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a b s t r a c t

In this paper we describe a novel algorithm for the computation of scattering returns by
families of rough surfaces. This algorithm makes explicit use of the fact that some scatter-
ing profiles of engineering interest (e.g., traveling ocean waves) come in branches param-
eterized analytically by a bifurcation quantity. Our approach delivers recursions which not
only can be implemented to yield a rapid, robust and high-order numerical scheme, but
also give a new proof of analyticity of scattering quantities with respect to the bifurcation
parameter of the surface family. The real advantage of this new approach is that it com-
putes, in one step, the scattered field for all possible members of the family of surfaces.
By contrast, other state-of-the-art schemes must restart when the returns from a new sur-
face are desired, so that the cost of our new approach is greatly advantaged when the num-
ber of samples of the family reaches even modest values. Numerical results which verify
the accuracy of our approach and demonstrate their utility in computing grating efficien-
cies scattered by traveling surface ocean waves are presented.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The interaction of acoustic or electromagnetic radiation with irregular obstacles plays a crucial role in a wide range of
engineering applications including, e.g., remote sensing, radar imaging, and non-destructive testing. In this paper we focus
upon the development of efficient numerical algorithms to simulate the scattering of two-dimensional linear acoustic waves
from a family of impenetrable rough surfaces parameterized by a quantity, e, meant to indicate the surface’s height or slope.
In particular, we exhibit a novel scheme which uses the parameterized nature of the scatterers in a fundamental way to pro-
duce solutions at a fraction of the cost of state-of-the-art solvers for even a mild sampling of the family.

An important example of a parameterized set of rough surfaces are the traveling wave solutions of the ‘‘water wave prob-
lem,” which models the free-surface evolution of a large body of water (e.g., a lake or ocean). The study of the possible shapes
and oceanographic properties of traveling wave solutions of the water wave problem [1,2] has a long history dating from the
early contributions of Stokes [3], to the existence theories of Levi-Civita [4] and Struik [5], to the recent computations of the
author and Reitich [6] (please see the excellent survey articles of Dias and Kharif [7] and Groves [8] for a comprehensive list
of contributions). Of course, given a fixed ocean profile there are a wide variety of reliable algorithms to approximate the
scattering of acoustic waves by a rough surface. However, none of these algorithms takes advantage of the special structure
of the traveling waves: They come in bifurcation families [9,10] where only certain heights, slopes, and shapes are permitted.
Importantly, the dependence of the fluid surface upon the bifurcation parameter, e, is analytic so that it can be expressed as a
strongly convergent power series. We use this latter fact to compute a power series representation of the scattered field
. All rights reserved.
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generated by all possible traveling waves of a given ocean depth and periodicity. With this, we have Taylor series represen-
tations of all near-field (e.g., surface velocity), far-field (e.g., efficiencies), and volumetric quantities of engineering interest,
and thus we can produce any of these with negligible additional cost for a particular waveform. By contrast, current state-of-
the-art methods must begin anew for every different ocean surface of interest so that, regardless of the efficiency of the
method, its cost quickly swamps that of our new approach once a modest subset of waves is considered.

An added advantage of our method is that it enables a proof of the analyticity of a wide variety of scattering quantities
(e.g., the scattered field) as a function of the traveling water wave bifurcation parameter, e. Once our recursions are derived,
this analyticity theorem is readily established using quite standard techniques. That these results can be derived from the
very recursions that we implement numerically, indicates the very stable and robust behavior of our method which has been
noted in this entire class of ‘‘Transformed Field Expansion” Boundary Perturbation methods [11,12,6].

The rest of the paper is organized as follows: In Section 2 we recall the governing equations of scattering of two-dimen-
sional acoustic radiation by an impenetrable irregular surface. In Section 3 we discuss several popular numerical methods for
the numerical simulation of these grating problems: integral equations (Section 3.1), field expansions (Sections 3.2 and 3.4),
and our new transformed field expansions for families of gratings (Sections 3.5 and 3.6). We also discuss the particular family
of surfaces we have in mind, the traveling water waves (Section 3.3); in Section 3.7 we give the outline of a proof of analy-
ticity of the scattered field as a function of e. We present numerical results in Section 4 featuring both verification of our
algorithm (Section 4.1) and plots of efficiencies as one moves through the set of permissible traveling water waves (Section
4.2). Concluding remarks are given in Section 5.
2. Governing equations

Suppose that a time-harmonic plane-wave
~v iðx; y; tÞ ¼ e�ixtv iðx; yÞ :¼ e�ixtþiðax�byÞ
is incident on an impenetrable, sound-soft, d-periodic scattering surface shaped by y ¼ gðxÞ. It is known [13,14] that the (re-
duced) scattered field v ¼ vðx; yÞ satisfies the following Helmholtz problem:
Dv þ k2v ¼ 0 y > gðxÞ; ð1aÞ
vðx; gðxÞÞ ¼ �v iðx; gðxÞÞ ¼: nðxÞ; ð1bÞ
OWCfvg ¼ 0; ð1cÞ
where k2 ¼ a2 þ b2 and v is quasi-periodic in x
vðxþ d; yÞ ¼ eiadvðx; yÞ:
The final condition, (1c), is the ‘‘Outgoing Wave Condition” (OWC) which can be rendered more mathematically precise
[15,12] by considering a hyperplane y ¼ b strictly above the highest point of the surface, i.e. b > jgjL1 . We augment problem
(1) in the following way:
Dv þ k2v ¼ 0; gðxÞ < y < b; ð2aÞ
vðx; gðxÞÞ ¼ nðxÞ; ð2bÞ
@yvðx; bÞ ¼ @yVðx; bÞ; ð2cÞ
DV þ k2V ¼ 0; y > b; ð2dÞ
vðx; bÞ ¼ Vðx; bÞ; ð2eÞ
OWCfVg ¼ 0: ð2fÞ
Solutions to (1) and (2) are identical in the sense that the v agree on fgðxÞ < y < bgwhile v ¼ V on y > b. Gathering (2d)–(2f)
and denoting vðx; bÞ by the generic (quasi-periodic) Dirichlet data wðxÞ, we recall that Vðx; yÞ can be expressed exactly as [13]
Vðx; yÞ ¼
X1

