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A new high-order finite volume method based on local reconstruction is presented in this
paper. The method, so-called the multi-moment constrained finite volume (MCV) method,
uses the point values defined within single cell at equally spaced points as the model vari-
ables (or unknowns). The time evolution equations used to update the unknowns are
derived from a set of constraint conditions imposed on multi kinds of moments, i.e. the
cell-averaged value and the point-wise value of the state variable and its derivatives.
The finite volume constraint on the cell-average guarantees the numerical conservative-
ness of the method. Most constraint conditions are imposed on the cell boundaries, where
the numerical flux and its derivatives are solved as general Riemann problems. A multi-
moment constrained Lagrange interpolation reconstruction for the demanded order of
accuracy is constructed over single cell and converts the evolution equations of the
moments to those of the unknowns. The presented method provides a general framework
to construct efficient schemes of high orders. The basic formulations for hyperbolic conser-
vation laws in 1- and 2D structured grids are detailed with the numerical results of widely
used benchmark tests.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

High-order schemes with local reconstructions use compact stencil for spatial discretization, and appear more attractive
in flexibility and efficiency to locally refine the numerical solutions. Examples of the numerical algorithms that are conser-
vative and make use of the locally defined degrees of freedom (DOFs) for high order reconstructions are the discontinuous
Galerkin (DG) method [4–7], the spectral volume (SV) method [29–32] and, more recently the spectral difference (SD)
method [17,33].

The DG method is a formulation based on the Galerkin finite element approach. The local degrees of freedom is increased
by a high-order local discontinuous basis function constructed piecewisely over each mesh cell, and the Riemann problem is
solved at cell boundaries by a class of numerical methods originally developed in the context of the finite difference or finite
volume approaches. The cell-averaged value is then cast into a complete flux-form formulation to assure the conservation in
the DG method. The local DOF in the SV method is increased by partitioning the control volume (or mesh cell) further into
finer subdomains with geometrical regularity. The cell-averaged values for these subdomains are then updated as the new
. All rights reserved.
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unknowns. With the new DOFs defined on the regular decomposition in each mesh cell, high-order scheme can be
constructed on a local base. The SV method essentially applies the finite volume formulation to all DOFs, so the numerical
conservation for the unknowns is maintained.

Being more computationally efficient, the spectral difference (SD) method has been recently extended to unstructured
grids [17,33]. The SD method originated from the conservative staggered-grid Chebyshev multi-domain method [14],
where the unknowns of the state variable are defined at the Gauss points while the numerical fluxes are defined at the
Gauss–Lobatto points within each mesh cell. Cell-wise Lagrange interpolating polynomials are constructed separately
for the variable values and the flux values. The variable values at the Gauss points are interpolated to the Gauss–Lobatto
points where the numerical fluxes are computed. The spatial derivative of the flux at the Gauss points is then computed
by differentiating the flux interpolation function. Finally, the ordinary time evolution equation for the state variable is ob-
tained by requiring the residual of the spatial discretization to be zero at the Gauss point. In the SD method, all unknowns
are defined as the point values at the internal points within the mesh cell with the optimized locations. The numerical
conservativeness can be enforced by combining the flux differencing at the internal point so as to balance the effective
numerical flux across the cell surface. The SD is a point-based method, and is easily implemented on both structure
and unstructured grids.

In a series of multi-moment schemes, developed from the underlying idea of the Constrained Interpolation Profile (CIP)
method [43,45], more than one kind of moments are used as the model variables and individually updated by the governing
equations that may have different forms but should be consistent to the original conservation law. For example, several con-
servative schemes, so-called the CIP-Conservative Semi-Lagrangian (CIP-CSL) methods for the scalar conservation law
[26,44,35,36,10], can be constructed by including extra moments, such as the point value and the derivatives, in addition
to the cell-averaged value. The point value and the derivatives that are defined at the cell surface are predicted by a
semi-Lagrangian approach, while the cell average is updated by a finite volume formulation. For fluid dynamics, a class of
so-called CIP/multi-moment finite volume method (CIP/MM FVM) have been devised by making use of the Volume-Inte-
grated Average (VIA), Surface-Integrated Average(SIA) and Point Value(PV) as the model variables that must be memorized
and predicted forward in time. In the CIP/MM FVM variants, the VIA moment is updated by a finite volume formulation of
flux-form and is thus numerically conserved. A great flexibility is provided while predicting other moments. The multi-mo-
ment finite volume method as a general framework for fluid dynamic simulations has been so far implemented to various
fluid flows, for example multi-fluid flows [37,38,40], compressible and incompressible flows [39,41,11] and geophysical
flows [2,15,3].

