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Abstract 

 

 The present paper introduces a class of finite volume schemes of increasing order 

of accuracy in space and time for hyperbolic systems that are in conservation form. The 

methods are specially suited for efficient implementation on structured meshes. The 

hyperbolic system is required to be non-stiff. This paper specifically focuses on Euler 

system that is used for modeling the flow of neutral fluids and the divergence-free, ideal 

magnetohydrodynamics (MHD) system that is used for large scale modeling of ionized 

plasmas. 

 

 Efficient techniques for weighted essentially non-oscillatory (WENO) 

interpolation have been developed for finite volume reconstruction on structured meshes. 

We have shown that the most elegant and compact formulation of WENO reconstruction 

obtains when the interpolating functions are expressed in modal space. Explicit formulae 

have been provided for schemes having up to fourth order of spatial accuracy. 

Divergence-free evolution of magnetic fields requires the magnetic field components and 
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their moments to be defined in the zone faces. We draw on a reconstruction strategy 

developed recently by the first author to show that a high order specification of the 

magnetic field components in zone-faces naturally furnishes an appropriately high order 

representation of the magnetic field within the zone. 

 

 We also present a new formulation of the ADER (for Arbitrary Derivative 

Riemann Problem) schemes that relies on a local continuous space-time Galerkin 

formulation instead of the usual Cauchy-Kovalewski procedure. We call such schemes 

ADER-CG and show that a very elegant and compact formulation results when the 

scheme is formulated in modal space. Explicit formulae have been provided on structured 

meshes for ADER-CG schemes in three dimensions for all orders of accuracy that extend 

up to fourth order. Such ADER schemes have been used to temporally evolve the 

WENO-based spatial reconstruction. The resulting ADER-WENO schemes provide 

temporal accuracy that matches the spatial accuracy of the underlying WENO 

reconstruction.  

 

 In this paper we have also provided a point-wise description of ADER-WENO 

schemes for divergence-free MHD in a fashion that facilitates computer implementation. 

The schemes reported here have all been implemented in the RIEMANN framework for 

computational astrophysics. All the methods presented have a one-step update, making 

them low-storage alternatives to the usual Runge-Kutta time-discretization. Their one-

step update also makes them suitable building blocks for adaptive mesh refinement 

(AMR) calculations. 

 

 We demonstrate that the ADER-WENO meet their design accuracies. Several 

stringent test problems of Euler flows and MHD flows are presented in one, two and 

three dimensions. Many of our test problems involve near infinite shocks in multiple 

dimensions and the higher order schemes are shown to perform very robustly and 

accurately under all conditions. It is shown that the increasing computational complexity 

with increasing order is handily offset by the increased accuracy of the scheme. The 
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resulting ADER-WENO schemes are, therefore, very worthy alternatives to the standard 

second order schemes for compressible Euler and MHD flow. 
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1) Introduction 

 

 The accurate simulation of hydrodynamical and magnetohydrodynamical (MHD) 

flows is an important topic in several areas of science and engineering. Much progress 

has been made towards that goal. While second order accurate simulations have been 

carried out for a while, recent advances have made it possible to go beyond second order 

accuracy. Early attempts to go beyond second order have been catalogued in Harten et al 

[36], Shu & Osher [50] and [51], Barth & Frederickson [12] and Suresh & Huynh [53]. 

Liu, Osher & Chan [42], Jiang & Shu [40] and Balsara & Shu [9] presented finite 

difference weighted essentially non-oscillatory (WENO) schemes for hydrodynamics. 

The WENO interpolation used in such schemes is usually coupled with a Runge-Kutta 

(RK) time update strategy from Shu & Osher [50] to yield schemes that have spatial and 

temporal accuracies that are well-matched. While the finite difference WENO schemes 

handily meet their design accuracies, they do not take well to non-uniform or hierarchical 

meshes. For that reason it is advantageous to have finite-volume WENO schemes which 

can be seamlessly used as building blocks for adaptive mesh refinement (AMR) 

calculations, see Berger & Colella [13] and Balsara [3]. Higher order accurate schemes 

that have a finite volume-like structure have been designed for structured meshes, see 

Balsara et al [7] and Balsara [6] and also for unstructured meshes, see Hu & Shu [37], 

Zhang & Shu [60], Dumbser & Käser [28] and Dumbser et al [29]. The purpose of this 

paper is to catalogue finite-volume WENO schemes that go beyond second order 

accuracy on structured meshes. 

 

 As shown by Colella [17], it is also very advantageous to use schemes that have a 

one-step temporal update as building blocks for AMR calculations. All of the RK 

schemes from Shu & Osher [50] lack such a one-step structure. While dense output RK 

schemes can be devised, it is still very desirable to have schemes that retain a simple one-

step time update. ADER (for Arbitrary Derivative Riemann Problem) schemes have seen 

a fair bit of recent evolution, see Titarev & Toro [55] and [56], Toro & Titarev [57], 

Dumbser, Enaux & Toro [27] and Dumbser et al [26]. Recent versions of ADER 

schemes, see Dumbser et al [26], have the right kind of one-step temporal update that 
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makes them very convenient for higher order AMR work. Thus the further goal of this 

paper is to present finite-volume ADER-WENO schemes that have a one-step temporal 

update. In order to achieve balanced performance, all of the schemes presented here have 

increasing spatial accuracy that is matched by a corresponding increase in temporal 

accuracy. The resulting schemes are eminently well-suited for high accuracy 

hydrodynamical calculations and can serve as good building blocks for block structured 

AMR calculations. 

 

 Numerical magnetohydrodynamics (MHD) plays an important role in 

astrophysics, aerospace, space physics and plasma physics applications. It is therefore 

very interesting to develop highly accurate methods for simulating MHD phenomena. 

The structure of the compressible MHD eigensystem is well-understood, Jeffrey & 

Taniuti [39], Roe and Balsara [47], making it possible to develop high resolution shock-

capturing methods for this system. Most of the early work was focused on developing 

higher order Godunov schemes with second order of accuracy, Dai & Woodward [20], 

Ryu & Jones [48], Balsara [1,2], Falle, Komissarov & Joarder [32] and Crockett et al 

[19]. The magnetic field in MHD obeys the following evolutionary equation 

 

( =   
t

∂
∇× ×

∂
B v B)          (1) 

 

 where v is the fluid velocity and  is the magnetic field. The structure of eqn. (1) is 

such that the magnetic field remains divergence-free in its time-evolution, i.e. it satisfies 

the constraint 

B

 

  = 0∇⋅ B           (2) 

 

Retaining a divergence-free aspect in the evolution of the magnetic field has been a 

design goal in devising methods for numerical MHD, see Yee [59], Brackbill & Barnes 

[14], Brecht et al [15] and DeVore [24]. Higher order Godunov schemes that provide 

divergence-free evolution of magnetic fields have been available, see Dai & Woodward 
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[21], Ryu et al [49], Balsara & Spicer [10] and [11], Balsara [5] and Londrillo & 

DelZanna [43]. Such schemes keep the magnetic field divergence free throughout its 

evolution while offering the stability and robustness of a total variation diminishing 

(TVD) scheme. Other formulations are also available that try to advect any magnetic field 

divergence that might form out of the computational domain, Powell [45], Dedner et al 

[22].  

 

  In his study of AMR-MHD Balsara [3] invented a divergence-free reconstruction 

strategy for the magnetic field. The method was based on realizing that the magnetic field 

in the interior of a zone is fully furnished by specifying its field components and their 

variation within the zone-faces and imposing the divergence-free constraint from eqn. 

(2). Balsara [3] also used a one-step temporal update strategy as a building block for 

AMR calculations. Balsara [5] showed that the same divergence-free reconstruction is 

also useful in designing very high quality second order accurate schemes for numerical 

MHD. The same divergence-free reconstruction has been extended to higher orders by 

Balsara [6] who used it along with an RK time-update strategy to obtain MHD schemes 

that were better than second order accurate. An early version of an ADER scheme for 

MHD was also presented by us in Taube et al [54]. The goal of the present paper is to 

present modern ADER-WENO schemes for divergence-free MHD that have a one-step 

temporal update and could serve as building blocks for AMR-MHD with spatial and 

temporal accuracy that goes beyond second order. The schemes mentioned in this 

paragraph have all been implemented in the RIEMANN code for astrophysical fluid 

dynamics and have been successfully applied to numerous astrophysical applications. 

 

 The paper is organized as follows. In Section 2 we present the WENO 

interpolation used here. Section 3 contains a description of the ADER scheme as well as 

its instantiation at third order. Section 4 very briefly describes the flux calculation and the 

time-update steps. Section 4 also provides a point-wise description of the whole ADER-

WENO scheme as it is implemented on a computer. Section 5 catalogues the order 

property of the schemes that have been designed. Section 6 presents several stringent 

hydrodynamical test problems while Section 7 does the same for MHD test problems. 
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2) Efficient, Multi-Dimensional WENO Reconstruction on Structured Meshes 

 

 The first step in designing a high order scheme consists of reconstructing the flow 

variables within all zones in the computational domain to the desired order of accuracy. 

Several good options exist in one dimension, see Jiang & Shu [40] and Balsara & Shu 

[9]. The problem of carrying out a multidimensional reconstruction has been treated in 

Friedrich [33], Zhang & Shu [60], Dumbser & Käser [28] and Balsara et al [7] . We 

assume that each zone has a local set of coordinates given by 

 . The Legendre polynomials, suitably 

modified for the domain [ , are given by: 

(x,y,z)  [ 1/ 2,1/ 2] [ 1/ 2,1/ 2] [ 1/ 2,1/ 2]∈ − × − × −

1/ 2,1/ 2]−

 

2 3
0 1 2 3

4 2
4

1 3P  (x) = 1 ; P  (x) = x ; P  (x) = x     ; P (x) = x    x  ; 
12 20

3 3P  (x) = x    x  + 
14 560

− −

−
   (3) 

 

The polynomial basis set given in eqn. (3) is orthogonal and has a diagonal mass matrix. 

Tensor products of these polynomials yield an orthogonal, modal basis set in multiple 

dimensions. A variable “u” is, therefore, reconstructed to appropriate order in the zone 

being considered when one has all the coefficients of the polynomial 

 

0 x 1 y 1 z 1

xx 2 yy 2 zz 2

xy 1 1 yz 1 1 xz 1 1

u(x,y,z) = u u  P (x) u  P (y) u  P (z)                            second order

       + u  P (x) + u  P (y) + u  P (z) 

       + u  P (x) P (y) + u  P (y) P (z) + u  P (x) P (z)           thi

+ + + ←

←

xxx 3 yyy 3 zzz 3 xxy 2 1 xyy 1 2

yyz 2 1 yzz 1 2 xxz 2 1 xzz 1 2

xyz 1 1 1

rd order

      + u  P (x) + u  P (y) + u  P (z) + u  P (x) P (y) + u  P (x) P (y)

      + u  P (y) P (z) + u  P (y) P (z) + u  P (x) P (z) + u  P (x) P (z)

      + u  P (x) P (y) P (z)                                                       fourth order←

 

          (4) 
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The arrows in eqn. (4) show us the minimum sub-set of terms that are needed for 

achieving the desired order of accuracy. The variable u0 is the zone-averaged value of the 

variable and is evolved using the governing equations. In a WENO scheme, the 

remaining moments in eqn. (4) above are obtained by examining the smoothness 

properties of the neighboring zones. In a pointwise WENO scheme, see Jiang & Shu [40] 

and Balsara & Shu [9] the cross-terms in eqn. (4) are not needed. Since we wish to build 

a finite volume scheme, we have to reconstruct all the terms including the cross terms in 

eqn. (4). Several of the strategies catalogued above for carrying out a multidimensional 

reconstruction can be used to obtain the moments in eqn. (4). However, as shown in 

Balsara et al [7], for structured meshes it is possible to simplify the reconstruction 

problem. In that paper we showed that the modes along each coordinate direction in eqn. 

(4) can be obtained by using the dimension-by-dimension formulation from Jiang & Shu 

[40] and Balsara & Shu [9]. In this paper we show that the expressions obtained in Jiang 

& Shu [40] and Balsara & Shu [9] can be substantially simplified if cased in a modal 

formulation and our goal in Sub-Section 2.1 is to catalogue that simplification. Balsara et 

al [7] also presented an inexpensive strategy for obtaining the remaining cross-terms in 

eqn. (4). In this paper we present an even less expensive strategy for obtaining the cross-

terms and such an advance is catalogued in Sub-Section 2.2. Sub-Section 2.3 catalogues 

the divergence-free reconstruction of magnetic fields. In the vicinity of strong shocks it is 

also useful to flatten the interpolated profiles, as shown by Colella & Woodward [18]. In 

Appendix A we provide a simple and serviceable flattening algorithm that works with 

multi-dimensional reconstruction. 

 

2.1) One-Dimensional WENO Formulation 

 

 The formulation presented here can be used along each dimension to limit the 

modes in eqn. (4) that do not contain cross-terms. Casting the problem in a modal basis 

enables us to obtain expressions that are even more compact than those in Jiang & Shu 

[40] and Balsara & Shu [9]. 

 

2.1.1) Third Order Reconstruction in One Dimension 
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 Consider the reconstruction problem in a zone labeled by a subscript “0”. We start 

with the neighboring zone-averaged variables { }2 1 0 1 2u , u , u , u , u− −  . A third order 

reconstruction over the zone labeled “0” can be carried out by using three stencils S1 , S2 

and S3 that rely on the variables { }2 1 0u , u , u− −  , { }1 0 1u , u , u−  and { }0 1u , u 2, u  respectively. 

The reconstructed polynomial is then expressed as 

 

0 x 1 xx 2u(x) = u  + u  P (x) + u  P (x)        (5) 

 

The left-biased stencil S1 gives 

 

( )x 1 2 0 xx 2 1 0u 2 u  u 2 3 u 2    , u u 2 u  u 2− − − −= − + + = − +     (6) 

 

The central stencil S2 gives 

 

( ) ( )x 1 1 xx 1 0 1u u  u 2    , u u 2 u  u 2− −= − = − +      (7) 

 

The right-biased stencil S3 gives 

 

( )x 0 1 2 xx 0 1 2u 3 u 2 2 u  u 2    , u u 2 u  u 2= − + − = − +     (8) 

 

Eqns. (6) to (8) show a clear analogy to finite difference approximations. The smoothness 

measure for each of the three stencils can then be written as 

 

2
x

13 = u  u
3

IS + 2
xx          (9) 

 

 In keeping with the philosophy of Dumbser & Käser [28] we do not strive to 

achieve fifth order accuracy by using the optimal linear weights of Jiang & Shu [40]. 

Instead, we seek out stability in our reconstruction by giving the central stencil S2 a linear 
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weight that is 100 times larger than its one-sided partners, i.e. S1 and S3 . Also keeping 

with Dumbser & Käser [28], we raise the smoothness measures to the fourth power when 

constructing non-linear stencil weights. This choice of preferring stability over an 

increase in accuracy is also made for all the other WENO schemes in this section. 

 

2.1.2) Fourth Order Reconstruction in One Dimension 

 

Consider the reconstruction problem in a zone labeled by a subscript “0”. We start 

with the neighboring zone-averaged variables { }3 2 1 0 1 2 3u , u , u , u , u , u , u− − −  . A fourth order 

reconstruction over the zone labeled “0” can be carried out by using four stencils S1 , S2 , 

S3 and S4 that rely on the variables { }3 2u , u− − 1 0, u , u−  , { }2 1 0 1u , u , u , u− −  { }1 0 1 2u , u , u , u−  

and { }0 1 2 3u , u , u ,u  respectively. The reconstructed polynomial is then expressed as 

 

0 x 1 xx 2 xxx 3u(x) = u  + u  P (x) + u  P (x) +u  P (x)      (10) 

 

The stencil S1 gives 

 

x 1 2 3 0

xx 1 2 3 0

xxx 1 2 3 0

u ( 177 u + 87 u 19 u +109 u ) 60,
u 5u 2 2u u 2 u ,
u ( 3u 3u u u ) 6

− − −

− − −

− − −

= − −
= − + − +
= − + − +

               (11) 

 

The stencil S2 gives 

 

x 1 2 0 1

xx 1 0 1

xxx 1 2 0 1

u ( 63u + 11u +33 u 19u ) 60,
u u 2 u u 2 ,
u ( 3u u 3u u ) 6

− −

−

− −

= − +
= − +
= − − +

      (12) 

 

The stencil S3 gives 
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x 1 0 1 2

xx 1 0 1

xxx 1 0 1 2

u ( 19u 33 u 63u 11u ) 60,
u u 2 u u 2 ,
u ( u 3u 3u u ) 6

−

−

−

= − − + −
= − +
= − + − +

      (13) 

 

The stencil S4 gives 

 

x 0 1 2 3

xx 0 1 2 3

xxx 0 1 2 3

u ( 109 u 177 u 87 u 19 u ) 60,
u  u 5u 2 2u u 2 ,
u ( u 3u 3u u ) 6

= − + − +
= − + −
= − + − +

      (14) 

 

The smoothness measure for each of the four stencils can then be written as 

 

2 2
xx

13 781 = ( u u 10)   u  u
3 20

2
x xxx xxxIS + + +       (15) 

 

Eqn. (15) makes the positivity of the smoothness measure very apparent. 