p¼�1
ŵpeiðapxþbpyÞ; ð3Þ
where
ap ¼ aþ ð2p=dÞp; bp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � a2

p

q
; p 2 U;

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

p � k2
q

; p R U

8><>:

and
U :¼ fp 2 Zjk2 � a2
p P 0g ð4Þ
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and ŵp is the pth (generalized) Fourier coefficient of wðxÞ. To close the system (2a)–(2c) on the truncated domain
fgðxÞ < y < bg one simply needs, given Dirichlet data vðx; bÞ ¼ Vðx; bÞ ¼ wðxÞ, to produce Neumann data @yVðx; bÞ, i.e. the
‘‘Dirichlet–Neumann operator” (DNO):
T½w� :¼ @yVðx; bÞ ¼
X1

p¼�1
ðibpÞŵpeiapx ¼: ðibDÞwðxÞ: ð5Þ
Thus (1) can be equivalently stated on a truncated domain as [15]
Dv þ k2v ¼ 0; gðxÞ < y < b; ð6aÞ
vðx; gðxÞÞ ¼ nðxÞ; ð6bÞ
@yvðx; bÞ � T½vðx; bÞ� ¼ 0: ð6cÞ
3. Numerical algorithms

In this section we outline some of the most popular algorithms for the numerical simulation of (1) (or, equivalently, (6))
for the purpose of illustrating their computational complexity for scattering by families of rough surfaces. For the case of
homogeneous scattering the methods of choice are integral equations (Section 3.1) and field expansions (Section 3.2) which
are known for their speed (in particular a surface formulation which reduces the problem dimension by one), and high accu-
racy. In Section 3.6 we discuss a novel implementation of the ‘‘Transformed Field Expansions” (TFE) method [12] which takes
advantage of the special form of the family of scatterers to deliver not only a robust, high-order solution, but also a much
faster algorithm.

3.1. Integral equations

Among the wide array of indirect or direct integral equation (IE) formulations [14] of (1), a particularly convenient one
involving the total field ðv t ¼ v þ v iÞ is due to Maue [16]
1
2

fðrÞ þ
Z

R

@Gðr � r0Þ
@nðrÞ fðr0Þdrðr0Þ ¼ @v iðrÞ

@nðrÞ ; r 2 R :¼ fy ¼ gðxÞg; ð7Þ
where fðrÞ :¼ @v tðrÞ=@nðrÞ is the surface velocity, and
GðrÞ :¼ i
4

Hð1Þ0 ðkjrjÞ
is the Helmholtz fundamental solution in two dimensions. A popular method for discretizing Maue’s IE is Nyström’s method
[14] in which one simply enforces (7) at a set of points frjgð1 6 j 6 NxÞ and seeks as unknowns, the values fðrjÞ. To recast this
as a system of (linear) equations the integration in (7) must be approximated which is, by no means, a trivial task due to the
singularity present in the fundamental solution. Another complication arises for scattering surfaces due to the fact that R is
unbounded. For a general scatterer this is a feature which must be addressed for a faithful solution, however, as we are inter-
ested in periodic interfaces we can make a reduction of the integral to the period cell, ½0; d�, provided that a ‘‘periodized” fun-
damental solution is utilized.

All of this can, however, be accomplished in a spectrally accurate manner [17], giving rise to a dense linear system of Nx

equations with Nx unknowns. Using a direct solver these equations can be solved in OðN3
x Þ, however, this onerous compu-

tational complexity can be avoided by using preconditioned iterative solvers which have computational complexity
OðNiterN

2
x Þ, where Niter is the number of iterations [17]. This cost can be further reduced by accelerating the matrix–vector

multiplications via, e.g., the Fast Multipole Method (FMM) [18,19], resulting in an algorithm with computational complexity
OðNiterNx logðNxÞÞ: ð8Þ
3.2. Field expansions

Another computational approach to scattering by a rough surface, (1) or (6), is the method of field expansions (FE) which
is Bruno and Reitich’s [20–22] generalization of Rayleigh [23] and Rice’s [24] classical approach. This method is based upon
the observation that, above the scattering surface, the solution of (1a) and (1c) is
vðx; yÞ ¼
X1

p¼�1
dpeiðapxþbpyÞ; ð9Þ
c.f. (3), while the boundary condition (1b) must be used to specify the dp. For a single surface which can be described as
y ¼ gðxÞ ¼ ef ðxÞ, the FE approach uses the fact that the field v, and thus the Fourier coefficients dp, depend analytically upon
e (if f is smooth) [25,12]. Thus (1b) demands that
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nðxÞ ¼ vðx; ef Þ ¼
X1

p¼�1

X1
n¼0

dp;nen

 !
eiapx exp ibpef

� �
¼
X1

p¼�1

X1
n¼0

dp;neneiapx
X1
m¼0

FmðibpÞ
mem; ð10Þ
where FmðxÞ :¼ f ðxÞm=m!. Expanding the left-hand-side in a generalized Fourier series and continuing
X1
p¼�1

