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Abstract

New techniques allow for more efficient boundary integral algorithms to com-
pute the Dirichlet–Neumann map for Laplace’s equation in two-dimensional
exterior domains. Novelties include a new post-processor which reduces the
need for discretization points with 50 per cent, a new integral equation which
reduces the error for resolved geometries with a factor equal to the system
size, systematic use of regularization which reduces the error even further,
and adaptive mesh generation based on kernel resolution.

Keywords: Dirichlet–Neumann map, Integral equations, Nyström method,
Potential theory, Fast multipole method
2000 MSC: 65D25, 65E05, 65N35, 76D27

1. Introduction

The 1993 GGM paper [3] on solving Laplace’s equation and computing
the Dirichlet–Neumann map on domains exterior to M closed contours has
fueled a rapid development in computational multicomponent fluid flow and
multiphase materials science [2, 8, 9, 14]. There has also been some recent
basic algorithmic development. The complexity in M of the original scheme
has been reduced, the stability for large M has been improved, and contours
that lie close to each other can be treated efficiently [5, 6, 7]. This paper
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presents algorithmic improvements for domains exterior to just a single closed
contour. It has consequences for viscous fingering in a Hele–Shaw cell, a
problem for which a computational race is going on [2, 9] and where the cost
is dominated by the exterior Dirichlet–Neumann solver [2].

2. Mikhlin’s integral equation

Let D be a domain exterior to a contour Γ with positive orientation
enclosing the origin. To simplify the transition between real and complex
notation we shall make no distinction between points in the real plane R2

and points in the complex plane C. Points in C will be denoted z or τ . The
exterior Dirichlet problem reads: find U(z) such that

∆U(z) = 0 , z ∈ D , (1)

lim
D∋z→τ

U(z) = f(τ) , τ ∈ Γ , (2)

where f(τ) is the prescribed Dirichlet data.
In order to write (1,2) as a Fredholm second kind integral equation

Mikhlin, see § 31 of [11], suggested the representation

U(z) =
1

2π

∫

Γ

ℑ
{

µ(τ) dτ

τ − z

}

+
1

2π

∫

Γ

µ(τ) d|τ | + a log |z| , z ∈ D , (3)

where µ(z) is a real dipole density and a is a real number.
The problem (1,2) does not have a unique solution. Asymptotic boundary

conditions for U(z) at infinity are needed. One can choose a solution with
leading behavior a log |z|+b, where either a is prescribed and b is unknown or
b is prescribed and a is unknown. We choose to prescribe a, since this seems to
have most relevance for the viscous fingering problem. Let the contour have
a parameterization z(t), p < t ≤ q, so that z(p) = z(q). Let z′(t)=dz(t)/dt,
µ(t)=µ(z(t)), and f(t)=f(z(t)). Mikhlin’s integral equation then reads, see
also eq. (18) of [9],

µ(t) − 1

π

∫ q

p

ℑ
{

µ(s)z′(s) ds

z(s) − z(t)

}

− 1

π

∫ q

p

µ(s)|z′(s)| ds = 2a log |z(t)| − 2f(t) .

(4)
Upon solving (4) for µ(t) the Dirichlet–Neumann map can be computed via

(nz · ∇U)(t) =
d

dσt
ℑ
{

1

2πi

∫ q

p

µ(s)z′(s) ds

z(s) − z(t)

}

+ aℜ
{

nz(t)

z

}

, (5)
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where dσt is an infinitesimal element of arc length, nz(t) = nx + iny is the
outward unit normal of Γ at z(t), and the integral is to be interpreted in the
Cauchy principal value sense. See [3] for details.

3. Classic spectrally accurate Nyström schemes

The classic treatment of Mikhlin’s integral equation (4) is Nyström dis-
cretization with N nodes and weights, tj and wj, according to the composite
trapezoidal rule [3]. This gives superalgebraic convergence for the approxima-
tions to µ(tj). The kernel in (4) has a limit for s → t which can be computed
analytically and used for the diagonal entries of the system matrix in the
discretization. This is standard and done in [2, 3, 9]. In the discretization of
the post-processor (5) one can use the alternate point trapezoidal rule [13]
for the Cauchy principal value integral and Fourier approximation and FFT
for the differentiation with respect to arc length. This retains superalgebraic
convergence and is the choice in [3]. We refer to this combination of methods
as the scheme Classic I.