 

2.1.3) Fifth Order Reconstruction in One Dimension 

 

Though we do not present a fifth order scheme in this paper, the one-dimensional 

WENO reconstruction presented in this sub-section was used as a building block for a 

very elegant ninth order pointwise WENO scheme in Balsara & Shu [9]. Because of the 

utility of that scheme, it is worthwhile presenting the simple and compact expressions for 

implementing that scheme in this sub-section. Thus consider the reconstruction problem 

in a zone labeled by a subscript “0”. We start with the neighboring zone-averaged 

variables { }4 3 2 1 0 1 2 3 4u , u , u , u , u , u , u , u , u− − − −

{

 . A fifth order reconstruction over the zone 

labeled “0” can be carried out by using five stencils S1 , S2 , S3, S4 and S5 that rely on the 

variables }4 3 2 1 0u , u , u , u , u− − − −  , { }3 2 1 0 1u , u , u , u , u− − −  { }2 1 0 1 2u , u , u , u , u− − , 

{ }1 0u , u ,− 1 2 3u , u , u  and { }0 1 2 3 4u , u , u , u , u  respectively. The reconstructed polynomial is 

then expressed as 
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0 x 1 xx 2 xxx 3 xxxx 4u(x) = u  + u  P (x) + u  P (x) + u  P (x) + u  P (x)     (16) 

 

The stencil S1 gives 

 

x 1 2 3 4 0

xx 1 2 3 4 0

xxx 1 2 3 4 0

xxxx 1 2 3 4 0

u ( 462u + 336u 146 u 27 u 245 u ) 120,
u ( 240u 262u 128u 25u 81u ) 56,
u ( 18u 24u 14u 3u 5u ) 12,
u ( 4u 6u 4u u u ) 24

− − − −

− − − −

− − − −

− − − −

= − − + +
= − + − + +
= − + − + +
= − + − + +

    (17) 

 

The stencil S2 gives 

 

x 1 2 3 0 1

xx 1 2 3 0 1

xxx 1 2 3 0 1

xxxx 1 2 3 0 1

u ( 192u + 66u 11u +110 u 27 u ) 120,
u (10u 12u 3u 44u 25u ) 56,
u ( 12u 6u u 10u 3u ) 12,
u ( 6u 4 u u 4u u ) 24

− − −

− − −

− − −

− − −

= − − +
= + − − +
= − + − +
= − + − +

    (18) 

 

The stencil S3 gives 

 

x 1 2 1 2

xx 1 2 0 1 2

xxx 1 2 1 2

xxxx 1 2 0 1 2

u ( 82u 11u 82u 11u ) 120,
u ( 40u 3u 74u 40u 3u ) 56,
u ( 2u u 2u u ) 12,
u ( 4u u 6u 4u u ) 24

− −

− −

− −

− −

= − + + −
= − − + −
= − − +
= − + + − +

     (19) 

 

The stencil S4 gives 

 

x 1 0 1 2 3

xx 1 0 1 2 3

xxx 1 0 1 2 3

xxxx 1 0 1 2 3

u ( 27 u 110 u 192u 66u 11 u ) 120,
u ( 25u 44 u 10u 12u 3 u ) 56,
u ( 3u 10u 12u 6u u ) 12,
u ( u 4u 6u 4u u ) 24

−

−

−

−

= − − + − +
= − + + −
= − + − + −
= − + − +

    (20) 

 

The stencil S5 gives 
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x 0 1 2 3 4

xx 0 1 2 3 4

xxx 0 1 2 3 4

xxxx 0 1 2 3 4

u ( 245 u 462u 336u 146 u 27 u ) 120,
u ( 81 u 240u 262u 128 u 25 u ) 56,
u ( 5u 18u 24u 14u 3u ) 12,
u ( u 4u 6u 4u u ) 24

= − + − + −
= − + − +
= − + − + −
= − + − +

    (21) 

 

The smoothness measure for each of the five stencils can then be written as 

 
2

2 213 123 781 1421461 = ( u u 10) u  u u u
3 455 20 2275

2
x xxx xx xxxx xxx xxxxIS ⎛ ⎞+ + + + +⎜ ⎟

⎝ ⎠
  (22) 

 

Eqn. (22) makes the positivity of the smoothness measure very apparent. 

 

2.2) WENO Formulation for the Cross-Terms 

 

 Notice that a majority of the terms in eqn. (4) can be evaluated by dimension-by-

dimension limiting. Balsara et al [7] therefore realized that once those terms have been 

obtained, the remaining cross-terms can be gathered quite efficiently by invoking smaller 

stencils. While this process is not generally extensible to all orders, it also yields an 

efficient strategy on structured meshes up to fourth order. In this section we catalogue a 

strategy for obtaining the cross-terms in eqn. (4) that is even more efficient than the one 

in Balsara et al [7] by virtue of the fact that it uses smaller stencils to gather up the cross-

terms. 

 

2.2.1) Third Order Reconstruction of the Cross-Terms 

 

 Consider a sub-set of the full polynomial in eqn. (4) given by  

 

0,0 x 1 y 1 xx 2 yy 2 xy 1 1u(x,y,z) = u u  P (x) u  P (y) + u  P (x) + u  P (y) + u  P (x) P (y)+ +  (23) 

 

All the modes in eqn. (23) except for the cross-term  can be obtained by using the 

dimension-by-dimension reconstruction catalogued in the previous Sub-Section. Thus the 

xyu
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modes  as well as the zone-averaged value  are all known in the 

zone of interest, which we label with a two-index subscript “0,0”. Four possible 

evaluations of the  term can then be obtained by taking all the known moments in the 

zone “0,0” and including any one of the four zone averaged values 

 from the zones that lie along the diagonals of the zone of interest. 

We catalogue the four possible evaluations of the cross-term  below: 

x y xx yyu ,u ,  u  and u

xyu

1,1 1, 1 1, 1, u  and u− − − −

1,1 0,0 x y

1, 1 0,0 x y

1,1 0,0 x y

1, 1 0,0 x y

 u u u

u  u  u + u

u  u  u u +

 u + u + u

−

−

− −

= − − −

+ −

+ −

= −

2 2 2
xx yy xy4 u  4 u  u= + +

0,0 x 1

xxx 3 yyy

) = u u  P (x)

P (x) + u  P

+ +

0,0u

xy

y 1 P (x)

1,1u , u

xy

xy

xy

xy

u  u

u  u

= −

= −

IS

u(x,y,z

             + u

u

x

(y)

 

xx yy

xx yy

xx yy

xx yy

u u

u + u + u

 u + u + u

u u

− −

− −

      (24) 

 

The smoothness measure for each of those stencils is given by 

 

        (25) 

 

and can be used in the usual way to obtain a non-linearly weighted value for . By 

viewing the problem in the yz-plane and the xz-plane it is possible to use the formulae 

developed here to obtain  and  respectively. This completes our description of 

third order WENO interpolation on structured meshes. 

xyu

yzu xzu

 

2.2.2) Fourth Order Reconstruction of the Cross-Terms 

 

Consider a sub-set of the full polynomial in eqn. (4) given by  

 

y 1 xx 2 yy 2 1

3 xxy 2 1 xyy 1 2

u  P (y) + u  P (x) + u  P (y) + u  P (y)

(y) + u P (x) P (y) u P (x) P+
 (26) 
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All the modes in eqn. (26) except for the cross-terms  can be obtained by 

using the dimension-by-dimension reconstruction catalogued in the previous Sub-

Section. Thus the modes  as well as the zone-averaged value 

 are all known in the zone of interest, which we label with a two-index subscript 

“0,0”. Fig. 1 shows us five possible stencils that can each be used to evaluate the 

 cross-terms. The central stencil was added for stability reasons and has a 

linear weight that is hundred times larger than the linear weights of the other four 

directionally-biased stencils. Our choice of five stencils in Fig. 1 gives us five possible 

evaluations of the cross-terms  which we catalogue below: 

xy xxy xyyu , u and u

x y xx yy xxx yyyu ,u , u , u ,u and u

xy xxy xyyu ,u and u

0,0u

xyu , xxy xyyu and u

 

For stencil S1 we obtain 

 

xy 1,1 1,2 2,1 0,0 x y

xx yy xxx yyy

xxy 1,1 2,1 0,0 y

xx yy xxx yyy

xyy 1,1 1,2 0,0 x

xx yy xxx yyy

u = (60 u 10 u 10 u 40 u 30 u 30 u

10u 10u + 27 u + 27 u ) / 20

u = ( 20 u +10 u +10 u +10 u

20 u +10 u 60 u +11u ) / 20

u = ( 20 u +10 u +10 u +10 u

+10 u 20 u +11u 60 u ) / 20

− − − − −

− −

−

− −

−

− −

 (27) 

 

For stencil S2 we obtain 

 

xy -1,1 -1,2 -2,1 0,0 x

y xx yy xxx yyy

xxy -1,1 -2,1 0,0 y xx

yy xxx yyy

xyy -1,1 -1,2 0,0 x xx

yy xxx yyy

u = ( 60 u +10 u +10 u + 40 u 30 u

+30 u +10 u +10 u + 27 u 27 u ) / 20

u = ( 20u +10u +10u +10u 20 u

+10u +60u +11u ) / 20

u = ( 20 u 10 u 10 u +10 u 10 u

+ 20u +11u +60u )

− −

−

− −

− − −

/ 20

 (28) 

 
For stencil S3 we obtain 

 

 15



xy 1,-1 1,-2 2,-1 0,0 x

y xx yy xxx yyy

xxy 1,-1 2,-1 0,0 y xx

yy xxx yyy

xyy 1,-1 1,-2 0,0 x xx

yy xxx yyy

u = ( 60u +10 u +10 u + 40 u +30 u

30 u +10 u +10 u 27 u + 27 u ) / 20

u = ( 20 u 10 u 10 u +10 u + 20 u

10 u +60 u +11u ) / 20

u = ( 20 u + 10 u +10 u +10 u +10 u

20 u +11u + 60 u )

−

− −

− −

−

−

− / 20

 (29) 

 

For stencil S4 we obtain 

 

xy -1,-1 -2,-1 -1,-2 0,0 x

y xx yy xxx yyy

xxy -1,-1 -2,-1 0,0 y xx

yy xxx yyy

xyy -1,-1 -1,-2 0,0 x xx

yy xxx

u = (60 u 10 u 10 u 40 u +30 u

+30 u 10 u 10 u 27 u 27 u ) / 20

u = (20 u 10 u 10 u +10 u +20 u

10 u 60 u +11u ) / 20

u = (20 u 10 u 10 u +10 u 10 u

+ 20 u +11u 60

− − −

− − − −

− −

− −

− − −

− yyyu )/20

 (30) 

 

For the central stencil S5 we obtain 

 

xy -1,-1 -1,1 1,-1 1,1

xxy -1,-1 -1,1 1,-1 1,1 yyy y

xyy -1,-1 -1,1 1,-1 1,1 xxx x

u = ( u u u + u ) / 4

u =( 5u +5u 5u +5u 22 u 20 u ) / 20

u =( 5u 5u +5u +5u 22 u 20 u ) / 20

− −

− − − −

− − − −

 (31) 

 

The smoothness measure for each of the  terms in eqns. (27) to (31) is obtained by 

taking the square of all possible second derivatives of eqn. (26) and integrating them over 

the zone of interest, see Balsara et al [7]. It is given by 

xyu

 

2 2 2 2 2 2 2
xxx yyy xx yy xy xxy xyy

2IS=3( u + u ) + 4( u + u ) + u + (u + u )
3

 (32) 
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The smoothness measure for each of the  terms in eqns. (27) to (31) is 

obtained by taking the square of all possible third derivatives of eqn. (26) and integrating 

them over the zone of interest, see Balsara et al [7]. It is given by 

xxy xyyu and u

 
2 2 2 2
xxx yyy xxy xyyIS= 36 ( u + u ) + 4(u + u )   (33) 

 

Both smoothness measures can be used in the usual way to obtain a non-linearly 

weighted value for  or  respectively. It is also acceptable to sum eqns. 

(32) and (33) to obtain a single smoothness measure for all the cross-terms. By viewing 

the problem in the yz-plane and the xz-plane it is possible to use the formulae developed 

here to obtain  . 

xyu

yyz ,  u

xxy xyyu and u

xz xxz, u , u andyz yzz xzzu , u u

 

 The remaining term in eqn. (4) can now be obtained using a strategy that is 

similar to the one used for obtaining the cross-term at third order. Instead of the four 

stencils using diagonal zones in the plane we build the eight stencils using the diagonal 

zones in space. Thus for each of the eight stencils we use one of the values in the set 

xyzu

xyu

{ }1,1,1 -1,1,1 1,-1,1 1, 1,-1,1 -1,1,-1 1 -1,-1,-1u , u , u , u , u , , u1,-1 -u , ,-1,-1u to get  in the element of interest 

indexed by “0,0,0” . 

xyzu

 

For stencil S1 we obtain 

 

xyz 1,1,1 zzz xzz zz yzz yyz xxz xz z yz

yy yyy xyy xy xxy y x 0,0,0 xxx xx

11u = u  u  u  u  u  u  u  u  u  u
10

11 11 u  u  u  u  u  u  u  u  u  u
10 10

− − − − − − − − −

− − − − − − − − − −
 (34) 

 

For stencil S2 we obtain 
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xyz -1,1,1 zzz xzz zz yzz yyz xxz xz z yz

yy yyy xyy xy xxy y x 0,0,0 xxx xx

11u =  u  u  u + u + u + u + u  u  u + u
10

11 11 u  u  u  u + u + u  u + u  u + u
10 10

− + − − +

+ + − − − −
  (35) 

 

For stencil S3 we obtain 

 

xyz 1,-1,1 zzz xzz zz yzz yyz xxz xz z yz

yy yyy xyy xy xxy y x 0,0,0 xxx xx

11u = u u + u + u u + u + u + u u u
10

11 11u u + u u u u + u + u u +
10 10

− + − + −

+ − − − − + u
   (36) 

 

For stencil S4 we obtain 

 

xyz 1,1,-1 zzz xzz zz yzz yyz xxz xz z yz

yy yyy xyy xy xxy y x 0,0,0 xxx xx

11u = u u + u + u + u u u u u u
10

11 11u u + u + u + u + u + u + u u + u
10 10

− − − − − − −

+ + +
   (37) 

 

For stencil S5 we obtain 

 

xyz -1,-1,1 zzz xzz zz yzz yyz xxz xz z yz

yy yyy xyy xy xxy y x 0,0,0 xxx xx

11u = u u + u u + u u u + u u + u
10
11 11u u + u u + u + u + u u u
10 10

− − − − −

− + − − + − u
   (38) 

 

For stencil S6 we obtain 

 

xyz -1,1,-1 zzz xzz zz yzz yyz xxz xz z yz

yy yyy xyy xy xxy y x 0,0,0 xxx xx

11u = u u + u u u + u + u u u + u
10
11 11u u + u + u u u + u u u u
10 10

+ − − − +

− − − − − + −
   (39) 

 

For stencil S7 we obtain 
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xyz 1,-1,-1 zzz xzz zz yzz yyz xxz xz z yz

yy yyy xyy xy xxy y x 0,0,0 xxx xx

11u = u u u u + u + u + u + u u u
10
11 11u u u + u + u + u u u u
10 10

+ − − + −

− + − − − − − u
   (40) 

 

For stencil S8 we obtain 

 

xyz -1,-1,-1 zzz xzz zz yzz yyz xxz xz z yz

yy yyy xyy xy xxy y x 0,0,0 xxx xx

11u = u u u + u u u u +u u + u
10

11 11u u u + u u u u + u u +
10 10

− − − − − − −

+ − − − − − − u
  (41) 

 

The smoothness measure for each of the eight stencils is given by 

 
2 2 2 2 2 2 2 2 2 236( u u u ) 4(u u u u u u ) uxxx yyy zzz xxy xxz xyy yyz xzz yzz xyzIS = + + + + + + + + +  (42) 

 

 The smoothness measures can be used in the usual way to obtain a non-linearly 

weighted value for . This completes our description of fourth order WENO 

interpolation on structured meshes. 

xyzu

 

2.3) Cataloguing Divergence-Free Reconstruction of the Magnetic Field 

 

 Divergence-free reconstruction for MHD has been detailed in Balsara [3] and [5] 

for second order schemes and in Balsara [6] for higher order schemes. We therefore 

present only as much detail here as is needed for understanding ADER-WENO schemes 

for MHD. Consequently, the method consists of realizing that the moments of the face-

centered magnetic field components can be obtained by using the reconstruction 

techniques given in the previous two Sub-Sections. Assuming a zone to be a unit cube, 

the x-components of the magnetic field in the upper and lower x-faces of a zone are then 

given by 
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x x x
x 0 y 1 z 1

x x x
yy 2 yz 1 1 zz 2

B ( x = 1/2, y, z) = B  + B  P (y) + B  P (z)                                     second order

                 + B  P (y) + B  P (y) P (z) + B  P (z)                                th

± ± ±

± ± ±

± ←

←
x x x x
yyy 3 yyz 2 1 yzz 1 2 zzz 3

ird order

                 + B  P (y) + B  P (y) P (z) + B P (y) P (z) + B  P (z)   fourth order± ± ± ± ←

 

           (43) 

The arrows in eqn. (43) show us the minimum sub-set of terms that are needed for 

achieving the desired order of accuracy. Thus for a second order scheme we would only 

use the first line in eqn. (43). For a third order scheme we would need the first and second 

lines in eqn. (43). For a fourth order scheme we would use all three lines in eqn. (43). 