n̂peiapx ¼
X1
n¼0

en
Xn

l¼0

X1
p¼�1

dp;lFn�lðibpÞ
n�leiapx ¼

X1
n¼0

en
Xn

l¼0

X1
p¼�1

dp;l

X1
q¼�1

Fn�l;qeiaqx

 !
ðibpÞ

n�leiapx;
where FmðxÞ ¼:
P1

q¼�1Fm;qeiaqx. Finally, writing the product of the complex exponentials as a convolution, we have
X1
p¼�1

n̂peiapx ¼
X1
n¼0

en
X1

p¼�1
eiapx

Xn

l¼0

X1
r¼�1

Fn�l;p�rðibrÞ
n�ldr;l:
Remembering that F0;q ¼ dq;0 (where dn;m is the Kronecker delta function), at order OðenÞ we realize the recursion
dp;n ¼ dn;0n̂p �
Xn�1

l¼0

X1
r¼�1

Fn�l;p�rðibrÞ
n�ldr;l; ð11Þ
see [20]. These FE recursions can produce highly accurate solutions of scattering returns with the cost of a surface
formulation,
OðN2Nx logðNxÞÞ; ð12Þ
if N Taylor orders are kept and Nx Fourier coefficients are retained. Furthermore, this is accomplished without the compli-
cations of carefully chosen integration rules, periodized fundamental solutions, or singular kernels which are all necessary
for IE formulations (see Section 3.1).

3.3. Families of gratings

In [6], the author, in collaboration with F. Reitich, devised an algorithm to stably and accurately produce traveling water
waves which come in families parameterized by the quantity e. This algorithm produces approximations to the traveling
ocean surface shape of the form
g ¼ gðx; eÞ ¼
X1
n¼1

gnðxÞen: ð13Þ
If acoustic radiation is incident upon such an (assumed impenetrable) surface for a fixed value of e, the IE or FE methods
outlined above can be used to compute any of a number of physically relevant scattering quantities (e.g. surface velocities,
efficiencies) with cost (8) or (12), respectively. However, for a subset of Q members of the family of ocean waves, (13), pro-
duced by the Nicholls–Reitich algorithm ðe1; . . . ; eQ Þ this cost is clearly
OðQNiterNx logðNxÞÞ; OðQN2Nx logðNxÞÞ ð14Þ
for the IE and FE methods respectively. Clearly this will be quite costly for Q � 1 and, in the next sections, we outline a new
computational scheme which takes advantage of the specific form (13) of the family of gratings, and thus has much more
favorable cost for Q � 1.

3.4. Field expansions for families of gratings

To motivate our later developments, we now propose an alternative FE method specifically designed for families of grat-
ings of the form
g ¼ gðx; eÞ ¼
X1
n¼1

fnðxÞen; ð15Þ
c.f. (13), which takes advantage of the fact that the fn are known. The FE methodology leads to the analogue of (10)
n ¼ v x;
X1
n¼1

fnen

 !
¼
X1

p¼�1

X1
n¼0

dp;nen

 !
eiapx exp ibp

X1
n¼1

fnen

 !
¼
X1

p¼�1

X1
n¼0

dp;nen

 !
eiapx

Y1
n¼0

exp ibpfnen
� � !

:

While the right-hand-side is certainly the composition of two analytic functions, the Taylor coefficients are not only com-
plicated to compute, they will be extremely expensive requiring time proportional to OðN!Þ for the order N coefficient. How-
ever, modifying this approach slightly can deliver enormous computational savings.
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3.5. Phase extraction

One means to avoid the necessity of composing the expansion for g with the exponential function (which (1b) requires), is
to remove it by a clever choice of variables. One such factorization recently proved quite useful to the authors [26] in their
study of low-cost algorithms for high frequency scattering. In brief, if the scattered field is expressed as
vðx; yÞ ¼ eiðax�byÞwðx; yÞ
then the envelope w is guaranteed, in the absence of multiple reflections, to be slowly varying as k2 ¼ a2 þ b2 !1. As we are
not considering high frequency scattering in the current research this seems irrelevant, however, the equations satisfied by
the ‘‘factored,” Phase Extracted, field, w, are very useful
Dwþ 2iða;�bÞ � rw ¼ 0; gðxÞ < y < b; ð16aÞ
wðx; gðxÞÞ ¼ �1; ð16bÞ
@ywðx; bÞ � T0½wðx; bÞ� ¼ 0; ð16cÞ
where [26]
T0½w� ¼ iðbD þ bÞwðxÞ
and w is periodic in d. Notice that these Phase Extracted equations feature no exponentiation of the profile g thus avoiding the
key complication of the FE approach.

As we have mentioned before, there are many computational quantities of interest that one can simulate; among the
most challenging in the current configuration is the surface velocity @mv , which, for later use, we now describe in detail. This
surface velocity is produced by the ‘‘Dirichlet–Neumann operator” (DNO) which is defined as
GðgÞ½n� :¼ �@yv þ ð@xgÞ@xv
� �

y¼g ; ð17Þ
and, of course, this can also be computed via the factored quantity w
GðgÞ½n� ¼ eiðax�bgÞ �@ywþ ð@xgÞ@xwþ fðiaÞð@xgÞ þ ðibÞgw
� �

y¼g :
Noting that the DNO also contains a common ‘‘phase” factor (similar to the one removed in the definition of w), we define
the Phase Extracted DNO (PEDNO)
HðgÞ :¼ eið�axþbgÞGðgÞ ¼ �@ywþ ð@xgÞ@xwþ fðiaÞð@xgÞ þ ðibÞgw
� �

y¼g : ð18Þ
We note that once H is computed it is a simple post-processing step to produce the DNO.