Alternatively, one can use partial integration, and rewrite (5) as

(nz · ∇U)(t) = ℑ
{

nz(t)

2π

∫ q

p

µ′(s) ds

z(s) − z(t)

}

+ aℜ
{

nz(t)

z

}

, (6)

where µ′(t)=dµ(t)/dt. This is the choice in [9], see their eq. (19). We refer
to the combination of the composite trapezoidal rule in Mikhlin’s integral
equation (4) and FFT differentiation and the alternate point trapezoidal
rule in the post-processor (6) as the scheme Classic II.

4. A new post-processor

For many reasons we prefer to use composite Gaussian quadrature when
solving Fredholm second kind integral equations numerically [6]. Still, for
ease of comparison with the classic schemes, the developments of this section
will be presented in the composite trapezoidal rule environment.

The first modification has to do with the discretization of the kernel in
Mikhlin’s equation (4). As an alternative to using limits for the diagonal
elements one can use regularization, that is, rewrite the integral operator as

1

π

∫ q

p

ℑ
{

µ(s)z′(s) ds

z(s) − z(t)

}

= µ(t) +
1

π

∫ q

p

ℑ
{

(µ(s) − µ(t))z′(s) ds

z(s) − z(t)

}

(7)
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prior to discretization. A discretization of the right hand side in (7) does not
require any limits since the entire integrand vanishes for s= t. It is also often
more accurate. For example, the action of the discretized regularized integral
operator on constant functions µ(t) will always be numerically exact.

A disadvantage with the post-processor treatment in the classic schemes
is that it does not use all available information from the discrete solution
µ(tj). The alternate point trapezoidal rule disregards every other µ(tj) and
therefore delays the convergence of (5) and (6). To remedy this, we rec-
ommend regularization which, using the definition of the Cauchy principal
value, allows us to rewrite (6) as

(nz · ∇U)(t) = ℑ







nz(t)

2π

∫ q

p

(

µ′(s)
z′(s)

− µ′(t)
z′(t)

)

z′(s) ds

z(s) − z(t)







+ aℜ
{

nz(t)

z

}

. (8)

We shall use the standard – not alternate point – composite trapezoidal rule
for (8).

A difference between the integrand of the right hand side of (7) and the
integrand of (8) is that while the former does not require any limits for s= t,
the latter does. So, in order to retain spectral accuracy in our new post-
processor based on (8) we need the integrand of (8) at s = t with spectral
accuracy. That is, we need µ′(tj) and also µ′′(tj) with spectral accuracy. We
shall use Nyström differentiation. This technique, analogous in construction
to Nyström interpolation, carries the convergence properties of µ(tj) over
to µ′(tj) and µ′′(tj). See eq. (28) of [6] and Chapter 4.1 of [1] for an error
analysis of Nyström interpolation. One gets

µ′(tj) = 2aℜ
{

z′(tj)

z(tj)

}

− 2f ′(tj) +
1

π

∫ q

p

ℑ
{

z′(tj)µ(s)z′(s) ds

(z(s) − z(tj))2

}

(9)

and

µ′′(tj) = 2aℜ
{

z′′(tj)

z(tj)
− (z′(tj))

2

(z(tj))2

}

− 2f ′′(tj) (10)

+
1

π

∫ q

p

ℑ
{[

z′′(tj)

(z(s) − z(tj))2
+

2(z′(tj))
2

(z(s) − z(tj))3

]

µ(s)z′(s) ds

}

,

where we have assumed that f(t) can be differentiated analytically twice with
respect to t. In viscous fingering f(t) often involves curvature.
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The equations (9,10) need to be discretized, too. We use the composite
trapezoidal rule. Here, as in the kernel of (4), computable limits exist for
s= tj but again regularization

1

π

∫ q

p

ℑ
{

z′(tj)µ(s)z′(s) ds

(z(s) − z(tj))2

}

=
1

π

∫ q

p

ℑ
{

z′(tj)(µ(s) − µ(tj))z
′(s) ds

(z(s) − z(tj))2

}

(11)
and

1

π

∫ q

p

ℑ
{[

z′′(tj)

(z(s) − z(tj))2
+

2(z′(tj))
2

(z(s) − z(tj))3

]

µ(s)z′(s) ds

}

(12)

=
1

π

∫ q

p

ℑ
{[

z′′(tj)

(z(s) − z(tj))2
+

2(z′(tj))
2

(z(s) − z(tj))3

]

(µ(s) − µ(tj))z
′(s) ds

}

is an interesting option since the integrands on the right hand sides of (11,12)
vanish for s= tj . In Section 7, we shall see how this feedback of accurately
computed numerical and analytical derivatives into the algorithm can lead
to extreme stability.