Similar expressions for the y and z-components of the field in the appropriate zone faces 

can be written as: 

 
y y y

y 0 x 1 z 1

y y y
xx 2 xz 1 1 zz 2

B ( x, y = 1/2, z) = B  + B  P (x) + B  P (z)                                    second order 

                + B  P (x) + B  P (x) P (z) + B  P (z)                                thi

± ± ±

± ± ±

± ←

←
y y y y
xxx 3 xxz 2 1 xzz 1 2 zzz 3

rd order

                + B  P (x) + B  P (x) P (z) + B  P (x) P (z) + B  P (z)   fourth order± ± ± ± ←

 

           (44) 

 
z z z

z 0 x 1 y 1

z z z
xx 2 xy 1 1 yy 2

B ( x, y, z = 1/2) = B  + B  P (x) + B  P (z)                                     second order

               + B  P (x) + B  P (x) P (y) + B  P (y)                                  th

± ± ±

± ± ±

± ←

←
z z z z
xxx 3 xxy 2 1 xyy 1 2 yyy 3

ird order

               + B  P (x) + B  P (x) P (y) + B  P (x) P (y) + B  P (y)   fourth order± ± ± ± ←

 

           (45) 

 

The moments in eqn. (43) can be obtained by limiting the x-component of the magnetic 

field in the yz-plane. Similarly, the moments in eqns. (44) and (45) can be obtained by 

limiting in the xz-plane and xy-plane respectively. The WENO limiting strategies 

catalogued in the previous two Sub-Sections can be used to carry out the limiting.  To 

reconstruct the field in the interior of the zone we pick the following functional forms for 

the fields: 
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x 0 x 1 y 1 z 1

xx 2 xy 1 1 xz 1 1

yy 2 xyy 1 2 zz 2

B ( x, y, z) = a + a P (x) + a P (y) + a P (z) 

 + a P (x) + a P (x) P (y) + a P (x) P (z)                                                      second order

 + a P (y) + a P (x) P (y) + a P (z) 

←

xzz 1 2 yz 1 1 xyz 1 1 1

xxx 3 xxy 2 1 xxz 2 1

yyy 3 xyyy 1 3

+ a P (x) P (z) + a  P (y) P (z) + a  P (x) P (y) P (z)

 + a P (x) + a P (x) P (y) + a P (x) P (z)                                                   third order

 + a P (y) + a  P (x) P

←

yyz 2 1 xyyz 1 2 1

yzz 1 2 xyzz 1 1 2 zzz 3 xzzz 1 3

xxxx 4 xxxy 3 1 xxxz 3 1

xxyy 2 2

(y) + a P (y) P (z) + a P (x) P (y) P (z)

 + a  P (y) P (z) + a  P (x) P (y) P (z) + a P (z) + a  P (x) P (z) 

 + a  P (x) + a  P (x) P (y) + a  P (x) P (z) 

 + a  P (x) P (y) xxzz 2 2+ a  P (x) P (z)                                                              fourth order

 

←

           (46) 

 

y 0 x 1 y 1 z 1

yy 2 xy 1 1 yz 1 1

xx 2 xxy 2 1 zz 2

B ( x, y, z) = b + b P (x) + b P (y) + b P (z) 

 + b P (y) + b P (x) P (y) + b P (y) P (z)                                                   second order

 + b P (x) + b P (x) P (y) + b P (z) + b

←

yzz 1 2 xz 1 1 xyz 1 1 1

yyy 3 xyy 1 2 yyz 2 1

xxx 3 xxxy 3 1 x

P (y) P (z) + b  P (x) P (z) + b  P (x) P (y) P (z)

 + b P (y) + b P (x) P (y) + b P (y) P (z)                                               third order

 + b P (x) + b P (x) P (y) + b

←

xz 2 1 xxyz 2 1 1

xzz 1 2 xyzz 1 1 2 zzz 3 yzzz 1 3

yyyy 4 xyyy 1 3 yyyz 3 1

xxyy 2 2 yyzz

 P (x) P (z) + b  P (x) P (y) P (z)

 + b  P (x) P (z) + b  P (x) P (y) P (z) + b P (z) + b  P (y) P (z)

 + b  P (y) + b  P (x) P (y) + b  P (y) P (z)

 + b  P (x) P (y) + b  2 2P (y) P (z)                                                             fourth order←

           (47) 

 

z 0 x 1 y 1 z 1

zz 2 xz 1 1 yz 1 1

xx 2 xxz 2 1 yy 2 yyz

B ( x, y, z) = c + c P (x) + c P (y) + c P (z)

 + c P (z) + c P (x) P (z) + c P (y) P (z)                                                 second order

+ c P (x) + c P (x) P (z) + c P (y) + c P

←

2 1 xy 1 1 xyz 1 1 1

zzz 3 xzz 1 2 yzz 1 2

xxx 3 xxxz 3 1 xxy 2

(y) P (z) + c  P (x) P (y) + c  P (x) P (y) P (z)

+ c P (z) + c P (x) P (z) + c P (y) P (z)                                              third order

+ c P (x) + c P (x) P (z) + c  P (x

←

1 xxyz 2 1 1

xyy 1 2 xyyz 1 2 1 yyy 3 yyyz 3 1

zzzz 4 xzzz 1 3 yzzz 1 3

xxzz 2 2 yyzz 2 2

) P (y) + c  P (x) P (y) P (z)

+ c  P (x) P (y) + c  P (x) P (y) P (z) + c  P (y) + c  P (y) P (z)

+ c  P (z) + c  P (x) P (z) + c  P (y) P (z)

+ c  P (x) P (z) + c  P (y) P (z)                                                           fourth order←

          (48) 

 

The rationale for picking this set of moments follows from Balsara [3]. As shown in 

Balsara [6], eqns. (43) to (45) can be used along with the divergence-free condition in 
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eqn. (2) to completely specify the coefficients in eqns. (46) to (48). Observe that eqns. 

(43) to (45) only hold in the zone-faces while eqns. (46) to (48) are divergence-free to all 

orders and hold at all points within the zone being considered. As a result, our evaluation 

of the coefficients in eqns. (46) to (48) reconstructs the magnetic field in the whole zone.  

 

 It is worthwhile to consider eqn. (46) at third order to make two important points. 

First, notice that all the linear and quadratic variations that one would require for the third 

order accurate reconstruction within the unit cube are all present. As a result, although we 

started with just the facial moments in eqns. (43) to (45), the divergence-free 

reconstruction has enabled us to fully specify all the requisite moments for third order 

accuracy within the unit cube’s interior. This observation extends to all orders. Second, 

notice that the coefficients correspond to variations 

that are only needed for fourth order accuracy and yet they are present in the third order 

reconstruction. Their presence is mandated by the divergence-free condition, not by 

accuracy conditions. As a result, these terms do not need to participate in the third order 

ADER time-evolution. Their contribution does, however, need to be included in the flux 

evaluation in the ADER scheme as well as in the construction of Riemann solvers at zone 

boundaries. We therefore say that these coefficients provide non-evolutionary terms in 

the ADER update. Their contribution needs to be included wherever possible but there 

are no time-evolving terms associated with them in the ADER formulation. 

xyy xzz xyz xxx xxy xxza ,  a ,  a  , a ,  a  and a

 

3) ADER-CG Formulation 

 

 In contrast to the classical ADER schemes of Titarev & Toro [55] and [56], which 

needed many analytical algebraic manipulations due to the underlying Cauchy-

Kovalewski procedure, the new formulation of ADER schemes recently proposed in 

Dumbser et al. [26] is based on a local weak formulation of the governing PDE in space-

time and only needs flux evaluations at point values. These new ADER schemes rely on 

an iterative convergence to the actual space-time representation of the solution within 

each zone. In Sub-Section 3.1 we provide the general formulation of ADER-CG schemes 

(where CG stands for continuous Galerkin representation in space and time) and describe 
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one iteration of the ADER scheme. In Sub-Section 3.2 we describe in detail the 

implementation of the third order ADER-CG scheme in an effort to make the ADER 

method easily accessible to all readers. In Appendices B and C we provide the most 

essential formulae that are needed for making implementations of the second and fourth 

order ADER-CG schemes respectively. 

 

3.1) General Formulation of ADER-CG Schemes for Structured Meshes 

 

 Say we want to evolve the nonlinear time-dependent hyperbolic system of 

conservation laws given by 

 

U F G H S
t x y z

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
        (49) 

 

where u is an n-component vector of conserved variables and ( )F F U= ,  and 

 are flux vectors and 

( )G G U=

( )H H U= ( )S S U=  is a non-stiff source term. We wish to take a 

time step of size Δt on a mesh having zones of size Δx , Δy and Δz  in each of the three 

directions. Each zone can be mapped to a unit cube in space. Since ADER schemes 

operate in space and time, we consider a four dimensional reference element in space-

time given by [ ] [ ] [ ] [ ] 1 2  , 1 2  1 2  , 1 2  1 2  , 1 2− × − × − 0,  1× where the first three 

coordinates span the unit cube and the fourth coordinate represents the time axis. In this 

space-time element we set up the coordinates ( ), , ,ξ η ζ τ  and make the transcriptions 

, u U= f t F x= Δ Δ  , g t G= Δ Δy  , h t H z= Δ Δ s and t S= Δ . This allows us to write 

eqn. (49) in the reference element as  

 

u f g h s
τ ξ η ζ
∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

        (50) 

 

 The ADER scheme that we describe here is a modal variant of the ADER scheme 

with a continuous Galerkin representation in time (also known as ADER-CG) described 
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in Dumbser et al [26]. Such ADER-CG schemes are very efficient because they minimize 

the number of flux evaluations though they have the drawback that they are not well-

suited for handling stiff source terms. We now specify a set of L basis functions 

( ){ }, , ,  , 1,l l l Lθ θ ξ η ζ τ= =

)

 in the reference element. For a general Galerkin 

formulation, any reasonable set of basis functions would suffice. For an ADER-CG 

scheme we make the further requirement that the first LS elements in the set of basis 

functions only have a spatial dependence and lack any dependence on time τ . The 

solution vector u can now be represented in this basis space as 

 

( ) (
1

ˆ, , ,  , , ,
L

l l
l

u uξ η ζ τ θ ξ η ζ τ
=

=∑        (51) 

 

where  is a vector of modes. The first LS elements of this vector 

of modes lack time-dependence so that only the last L− LS of these modes carry the time-

evolution of the solution u . Equations similar to eqn. (51) can be formulated for the flux 

components as well as the source terms. Thus the ξ, η and ζ-directional fluxes in space-

time reference element are, therefore, completely specified by providing the modal 

vectors given by 

( T

1 1ˆ ˆ ˆ ˆ ˆ,.., , ,..,
S SL L Lu u u u u+≡

ˆ ˆ ,

)

( )T

1 1
ˆ ˆ ˆ.., , ,..,

S SL L Lf f f f f+≡ , ( )T

1 1ˆ ˆ ˆ ˆ ˆ,.., , ,..,
S SL L Lg g g g g+≡  and 

 respectively. Likewise, the source terms are specified by 

providing . These flux terms and source terms can be obtained 

by using  from the previous iteration. The method for doing so is illustrated at third 

order in the next Sub-Section. The ADER-CG formulation consists of making a further 

essential simplification that at τ = 0 the solution 

( )T

1 1
ˆ ˆ ˆ,.., , ,..,

S SL L Lh h h+

( 1ˆ ˆ ˆ ˆ,..., , ,...,
S SL Ls s s s +≡

û

ˆ ˆh h≡

)T

1 ˆLs

( ), , ,u ξ η ζ τ  is continuous with the 

initial condition ( ), ,w ξ η ζ

ˆ ˆˆ ,  , l l l

. This simplification is advantageous because one needs to 

evaluate f g h l̂sand  for l=1,..,LS only once at τ=0 , resulting in a substantial 

savings in computational complexity.  Thus if w is written in a modal space as  
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( ) (
1

ˆ, ,  , , , 0
sL

l l
l

w wξ η ζ θ ξ η ζ τ
=

=∑ )=

l

       (52) 

 

then the ADER-CG simplification consists of asserting that ˆ ˆlu w=  for l=1,..,LS . Notice 

that this assertion simultaneously relinquishes the prospect of obtaining a weak 

formulation in time as well as the scheme’s ability to handle stiff source terms. (In 

Balsara et al [8] and Dumbser et al [30] we present ADER schemes that retain the weak 

formulation in time and can, therefore, handle stiff source terms. We refer to those 

schmes as ADER-DG to show their discontinuous Galerkin aspect.) 

 

 Applying the Galerkin approach to eqn. (50) then gives us 

 

ˆˆ ˆ, , , ,l l l l
j l j l j l j l j lu f g hθ θ θ θθ θ θ θ θ

τ ξ η ζ
∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

ˆ ˆ, lsθ

ˆ

   (53) 

 

The angled brackets in the above equation denote space-time integration over the 

reference element. Eqn. (53) can then be written as 

 

ˆ ˆˆ ˆK u K f K g K h Msτ ξ η ζ+ + + =        (54) 

 

where, in keeping with the usual terminology of Galerkin schemes, M is the mass matrix,  

Kτ  is the time-stiffness matrix and , K Kξ η  and Kζ  are the flux-stiffness matrices. The 

(j,l)th elements of these matrices can be made explicit as follows 

 

; , ; , ; , ; , ,,  ;  ,  ;  ,  ;  ,  ; ,j l l l
j l l j l j j l j j l j j l j lK K K K Mτ ξ η ζ

θ θ θ θθ θ θ θ
τ ξ η ζ

∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂
θ θ=

           (55) 

Notice from the structure of the vector  that only the last L−LS components are 

unknowns to be obtained from the ADER-CG iteration. We thus write as  

where has the first LS components of  and  has the last L−LS  components of  . A 

û

û ( )0 1ˆ ˆ ˆ,
T

u u u=

û0û û 1û
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similar split can be effected for ˆ ˆ, , ˆf g h

00 01

10 11

K K
K

K K
α

α α

⎡ ⎤
= ⎢
⎣ ⎦

 and . The mass matrix and the stiffness matrices 

can now be written as 

ŝ

⎥

 
00 01

10 11
  ,  

M M
M

M M
α

α

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

      (56) 

 

where α can be , ,ξ η ζ  or τ  in the above equation. Only the last L−LS components of 

eqn. (54) are useful and yield the equation 

 
1 1 1 1 0 0 0 0 0 0ˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ ˆu K f K g K h M f K g K hξ η ζ ξ η ζ+ + + = − − −1 0ˆ ˆŝ M s+ 0ˆˆˆ K    (57) 

 

Where the matrices in the above equation are given by 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 111 11 11 11 11 11

1 1 10 11 10 0 11 0 1 10 0 11 10

ˆ ˆ ˆ ˆ ,  ,  ,

ˆ ˆ ˆ ˆ ,  , 

K K K K K K K M K M

K K K K K K K K M K M

ξ τ ξ η τ ζ τ ζ τ

ξ τ ξ η τ ζ τ ζ τ

− − −

− − −

= = = =

= = = =

1

1

−

−

11

10

 , 

 , 

K K

K

η

η

ˆ

11

1
  (58) 

 

Thus a specification of the matrices in eqn. (58) along with eqn. (57) furnishes the entire 

ADER-CG scheme. In the next Sub-Section we will explicitly show the third order 

ADER-CG scheme that results from using these matrices.  