3.6. Transformed field expansions for families of gratings

To finally specify our new approach we apply the useful ‘‘domain flattening” change of variables [27–29,12]
x0 ¼ x; y0 ¼ b
y� gðxÞ
b� gðxÞ

� �
ð19Þ
(which maps the domain fg < y < bg to f0 < y0 < bg) to (16), the Phase Extracted Helmholtz problem, and consider the
transformed field
uðx0; y0Þ :¼ wðx0; ðb� gÞy0=bþ gÞ:
This transformation maps the problem (16) to
D0uþ 2iða;�bÞ � r0u ¼ Fðx0; y0; u; gÞ; 0 < y0 < b; ð20aÞ
uðx0; 0Þ ¼ �1; ð20bÞ
@y0uðx0; bÞ � T0½uðx0; bÞ� ¼ Jðx0; u; gÞ; ð20cÞ
where the specific forms for F and J are given in Section A (c.f. [12]); we note that these inhomogeneities are linear or qua-
dratic in g. We can also compute the PEDNO, H, in these new coordinates
HðgÞ ¼ �@y0uþ ðibÞuþ K ð21Þ
and K is also given in Section A.
We now drop the primed variables and follow the field expansions approach outlined in Section 3.4. Considering the

expansion (15) as a power series in e, we suppose that the transformed field u also can be expressed this way as
u ¼ uðx; y; eÞ ¼
X1
n¼0

unðx; yÞen ð22Þ
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importantly with the same perturbation parameter. To find equations for the un we insert (15) and (22) into (20) to
realize
Dun þ 2iða;�bÞ � run ¼ Fnðx; yÞ; 0 < y < b; ð23aÞ
unðx;0Þ ¼ �dn;0; ð23bÞ
@yunðx; bÞ � T0½unðx; bÞ� ¼ JnðxÞ; ð23cÞ
where the Fn and Jn are listed in Section A. The surface velocity can also be computed in this way via the PEDNO
H½n� ¼
X1
n¼0

Hn½n�en; ð24Þ
where
Hn½n� ¼ �@yunðx; 0Þ þ ðibÞunðx;0Þ þ KnðxÞ ð25Þ
and the Kn are given in Section A.
For a complete accounting of the computational cost of this ‘‘Transformed Field Expansions” (TFE) approach for families of

gratings, we must remember that the change of variables introduces the inhomogeneous functions F and J into (20) neces-
sitating a discretization of the y-direction [11,12]. However, since the ‘‘Artificial Boundary” at y ¼ b can be chosen quite close
to the surface of the scatterer [12], and since we may utilize a spectral discretization [30,31,12], e.g. with Chebyshev poly-
nomials, the number of unknowns Ny in the y-direction can be chosen quite small (e.g., 16 or 32). With this in mind, for
a single scattering surface (i.e. f2 � f3 � � � � � 0) the cost of this algorithm is [12]:
OðN2Nx logðNxÞNy logðNyÞÞ;
which does not compare favorably with the computational complexity of the IE or FE algorithms, (8) and (12). However, we
note that the computational complexity is the same if fn–0 (accommodating a general analytic family of solutions), and that
once the un are known, any particular surface scattering quantity (e.g., the surface velocity) can be obtained by summation in
time OðNNxÞ. Thus, the total cost for a family of scatterers is
OðN2Nx logðNxÞNy logðNyÞ þ QNNxÞ; ð26Þ
which is less than (14) as soon as
Q > Ny logðNyÞmax 1;
N2

Niter

( )
:

Now, typically Q � Ny logðNyÞ for even a moderate sampling of the family. Furthermore, for smooth profiles the analytic-
ity of the field guarantees that N can be chosen very small (e.g., four or six) so that our new approach becomes competitive
for quite small values of Q.

3.7. Analyticity

Before proceeding to the specification of our numerical algorithm, we note that the recursions (23) can be used to show
the strong convergence of the series (22). This, in turn, can be used to show the analyticity of other quantities of interest like
the surface velocity (i.e. the strong convergence of the series (24)). We accomplish all of this using the framework built by
the author in his collaborations with Reitich [29,32,12], Hu [33,34], Taber [35], and Fazioli [36].

For these results one needs two well-known, but by no means trivial, results: The algebra properties of Sobolev spaces,
and existence and regularity results for elliptic partial differential equations. For the first we can use the following result
[37,32], which features the following x-periodic Sobolev spaces:
Hs
perð½0; d�Þ :¼ ff 2 Hsð½0;d�Þjf ðxþ dÞ ¼ f ðxÞg;

Hs
perð½0; d� � ½0; b�Þ :¼ fu 2 Hsð½0; d� � ½0; b�Þjuðxþ d; yÞ ¼ uðx; yÞg:
Lemma 1. For any integer s > 1=2, if f 2 Hs
perð½0; d�Þ and u 2 Hs

perð½0; d� � ½0; b�Þ, then
kfukHs 6 MkfkHskukHs ;
where M is a constant depending only on s.

For the second we can use the well-known ‘‘Elliptic Estimate” [38,39].