For high-order schemes based on the multi-moments, we proposed in our previous paper [11] an accurate CIP/MM FVM
using a characteristic semi-Lagrangian approach for both scalar and Euler conservation laws. A more general formulation
that employs more derivative moments for arbitrary accuracy and uses the local derivative Riemann problems (DRP)
[28,27] in the Eulerian representation is also proposed [42]. Another recent variant is found as the conservative interpolated
differential operator method [12].

This paper presents a new high-order conservative scheme with more computational efficiency. Different from the exist-
ing methods, the new method, namely the multi-moment constrained finite volume (MCV) method, uses the point values
defined within single cell at equally spaced points as the model variables (or unknowns). Instead of being directly treated
as the model variables, the multi-moments are used to provide the constraint conditions that lead to the evolution equations
to update the unknowns. The MCV method has exact conservation for the cell-averaged value, and high-order MCV schemes
can be straightforwardly devised following a simple principle.

The basic idea and formulation of the MCV method are detailed in this paper. The rest of the paper is organized as follows:
Section 2 describes the basic numerical formulation with the schemes from third- to sixth-orders illustrated in detail. The
extension to 2D Cartesian coordinate grid is given in Section 3. Numerical tests are shown in Section 4, we have examined
the numerical convergence rate by grid refinement tests for the presented schemes from third- to sixth-orders. Some widely
used benchmark tests for both scalar and Euler conservation laws in 1D and 2D are also given to verify the numerical
schemes. Finally, we end this paper with a short summary in Section 5.

2. Basic formulation for one dimension

Different from the multi-moment methods developed so far where the moments are directly treated as the model vari-
ables that need to be predicted at every time step, values at the points collocated within each mesh element are treated as
the basic model variables in the present method. The evolution equations derived for different moments are employed as the
constraints that yield the relations to update the unknowns at the collocating points within each cell.

We consider the 1D hyperbolic conservation laws as follows,
qt þ f ðqÞx ¼ 0; ð2:1Þ
where q is the vector of the conservative variables and f(q) is the vector of the flux function.
The computational domain is divided into non-overlapping cells, dxi 2 [xi�1/2, xi+1/2] (i = 1, . . . ,N), where xi+1/2 is the cell

boundary. We define the moments, i.e. the cell-averaged value, the point-wise value and the derivatives of the field variable
q(x,t) as,
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where Dxi = xi+1/2 � xi�1/2 is the volume for cell i, and xip represents a point within or at the boundary of cell i. We will denote
q½0�xip by qip and q½1�xip by qx ip as a convention in this paper.

From (2.1), we have the evolution equations for different moments of physical field q(x,t) as,
dqi

dt
¼ � 1

Dxi
f̂ iþ1

2
� f̂ i�1

2

� �
;

dq½k�xip

dt
¼ �f̂ ½kþ1�

xip ; with k ¼ 0;1;2; � � � ;K;
ð2:3Þ
where f̂ and f̂ ½k�x are the numerical formulations consistent to the flux function f(q) and its derivatives @k
xf ðqÞ.