 

M Notice that the matrices and K̂α  are square matrices with a rank of L−LS while 

the matrices 0M̂  and 0K̂α  are rectangular with a dimension (L−LS)×LS . It is interesting to 

remark that while the 10Kα  and 11Kα  matrices in eqn. (58) are non-sparse, the matrices K̂α  

and 0K̂α are sparse at all orders. As a result, the form presented in eqn. (57) is also the one 

in which the equations are most elegant. This is true both for the tensor product basis 

functions that are used for logically rectilinear meshes and also for the Dubiner [25] basis 

functions that are used for unstructured meshes. At an intuitive level, the sparsity of 
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ˆ ˆ ˆ,   and K K Kξ η ζ  stems from the fact that in Legendre basis as well as in Dubiner basis the 

derivative operator only couples one basis function to two other basis functions.  

 

 In an ADER-CG scheme eqn. (57) is made to converge via iteration. Our 

experience has shown that we only require “M” iterations of eqn. (57) to achieve the 

requisite accuracy of an Mth order scheme. Dumbser et al [26] provide an intuitive 

explanation, based on contractive mappings, for this rapid convergence. There also exists 

formal theory based on the Picard iteration which supports the claim that “M” iterations 

are adequate for an Mth order scheme. As a result, while the ADER-CG schemes do 

iterate on eqn. (57), the iteration is not very expensive. Even the most stringent test 

problems presented here were always run with the minimum requisite number of ADER-

CG iterations. 

 

3.2) Implementation of the ADER-CG Scheme at Third Order 

 

 We start with the initial condition at τ=0 which is given by expressing ( ), ,w ξ η ζ  

in terms of the LS = 10 spatial basis functions as follows 

 

( ) ˆ, ,   

                  

                  

                  

w wξ η ζ ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 0 0 0

2 1 0 0 3 0 1 0 4 0 0 1

5 2 0 0 6 0 2 0 7 0 0 2

8 1 1 0 9 0 1 1 10 1

P P P
ˆ ˆ ˆP P P   P P P   P P P
ˆ ˆ ˆP P P   P P P   P P P
ˆ ˆ ˆP P P   P P P   P P

w w w

w w w

w w w

ξ η ζ

ξ η ζ ξ η ζ ξ η ζ

ξ η ζ ξ η ζ ξ η ζ

ξ η ζ ξ η ζ ξ

+ + +

+ + +

+ + + ( ) ( )0 1P

=

η ζ

 

           (59) 

We can now define a space-time solution ( ), , ,u ξ η ζ τ  in the reference space-time 

element by forming tensor products of the spatial basis set with the temporal basis set. 

The temporal basis set has to be specially chosen in an ADER-CG scheme so that the first 

LS basis functions match up with those in eqn. (59). Thus our temporal basis functions are 

taken to be 

 

( ) ( ) ( ) ( )2
0 1 2 3Q 1   ,   Q    ,   Q    ,   Q 3τ τ τ τ τ τ τ= = = =     (60) 
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The first three basis functions in eqn. (60) are needed for the third order scheme; the last 

basis function in eqn. (60) is only needed for fourth order schemes. To obtain full third 

order accuracy in space-time we use a total of L=15 basis functions. The conserved 

variables ( , , ,u )ξ η ζ τ  can be expressed in terms of the degrees of freedom, i.e. the 

modes, and the basis functions as 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 0 0 0 0

2 1 0 0 0 3 0 1 0 0 4 0 0 1 0

5 2 0 0 0 6 0 2 0 0 7 0 0 2 0

8 1 1 0 0 9 0 1 1 0 10 1 0 1 0

ˆ, , ,   P P P Q
ˆ ˆ ˆ     P P P Q   P P P Q   P P P Q
ˆ ˆ ˆ     P P P Q   P P P Q   P P P Q
ˆ ˆ ˆ     P P P Q   P P P Q   P P P Q

  

u w

w w w

w w w

w w w

ξ η ζ τ ξ η ζ τ

ξ η ζ τ ξ η ζ τ ξ η ζ τ

ξ η ζ τ ξ η ζ τ ξ η ζ τ

ξ η ζ τ ξ η ζ τ ξ η ζ τ

=

+ + +

+ + +

+ + +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

11 0 0 0 1 12 0 0 0 2

13 1 0 0 1 14 0 1 0 1 15 0 0 1 1

ˆ ˆ   + P P P Q  + P P P Q
ˆ ˆ ˆ     P P P Q   P P P Q   P P P Q

u u

u u u

ξ η ζ τ ξ η ζ τ

ξ η ζ τ ξ η ζ τ ξ η ζ τ+ + +
           (61) 

 

Notice that eqn. (61) already incorporates the essential simplification that is built into an 

ADER-CG scheme because we have set ˆ ˆlu wl=  for l=1,..,LS . 

 

 While it is always possible to explicitly write down all the matrices from eqn. 

(58), it is much easier to write down the iterative scheme that they give rise to. The 

resultant ADER-CG iteration at third order is therefore given by 

 

11 2 3 4 1 12

13 1514 11
12 12

13 5 8 10 2 13

14 8 6 9 3 14

15 10 9 7 4 15

3ˆ ˆˆ ˆ ˆ ˆ 
10

ˆ ˆˆ ˆ 3ˆ ˆ         + 
2 2 2 2 5

2ˆ ˆˆ ˆ ˆ ˆ 2
3
2ˆ ˆˆ ˆ ˆ ˆ 2
3
2ˆ ˆˆ ˆ ˆ ˆ 2
3

u f g h s s

f hg su s

u f g h s s

u f g h s s

u f g h s s

= − − − + −

= − − − +

= − − − + +

= − − − + +

= − − − + +

      (62) 
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The set of equations provided in eqn. (62) completely describe one iteration the ADER-

CG scheme at third order on structured meshes. 

 

 Now that the ADER-CG iteration has been described in eqn. (62), we only need to 

specify a strategy for obtaining the vectors ˆ ˆ,  ,  ˆf g h  and  from the vector  . To 

accomplish that, we establish a set of nodal points in space-time on the reference element. 

Several choices of nodal points are possible. Realize that we have L modes so that we 

could define a minimal set of L nodal points that allow us to make a one-to-one 

transcription from the nodal space to the modal space. This would yield the most 

economical ADER-CG scheme. Choosing a tensor product set of Gaussian quadrature 

points might yield the most accurate transcription from nodal to modal space. It would 

also be computationally expensive because for an Mth order scheme, this choice would 

call for M4 quadrature points. We prefer an intermediate strategy where we choose a set 

of Ln set of nodal points where Ln is slightly larger than L . The node placement in this 

choice has the special property that it yields compact, finite-difference like formulae for 

transcribing from nodal space to modal space. For third order we have Ln = 22 and the 

nodes are chosen to have geometric symmetries which yield expected cancellations in 

problems that have a great deal of symmetry. We have found such symmetrical node 

placements even for second and fourth order ADER-CG. For third order ADER-CG the 

Ln nodes are given by the ordered set 

ŝ û

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

{ 0,0,0,0 ; 1 2,0,0,0 ; 1 2,0,0,0 ; 0,1 2,0,0 ; 0, 1 2,0,0 ;

   0,0,1 2,0 ; 0,0, 1 2,0 ; 1 2,1 2,1 2,0 ; 1 2,1 2,1 2,0 ;

1 2, 1 2,1 2,0 ; 1 2, 1 2,1 2,0 ; 1 2,1 2, 1 2,0 ;

1 2,1 2, 1 2,0 ; 1 2, 1 2, 1 2,0 ; 1 2, 1 2, 1 2,0 ;

1 2,0,0,1 2 ; 1 2,0,0,1 2 ; 0,1 2,0,1

− −

− −

− − − −

− − − − − − −

− ( ) ( )
( ) ( ) ( )

2 ; 0, 1 2,0,1 2 ;

0,0,1 2,1 2 ; 0,0, 1 2,1 2 ; 0,0,0,1 }

−

−

  (63) 

 

Using the ordered set of nodal points we can then define an Ln component vector u  

which contains the nodal values of the conserved variables. The ordering of the 

components of u follows that of the nodal points. Note that the first 15 elements of u  
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have to be evaluated only once. Using the Ln component vector u  we can now define an 

an Ln component vector f  which contains the x-directional fluxes from the hyperbolic 

system in eqn. (50). The ordering of the components of f  also follows that of the nodal 

points. As a result the first 15 elements of f  have to be evaluated only once, leading to 

some of the computational efficiency of the ADER-CG scheme. The process of obtaining 

the vector f̂  from the vector f  is just a matter of transcribing from nodal to modal 

space and is given below. 

 

( )1 2 3 4 5 6 7

2 2

3 4

4 6

5 2 1 3

6 4 1 5

7 6 1 7

8 8 9 10 11 12 13 14 15

9 8 9 10 11 12 13 14 15

10 8 10 11

ˆ  = 6

ˆ  = 
ˆ  = 
ˆ  = 
ˆ  = 2 2
ˆ  = 2 2
ˆ  = 2 2
ˆ  = ( ) 2
ˆ  = ( ) 2
ˆ  = (

f f f f f f f

f f

f f

f f

f f f f

f f f f

f f f f

f f f f f f f f f

f f f f f f f f

f f f f f

+ + +

−

−

−

− +

− +

− +

+ + − − +

− − − + +

− −

3

5

7

9

4

4

4

f

f

f

f

+ +

− −

+ −

− +

     (64) 

12 13 14 15 ) 2f f f f+ − +

 

1 16 17 18 19 20 21 1

11 1 22 1

12 1 11

13 16 17 2 3

14 18 19 4 5

15 20 21 6 7

ˆˆ = ( ) 3 2
ˆ ˆ = 2
ˆ ˆˆ = 2 2
ˆ  = 2( )
ˆ  = 2( )
ˆ  = 2( )

t f f f f f f f

f t f f

f t f

f f f f f

f f f f f

f f f f f

+ + + + + −

− +

−

− − +

− − +

− − +

      (65) 

 

We point out that  is a temporary variable. Notice from eqn. (64) that the first 10 

components of 

1̂t

f̂  have to be evaluated only once and are completely specified by the 
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first fifteen components of f . The first fifteen components of f  are, in turn, evaluated 

only once at τ=0 before starting the ADER-CG iterations. Notice too from eqn. (65) that 

the last 5 components of f̂  will have to be re-evaluated in every ADER-CG iteration and 

only require a re-evaluation of the last seven components of f  at τ>0. This clear 

separation between the fluxes that have to be evaluated only once at τ=0 and the much 

smaller number of fluxes that have to be evaluated at τ>0 yields even further 

computational efficiency. A similar approach is followed for the other fluxes and the 

source terms in eqn. (50). This completes our description of the ADER-CG scheme at 

third order. 

 

4) Flux Calculation , Time-Update and a Step-by-step Description of the ADER-

WENO Scheme 

 

 In Sub-Section 4.1 we describe the one-step time update and the flux calculation. 

This includes the electric field calculation that is needed for MHD. In Sub-Section 4.2 we 

provide a step-by-step description of the ADER-WENO scheme. 

 

4.1) Flux Calculation and Time-Update 

 

 The MHD system can be described in conservation form of the form shown in 

eqn. (49) by writing it as  
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( ) ( )

( )
( )

x
2 2 2
x x

x

x y x y
y

x z x z
z

2
x x

x

y x y y x

z z x x z

 v
 v  + P + /8   B /4   v

 v  v   B  B /4 v
 v  v   B  B /4 v

 + +P+ /8 v   B /4t x
0B

B v  B   v  B
B v  B   v  B

ρρ
ρ π πρ

ρ πρ
ρ πρ

π πεε

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ −⎜ ⎟⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎜ ⎟∂ ∂⎜ ⎟ ⎜ ⎟− ⋅⎜ ⎟∂ ∂ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ − −⎝ ⎠

B

B v B

( ) ( )
( )

( )

y z

x y x y x z x z
2 2 2
y y y z y z

y z y z z
2

y y

x y y x

y z z y

 v  v
 v  v   B  B /4  v  v   B  B /4

 v  + P + /8   B /4  v  v   B  B /4
 v  v   B  B /4  v

 +  + +P+ /8 v   B /4y z
v  B   v  B

0

v  B   v  B

ρ ρ
ρ π ρ π

ρ π π ρ π
ρ π ρ
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⎛ ⎞
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⎜ ⎟⎜ ⎟−⎝ ⎠

B

B v B ( ) ( )
( )
( )

2 2 2
z

2
z z

z x x z

y z z y

 + P + /8   B /4
= 0+P+ /8 v   B /4

v  B   v  B

v  B   v  B

0

π π

π πε

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
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⎜ ⎟
⎜ ⎟−
⎜ ⎟
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⎝ ⎠

B

B v B

           (66) 

 

where ( )2 =  v /2 + P/ 1  + /8  2ρ γ πε − B  is the total energy and γ  is the ratio of specific 

heats. The Euler equations can be obtained from eqn. (66) by setting the magnetic fields 

to zero.  

 

 The first five components of eqn. (66) follow a straightforward conservation form 

and their one-step update from a time  to a time nt 1n nt t+ t= + Δ  in a zone labeled by 

subscripts “i,j,k” is given by  

 

( ) ( ) ( )1
, , , , 1/2, , 1/2, , , 1/2, , 1/2, , , 1/2 , , 1/2
n n
i j k i j k i j k i j k i j k i j k i j k i j k

t t tU U F F G G H H
x y z

+
+ − + − + −

Δ Δ Δ
= − − − − − −

Δ Δ Δ
 

           (67) 

The overbars in eqn. (67) denote suitable averagings as will be detailed below. For eqn. 

(67) to be a high order update, the fluxes in eqn. (67) have to be averaged in space and 

time at the zone faces. These averages have to be obtained using quadratures having the 
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appropriate accuracy. Traditionally, this has been obtained by solving a large number of 

Riemann problems at a large number of quadrature points, see Cockburn & Shu [16]. 