5. Differentiated integral equations

When a of (3) is prescribed and when, such as in (6) and (8), only the
derivative of µ(t) is of interest, one can differentiate Mikhlin’s equation (4)
with respect to t, use partial integration, and arrive at an integral equation
for µ′(t) itself

µ′(t) − 1

π

∫ q

p

ℑ
{

z′(t)µ′(s) ds

z(s) − z(t)

}

= 2aℜ
{

z′(t)

z(t)

}

− 2f ′(t) . (13)

Solving for µ′(t), rather than for µ(t), reduces the need for numerical differen-
tiation in the post-processor and the achievable accuracy should be enhanced.

Choosing (8) and given µ′(t) with spectral accuracy, we only need µ′′(t)
with spectral accuracy. Equation (10) can be rewritten

µ′′(tj) = 2aℜ
{

z′′(tj)

z(tj)
− (z′(tj))

2

(z(tj))2

}

− 2f ′′(tj) (14)

+
1

π

∫ q

p

ℑ
{[

z′′(tj)

(z(s) − z(tj))
+

(z′(tj))
2

(z(s) − z(tj))2

]

µ′(s) ds

}

.

Here, for s= tj , we only take limits.
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Let v(z) be the harmonic conjugate to the part of U(z) which comes from
the first term on the right hand side of (3). When a is prescribed, integral
equations can be derived both for v(t) and for v′(t). One possibility is

v′(t) +
1

π

∫ q

p

ℑ
{

z′(t)v′(s) ds

z(s) − z(t)

}

+
1

π

∫ q

p

v′(s) ds =

ℜ
{

z′(t)

π

∫ q

p

(h(s) − h(t)) z′(s) ds

z(s) − z(t)

}

, (15)

where

h(t) =
f ′(t)

z′(t)
− a

z′(t)
ℜ
{

z′(t)

z(t)

}

. (16)

Having solved (15) for v′(t), the Dirichlet–Neumann map can be computed
via the simple post-processor free of numerical differentiation

(nz · ∇U)(t) =
v′(t)

|z′(t)| + aℜ
{

nz(t)

z(t)

}

. (17)

6. A regularized implementation of the fast multipole method

We intend to use the GMRES iterative solver [12] for linear systems and
the fast multipole method (FMM) [4] for matrix–vector multiplication. We
choose an FMM code implemented in Matlab, which is not so efficient speed
wise and memory wise but shares the characteristics of more efficient FMM
implementations when it comes to operation count and error propagation.

Our FMM code has two features that are not present in the original FMM
scheme [4]. First, our code can compute potential fields due to particles of
strengths ρj located at points zj whose contribution to the field at a point zi

is ρj/(zj − zi)
n, where n is a positive integer given as input. This is a minor

modification. Second, the code allows for the treatment of regularized kernels
in a new and more accurate way. Consider, as an example, the integral

∫ q

p

g(t)(µ(s) − µ(t))z′(s) ds

z(s) − z(t)
, (18)

where g(t) and µ(t) are known functions. Discretization gives

g(ti)µ
′(ti)wi + g(ti)

N
∑

j=1
j 6=i

(µ(tj) − µ(ti))z
′(tj)wj

z(tj) − z(ti)
, i = 1, . . . , N , (19)
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or, mathematically equivalent,

g(ti)µ
′(ti)wi+g(ti)

N
∑

j=1
j 6=i

µ(tj)z
′(tj)wj

z(tj) − z(ti)
−g(ti)µ(ti)

N
∑

j=1
j 6=i

z′(tj)wj

z(tj) − z(ti)
, i = 1, . . . , N .

(20)
The two sums in (20) can be evaluated for all i with two standard FMM
calls. The single sum in (19) is harder to evaluate throughout the FMM as it
stands. But the sum in (19) has the advantage over the sums in (20) in that
its individual terms do not blow up as tj → ti. The effect of accumulated
roundoff error in the summation is therefore much smaller. As a compromise
between speed and accuracy we implement the following option: single sums
such as (19) are treated as two separate sums in parallel in all parts of the
FMM except for where the field due to nearest neighbors is computed directly.
There, the single sum is used. After all, it is only in the nearest-neighbor
interaction that z(tj) is close to z(ti). The cost of such a single regularized
FMM call is roughly the same as the cost of the two standard FMM calls
needed for (20).