Lemma 2. For any integer s P 0 there exists a constant Ce such that for any F 2 Hs
perð½0; d� � ½0; b�Þ; n 2 Hsþ3=2

per ð½0; d�Þ, and
J 2 Hsþ1=2

per ð½0; d�Þ the solution U of
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DUðx; yÞ ¼ Fðx; yÞ; ðx; yÞ 2 f½0;d� � ½0; b�g;
Uðx;0Þ ¼ nðxÞ;
@yUðx; bÞ � T0Uðx; bÞ ¼ JðxÞ;
Uðxþ d; yÞ ¼ Uðx; yÞ
satisfies
kUkHsþ2 6 Ce kFkHs þ knkHsþ3=2 þ kJkHsþ1=2

	 

:

We are now in a position to recursively estimate the fung in (22).

Lemma 3. Let s > 1=2 be an integer and suppose that the ffng in (15) satisfy
kfnkHsþ2 6 C
Bn

ðnþ 1Þ2
; 8n:
Assume that
kunkHsþ2 6 K
Dn

ðnþ 1Þ2
; n < N;
then there exists a constant K1 such that
kFNkHs 6 KK1 B2 DN�2

ðN þ 1Þ2
þ B

DN�1

ðN þ 1Þ2

( )
;

kJNkHs 6 KK1 B2 DN�2

ðN þ 1Þ2
þ B

DN�1

ðN þ 1Þ2

( )
;

if B < D.

Proof. In the interest of brevity we focus upon one particular term in FN
ZNðx; yÞ :¼ @y
ðb� yÞ2

b2

XN

m¼2

Xm�1

l¼1

ð@xflÞð@xfm�lÞ@yuN�m

( )
;

which appears in (29). Using Lemma 1 we find that
kZNkHs 6 k ðb� yÞ2

b2

XN

m¼2

Xm�1

l¼1

ð@xflÞð@xfm�lÞ@yuN�mkHsþ1 6
Y2

b2

XN

m¼2

Xm�1

l¼1

M2kflkHsþ2kfm�lkHsþ2kuN�mkHsþ2

6
Y2M2

b2

XN

m¼2

Xm�1

l¼1

C
Bl

ðlþ 1Þ2
C

Bm�l

ðm� lþ 1Þ2
K

DN�m

ðN �mþ 1Þ2

6 K
Y2M2C2

b2 B2 DN�2

ðN þ 1Þ2
XN

m¼2

Xm�1

l¼1

ðN þ 1Þ2

ðlþ 1Þ2ðm� lþ 1Þ2ðN �mþ 1Þ2
6 K

Y2M2C2

b2 B2 DN�2

ðN þ 1Þ2
S;
where Y ¼ Mkb� ykHsþ1 and S is a finite constant that has often arisen in our previous work on analyticity with respect to
boundary variations, e.g. [32,10],
S :¼
XN

m¼2

Xm�1

l¼1

ðN þ 1Þ2

ðlþ 1Þ2ðm� lþ 1Þ2ðN �mþ 1Þ2
<1: �
We are now in a position to estimate the fung in such a way as to conclude analyticity of the (factored) scattered field.

Theorem 4. Given an integer s > 1=2, if the ffng in (15) satisfy
kfnkHsþ2 6 C
Bn

ðnþ 1Þ2
; 8n
then the series (22) converges strongly. In other words, there exist constants D;K > 0 such that
kunkHsþ2 6 K
Dn

ðnþ 1Þ2
; 8n ð27Þ
for any
D P max 1;4CeK1;2
ffiffiffiffiffiffiffiffiffiffiffi
CeK1

pn o
B:
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Proof. We work by induction on the perturbation order n. At order zero (23) is particularly simple as only the (negative unit)
Dirichlet data remains on the right-hand-side so that Lemma 2 delivers
Table 1
Relative
frequen
b ¼ 1=2

N

0
2
4
6
8
10

Table 2
Energy
periodi

h

1
2
1
1/2
ku0kHsþ2 6 Cek � 1kHsþ1=2 ¼: K;
which now defines K. We now assume the estimate (27) for all n < N and examine uN . Again, we utilize Lemma 2 which gives
kuNkHsþ2 6 Ce kFNkHs þ kJNkHsþ3=2

	 

:

We now use Lemma 3 to demonstrate that
kuNkHsþ2 6 Ce2KK1 B
DN�1

ðN þ 1Þ2
þ B2 DN�2

ðN þ 1Þ2

( )
:

We are finished provided that
D P max 4CeK1;2
ffiffiffiffiffiffiffiffiffiffiffi
CeK1

pn o
B: �
Remark 5. To close this section, we note that the results of the authors in [10] provide the proper estimates on the fgnðxÞg in
the expansion of the surface of a traveling water wave, gðxÞ, in order to satisfy the hypotheses of Theorem 4. In fact, this work
also demonstrates the spatial analyticity of the fgnðxÞg as well which, though not used explicitly here, of course enables the
spectral convergence of the numerical method we advocate below.
4. Numerical results

We now describe a numerical implementation of the recursions (23), producing approximations to the quantities fung,
which can then be used to simulate any near-field, far-field, or volumetric quantity of interest. To verify the accuracy of
our implementation, in Section 4.1 we compare approximations generated with our new method to solutions given by
the rigorously tested single-profile ‘‘Transformed Field Expansions” (TFE) approach outlined in [12]. Having accomplished
this we study, in Section 4.2, the evolution of scattering efficiencies (a far-field quantity) as the height of a traveling ocean
interface is increased. These calculations display results for hundreds or even thousands of different wave interfaces, a task
that would have required extensive computational resources for standard methods, but were rapidly simulated using our
new approach.