This makes the time-update very expensive. A substantially simpler strategy was 

presented by Dumbser et al [29] which views the flux at a face as being a linear 

combination of four vectors. The four vectors are : a) the conserved variables to the left 

of the zone boundary given by ( ) ( ); 1/2, , , ,, , 1/ 2, , ,L i j k i j kU y z t u ξ η ζ τ+ = =

), ,

, b) the 

conserved variables to the right of the zone boundary given by 

( ) (; 1/2, , 1, ,, , 1/ 2,R i j k i j kU y z t u ξ η ζ τ+ += = − , c) the flux to the left of the zone boundary 

given by ( ) ( ); 1/2, , , ,, , 1/ 2,L i j k i j kF y z t f ξ η+ = = , ,  xζ τ Δ tΔ  and d) the flux to the right of 

the zone boundary given by ( ) ( ); 1/2, , , ,R i j kF y 1, ,i j kz t f+ + 1/ 2, , ,  x tξ η ζ τ= = − Δ Δ . Let us 

illustrate this for the HLL flux at any general point on the boundary “i+1/2,j,k” . Consider 

a situation where the fastest left-going and right-going signal speeds at that boundary are 

Lλ  and Rλ  respectively. In the usual way, we reset ( )n ,0L Lλmiλ =  and  

. The HLL flux at any general point on the top x-face of the zone being considered is then 

given by 

( )max ,0R Rλ λ=

 

( ) ( ) ( )

( ) ( )( )

1/2, , ; 1/2, , ; 1/2, ,

; 1/2, , ; 1/2, ,

, ,  , ,  , ,

                        , , , ,

R L
i j k L i j k R i j k

R L R L

R L
R i j k L i j k

R L

F y z t F y z t F y z t

U y z t U y z t

λ λ
λ λ λ λ

λ λ
λ λ

+ +

+ +

⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
⎡ ⎤

+ −⎢ ⎥−⎣ ⎦

+

 

           (68) 

 

The flux 1/2, ,i jF + k  that is used in eqn. (67) is an average of the flux in eqn. (68) where the 

averaging process is applied to the whole zone boundary being considered. The central 

idea of Dumbser et al [29] consists of freezing  Lλ  and Rλ  to equal their values evaluated 

at the space-time barycenters of the face under consideration. As a result, the square 

brackets in eqn. (68) also become constants. This is tantamount to assuming that the same 

dissipation model holds at all space-time points at the face being considered. With that 

assumption, eqn. (68) becomes a linear function in the four vectors ,  ; 1/2, ,L i j kU + ; 1/2, ,R i j kU +
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,  and  . Notice from eqn. (51) as well as its explicit instantiation at 

third order in eqn. (61) that a space-time averaging of  and   is easily 

done by using the ADER scheme’s space-time representation of u in the two zones that 

abut the boundary “i+1/2,j,k” . The ADER scheme also provides a space-time 

representation of the fluxes, making it possible to obtain the space-time averages of  

 and   . Consequently, eqn. (68) can be averaged over the upper x-face 

of the zone “i,j,k” by integrating over the limits 

; 1/2, ,L i j kF +

; 1/2, ,L i j kF +

; 1/2, ,R i j kF +

; 1/2, ,R i j k+

; 1/2, ,L i j kU + ; 1/2, ,R i j kU +

F

[ ] [ ] [ ]/ 2, / 2 / 2, / 2 0,y y z z t−Δ Δ × × Δ

,j k

−Δ Δ  

and dividing the integral by  . Please recall that the non-evolutionary terms in 

the magnetic field reconstruction (see last paragraph in Sub-Section 2.3) also contribute 

to , U  ,  and  . This completes our description of the 

one-step update for the mass, momentum and energy densities in eqn. (66). 

 y z tΔ Δ Δ

; 1/2, ,L i j k+

v B

; 1/2, ,L i jU + k ; 1/2, ,R i j k+

 =E

F

− ×

; 1/2,R iF +

 

 As first shown by Yee [59], a divergence-free evolution of the magnetic field 

requires that one has a face-centered representation of the magnetic fields that is updated 

using an edge-centered representation of the electric fields. As shown by Balsara & 

Spicer [11], setting  shows us that specific components of the fluxes in eqn. 

(66) are indeed the electric fields that one seeks. This enables us to use the upwinded 

fluxes evaluated at the zone edges to obtain those components of the electric fields, as 

shown in Balsara [5]. Thus we have a one-step update for the magnetic fields given by 

 

( )1
; 1/2, ,

1
; , 1/2,

B =

B =

x i j k

y i j k

+
+

+
−

; 1/2, ,

; , 1/2,
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2

 B
2

x i j k

y i j k

+

−

; 1/2, 1/2, ; ; ; 1/2, , 1/2

; , 1/2, 1/2 ; 

E E

E

z i j k z i y y i j k

x i j k

t z z y
y z
t x x

x z

+ + + +

− +

Δ
− Δ −Δ + Δ −Δ

Δ Δ
Δ

− Δ −Δ +
Δ Δ

 1/2, 1/2,

, 1/2, 1/2

E

E

j k

x i j k

+ −

− −

 1/2, , 1/2E i j ky + −

Δ

n n

n n ( )

( )

; 1/2, 1/2,

1
; , , 1/2 ; , 1/2, 1/2 ; , ; 1/2, , 1/2

E E

B = E E

z i j k

z i j k x i j k x y y i j k

z z

t x x y
x y

+ −

+
− + + − +

− Δ

Δ
− Δ −Δ + −Δ

Δ Δ

; 1/2, 1/2,

; 1/2, , 1/2E

z i j k

i j ky

− −

+Δ; , , 1/2 B
2

n n
z i j k+ + 1/2, 1/2E i j k+ +

           (69) 

 

Just as the fluxes in eqn. (67) are space-time averages over the zone faces, the electric 

fields to be used in eqn. (69) are space-time averages over the zone edges. As before, the 

ADER formulation can be used to obtain these averages. Notice that four faces come 
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together at each zone edge. The Riemann problems that furnish the electric fields at the 

space-time center of the edge of interest are solved at space-time points within each face 

that are closest to the edge center, see Fig. 1 from Balsara [5]. The actual electric field at 

each edge is the arithmetic average of the electric field contributions from each of the 

four faces that come together at that edge. This completes our description of the one-step 

update for the magnetic fields in eqn. (1). 

 

 Balsara & Spicer [11] realized that the correct amount of upwinding for the 

electric fields in (69) could be a delicate issue, a topic that has also been addressed by 

Londrillo & DelZanna [43]. Notice that the electric fields are picked out by examining 

the last three components of the flux in eqn. (68). When HLL fluxes are used, an 

extremely simple solution to this issue is obtained by doubling the value of the third 

square bracket in eqn. (68). Such a doubling should only be done when using eqn. (68) to 

evaluate electric fields and, that too, only when 0L Rλ λ< <  . In all other instances, eqn. 

(68) can be used straightforwardly to obtain the electric fields in eqn. (69). 

 

4.2) Step-by-step Description of the ADER-WENO Scheme 

 

 Here we provide a step-by-step description of one time step of the ADER-WENO 

scheme presented in this paper. 

 

1) Use the WENO formulae presented in Sub-Section 2.1 and 2.2 to obtain the moments 

of the face-centered magnetic field components in eqns. (43), (44) and (45). Do this 

without recourse to characteristic interpolation. Once the facial moments are obtained, 

use them to reconstruct the magnetic field within all the zones in of the mesh. This can be 

accomplished using the formulae in Balsara [6]. This step also gives us a zone-centered 

mean magnetic field evaluated with the requisite accuracy. 

 

2) Use the WENO reconstruction formulae presented in Sub-Section 2.1 and 2.2 to obtain 

the moments of eqn. (4) for each of the zone-centered quantities. For obtaining the 

moments in each dimension, as described in Sub-Section 2.1, we used reconstruction in 
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characteristic space. The cross-term reconstruction, described in Sub-Section 2.2, was 

carried out directly in the space of conserved variables to keep the scheme inexpensive. 

For some of the most stringent test problems we also followed the suggestion of Dumbser 

& Käser (2007) and reconstructed the moments from Sub-Section 2.1 twice, once in 

characteristic space and once in the space of conserved variables, and took the smaller of 

those moments. This helps stability without damaging the order property. The double 

reconstruction, applied only to the moments that are reconstructed in a dimension-by-

dimension fashion, adds very little to the computational complexity of the scheme. 

 

3) Use the WENO formulae presented in Sub-Section 2.1 and 2.2 to obtain the moments 

of the face-centered magnetic field components in eqns. (43), (44) and (45). We are now 

in a position to carry out this reconstruction in characteristic space. We now use the facial 

moments to reconstruct the magnetic field within all the zones in of the mesh  using the 

formulae in Balsara [6].  

 

4) Apply the flattening algorithm from Appendix A if that is desired. 

 

5) Use the ADER-CG scheme that is detailed in Sub-Section 3.2 and Appendices B and C 

to obtain the space-time representation of the flow variables within each zone. The 

number of ADER iterations was always equated to the order of the scheme, i.e. we used 

the minimum permissible number of ADER iterations for the time-update. As a result, we 

used two, three and four ADER iterations for the second, third and fourth order schemes 

respectively. We followed this practice for all the test problems presented in this paper. 

We have never seen the need for using more than the minimum number of ADER 

iterations in our simulations and a good reason for that, based on the Picard iteration, was 

presented in Dumbser et al [26]. 

 

6) Obtain the space-time averaged values of the fluxes in eqn. (67). Similarly, obtain the 

space-time averaged values of the electric fields in eqn. (69). 

 

7) Make the one-step updates described in eqns. (67) and (69). 
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 Notice that after step 5) above we obtain not just the space-time representation of 

the conserved variable but also all the fluxes. We have the option of storing all the flux 

information. That option does add to the memory usage, but yields a faster scheme. One 

also has the option of discarding the flux information and rebuilding it for step 6) as and 

when it is needed. This yields an ADER scheme that uses memory much more 

economically. We have chosen the latter approach in the schemes presented here. 

 

 The second order ADER-WENO scheme for MHD simulations uses characteristic 

reconstruction and updates ~31,000 zones per second in three dimensions on a single core 

mid-grade Intel processor. This makes it very cost-effective relative to modern, 

sophisticated second order TVD schemes which also use characteristic reconstruction. 

The third order ADER-WENO scheme has a computational complexity that is 2.5 times 

that of the second order scheme. Likewise, the fourth order ADER-WENO scheme has a 

computational complexity that is only 3 times that of the third order scheme. The 

examples presented in this paper will show that the increased computational complexity 

of higher order schemes is easily offset by their increased accuracy. It is also worth 

pointing out that all the schemes presented here use the ADER time update and are 

considerably less expensive than their counterparts that use a Runge-Kutta time update 

strategy, see Balsara [6]. 

 

5) Order Property 

 

 The schemes presented here easily pass all the standard one dimensional tests for 

demonstrating order of accuracy. Thus we prefer to focus on two and three dimensional 

demonstrations of the order of accuracy in this section. All the two dimensional tests 

were run with a CFL number of 0.45 and all the three dimensional tests were run with a 

CFL number of 0.3 . A linearized Riemann solver for MHD, of the type presented in 

Balsara [1,4] was used for all the tests in this section. All of the results presented in this 

section use Balsara’s RIEMANN code for astrophysical fluid dynamics. 
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 It is also worthwhile making a note of the reconstruction used for the second order 

scheme that we present in this paper. Following Balsara [5] we used the slopes from the 

r=3 WENO reconstruction of Jiang & Shu [40] for our second order scheme. As a result, 

the slopes have one more order of accuracy than the accuracy that would be furnished by 

a TVD-preserving limiter. This yields a very superior second order scheme. It would be 

very difficult for a basic second order scheme to obtain the same accuracies as the second 

order scheme presented here. 

 

5.1) Unmagnetized Isentropic Vortex in Two Dimensions 

 

 In the unmagnetized vortex problem, presented by Balsara & Shu [9], an 

isentropic vortex propagates at 45° to the grid lines in a domain with periodic boundaries  

given by [-5, 5] x [-5, 5]. As the original test problem was set up for the Euler equations, 

the magnetic field in all three directions is initialized to zero. The unperturbed flow at the 

initialial time can be written as ( , , , , , , ) (1, 1, 1, 1, 0, 0, 0)x y x y zP v v B B Bρ = . The ratio of 

the specific heats is given by 1.4γ = . The entropy and the temperature are defined as 

/S P γρ=  and  /T P ρ= .  The vortex is set up as a fluctuation of the unperturbed flow 

with the fluctuations given by 
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Its strength is controlled by the parameter ε  which we set to 5ε =  according to Balsara 

& Shu [9]. r is the radius from the origin of the domain and can be written as . 

Please note that the problem has to be initialized in each zone using numerical quadrature 

and that the accuracy of the quadrature formulae should match that of the numerical 

scheme being used. Also notice that the exponential function in the velocity and 

temperature fluctuations above ensures that the fluctuations are quite close to zero at the 

domain boundaries. However, for the fourth order scheme the domain is increased to [-

2 2r x y= + 2
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10, 10] x [-10, 10] due to the fact that the nonzero values of the exponential function at 

the boundaries are picked up by the fourth order scheme on the smaller domain. The 

stopping time was set to 10 time units for the second and third order schemes and to 20 

time units for the fourth order scheme because of the bigger domain. The stopping time 

was chosen so that the vortex has completed one periodic passage through the 

computational domain. 

 
TABLE I  

Method Number of zones L1 error L1 order  L∞ error L∞ order 

2nd order ADER CG 32×32 5.1124900 × 10-3  1.1677400 × 10-1  

 64×64 1.0527400 × 10-3 2.28 2.3322500 × 10-2 2.32 

 128×128 2.2522500 × 10-4 2.22 4.6105000 × 10-3 2.34 

 256×256 5.4364900 × 10-5 2.05 1.0438700 × 10-3 2.14 

3rd order ADER CG 32×32 3.9555500 × 10-3  9.5757200 × 10-2  

 64×64 6.4692800 × 10-4 2.61 1.3762400 × 10-2 2.80 

 128×128 7.6747300 × 10-5 3.08 1.9531200 × 10-3 2.82 

 256×256 9.3029100 × 10-6 3.04 2.4996400 × 10-4 2.97 

4th order ADER CG 32×32 4.5318300 × 10-3  2.7546100 × 10-1  

 64×64 4.7962700 × 10-4 3.24 3.1474100 × 10-2 3.13 

 128×128 2.3561700 × 10-5 4.35 1.6096600 × 10-3 4.29 

 256×256 8.7922100 × 10-7 4.74 7.2832400 × 10-5 4.47 

 

 

            Table I shows the accuracy analysis for the second, third and fourth order 

schemes presented here. The errors were measured using the density variable. All three 

methods meet the expected order of accuracy even for a small number of zones. The third 

order ADER-WENO scheme obtains an L1 error norm at 128x128 zones which is 

comparable to the second order ADER-WENO at 256x256 zones, which demonstrates 

the advantage of a high order scheme. The fourth order scheme cannot be directly 

compared to the third and second order schemes because of our use of a much larger 

computational domain. We do see though that the fourth order scheme also meets its 

design accuracy. 

 

5.2) Magnetized Isodensity Vortex in Two Dimensions 
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 The magnetized isodensity vortex problem described in Balsara [5] consists of a 

magnetized vortex moving across a domain given by [-5, 5] x [-5, 5] at an angle of 45° 

for a time of 10 units. As before, for the fourth order scheme the domain is increased to [-

10, 10] x [-10, 10] and the simulation time is increased to 20 units. Periodic boundaries 

are used for the domain and it is initialized with an unperturbed flow of 

( , , , , , ) (1, 1, 1, 1, 0, 0)x y x yP v v B Bρ = . The ratio of the specific heat is set to 5 / 3γ = . 

The vortex is set up as a fluctuation of the unperturbed flow in the velocities and the 

magnetic field given by: 

 

20.5(1 )( , ) ( ,
2

r
x yv v e y xκδ δ

π
−= − )  

20.5(1 )( , ) ( ,
2

r
x y )B B e y xμδ δ

π
−= −  

 
According to Balsara [5] the pressure fluctuation can be written as 
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and the density is set to unity. 

 
TABLE II  

Method Number of zones L1 error L1 order  L∞ error L∞ order 

2nd order ADER CG 32×32 7.8294900 × 10-3  1.2119700 × 10-1  

 64×64 2.2175500 × 10-3 1.82 3.0823400 × 10-2 1.98 

 128×128 5.4236600 × 10-4 2.03 6.8924200 × 10-3 2.16 

 256×256 1.3477000 × 10-4 2.01 1.6531500 × 10-3 2.06 

3rd order ADER CG 32×32 5.5966400 × 10-3  1.0136700 × 10-1  

 64×64 9.7810500 × 10-4 2.51 1.7964500 × 10-2 2.50 

 128×128 1.2692200 × 10-4 2.95 2.3763700 × 10-3 2.92 

 256×256 1.5983600 × 10-5 2.99 2.9869600 × 10-4 2.99 

4th order ADER CG 32×32 5.3198700 × 10-3  2.8849000 × 10-1  

 64×64 4.7436200 × 10-4 3.48 3.1605200 × 10-2 3.19 

 128×128 1.7658600 × 10-5 4.75 8.9386200 × 10-4 5.14 

 256×256 1.0736400 × 10-6 4.04 5.4681200 × 10-5 4.03 
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 Table II shows the error measured in the x-component of the magnetic field. All 

three schemes meet the design order of accuracy even at a small number of zones. As in 

the previous test problem we see that the third order scheme at 128x128 zone resolution 

shows the same L1 error as the second order scheme at 256x256 zone resolution. This 

illustrates the utility and cost-effectiveness of the higher order schemes because the third 

order scheme easily offsets its slightly greater computational complexity (relative to the 

second order scheme) by delivering a comparably accurate solution on a mesh that has 

half as many zones in each direction. 

