0,0); (1/2,0,0,0); (1/4,0,0,0); (—1/4,0,0,0); (~1/2,0,0,0); (0,1/2,0,0);
(0,1/4,0,0); (0,—1/4,0,0); (0,—1/2,0,0); (0,0,1/2,0); (0,0,1/4,0); (0,0,—1/4,0);
(0,0,—1/2,0); (1/2,1/2,1/2,0); (0,1/2,1/2,0); (—1/2,1/2,1/2,0); (1/2,~1/2,1/2,0);
(0,—1/2,1/2,0); (~1/2,—1/2,1/2,0); (1/2,1/2,—1/2,0); (0,1/2,—1/2,0); (—1/2,1/2,—1/2,0);
(1/2,-1/2,—1/2,0); (0,—1/2,—1/2,0); (—1/2,—1/2,—1/2,0); (1/2,0,1/2,0); (—1/2,0,1/2,0);
(1/2,0,—1/2,0); (—1/2,0,—1/2,0); (1/2,1/2,0,0); (~1/2,1/2,0,0); (1/2,—1/2,0,0);
(—1/2,-1/2,0,0);

(0,0,0,1/3); (1/2,0,0,1/3); (~1/2,0,0,1/3); (0,1/2,0,1/3); (0,—1/2,0,1/3);

(0,0,1/2,1/3); (0,0,—1/2,1/3); (1/2,1/2,1/2,1/3); (—1/2,1/2,1/2,1/3);

(1/2,-1/2,1/2,1/3); (=1/2,-1/2,1/2,1/3); (1/2,1/2,—1/2,1/3); (—1/2,1/2,—1/2,1/3);
(1/2,-1/2,-1/2,1/3); (=1/2,-1/2,—1/2,1/3);

(1/2,0,0,2/3); (—1/2,0,0,2/3); (0,1/2,0,2/3); (0,—1/2,0,2/3); (0,0,1/2,2/3);
(0,0,—1/2,2/3);

(0,0,0,1);}

The nodal to modal transcription of the fluxes at =0 is given by
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>
|

s = 2F, - 2f + 1)
fo = 2(F —2F +T,)
f, =2(f, —2f +1,)
fo=(Fy —fo —F, +To + 0 - T T + ) /2

>
|

>
|

o = (Fy = fg =T + 6 + 0, —Fy T +15) /2

L= (16, —16F, — 32F, + 32f,) / 3

f, = (16f, — 16f, — 32F, + 32, ) / 3

f, = (16f, — 16F, — 32, + 32f,) /3

fo = f, —2f, +f - F, +2F, - f,
+f, - 2f, +f, - f, + 2, -,

fo =y -2 +f, - F, + 2%, -1,
+f, = 2f, + f, — T + 26, - F,

fo = f - 26 +f, -, + 2%, -1,
+Hy = 2f + 1, — 1y + 26, — 1

f, =f, - 26 + T, -, + 2f, - 1,
+ g = 2f, + 6y =y + 26, — 1

fio = fu — 2%, + B, —Fg + 2, -1,
+f, =2, + F, —f + 2F, — 1

fo = f - 2F, +F, - F, + 2, - T,
+fo - 2f, + 6, —fy + 2, - 1

fo =fu —f = +Fg - T + 6, + 6, -

f=f +(f,+f +f)/12

S NS S TRY

2:2_5_E+(l6+18)/12

. - f, . .

f3=f6—9—ﬁ+(f14+f19)/12
- - f

The nodal to modal transcription of the fluxes at T>0 is given by
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= (- 9f, +9f, +12f, — 12f, - 3f, + 3f,) /2

/2 - 3f,
/2 - 3f,
/2 - 3f,

"

f.=(-9f +9f +12F, — 12, - 3%, + 3%,) /2

f, = (-9F, +9f, + 12f, - 12, - 3f, + 3%,) /2

f, =9(f, - T, —2f, +2f, +F, -F) /2

fo = 9(F, — T, —2F, +2F, +f, —-F,) /2

fy = 9(F,y =Ty —2F, + 2F, +F, - f,) /2

f = 6(F - 2f, + ) - 31,

A31 :6(f_37 _2f_34 +f_33)_3A6

fo = 6(F, - 2f, +%,) - 3f,

fy =3(F, T, —f, + T, + T, - T, +

A34 =3(f, -y —Fg +f, +F, —F —f +

fg = 3(Fy — Ty =T + Ty + T =T, — T +

f =f, —f +(f, +f, +f,) /36

(o= (Fo + T+ +F, + T + ) /6 -1,
—(A5+fA6+f7)/12

£, =f, -f +(f, +f, +f,)/12

>

2

>

2

~

2

L= (18f —9f, +2f) /2
, = (—45€ +36f —9f,)/2
L= (27F — 276 + 9§ ) /2

where {, , f, and {, are temporary variables.
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log,, of the density and pressure and the bottom two panels show
the magnitudes of the velocity and the magnetic field. The fourth

order ADER-WENO scheme with an HLLE Riemann solver was

Fig 10) Blast problem in 2d where the top two panels show the
used.
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