4.1. Verification

The numerical scheme is a Fourier(collocation)/Chebyshev(tau)/Taylor algorithm [30,31,11,6] applied to the system of Eq.
(23). This amounts to approximating the factored field uðx; yÞ by
error, measured in the L1 norm, of our new algorithm as compared with single-profile TFE [12] simulation ðNx ¼ 256;Ny ¼ 64, and N ¼ 30Þ for
cy ða; bÞ ¼ ð1;1Þ. The base traveling wave was selected with parameters e ¼ 0:1 and Nx ¼ 256. The numerical parameters for the new algorithm are
(b ¼ 1=10 for h ¼ 1=2), Nx ¼ 256;Ny ¼ 64, and N ¼ 30.

h ¼ 1 h ¼ 2 h ¼ 1 h ¼ 1=2

0.00115 0.00115 0.00115 0.00120
3:21� 10�6 3:81� 10�6 1:50� 10�5 0:00667
4:90� 10�11 6:44� 10�11 4:27� 10�10 3:82� 10�7

1:87� 10�12 1:86� 10�12 6:34� 10�12 2:97� 10�8

1:86� 10�12 1:86� 10�12 1:85� 10�12 2:91� 10�11

1:86� 10�12 1:86� 10�12 1:85� 10�12 4:55� 10�12

defect, Ed (c.f. (28)), at emax for four ocean depths ðh ¼ 1;2; 1;1=2Þ and two scattering frequencies ðða; bÞ ¼ ð1;1Þ; ð10;10ÞÞ. The ocean profile is 2p-
c and the numerical parameters are Nx ¼ 256;Ny ¼ 64, and N ¼ 30.

ða; bÞ ¼ ð1;1Þ ða;bÞ ¼ ð10;10Þ

emax Ed emax Ed

0.43 1:17172� 10�6 0.30 1:11475� 10�6

0.39 2:22842� 10�6 0.29 1:45588� 10�6

0.29 9:70534� 10�7 0.21 1:38667� 10�6

0.11 1:15551� 10�6 0.08 4:82503� 10�7
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uðN;Nx ;NyÞðx; y; eÞ :¼
XN

n¼0

XNx=2�1

p¼�Nx=2

XNy

l¼0

ûp;l
n Tl

2y� b
b

� �
eipxen;
where Tl is the lth Chebyshev polynomial. We determine the ûp;l
n from (23), and the Fourier collocation (x variable) and

Chebyshev tau (y variable) methods. Another consideration in this approximation is the summation in n of the Taylor orders
en. The direct approach, simply summing the Taylor series ‘‘as is,” works very well for e well within the disk of analyticity of
the series (22). Of course other summation techniques are available such as Padé approximation which amounts to an ana-
lytic continuation of (22). The enhanced capabilities of Padé summation are well known [40] and have been utilized with
much success by the author in previous work [11,12,6]; for this reason we use this technique for all computations.

Our method also depends on the faithful computation of the terms in the Taylor series of the traveling wave, gnðxÞ (c.f.
(13)), which we perform using the stable, high-order TFE method developed in [6]. In the experiments of this section we have
set b ¼ 1=2 (b ¼ 1=10 for h ¼ 1=2), N ¼ 30, Nx ¼ 256, and Ny ¼ 64 for the computation of both the traveling waveform g and
the scattered field u.

In this section we verify the accuracy of our new scheme by computing the surface velocity, G (see (17)), via H (see (18)),
and comparing it with a highly accurate (and previously verified) approximation by the single-profile TFE recursions [12].
For our new method we compute an approximation
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Plot of the efficiencies epðeÞ for the propagating modes, p 2 U, versus e for an ocean of depth h ¼ 1 and radiation frequency ða; bÞ ¼ ð1;1Þ. The
g ocean waves are non-dimensionalized to be 2p-periodic and the numerical parameters are Nx ¼ 256;Ny ¼ 64, and N ¼ 30.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

ε

E
ffi

ci
en

cy

e(   0)
e(  −2)
e(  −1)
Sum

Plot of the efficiencies epðeÞ for the propagating modes, p 2 U, versus e for an ocean of depth h ¼ 2 and radiation frequency ða; bÞ ¼ ð1;1Þ. The
g ocean waves are non-dimensionalized to be 2p-periodic and the numerical parameters are Nx ¼ 256;Ny ¼ 64, and N ¼ 30.
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HðN;NxÞðx; eÞ :¼
XN

n¼0

XNx=2�1

p¼�Nx=2

bHp
neipxen
using (24) and (25), which we then compare, for increasing values of N, to a single-profile TFE simulation
ðNx ¼ 256;Ny ¼ 64;N ¼ 30Þ [12].

We present in Table 1 the results of this convergence study for ða; bÞ ¼ ð1;1Þ, with a 2p-periodic ocean surface, (e ¼ 0:01
in (13)) on ocean depths h ¼ 1;2;1;1=2. We note the precipitous convergence of our new numerical scheme to the indepen-
dently obtained TFE results. Not only do they appear to be spectrally convergent, but also the ‘‘best error” (limited only by
the vertical resolution) of 10�12 is typically realized with only 6 perturbation orders. The only exception is the much more
nonlinear profile specified by e ¼ 0:01 in the shallowest depth h ¼ 1=2 (which also features a slight ‘‘worsening” of the error
from N ¼ 0 to N ¼ 2 due to the sometimes erratic behavior of Padé summation for particular values of n).