 

5.3) Torsional Alfven Wave Propagation in Three Dimensions 

 

 The previous test problems used flows that were exact, equilibrium structures of 

the governing equations. While torsional Alfven waves also satisfy the governing 

equations, they are susceptible to parametric instabilities. These instabilities exist at low 

values of plasma-β , see Goldstein [34] and Del Zanna et al [23], and also at high values 

of plasma-β , see Jayanti & Hollweg [38]. The instabilities can of course be suppressed 

by numerical dissipation and all schemes have such numerical dissipation. As a result, 

second order schemes do not show these instabilities till the Alfven wave is very highly 

resolved. However, higher order schemes can pick up on the slightest amount of 

numerical noise and propagate it as a true fluctuation. Since the torsional Alven waves 

are susceptible to physical growth of such fluctuations, they will be treated as such by the 

numerical scheme. To avoid such deleterious effects, we carry out this test problem at 

very high values of plasma-β where the growth of such instabilities is suppressed. 

 

 The problem consists of initializing a torsional Alfven wave along the x/ axis of 

an (x/ , y/ , z/ ) coordinate system with the following variables 
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where we take 0.02ε =  and 3λ =  . We utilize the magnetic vector potential when 

initializing the magnetic field in a divergence-free fashion on a three dimensional mesh. 

The magnetic vector potential is given by 

 

/ / /
/

x y z
A 0 , A cos  , A 4  y  sinελ ρ π πρ ελ ρ π= = Φ = + Φ  

 

Please note that the magnetic vector potential has to be assigned to each zone’s edges 

using numerical quadrature . Also note that the accuracy of the quadrature formula should 

match the accuracy of the scheme. An application of Stokes law in integral form at each 

face then yields the magnetic field component in that face. 

 

 The actual problem is solved on a unit cube with periodic boundary conditions in 

the (x,y,z) coordinate frame which is rotated relative to the (x/ , y/ , z/ ) coordinate system. 

The rotation matrix is given by A so that we have 

 

cos cos cos sin sin cos sin cos cos sin sin sin
 = sin cos cos sin cos sin sin cos cos cos cos sin

sin sin sin cos cos

ψ φ θ φ ψ ψ φ θ φ ψ ψ θ
ψ φ θ φ ψ ψ φ θ φ ψ ψ

θ φ θ φ θ

− +⎡ ⎤
⎢ ⎥− − − +⎢ ⎥
⎢ ⎥−⎣ ⎦

A θ  

 

where / 4φ π= −  , (1sin 2 3θ −= − )  and ( )( )1sin 2 6 4ψ −= −  . As a result, the 

position vector r/ in the primed frame transforms to the position vector r in the unprimed 

frame as r = A r/  . Other vectors transform similarly. The effect of the rotation is to make 

the wave propagate along the diagonal of the unit cube. The wave propagates at a speed 

of 2 units and the problem is stopped at a time of 3 2  by which time it has propagated 

once around the unit cube. 

 

Table III 
Method Number of zones L1 error L1 order  L∞ error L∞ order 

2nd order ADER CG 8×8×8 3.46872 × 10-2        5.17784 × 10-2  
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 16×16×16 2.13576 × 10-2       0.70 3.37639 × 10-2 0.62 

 32×32×32 4.21518 × 10-3       2.34 6.61278 × 10-3 2.35 

 48×48×48 1.42618 × 10-3 2.67 2.23978 × 10-3        2.67 

3rd order ADER CG 8×8×8 3.56780 × 10-2        5.33670 × 10-2  

 16×16×16 1.67602 × 10-2       1.09 2.58530 × 10-2        1.05 

 32×32×32 2.62382 × 10-3       2.68 4.13702 × 10-3        2.64 

 48×48×48 7.92737 × 10-4       2.95 1.25713 × 10-3        2.94 

4th order ADER CG 8×8×8 2.64017 × 10-2  3.99367 × 10-2  

 16×16×16 1.31645 × 10-3       4.32 2.04612 × 10-3        4.29 

 32×32×32 6.06938 × 10-5       4.44 1.02099 × 10-4        4.33 

 48×48×48 1.30835 × 10-5  3.79 2.42201 × 10-5 3.55 

 

 

        Table III shows the accuracy analysis for the second, third and fourth order schemes 

presented here. The errors were measured using the x-component of the magnetic field. 

All three methods meet the expected order of accuracy even for a small number of zones. 

Compared to the second and third order schemes we see that the fourth order scheme has 

reached a very high accuracy of one part in 105 on the 48×48×48 zone mesh. The fourth 

order scheme shows a slight evidence for parametric instability at 48×48×48 zone 

resolution since it has picked up extremely tiny, numerically generated errors in the 

pressure and propagated them. The second and third order schemes never reach the same 

small value of the error on the meshes that are displayed but on very high resolution 

meshes we have been able to verify that they too pick up slight traces of the parametric 

instability.  

 

 Since all three schemes were run on the same problem, we can cross-compare the 

errors in the second, third and fourth order schemes using this accuracy analysis 

presented in Table III. Notice that on a resolution starved mesh, such as the 16x16x16 

mesh in Table III the fourth order scheme offers almost an order of magnitude 

improvement in accuracy over the second and third order schemes. We also see that the 

fourth order scheme at 16x16x16 zone resolution is already as accurate as the second 

order scheme at 48x48x48 zone resolution. The 48x48x48 zone calculation at second 

order takes 12 times longer to complete than the 16x16x16 zone calculation at fourth 

order, thus illustrating the advantage of using a higher order scheme. 
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5.4) Density Wave Propagation in Three Dimensions 

 

 This test problem consists of propagating a density wave with a sinusoidal profile 

along the diagonal of the same unit cube that was described in the previous sub-section. 

Now the parameters in the (x/ , y/ , z/ ) coordinate system are given by 

 

( )
/ / / / / /
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x y z x y z

21 sin    , P = 1 ,  x  t  ,
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= + Φ Φ = −

= = = = = =
 

 

where we take 0.2ε =  and 3λ =  . The density profile and velocities are then rotated 

into a periodic unit cube using the rotation matrix described in the previous Sub-section. 

The problem is stopped at a time of 3  by which time the density wave has propagated 

once around the unit cube. 

 

Table IV 
Method Number of zones L1 error L1 order  L∞ error L∞ order 

2nd order ADER CG 8×8×8 6.09811 × 10-2        9.64241 × 10-2  

 16×16×16 1.58837 × 10-2       1.94 2.43894 × 10-2        1.98 

 32×32×32 3.63924 × 10-3       2.13 5.69284 × 10-3        2.10 

 48×48×48 1.58011 × 10-3       2.06 2.47718 × 10-3        2.05 

3rd order ADER CG 8×8×8 5.30213 × 10-2  8.25208 × 10-2  

 16×16×16 9.48506 × 10-3       2.48 1.37539 × 10-2        2.59 

 32×32×32 1.29720 × 10-3       2.87 2.07369 × 10-3        2.73 

 48×48×48 3.95625 × 10-4       2.93 5.80456 × 10-4        3.14 

4th order ADER CG 8×8×8 1.76010 × 10-2        2.90944 × 10-2  

 16×16×16 4.50487 × 10-4       5.29 8.94523 × 10-4        5.02 

 32×32×32 1.56149 × 10-5       4.85 3.61468 × 10-5        4.63 

 48×48×48 2.50965 × 10-6       4.51 6.80014 × 10-6        4.12 

 

 

        Table IV shows the accuracy analysis for the second, third and fourth order schemes 

presented here. The errors were measured using the density variable. All three methods 

meet the expected order of accuracy even for a small number of zones. Since all three 

schemes were run on the same problem, we can cross-compare the errors in the second, 
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third and fourth order schemes using this accuracy analysis. We see that the fourth order 

scheme at 16x16x16 zone resolution provides a more accurate result that the second order 

scheme at 48x48x48 zone resolution, again underscoring the advantages of using higher 

order schemes. 

 

6) Hydrodynamical Test Problems 

 

 In this section we present several stringent hydrodynamical test problems. The 

schemes we have presented operate accurately and robustly on all of these problems. This 

illustrates the utility of our methods for simulating hydrodynamical flows. The 

RIEMANN code was used for all these tests. 

 

6.1) Interacting Blast Problem in One Dimension 

 

 The interacting blast problem was presented by Woodward and Colella [58]. We 

used the fourth order ADER-WENO scheme with the linearized Riemann solver to 

compute this problem using exactly the same parameters as the original authors of this 

problem. The CFL number was set to 0.8.  Fig. 2 shows the density variable of a 

simulation with 400 zones as diamonds. The solid line is the converged density profile of 

a simulation using 1600 zones. We see that the left-going contact discontinuity is 

captured well in the simulation using 400 zones. We further note that all the flow 

structures in the 400 zone simulation are very close to the converged simulation. 

 

6.2) Shock-Entropy Wave Interaction in One Dimension 

 

 The one dimensional shock-entropy wave interaction problem was first presented 

by Shu & Osher [51]. It consists of a Mach 3 shock interacting with a density 

disturbance. That generates a flow field that is a combination of discontinuities and 

smooth structures. Therefore the problem is a good model for the interactions occurring 

in simulations of compressible turbulences. Additionally it represents the amplification of 

entropy fluctuations as they pass through a shock. These interactions of smooth structures 
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with shocks pose a problem for TVD schemes as the damaging effects of the TVD 

limiters are maximal in these cases. Jiang & Shu [40] made a detailed study showing that 

the r = 3 WENO scheme performs superior to a well-designed TVD scheme. They 

concluded that the r = 3 WENO scheme using 800 zones outperformed the TVD scheme 

using 2000 zones substantially. We computed the problem using several ADER-WENO 

schemes with the linearized Riemann solver at a CFL number of 0.8. To highlight the 

role of TVD limiters, we even ran a simulation using the MC limiter of vanLeer for the 

spatial interpolation and the ADER scheme for the time-evolution. The computational 

domain spans [-1, 1] and was set up with 200 zones. The initial condition is given by 
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The simulation was stopped at 0.47 time units. 

 

 Fig. 3 shows the density profile of the third and fourth order ADER-WENO 

schemes as well as the TVD scheme using 200 zones as diamonds and the reference 

solution, which was calculated on an 800 zones grid, as a solid line. We note that the 

density profile of the fourth order scheme has almost converged to the reference solution 

and shows all the extrema that are seen in the reference solution even though it uses a 200 

zone grid. Furthermore we see that the scheme needs no more than 11 points between 

extrema in the density variable immediately after the shock. The third order scheme is 

quite close to the reference solution while the TVD scheme misses the reference solution 

by a wide margin. Therefore we note, that the solution of the ADER-WENO schemes 

converged to the reference solution using a small number of points. This shows that the 

third order ADER-WENO scheme converges faster to the reference solution than a lower 

order scheme and has the smaller error if the number of zones is kept constant. 

 

6.3) Resolution Study of the Forward Facing Step Problem in Two Dimensions 
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 This test problem was first presented by Woodward and Colella [58]. Cockburn 

and Shu [16] carried out a resolution study using schemes of increasing order of 

accuracy. Increasing the resolution enabled them to capture important details such as the 

roll up of the vortex sheet via Kelvin-Helmholtz instability. They also showed that more 

accurate schemes were able to capture the vortex sheet roll-up with smaller number of 

zones. Our purpose is to make a similar resolution study and to prove that the schemes 

are accurate and perform robustly on this stringent problem. We therefore simulated this 

test problem using the fourth order ADER-WENO scheme with increasing resolution as 

shown in Fig. 4. 

 

 The problem consists of a two-dimensional wind tunnel that spans a domain of [0, 

3] x [0, 1]. A forward-facing step is set up at a location given by the coordinates (0.6,0.2). 

Inflow boundary conditions are applied at the left boundary, where the gas enters the 

wind tunnel at Mach 3.0 with a density of 1.4 and a pressure of unity. The right boundary 

is an outflow boundary. The walls are set to be reflective boundaries. The singularity at 

the corner was treated with the same technique that Woodward and Colella [58] 

suggested. The simulation was run until a time of 4.0 time units and the ratio of specific 

heats is given by 1.4. 

 

 Fig. 4 shows the density at the final time at a resolution of 240x80, 480x160 and 

960x320. All of the three simulations were run with a fourth order scheme and a 

linearized Riemann solver. The CFL number was set to 0.4. All the shocks are properly 

captured on the computing grid and have sharp profiles. The vortex sheet that emanates 

from the Mach stem is correctly resolved with only a few zones across the sheet. We 

notice that the vortex sheet shows little or no spreading over the length of the 

computational domain. At a resolutions of 960x320 and 480x160 the roll up of the vortex 

sheet is clearly visible. An exceptionally good second order scheme would need at least a 

resolution of 960x320 zones to start showing evidence of the vortex sheet’s roll-up. Such 

a second order scheme operating on this problem with a resolution of 960x320 zones 

would furnish the same solution quality as the fourth order scheme does at a resolution of 
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480x160. This demonstrates the ability of the high order schemes to provide a better 

resolution at a smaller number of zones. 

 

 

6.4) Resolution Study of the Double Mach Reflection of a Strong Shock in Two 

Dimensions 

 

 This problem was presented by Woodward and Colella [58]. We use the exactly 

the same setup for the test problem as the authors did. A Mach 10 shock hits a reflecting 

wall which spreads from 1 6x =  to 4x =  at the bottom of the domain given by [0, 4] × 

[0, 1]. The angle between the shock and the wall is 60°. At the start of the computation 

the position of the shock is given by ( , )x y (1 6,0)= . The undisturbed fluid in front of the 

shock is initialized with a density of 1.4 and a pressure of 1. The exact post-shock 

condition is used for the bottom boundary from 0x =  to 1 6x =  to mimic an angled 

wedge. For the remaining boundary at the bottom of the domain we used a reflective 

boundary condition. The top boundary condition imposes the exact motion of a Mach 10 

shock in the flow variables. The left and right boundaries are set to be inflow and outflow 

boundaries.  

 

Fig. 5 shows the density variable at 0.2t = in [0, 3] × [0, 1] as in Woodward and 

Colella [58]. The upper panel shows a resolution of 960 × 240 zones, the second panel 

shows a resolution of 1920 × 480 zones. The two panels at the bottom show a blow-up of 

the region around the double Mach stem for both computations. All the plots show 30 

contours equally distributed from 1.3965ρ =  to 22.682ρ = . We used the fourth order 

ADER-WENO scheme with an HLL Riemann solver for both simulations.  

 

 Notice that the fourth order ADER-WENO scheme resolves all the structures that 

are shown in Cockburn & Shu [16]. According to Cockburn & Shu [16] a second order 

scheme would need at least four times as many zones in each direction to resolve the 
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instability and for such a simulation it would need more CPU time than the fourth order 

scheme. That demonstrates the efficiency of the higher order schemes presented here. 

 

7) MHD Test Problems 

 

 We present several stringent MHD test problems in this section. The MHD 

schemes we have presented operate accurately and robustly on all of these problems 

showing the utility of our methods. The RIEMANN code for astrophysical simulations 

was used for all of these MHD tests. 

 

7.1) MHD Riemann Problems in One Dimension 

 

 First we present one of the Riemann problems from Ryu & Jones [48]. It is set up 

on a 400-zone mesh spanning the domain given by [-0.5, 0.5]. The initial conditions are 

given by 
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The x-component of the magnetic field is given by 2xB =  . The simulation was stopped 

at a time of 0.2 and the ratio of specific heats was set to 5/3. As this is a non-coplanar 

problem it generates seven waves, which are a right-going fast shock, a right-going 

rotational discontinuity, a right-going slow shock, a contact discontinuity, a left-going 

slow-shock, a left-going rotational discontinuity and a left-going fast shock. Ryu & Jones 

[48] also provide the exact solution for this Riemann problem. We simulated the problem 

using the fourth order ADER-WENO scheme using an HLL Riemann solver and a CFL 

number of 0.8. Fig. 6 shows the density, the pressure, x-velocity, y-velocity, z-velocity 

and the y- and z-component of the magnetic field. All the shock profiles are properly 

captured within a few zones. We note that our high order scheme captures slow shocks 

with only a few zones across them. In Balsara [2] it was shown that profiles of slow 

shocks sometimes have a little more than the optimal number of zones across them if 
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TVD schemes for MHD are used. In Fig. 6 we see that the fourth order ADER-WENO 

scheme resolves the slow shock as a sharp profile. Therefore we note that the 

representation of slow shocks is improved by high order schemes. We also see that the 

contact discontinuity and the rotational discontinuity profiles are captured with a few 

zones. Notice the small number of zones between the rotational discontinuity and the 

corresponding slow shock. The ability of the scheme to resolve every discontinuity as a 

sharp profile is necessary to distinguish the rotational discontinuity from the slow shock 

and to maintain a high accuracy.  