We expect regularized FMM to have impact on the discretized equa-
tions (8), (11), and (12), where terms in sums could be very large in modulus.
We do not expect impact on (4) with (7), where large terms only appear in
the real part of the integrand within curly brackets. Here standard FMM will
always be used. The imaginary part of the second sum of (20) with g(t) = 1,
appearing on the diagonal of the system matrix in this context, only has to
be computed once and stored prior to starting GMRES.

7. A numerical example

We now present a numerical convergence study performed in Matlab

on a SunBlade 100 workstation. We compare five schemes: Classic I and
Classic II of Section 3 using standard FMM, New I being the combination of
Mikhlin’s integral equation (4) and the post-processor (8) with (9) and (10)
using limits and standard FMM, New II being the combination of Mikhlin’s
integral equation (4) with (7) using standard FMM and the post-processor (8)
with (9) and (10) using (11), (12) and regularized FMM, and New III being
the combination of the differentiated integral equation (13) and the post-
processor (8) with (14) using limits and standard FMM.
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Figure 1: A domain exterior to a butterfly-shaped contour. The stars indicate where the
sources and sinks of the reference solution (22) are located.

The domain exterior to the contour of Figure 1 is taken as a test example.
The boundary and its parameterization are given by

z(t) =

(

1 +

10
∑

k=2

αk cos(kt + βk)

)

eit , −π < t ≤ π , (21)

where αk and βk are random numbers in [0, 0.2] and [−π, π]. The com-
posite trapezoidal rule then corresponds to equal polar angles between the
discretization points. This should be a reasonable choice in this particular
example considering the location of boundary parts with high curvature and
extra need for resolution. Parameterization in arc length could be preferable
for other boundary shapes. The function

Uref(z) = 1 + 1.5 log |z − z1|+ 1.5 log |z − z2| − 2 log |z − z3| , z ∈ D , (22)

where z1, z2, and z3 are marked by stars in Figure 1, is used for Dirichlet
data f(τ) in (2) and also for Neumann data in the error estimate (23) below.
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Figure 2: Convergence of the Dirichlet–Neumann map on the boundary of the domain in
Figure 1 with Dirichlet data as in (22). The L2 error (23) is shown as a function of the
number of discretization points N for the classic schemes using (5) and (6) and for the
new post-processor (8) in combination with both Mikhlin’s integral equation (4) and the
differentiated integral equation (13).

The coefficient a, which must be prescribed in (4) and (13), is taken as a=1
to ensure that the numerical schemes seek µ(t) compatible with (22).

The linear systems of the five schemes are solved with the GMRES iter-
ative solver including a low-threshold stagnation avoiding technique [6] and
a stopping criterion threshold in the relative residual set to machine epsilon
(ǫmach ≈ 2 · 10−16). The precision in the FMM is also set to ǫmach. The
FFT differentiation, needed in Classic I and Classic II, is carried out with
Matlab’s built-in functions fft and ifft.

Figure 2 shows how the L2 error

E =

(

∑N
j=1 |(nz · ∇Uref)(tj) − (nz · ∇U)(tj)|2|z′(tj)|wj

∑N
j=1 |(nz · ∇Uref)(tj)|2|z′(tj)|wj

)1/2

(23)
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depends on the number of discretization points N . All five schemes exhibit
superalgebraic convergence. But one can see how the classic schemes, which
use the alternate point trapezoidal rule in the post-processor, require twice
as many discretization points to reach a given relative error as do the new
schemes, which use the composite trapezoidal rule throughout.

Figure 2 also shows that overresolution makes the L2 errors of Classic

I, Classic II, and New I grow like O(N2). This is typical for algorithms
involving numerically computed second derivatives (computing µ′(t) is one
derivative and computing the Cauchy principal value has the effect of yet
another derivative). The highest achievable accuracy is around 10−10 for
Classic I and Classic II and around 10−11 for New I. Clearly, for geometries
that require a finer grid than our “butterfly” to be resolved and when high
accuracy is of importance, this asymptotic behavior is not at all good. The
schemes New II and New III, on the other hand, behave better. The L2

error for New III grows like O(N), which is typical for algorithms involving
numerically computed first derivatives. The highest achievable accuracy is
around 10−14. The L2 error of New II is even smaller. The minor jumps
in the error that are visible for N = 10804, N = 17714, N = 42088, and
N = 78094 correspond to system sizes where FMM decides to introduce yet
one level of refinement and where, consequently, the regularized FMM uses
less direct evaluation of single sums. See Section 6.