4.2. Evolution of efficiencies

Having demonstrated the accuracy of our new method, we now utilize it to study the evolution of a common far-field
quantity of interest, the scattering efficiencies. Recall from (9) that the scattered field away from the grating surface can
be represented as
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Plot of the efficiencies epðeÞ for the propagating modes, p 2 U, versus e for an ocean of depth h ¼ 1 and radiation frequency ða; bÞ ¼ ð1;1Þ. The
g ocean waves are non-dimensionalized to be 2p-periodic and the numerical parameters are Nx ¼ 256;Ny ¼ 64, and N ¼ 30.
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Plot of the efficiencies epðeÞ for the propagating modes, p 2 U, versus e for an ocean of depth h ¼ 1=2 and radiation frequency ða; bÞ ¼ ð1;1Þ. The
g ocean waves are non-dimensionalized to be 2p-periodic and the numerical parameters are Nx ¼ 256;Ny ¼ 64, and N ¼ 30.



Fig. 5.
parame

Fig. 6.
numeri

D.P. Nicholls / Journal of Computational Physics 228 (2009) 3405–3420 3415
vðx; yÞ ¼
X1

p¼�1
dpeiðapxþbpyÞ;
where the dp are known as the ‘‘Rayleigh amplitudes.” In terms of these, the efficiencies are defined as
ep :¼
bp

b
jdpj2;
[13] and conservation of energy implies that
X
p2U

jepj2 ¼ 1;
where we recall, c.f. (4), that U is the set of propagating waves. The efficiency gives a measure of ‘‘energy” in each mode
which scatters from the grating surface, while the conservation of energy principle highlights the fact that the propagating
modes make a contribution in the far-field while the decaying (evanescent, p R U) modes make a vanishingly small one.

In this section we investigate the evolution of the efficiencies ep ¼ epðeÞ for p 2 U for the four ocean depths simulated
above ðh ¼ 1;2;1;1=2Þ and two rather low-frequency configurations ða; bÞ ¼ ð1;1Þ; ð10;10Þ. These efficiencies are followed
as e is increased from zero to a maximum value where the ‘‘energy defect”:
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Plot of efficiency e0ðeÞ versus e for 2p-periodic traveling ocean waves of depths h ¼ 1;2;1;1=2 and radiation frequency ða; bÞ ¼ ð1;1Þ. The numerical
ters are Nx ¼ 256;Ny ¼ 64, and N ¼ 30.
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Ed :¼ 1�
X
p2U

jepj2 ð28Þ
reaches a minimum tolerance (approximately 10�6, see Table 2).
In Figs. 1–4 we display results of the efficiencies ep 2 U evolving as a function of e for the four ocean depths

h ¼ 1;2;1;1=2 in the case ða; bÞ ¼ ð1;1Þ. To create these figures our new method was used to compute the terms unðx; yÞ
in the expansion (22) from the recursions (23) with Nx ¼ 256, Ny ¼ 64, and N ¼ 30. These were then sampled at the trans-
parent boundary, y ¼ b, and summed at equally spaced values of ej between zero and emax (listed in Table 2). The spacing was
set, quite arbitrarily, at De ¼ 0:001, but any other value could have been used at very little added expense (compared to that
of computing the un). We remark that, in this case,
b2
p ¼ k2 � a2

p ¼ 2� ðpþ 1Þ2;
so that the set U ¼ f�2;�1;0g and we follow three efficiencies. We see in all four cases that e0ð0Þ ¼ 1 and decreases from
this value as e is increased, while e�1ð0Þ ¼ e�2ð0Þ ¼ 0 and each increase as e increases.

To make our observations more precise we display in Fig. 5 a plot of e0ðeÞ for all four depths ðh ¼ 1;2;1;1=2Þ to compare
their evolution as e is varied. Here e0 is indistinguishable for values of e up to the largest permitted for h ¼ 1=2; beyond this
the remaining three curves are very close until the computation for h ¼ 1 fails. Again, the final two curves are nearly insep-
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Plot of the efficiencies epðeÞ for the propagating modes, p 2 U, versus e for an ocean of depth h ¼ 1 and radiation frequency ða;bÞ ¼ ð10;10Þ. The
g ocean waves are non-dimensionalized to be 2p-periodic and the numerical parameters are Nx ¼ 256;Ny ¼ 64, and N ¼ 30.
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Plot of the efficiencies epðeÞ for the propagating modes, p 2 U, versus e for an ocean of depth h ¼ 2 and radiation frequency ða;bÞ ¼ ð10;10Þ. The
g ocean waves are non-dimensionalized to be 2p-periodic and the numerical parameters are Nx ¼ 256;Ny ¼ 64, and N ¼ 30.
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arable until the h ¼ 2 calculations diverges, while the h ¼ 1 calculation continues a little longer. In Fig. 6 we repeat this
experiment for the efficiency e�2ðeÞ. In this plot it is much easier to distinguish the four depths even before the divergence
of each computation. This result suggests that a carefully chosen efficiency (whose evolution is markedly different for dif-
ferent depths) could perhaps be used as a signature for the depth of the ocean upon which a given traveling wave evolves.
However, we leave such speculation for future work.