 

 Our next Riemann problem comes from Dai & Woodward [21]. It is set up on a 

400-zone mesh spanning the domain given by [-0.5, 0.5]. The initial conditions are given 

by 
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The x-component of the magnetic field is given by 4xB =  . The simulation was stopped 

at a time of 0.03 and the ratio of specific heats was set to 5/3. The problem consists of 

two very high Mach number streams of magnetized fluid rushing towards each other. It 

can be thought of as the MHD equivalent of the Noh problem. The resolved state consists 

of two fast magnetosonic shocks of Mach number 25.5 propagating out of the interaction 

region. We simulated the problem using the fourth order ADER-WENO scheme using an 

HLL Riemann solver and a CFL number of 0.8. Fig. 7 shows the density, the pressure, x-

velocity, y-velocity, z-velocity and the y- and z-component of the magnetic field. All the 

shock profiles are properly captured within a few zones and do not display any post-

shock oscillations. This problem, along with a few other problems presented in this 

section, demonstrates that higher order schemes can successfully tackle problems with 

very strong shocks while simultaneously giving us the advantages of high resolution, 

high accuracy and low numerical dissipation. 
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7.2) Numerical Dissipation and Long-Term Decay of Alfven Waves in Two 

Dimensions 

 

 In several fields, like astrophysics or space physics, one is interested in the 

evolution of waves to simulate certain problems such as turbulence. The Alfven wave 

decay test problem first presented by Balsara [5] examines the dissipation of torsional 

Alfven waves in two dimensions. In this test problem torsional Alfven waves propagate 

at an angle of  to the y-axis through a domain given by [-

r/2, r/2] x [-r/2, r/2] with r = 6. The domain was set up with 120 x 120 zones and has 

periodic boundary conditions. The pressure and density are uniformly initialized as 

1 1tan (1/ ) tan (1/ 6) 9.462r− −= = °

0 1P =  

and 0 1ρ =

0

. The unperturbed velocity and unperturbed  magnetic field are given by 

 and . The amplitude of the Alfven waves is parametrized by a velocity 

fluctuation 

0v = 0 1=B

ε , which is set to 0.2. Different test problems can be set up by changing these 

values. The simulation was stopped at 129 time units by which time the waves had 

crossed the domain several times. The CFL number was set to 0.4. The direction of the 

wave propagation along the unit vector can be written as 

 

2 2

1ˆ ˆ ˆˆ
1 1

x y
rn n i n j i j

r r
= + = +

+ +
ˆ . 

 

The phase of the waves is given by 

 

2 ( )x y A
y

n x n y V t
n
πφ = + − , where 0

04A
BV
πρ

= . 

 
The velocity is given by 

 

0 0
ˆˆ ˆ( cos ) ( cos ) six y y xv n n i v n n j knε φ ε φ ε= − + − +v φ . 

 
The magnetic field is given by 
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0 0 0 0 0
ˆˆ ˆ( 4 cos ) ( 4 cos ) 4 sinx y y xB n n i B n n j kε πρ φ ε πρ φ ε πρ φ= + + − −B . 

 
The corresponding vector potential is given by 
 
 

00
0 0

44 ˆˆcos ( sin )
2 2

y
y x

n
i B n x B n y

ε πρε πρ
kφ φ

π π
= − + − + +A  

 

and it is used to initialize the magnetic field.  

 

 The dissipation of the numerical scheme can be measured in the decay of the 

maximum values of the z-component of the velocity and the magnetic field. The r.m.s. 

values of the velocity and the magnetic field decay in the same fashion as the maximal 

values of these quantities do. For this reason they are not presented here. Kim et al. [41] 

showed that these plots give a good qualitative understanding of numerical viscosities 

and resistivities in a numerical scheme. In Fig 8 the maximum z component of the 

velocity and of the magnetic field are plotted at every time step in a log-linear plot. We 

used the HLL and linearized Riemann solvers with the second, third and fourth order 

ADER-WENO schemes. It can be seen that with increasing order of accuracy the 

numerical dissipation of the scheme reduces significantly independent of the Riemann 

solver that is used. This makes the higher order schemes more favorable for simulations 

of complex phenomena that involve wave propagation. Further it can be noted that the 

linearized Riemann solver is substantially less dissipative than the HLL Riemann solver 

in both measured quantities. But this effect decreases with increasing order of accuracy 

because the improved reconstruction significantly reduces the difference in flow variables 

at the zone boundaries where the Riemann problem is solved. We therefore see that it is 

acceptable to use less expensive Riemann solvers as the order of the scheme is increased. 

 

7.3) The Rotor Problem in Two Dimensions 

 

 The two dimensional rotor problem was presented in Balsara & Spicer [11] and in 

Balsara [5]. Here we describe a version of this test problem. The computational mesh has 
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200 × 200 zones and spans the domain [-0.5,0.5]×[-0.5,0.5]. A dense and rapidly 

spinning cylinder is set up in the center of an initially stationary, light ambient fluid. The 

ambient fluid is initially static. A uniform magnetic field initially threads the two fluids. 

Its value is set to 2.5 units. The pressure in both fluids is set to unity. The density in the 

ambient fluid is uniformly set to unity, while the constant density in the rotor is 10 units 

out to a radius of 0.1. A linear taper is applied to the density between a radius of 0.1 and 

0.13 so that the density in the rotor decreases linearly to the value of the density in the 

ambient fluid. Therefore the taper needs six zones to join the density of the two fluids. 

That number should be kept fixed if the resolution is increased or decreased.  The initial 

angular velocity of the rotor is uniform out to a radius of 0.1. At this radius the toroidal 

velocity has a value of one unit. The toroidal velocity decreases linearly from one unit to 

zero between a radius of 0.1 and 0.13 so that it joins the velocity of the ambient fluid at a 

radius of 0.13. The ratio of specific heats is given by 5/3. The Courant number was set to 

0.4. The fourth order ADER-WENO scheme with the linearized Riemann solver was 

applied to this problem. In Fig. 9 the density, the pressure, the Mach number and the 

magnitude of the magnetic field are shown at a time of 0.29 units. Balsara & Spicer [11] 

provided a detailed physical description of this problem. The results presented in Fig. 9 

show a good consistency with the descriptions in Balsara & Spicer [11]. We therefore 

conclude that the multidimensional limiting presented in this paper works well for 

numerical MHD. 

 

7.4) The Blast Problem in Two Dimensions 

 

Balsara & Spicer [11] first presented the two dimensional blast problem. It is set 

up by following the prescription in Balsara & Spicer [11]. The fourth order ADER-

WENO scheme with the HLL Riemann solver was applied to a mesh having 200 × 200 

zones and covering the domain [-0.5,0.5]×[-0.5,0.5]. In Fig. 10 the logarithm (base 10) of 

the density, the logarithm (base 10) of the pressure, the magnitude of the velocity and the 

magnitude of the magnetic field are shown at a time of 0.01. A detailed physical 

description of the problem is given in Balsara & Spicer [11]. We see that the results that 

we present are consistent with that description. Notice that the plasma-β is 0.000251 in 
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the ambient medium. An almost circular, fast magnetosonic shock propagates through the 

ambient plasma and it is the fastest wave structure in this problem. The propagation of 

this extremely strong shock at all angles to the initial magnetic field in the low-β ambient 

plasma makes this a challenging test problem. In Fig. 10 we see that the positivity of the 

pressure variable is maintained even in regions where the strong shock propagates 

obliquely to the mesh. This is a direct result of using the divergence-free reconstruction 

to obtain the volume-averaged magnetic fields at the zone centers. Therefore we conclude 

that the divergence-free reconstruction presented in §2.3 provides a significant 

improvement in the simulation of low-β plasmas. 

 

7.5) The Blast Problem in Three Dimensions 

 

 The present problem extends the previous problem to three dimensions. The 

problem is initialized on the domain given by [-0.5,0.5]×[-0.5,0.5]×[-0.5,0.5] using a 

151×151×151 zone mesh. The primitive variables are specified by  

 

( , , , , , , , ) ( 1,  1000,  0,  0,  0,1000 3 ,  1000 3 ,  1000 3)  for 0.1

                                         (1,  0.1,  0,  0,  0,  1000 3 ,  1000 3 ,  1000 3) for 0.1
x y z x y zP v v v B B B r

r

ρ = <

= >
 

The ratio of specific heats is given by 1.4. The Courant number was set to 0.3 and the 

problem was run to a time of 0.01 . The problem was run using a fourth order ADER-

WENO scheme with an HLL Riemann solver. Please note that the present blast problem 

in three dimensions is substantially more stringent than similar blast problems that have 

been presented in the literature. 

 

 Fig. 11 shows the logarithm (base 10) of the density, the logarithm (base 10) of 

the pressure, the magnitude of the velocity and the magnitude of the magnetic field in the 

central xy-plane at the final time of the simulation. We see that an almost spherical fast 

magnetosonic shock propagates through the low-β ambient plasma. While this shock is a 

nearly infinite shock, the fourth order scheme handles it without problem. All structures 

are crisply captured and there is no sign of undue oscillations anywhere on the 
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computational mesh. The pressure remains positive throughout the simulation showing 

the utility of the divergence-free reconstruction in the simulation of low-β plasmas. 

 

 

 

 

 

 

 

 

 

 

8) Conclusions 

 

 We have presented a new class of ADER-WENO schemes for high order 

evolution of hyperbolic systems of conservation laws. The methods are very general and 

can be used for several hyperbolic systems. In the present paper we have applied them 

with success to Euler and MHD flows. Below we make a point-wise catalogue of the 

advances reported in this paper: 

 

1) A very efficient finite volume WENO reconstruction strategy has been presented for 

structured meshes. We have shown that the most elegant and compact formulation of 

WENO reconstruction obtains when the interpolating functions are expressed in modal 

space. Explicit formulae have been developed for spatial reconstruction that go up to 

fourth order of accuracy. 

 

2) The most essential aspects of divergence-free reconstruction of magnetic fields have 

been discussed in this paper. Further details for carrying out such a reconstruction have 

been reported in Balsara [6]. It is shown here that the reconstruction naturally furnishes 

all the moments of the magnetic field within a zone consistent with retaining a specified 

order of accuracy. 
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3) A general purpose flattener algorithm has been presented in Appendix A. The 

algorithm detects regions with strong shocks and suitably stabilizes higher order schemes 

in those regions. 

 

4) ADER-CG schemes, especially as they are compactly formulated in modal space, are 

reported here. Sub-Section 3.1 presents a general purpose formulation that makes it 

possible to design ADER-CG schemes in modal space for structured and unstructured 

meshes. For structured meshes we have explicitly demonstrated that the modal 

formulation yields the most compact and elegant formulation. It is also worth mentioning 

that on unstructured meshes the use of Dubiner [25] bases yields a similarly compact and 

elegant formulation of ADER-CG schemes. 

 

5) Sub-section 3.2 presents a detailed instantiation of the third order ADER-CG scheme. 

This is done with the intent of facilitating its easy implementation by other practitioners. 

Appendices B and C present the most essential details for ADER-CG schemes at second 

and fourth orders respectively. 

 

6) The one-step update of the resultant ADER-WENO schemes makes them lower 

storage alternatives to the multi-stage Runge-Kutta time discretizations that have been 

used in the past. The ADER-WENO schemes also bypass the reconstruction step that is 

needed in each stage of the multi-stage Runge-Kutta time discretization, making them the 

more efficient alternative. The ADER-WENO schemes are also free of the Butcher 

barriers that seem to occur in Runge-Kutta time discretizations, see Spiteri & Ruuth [52]. 

 

7) The one-step update of the ADER-WENO schemes makes them desirable building 

blocks for AMR calculations. 

 

8) Section 5 presents several examples showing that the ADER-WENO schemes meet 

their design accuracies in two and three dimensions for Euler and MHD flows. 
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9) Sections 6 and 7 present several stringent test problems in one, two and three 

dimensions. The tests span Euler and MHD flows. Several of our test problems are very 

demanding on the numerical scheme because they require an ability to capture delicate 

flow structures accurately in the presence of almost infinite shocks. The higher order 

schemes along with the divergence-free reconstruction strategies for treating magnetic 

fields that we have presented here perform very well on all of those tests. 

 

10) It is shown that the increasing computational complexity with increasing order is 

handily offset by the increased accuracy of the scheme. The resulting ADER-WENO 

schemes are, therefore, very worthy alternatives to the standard second order schemes for 

compressible Euler and MHD flow. 
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Appendix A) Flattening Algorithm in the Vicinity of Strong Shocks 

 

 In this appendix we describe the flattening algorithm used in the vicinity of strong 

MHD shocks. As shown by Colella & Woodward [18] and Balsara [4], such algorithms 

are useful for producing practical higher order schemes with a broad range of good 

operation. We construct the undivided divergence of the velocity in each zone and call it 

. The zones are labeled by a subscript “i,j,k” on a three dimensional mesh. In 

each zone we also construct the largest magnetosonic speed of the MHD waves relative 

( )i,j,k
x Δ ∇ vi
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to the mean flow in that zone and call it ( )( )2
i,j,k i,j,k i,j,k i,j,k P + 4λ γ π≡ B ρ  . In each zone 

we construct m; i,j,kλ  which is the minimum of i,j,kλ  in the zone of interest and the 

neighboring zones that abut it. Thus in two dimensions we evaluate m; i,j,kλ  by scanning 

nine zones and in three dimensions we scan twenty seven zones. Making a comparison 

between  and ( )i,j,k
Δ ∇ vix m; i,j,kλ then enables us to detect strong shocks. We therefore 

construct the detector function as 

 

( )( ) ( )( ) ( ( )( ) )i,j,k m; i,j,k m; i,j,ki,j,k
d  = m x     H    δ λ δ λ+ − +m; i,j,k δ λ

i,j,k
Δ ∇in   1, abs x Δ ∇v vi i

 

where H(x) is the Heaviside function and is unity for x>0 and zero for x<0 . δ  is a 

positive number that is set to be of order unity. Notice that the detector function  is 

zero in the vicinity of smooth flow or even in the presence of moderately compressive 

shocks. It only deviates from 0 and goes smoothly to unity only in the vicinity of strongly 

compressive shocks. This threshold is important for retaining the order property. In some 

problems there might be a tendency for generating strong rarefactions which can also 

become problematical. In that case we can modify the above detector function to include 

rarefactions as  

i,d j,k

 

) )( )( ) ( )( ( ( )( )i,j,k m; i,j,k j,k m; i,j,kj,k i,j,k
d  = m x     H   δ λ δ λ− Δ + − − +

)

)

m; i, δ λ
i,

∇

(i+1/2, j, k

in 

i,j,k

 1, abs  

)

x Δ ∇v vi i

 

 In zones with a non-zero strong shock detector function we modify the modes in 

eqns. (4), (43), (44) and (45). Except for the piecewise linear variation in eqn. (4), we 

prefer to multiply all the higher moments (i.e. the ones with quadratic or cubic variation) 

by  so that those zone-centered moments are effectively zero in the vicinity of 

strong shocks. Likewise, when limiting the x-component of the magnetic field in eqn. 

(43) for the face  we multiply the higher moments with 

(1 d−

( )( ) (i,j,k1 d 1 d− − i+1,j,k 2 i,j,k i+1,j,kd d− −  , i.e. the reciprocal sum derived from the two 
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abutting zones. A similar approach can be taken for limiting the y and z-components of 

the magnetic fields in eqns. (44) and (45). 

 

 It was felt that even in the vicinity of strong shocks one should not obliterate 

structure altogether. For that reason, we felt that terms that have linear variations in eqns. 