A few words about the computational costs of the five schemes in this
example are in order. GMRES typically reaches its stopping criterion thresh-
old for the discretized integral equations (4) and (13) in 35 iterations. This
requires 35 standard FMM calls if limits are used and 36 standard FMM calls
if (7) is used. To this should be added FMM and FFT differentiation calls
needed for the post-processor. The total number of calls for the Dirichlet–
Neumann solver is then 36 standard FMM calls and one FFT differentiation
call for the Classic I and Classic II schemes, 39 standard FMM calls for the
New I scheme, 36 standard FMM calls and three regularized FMM calls for
the New II scheme, and 38 standard FMM calls for the New III scheme.

Naturally, other interesting combinations of techniques than the schemes
of this section are possible. For example, the Classic II scheme can be im-
proved with the regularization (7) in (4). FFT differentiation can be used
instead of Nyström differentiation in the New I scheme to gain speed. Equa-
tion (15) with (17) can improve on accuracy for underresolved systems. Nev-
ertheless, as a crude conclusion we can say that switching from a classic
scheme to a new scheme in this example requires at most ten per cent more
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FMM calls for a given accuracy, but only half the system size. The net
savings in total computational time could be around 45 per cent.

8. A priori error estimates and adaptive mesh generation

When computing, one often wants a particular accuracy, perhaps the
best possible, in the final answer at a low cost. The number of discretization
points N needed and their placement should be known in advance. This
section addresses such issues of a priori error estimates and adaptive mesh
generation. We shall abandon the composite trapezoidal rule in favor of
composite Gauss–Legendre quadrature based on n panels with 16 quadrature
points each. Composite 16-point Gauss–Legendre quadrature on a uniform
mesh may be 25 to 50 per cent more expensive than the trapezoidal rule,
depending on the required accuracy. Its advantage, however, is that it lends
itself better to mesh adaptivity. While the purpose of mesh adaptivity is to
minimize the computational cost, a pleasant side effect is that the particular
choice of boundary parameter becomes less important. Since the mesh is
refined only where it is needed, the effects of sub-optimal parameterizations
are fully counterbalanced. One is free to choose a parameterization which
suites a given geometry from a modeling point of view. Given a specified
resolution tol, we construct an ad hoc algorithm which finds an adaptive
panel-mesh and a grid of discretization points which meets this resolution
and link it to the overall accuracy. For brevity we only consider (13) in
combination with (8) and (14).

Our basic idea is the following: let a well-conditioned integral equation
of Fredholm’s second kind with an integral operator K, an unknown density
µ, and a right hand side f be discretized on a grid on a coarse panel-mesh

(I + K)µ = f , (24)

where the kernel is not fully resolved by the underlying quadrature, and on
a grid on a fine panel-mesh

(Ifin + Kfin)µfin = ffin , (25)

where it is resolved. Define the error in the coarse discretization due to
insufficient quadrature resolution as

EresK = ||KW−1PTWfin −QKfin||∞ , (26)
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where W and Wfin are diagonal matrices containing the quadrature weights
of the two discretizations, P is a discretization of a prolongation operator that
performs piecewise polynomial interpolation in parameter from discretization
points on coarse panels to points on fine panels, and Q is a discretization
of a restriction operator that performs piecewise polynomial interpolation in
the other direction. We shall refine the coarse mesh just as much that is
needed to make EresK meet tol. The relative error in µ is then approximately
bounded by

||µ − µfin||
||µfin||

≤ tol ||(I + K)−1|| , (27)

see Section 4.5 of Ref. [10]. Rather than working with the entire matrix K,
we shall work with select submatrices of a fixed size. We shall refine the
mesh until these submatrices, individually, resolve their parts of the kernel.
It is assumed that the right hand side f , by then, also is resolved.