We now revisit the calculations above in the higher frequency case ða; bÞ ¼ ð10;10Þ. Here, the numerical procedure is
nearly identical save that now
Fig. 9.
travelin

Fig. 10.
travelin
b2
p ¼ k2 � a2

p ¼ 200� ðpþ 10Þ2
and U ¼ f�24; . . . ;�1;0;1; . . . ;4g so that 29 efficiencies are calculated. In Figs. 7–10 we follow the full spectrum of propa-
gating efficiencies in each of the cases h ¼ 1;2;1;1=2 as e is varied. Here the pictures are much more cluttered as there are
so many efficiencies to follow, so we have, once again, focused our attention on two efficiencies, e0 and e1, for all four depths
in Figs. 11 & 12 respectively. Here, we can see that the difference in the evolution of the principal efficiency, e0, is quite small
among the four depths though it is more pronounced than in the lower frequency case ða; bÞ ¼ ð1;1Þ. We do, however, point
out the non-monotone nature of the evolution of this efficiency which does help to distinguish amongst the four depths. The
efficiency e1 has a similar character to that observed for e0 save that it begins at zero for e ¼ 0. Again, the differences among
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Plot of the efficiencies epðeÞ for the propagating modes, p 2 U, versus e for an ocean of depth h ¼ 1 and radiation frequency ða;bÞ ¼ ð10;10Þ. The
g ocean waves are non-dimensionalized to be 2p-periodic and the numerical parameters are Nx ¼ 256;Ny ¼ 64, and N ¼ 30.
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Plot of the efficiencies epðeÞ for the propagating modes, p 2 U, versus e for an ocean of depth h ¼ 1=2 and radiation frequency ða; bÞ ¼ ð10;10Þ. The
g ocean waves are non-dimensionalized to be 2p-periodic and the numerical parameters are Nx ¼ 256;Ny ¼ 64, and N ¼ 30.
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Fig. 11. Plot of efficiency e0ðeÞ versus e for 2p-periodic traveling ocean waves of depths h ¼ 1;2;1;1=2 and radiation frequency ða;bÞ ¼ ð10;10Þ. The
numerical parameters are Nx ¼ 256;Ny ¼ 64, and N ¼ 30.
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Fig. 12. Plot of efficiency e1ðeÞ versus e for 2p-periodic traveling ocean waves of depths h ¼ 1;2;1;1=2 and radiation frequency ða; bÞ ¼ ð10;10Þ. The
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the different depths are a little easier to distinguish in this ‘‘secondary” efficiency and thus may be slightly more useful as a
depth diagnostic in an experimental situation.

5. Conclusion

In this paper we have developed a new Boundary Perturbation method (closely related to the method of ‘‘Transformed
Field Expansions,” [12]) for the rapid computation of scattering returns by a family of rough surfaces. The method is not only
stable and high-order, but its computational complexity is substantially smaller than the current state-of-the-art solvers
when applied to even a moderate sampling of the family. This is due to the fact that our new method is specially designed
to have cost effectively independent of the number of family members that we sample. Using the well-known family of trav-
eling water waves as our scattering surfaces, we not only verified the accuracy of our scheme, but we also studied the evo-
lution of the scattering efficiencies. Such computations may be of use in the future for the remote detection and
characterization of traveling waves on the surface of the ocean.
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Appendix A. Specific forms for TFE inhomogeneities

In Section 3.6 we applied the change of variables (19) to the Phase Extracted Helmholtz problem (16) resulting in (20).
The inhomogeneities in this equation are
F ¼ @x0Fx þ @y0Fy þ Fh;
where
Fx ¼
2
b

g@x0u�
1

b2 g2@x0uþ
b� y0

b
ð@x0gÞ@y0u�

b� y0

b2 gð@x0gÞ@y0u;

Fy ¼
b� y0

b
ð@x0gÞ@x0u�

b� y0

b2 gð@x0gÞ@x0u�
ðb� y0Þ2

b2 ð@x0gÞ2@y0u
and
Fh ¼ �
1
b
ð@x0gÞ@x0uþ

1

b2 gð@x0gÞ@x0uþ
b� y0

b2 ð@x0gÞ2@y0u�
1
b

2ðibÞg@y0u

� 2ðiaÞ �2
b

g@x0uþ
1

b2 g2@x0u�
b� y0

b
ð@x0gÞ@y0uþ

b� y0

b2 gð@x0gÞ@y0u
� �

:

Additionally,
J ¼ �1
b

gT0½u�:
This same change of variables applied to the PEDNO, (18) gave Eq. (21) with inhomogeneity
K ¼ 1
b

gH þ ð@x0gÞ@x0u�
1
b

gð@x0gÞ@x0u� ð@x0gÞ2@y0uþ ðiaÞð@x0gÞu�
1
b
ðiaÞgð@x0gÞu�

1
b
ðibÞgu:
Following the TFE transformation, in Section 3.6 we then followed the FE philosophy by expanding the (Phase Extracted)
transformed field and PEDNO in Taylor series. The resulting inhomogeneities in (23) and (25), respectively, are
Fn ¼ @xFx;n þ @yFy;n þ Fh;n;
where
Fx;n ¼
2
b

Xn

l¼1

fl@xun�l �
1

b2

Xn

m¼2

Xm�1

l¼1

flfm�l@xun�m þ
b� y

b

Xn

l¼1

@xfl@yun�l �
b� y

b2

Xn

m¼2

Xm�1

l¼1

fl@xfm�l@yun�m;

Fy;n ¼
b� y

b

Xn

l¼1

@xfl@xun�l �
b� y

b2

Xn

m¼2

Xm�1

l¼1

fl@xfm�l@xun�m �
ðb� yÞ2

b2

Xn

m¼2

Xm�1

l¼1

@xfl@xfm�l@yun�m; ð29Þ
and
Fh;n ¼ �
1
b

Xn

l¼1

@xfl@xun�l þ
1

b2

Xn

m¼2

Xm�1

l¼1
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b� y

b2

Xn
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Xm�1

l¼1
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1
b

2ðibÞ
Xn

l¼1

fl@yun�l þ 4ðiaÞ1
b

�
Xn

l¼1

fl@xun�l � 2ðiaÞ 1
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We also have
Jn ¼ �
1
b

Xn

l¼1

flT0½un�l�
and
Kn ¼
1
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