(4), (43), (44) and (45) should be blended with some fraction of a slope limiter. The 

detector function should also be active in a zone that is about to be run over by a strong 

shock in the next step. For such reasons, our treatment of the first moments is modified a 

little. In a dimension-by-dimension fashion we make the modification: 

 

( ) ( ) ( )( )
( ) ( ) ( )( )

i,j,k i+1,j,k i,j,k i+1,j,k i+1,j,k i,j,k

i,j,k i 1,j,k i,j,k i 1,j,k i 1,j,k i,j,k

d 0 d 0 P P   d d

d 0 d 0 P >P   d d

if and and then

if and and then− − −

> = >

> =

=

=
 

 

Then say that  is the slope from eqn. (4) evaluated from a WENO scheme and  is 

the slope evaluated using a MinMod limiter. We then reset  in the vicinity of a strong 

shock as follows 

xu xu�

xu

 

( )x i,j,k x i,j,k xu 1 d u   d  uχ← − + �  

 

where 1χ ≤ . A similar flattening algorithm for treating the first moments can be 

instituted in the other two directions. 

 

 For second and third order schemes we use 1.5δ =  and 1χ = . For fourth order 

schemes we usually use 0.75δ =  and 0.5χ = . 

 

 The detector function described here can also play an important role when using a 

linearized Riemann solver. As shown by Quirk [46], linearized Riemann solvers are 

susceptible to a carbuncle instability when grid-aligned strong shocks are present. 

Einfeldt et al [31] also showed that linearized Riemann solvers do not function well in the 
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presence of strong rarefactions. In both situations, a simple solution consists of blending 

in some fraction of an HLL flux and this is the approach we have used here. As a result, 

at strong shocks or rarefactions, the flux function consists of just the HLL flux while in 

weak shocks or rarefactions, the flux function is given entirely by the linearized Riemann 

solver. Using the detector function we provide a linear blend of the two in intermediate 

situations. Other approaches for curing the linearized Riemann solvers have been 

presented in Pandolfini & D’Ambrosio [44], Hanawa et al [35] and references therein but 

we have not explored them here. When building a detector function for linearized 

Riemann solvers one has the option of using not just the undivided divergence of the 

velocity but also the difference in wave speeds of any given wave family on either side of 

the Riemann problem. 

 

Appendix B) Implementation of the ADER-CG Scheme at Second Order of 

Accuracy 

 

 For second order ADER-CG schemes we start with  

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 0 0 0 0

2 1 0 0 0 3 0 1 0 0 4 0 0 1 0

5 0 0 0 1

ˆ, , ,   P P P Q
ˆ ˆ ˆ     P P P Q   P P P Q   P P P Q
ˆ     + P P P Q

u w

w w w

u

ξ η ζ τ ξ η ζ τ

ξ η ζ τ ξ η ζ τ ξ η ζ τ

ξ η ζ τ

=

+ + +

 

The resultant ADER-CG iteration at second order is therefore given by 

 

5 2 3 4 1
2ˆ ˆˆ ˆ ˆ             
3

u f g h s= − − − + + 5ŝ  

 

 The nodal to modal transcription can be carried out by picking a small number of 

symmetrically placed nodes in the reference element. We pick the nodal points 

 

( ) ( ) ( ) ( )
( ) ( ) ( )
{ 1/ 2,0,0,0 ; 1/ 2,0,0,0 ; 0,1/ 2,0,0 ; 0, 1/ 2,0,0 ;

0,0,1/ 2,0 ; 0,0, 1/ 2,0 ; 0,0,0,1 }

− −

−
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The nodal to modal transcription of the fluxes at τ=0 is given by 

 

( )1 1 2 3 4 5 6

2 1 2

3 3 4

4 5 6

f̂    f   f   f   f   f   f  /  6

f̂   f   f

f̂   f   f

f̂   f   f

= + + + + +

= −

= −

= −

 

 

The nodal to modal transcription of the fluxes at τ>0 is given by 

 

5 7
ˆ ˆf  = f  - f1  

 

Appendix C) Implementation of the ADER-CG Scheme at Fourth Order of 

Accuracy 

 

 For fourth order ADER-CG schemes we start with  
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 0 0 0 0

2 1 0 0 0 3 0 1 0 0 4 0 0 1 0

5 2 0 0 0 6 0 2 0 0 7 0 0 2 0

8 1 1 0 0 9 0 1 1 0 10 1 0 1 0

ˆ, , ,   P P P Q
ˆ ˆ ˆ     P P P Q   P P P Q   P P P Q
ˆ ˆ ˆ     P P P Q   P P P Q   P P P Q
ˆ ˆ ˆ     P P P Q   P P P Q   P P P Q

 

u w

w w w

w w w

w w w

ξ η ζ τ ξ η ζ τ

ξ η ζ τ ξ η ζ τ ξ η ζ τ

ξ η ζ τ ξ η ζ τ ξ η ζ τ

ξ η ζ τ ξ η ζ τ ξ η ζ τ

=

+ + +

+ + +

+ + +

+ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

11 3 0 0 0 12 0 3 0 0 13 0 0 3 0

14 2 1 0 0 15 2 0 1 0

16 1 2 0 0 17 0 2 1 0

18 1 0 2 0 19 0 1 2 0

20 1 1 1 0

2

ˆ ˆ ˆ P P P Q   P P P Q   P P P Q
ˆ ˆ  P P P Q   P P P Q  
ˆ ˆ  P P P Q   P P P Q
ˆ ˆ  P P P Q   + P P P Q
ˆ  P P P Q

ˆ     + 

w w w

w w

w w

w w

w

u

ξ η ζ τ ξ η ζ τ ξ η ζ τ

ξ η ζ τ ξ η ζ τ

ξ η ζ τ ξ η ζ τ

ξ η ζ τ ξ η ζ τ

ξ η ζ τ

+ +

+ +

+ +

+

+

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 0 0 0 1 22 0 0 0 2 23 0 0 0 3

24 1 0 0 1 25 0 1 0 1 26 0 0 1 1

27 1 0 0 2 28 0 1 0 2 29 0 0 1 2

30 2 0 0 1 31 0 2

ˆ ˆP P P Q  + P P P Q  + P P P Q
ˆ ˆ ˆ     P P P Q  P P P Q  P P P Q
ˆ ˆ ˆ     P P P Q  P P P Q  P P P Q
ˆ ˆ     P P P Q  P P

u u

u u u

u u u

u u

ξ η ζ τ ξ η ζ τ ξ η ζ τ

ξ η ζ τ ξ η ζ τ ξ η ζ τ

ξ η ζ τ ξ η ζ τ ξ η ζ τ

ξ η ζ τ ξ

+ + +

+ + +

+ + ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 32 0 0 2 1

33 1 1 0 1 34 0 1 1 1 35 1 0 1 1

ˆP Q  P P P Q
ˆ ˆ ˆ     P P P Q  P P P Q  P P P Q

u

u u u

η ζ τ ξ η ζ τ

ξ η ζ τ ξ η ζ τ ξ η ζ τ

+

+ + +

 

The resultant ADER-CG iteration at fourth order is therefore given by 
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1311 12
21 2 3 4 1 23

25 2624 21
22 23

27 28 29 22
23 23

24 5 8 10 2 27

25 8

ˆˆ ˆ 8ˆ ˆˆ ˆ             
10 10 10 70

ˆˆ ˆ ˆ 3ˆ ˆ      
2 2 2 2 7
ˆ ˆˆ ˆ 4ˆ ˆ     
3 3 3 3 7

3ˆ ˆˆ ˆ ˆ ˆ2           
10

ˆˆ   

hf gu f g h s

g hf su s

f g h su s

u f g h s s

u f

= − − − − − − + +

= − − − + −

= − − − + +

= − − − + −

= − −

ˆ ŝ

6 9 3 28

26 10 9 7 4 29

33 35 24
27 30 27

33 34 25
28 31 28

35 34 26
29 32

3ˆˆ ˆ ˆ2       
10

3ˆ ˆˆ ˆ ˆ ˆ    2       
10

ˆˆ ˆ 3ˆˆ ˆ           
2 2 2 5

ˆ ˆ ˆ 3ˆ ˆ ˆ            
2 2 2 5
ˆ ˆ ˆˆˆ          
2 2 2

g h s s

u f g h s s

g h su f s

f h su g s

f g su h

− + −

= − − − + −

= − − − + +

= − − − + +

= − − − + + 29

30 11 14 15 5 30

31 16 12 17 6 31

32 18 19 13 7 32

33 14 16 20 8 33 

34 2

3 ˆ  
5

2ˆ ˆˆ ˆ ˆ ˆ 3           
3
2ˆ ˆˆ ˆ ˆ ˆ   3        
3
2ˆ ˆˆ ˆ ˆ ˆ     3         
3

2ˆ ˆˆ ˆ ˆ ˆ 2    2          
3

ˆˆ  

s

u f g h s s

u f g h s s

u f g h s s

u f g h s s

u f

= − − − + +

= − − − + +

= − − − + +

= − − − + +

= − 0 17 19 9 34

35 15 20 18 10 35 

2ˆˆ ˆ ˆ  2    2        
3
2ˆ ˆˆ ˆ ˆ ˆ 2      2       
3

g h s s

u f g h s s

− − + +

= − − − + +

 

 

 The nodal to modal transcription can be carried out by picking a small number of 

symmetrically placed nodes in the reference element. We pick the nodal points 
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{ (0,0,0,0); (1/2,0,0,0); (1/4,0,0,0); ( 1/4,0,0,0); ( 1/2,0,0,0); (0,1/2,0,0);
(0,1/4,0,0); (0, 1/4,0,0); (0, 1/2,0,0); (0,0,1/2,0); (0,0,1/4,0); (0,0, 1/4,0);
(0,0, 1/2,0); (1/2,1/2,1/2,0); (0,1/2,1/2,

− −
− − −

− 0); ( 1/2,1/2,1/2,0); (1/2, 1/2,1/2,0);
(0, 1/2,1/2,0); ( 1/2, 1/2,1/2,0); (1/2,1/2, 1/2,0); (0,1/2, 1/2,0); ( 1/2,1/2, 1/2,0);
(1/2, 1/2, 1/2,0); (0, 1/2, 1/2,0); ( 1/2, 1/2, 1/2,0); (1/2,0,1/2,0); ( 1

− −
− − − − − − −
− − − − − − − − /2,0,1/2,0);

(1/2,0, 1/2,0); ( 1/2,0, 1/2,0); (1/2,1/2,0,0); ( 1/2,1/2,0,0); (1/2, 1/2,0,0);
( 1/2, 1/2,0,0);
(0,0,0,1/3); (1/2,0,0,1/3); ( 1/2,0,0,1/3); (0,1/2,0,1/3); (0, 1/2,0,1/3);
(0,0,1/2,1/3); (0,0

− − − − −
− −

− −
, 1/2,1/3); (1/2,1/2,1/2,1/3); ( 1/2,1/2,1/2,1/3);

(1/2, 1/2,1/2,1/3); ( 1/2, 1/2,1/2,1/3); (1/2,1/2, 1/2,1/3); ( 1/2,1/2, 1/2,1/3);
(1/2, 1/2, 1/2,1/3); ( 1/2, 1/2, 1/2,1/3);
(1/2,0,0,2/3); ( 1/2,0,0,2/

− −
− − − − − −
− − − − −

− 3); (0,1/2,0, 2/3); (0, 1/2,0, 2/3); (0,0,1/2, 2/3);
(0,0, 1/2,2/3);
(0,0,0,1);}

−
−

 

 

The nodal to modal transcription of the fluxes at τ=0 is given by 
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5 2 1 5

6 6 1 9

7 10 1 13

8 14 16 17 19 20 22 23 25

9 14 17 20 23 16 19 22 25

10 14

ˆ   2(   2    )
ˆ   2(   2    )
ˆ   2(   2    )
ˆ   (             ) /  2
ˆ   (              ) /  2
ˆ   (  

f f f f

f f f f

f f f f

f f f f f f f f f

f f f f f f f f f

f f

= − +

= − +

= − +

= − − + + − − +

= − − + + − − +

= 16 20 22 17 19 23 25

11 2 5 3 4

12 6 9 7 8

13 10 13 11 12

14 14 15 16 17

           ) /  2
ˆ   ( 16   16   32   32  ) /  3
ˆ   ( 16   16   32   32  ) /  3
ˆ   ( 16   16   32   32  ) /  3
ˆ     2       

f f f f f f f

f f f f f

f f f f f

f f f f f

f f f f f

− − + + − − +

= − − +

= − − +

= − − +

= − + − + 18 19

20 21 22 23 24 25

15 14 15 16 20 21 22

17 18 19 23 24 25

16 14 26 17 16 27 19

20 28 23 22 29

2    

   2       2   
ˆ     2       2   

   2       2   
ˆ     2      2    

  2      2  

f f

f f f f f f

f f f f f f f

f f f f f f

f f f f f f f

f f f f f

−

+ − + − + −

= − + − + −

+ − + − + −

= − + − + −

+ − + − + 25

17 14 26 17 20 28 23

16 27 19 22 29 25

18 14 30 20 16 31 22

17 32 23 19 33 25

19 14 30 20 17 32

 
ˆ     2       2    

   2       2   
ˆ     2       2   

  2       2  
ˆ     2       2  

f

f f f f f f f

f f f f f f

f f f f f f f

f f f f f f

f f f f f f

−

= − + − + −

+ − + − + −

= − + − + −

+ − + − + −

= − + − + − 23

16 31 22 19 33 25

20 14 16 17 19 20 22 23 25

1 1 5 6 7

11
2 2 5 16 18

12
3 6 9

 

    2       2   
ˆ               

ˆ ˆ ˆ ˆ    (      ) /  12
ˆˆ ˆ ˆ         (    ) /  12

10
ˆˆ          
10

f

f f f f f f

f f f f f f f f f

f f f f f

ff f f f f

ff f f

+ − + − + −

= − − + − + + −

= + + +

= − − + +

= − − + 14 19 

13
4 10 13 15 17

ˆ ˆ(   ) /  12

ˆˆ ˆ ˆ         (    ) /  12
10

f f

ff f f f f

+

= − − + +

 

 

The nodal to modal transcription of the fluxes at τ>0 is given by 
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24 2 5 35 36 49 50

25 6 9 37 38 51 52

26 10 13 39 40 53 54

27 49 50 35

ˆ   (  9   9   12   12   3   3  ) /  2
ˆ   (  9   9   12   12   3   3  ) /  2
ˆ   (  9   9   12   12   3   3  ) /  2
ˆ   9 (     2   2

f f f f f f f

f f f f f f f

f f f f f f f

f f f f

= − + + − − +

= − + + − − +

= − + + − − +

= − − + 36 2 5

28 51 52 37 38 6 9

29 53 54 39 40 10 13

30 35 34 36 5

31 37 34 38 6

32

    ) /  2
ˆ   9 (     2   2      ) /  2
ˆ   9 (     2   2      ) /  2

ˆ ˆ  6 (   2    )  3
ˆ ˆ  6 (   2    )  3
ˆ   6 ( 

f f f

f f f f f f f

f f f f f f f

f f f f f

f f f f f

f f

+ −

= − − + + −

= − − + + −

= − + −

= − + −

= 39 34 40 7

33 41 42 43 44 45 46 47 48 8

34 41 43 45 47 42 44 46 48 9

35 41 42 45 46 43

ˆ  2    )  3
ˆ ˆ  3 (                ) /  2  3
ˆ ˆ  3 (                ) /  2  3
ˆ   3 (           

f f f

f f f f f f f f f f

f f f f f f f f f f

f f f f f f

− + −

= − − + + − − + −

= − − + + − − + −

= − − + + − 44 47 48 10

1 34 1 30 31 32

2 49 50 51 52 53 54 1

5 6 7

3 55 1 30 31 32

ˆ    ) /  2  3

ˆ ˆ ˆˆ       (      ) /  36 
ˆ   (            ) /  6   

ˆ ˆ ˆ (      ) /  12
ˆ ˆ ˆˆ       (      ) /  12 

ˆ

f f f f

t f f f f f

t f f f f f f f

f f f

t f f f f f

f

− + −

= − + + +

= + + + + + −

− + +

= − + + +

21 1 2 3

22 1 2 3

23 1 2 3

ˆ ˆ ˆ  ( 18   9   2  ) /  2
ˆ ˆ ˆ ˆ  (  45   36   9  ) /  2
ˆ ˆ ˆ ˆ  ( 27   27   9  ) /  2

t t t

f t t t

f t t t

= − +

= − + −

= − +

 

 

where  ,  and  are temporary variables. 1̂t 2̂t 3̂t
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