We shall now be more precise. Let K be the 16n×16n matrix correspond-
ing to the discretized integral operator of (13) on an n-panel-mesh. Let Γi

and Γj , i 6= j = 1, . . . , n, be two panels on Γ with arc lengths li and lj . Let
Ki,j be the 16×16 submatrix of K with source points on Γj and target points
on Γi. Let Ai,j be the 32× 16 submatrix containing the blocks Ki,j and Kj,j

Ai,j =

[

Ki,j

Kj,j

]

. (28)

We shall sweep j from 1 to n and for each j make sure that Ai,j and Aj,i

resolve their parts of the kernel for all i belonging to panels Γi separated
less than a distance 2 · max(li, lj) from Γj. If, for an i in this set, Ai,j does
not resolve its part of the kernel, then Γj is subdivided. If Aj,i does not
resolve its part of the kernel, then Γi is subdivided. If neither Ai,j nor Aj,i

do resolve their parts of the kernel, then the source-panel corresponding to
the submatrix that resolve its part of the kernel least well is subdivided.
After subdivision, n is increased by one. The work can be organized as to
avoid repeated computation of identical quantities.

It remains to modify the resolution estimator (26) so that it applies to
submatrices Ai,j and link it to the overall specified tolerance. For each row in
the matrix of (26), the major contributions to the ∞-norm come only from a
few submatrices. Considering the approximate nature of the whole approach
we simply use

Ei,j
resA = ||Ai,j(Wj)−1PTW

j
fin − QA

i,j
fin||∞ . (29)
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Here the 16×16 diagonal matrix Wj contains the quadrature weights associ-
ated with 16-point Gauss–Legendre quadrature on Γj. As an approximation
to the fully resolved kernel part A

i,j
fin we choose a 48×32 discretization where

Γj has been subdivided into two sub-panels Γja and Γjb equisized in param-
eter

A
i,j
fin =





Ki,ja Ki,jb

Kja,ja Kja,jb

Kjb,ja Kjb,jb



 . (30)

The 32 × 32 diagonal matrix W
j
fin in (29) contains the quadrature weights

on Γja and Γjb. The 32 × 16 matrix P performs 15th degree polynomial
interpolation in parameter from points on Γj to points on Γja and Γjb. The
upper left 16 × 16 block of the sparse 32 × 48 matrix Q is the identity
matrix and its sparse lower right 16×32 block performs piecewise 15th degree
polynomial interpolation in parameter from points on Γja and Γjb to points
on Γj . Note that P and Q are independent of j and that the application of
PT to the left can be sped up via a sparse factorization, see Section 5.1 of
Ref. [6].

The resolution estimator (29) measures how well a part of the kernel is
resolved on a grid by interpolation in the variable of integration by some of the
basis functions that underly the quadrature. Our interpolating polynomials
have degree 15. Gaussian quadrature has polynomial degree 31, that is, twice
as much. Therefore the resolution estimator is more related to the square
root of the resolution sought than to the resolution itself and we take

Ei,j
resA <

√
tol , (31)

as our criterion for when Ai,j does resolve its part of the kernel to the specified
resolution.

Figure 3 shows that our simple algorithm has a remarkable ability to
predict the relative error in the Dirichlet–Neumann map for values of tol
down to 10−14, which is the highest accuracy achieved for New III in Section 7.
The specified tol differs from the actual error at most with a factor of ten.
The scheme is economical, too. It consistently outperforms the five schemes
of Section 7 in terms of high accuracy with few discretization points. The
number of points needed to get a given relative accuracy is reduced by over
60 per cent compared to the classic schemes. But the best advantage with
mesh adaptivity is that one does not have to worry about what N gives the
highest accuracy. One can simply set tol = ǫmach and compute once.
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Figure 3: Given tol ∈ [10−16, 1], a grid is adaptively determined and the Dirichlet–Neumann
map is computed via (13) and (8) along with the error (23). Several values of tol could give the
same grid. For example, both tol = 10−8 and tol = 4.6 ·10−9 give a grid with N = 480 points
and an achieved error of 3 ·10−9. The problem is the same as in Figure 2 and the presentation
of data is done as to facilitate comparison. But note that N is variable in Figure 2, while the
specified tol is variable in this figure.

9. Conclusions

Boundary integral algorithms for viscous fingering simulation are seen as
relatively mature and their computational complexity may not have improved
since 1994, see Ref. [2] and references therein. Still, this paper shows that
there is plenty of room for improvement when it comes to computational
economy and achievable accuracy. That is, in the part of the simulations
that involve the Dirichlet–Neumann solver, which currently is the dominating
cost. We have modified the integral equation itself and the post-processor and
introduced adaptive mesh generation. This, everything else held constant,
should open up for algorithms that are at least twice as fast and an order of
magnitude more accurate.
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