The unknowns, or the degrees of freedom (DOFs), which should be predicted at every time step in the MCV scheme are
the point values (PVs), or the PV moments in our context, defined within each single cell shown in Fig. 1. The cell-wise inter-
polation reconstruction is then locally built in terms of the unknowns. For example, in a 1D Lth-order scheme, (L � 1)th-or-
der polynomial PiðxÞ on cell i requires L PVs (qil;l = 1,2 . . . ,L), we write the interpolation polynomial in terms of the unknowns
as,
PiðxÞ ¼
XL

l¼1

cilðxÞqil; ð2:4Þ
where cil(x) is the basis function. The points xil for defining the unknowns qil are not necessarily coincided with xip where the
constraints in terms of the evolution equations for different moments are imposed.

It should be addressed that construction of (2.4) is essentially different from the conventional Lagrange interpolation
though they share the same form. The values at the interior points are determined from the multi-moment constraints, thus
we call it multi-moment constrained (MC) Lagrange polynomial. See the appendix of this paper for more details.

Given interpolation function (2.4), the constraints on different moments (2.3) are explicitly expressed in the unknowns,
yielding a set of evolution equations to predict the unknowns,
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dq½k�xip

dt
¼ d

dt
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@xk
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dt
@k

@xk
cilðxipÞ

 !
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xip ; k ¼ 0;1;2; � � � ;K: ð2:5bÞ
Eq. (2.5a) guarantees the exact conservativeness of the cell-integrated average value qi.
The reconstruction in an MCV method is built over each mesh cell, so the cell-wise interpolation function is continuous

within each cell, but might be discontinuous across cell boundaries. Depending on the location of xip, the numerical formu-
lations for the derivatives of the flux function in (2.5b) are computed in different ways.

Being one of the important features of the current method, we use the constraint conditions (2.5b) at cell boundaries (xi�1/

2 and xi+1/2) to a largest possible extent.
When point xip is at cell boundary, the numerical flux needs to be evaluated by solving the Riemann problem. At a bound-

ary point, the cell-wise reconstructions may lead to discontinuous values on the left and right sides of xip, denoted by q� and
q+, respectively. The numerical fluxes are then computed by
f̂ ip ¼ Riemann f ðq�ipÞ; f ðqþipÞ
� �

;

f̂ ½k�xip ¼ Riemann f ½k�x ðq�ip; q�xip; . . . ; q½k��xip Þ; f
½k�
x ðqþip; qþxip; . . . ; q½k�þxip Þ

� �
;

ð2:6Þ
where ‘‘Riemann(�, �)” denotes a Riemann solver with the left-side and right-side values given from the reconstructions.
In practice, we make use of the approximate Riemann solvers for computational efficiency. Two simplest examples among

many existing approximate Riemann solvers are the local Lax–Friedrich (LLF) flux and the Roe’s flux [19]. Computational cost
can be further reduced if we replace the high-order derivative Riemann problems by linear and homogeneous derivative Rie-
mann problems as detailed in [28,27] for the hyperbolic systems. As addressed in [28], since the first-instant plays a leading
role in the interaction of the two states, the derivative Riemann problems with these simplifications provide a reasonable
. 1. The locations of the unknowns in one dimension for the third-order (left), the fourth-order (middle) and the fifth-order (right) schemes.
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accuracy. For the Euler equations in fact, our numerical experiments show that the following linearization to the flux func-
tions gives adequate accuracy in terms of both numerical errors and convergence rate
f ¼ Aq; f x ¼ Aqx; . . . ; f ½k�x ¼ Aq½k�x ; ð2:7Þ
where A is the Jacobian matrix obtained by A = @f/@q. Provided the derivatives of the state variable q from the cell-wise recon-
structions for both sides of a discontinuity, one can find the derivative flux of any high order at the expense of the conven-
tional Riemann problem.

It should be noted that the local reconstruction can be also carried out in terms of flux function f itself, instead of the con-
servative variables q. For example, the numerical approximations for flux function f and its derivatives at cell boundary xip

can be calculated by
f̂ ½k�xip ¼
1
2

f ½k��xip þ f ½k�þxip � RipjKipjR�1
ip q½k�þxip � q½k��xip

� �� �
¼ 1

2
f ½k��xip þ f ½k�þxip � RipsgnðKipÞR�1

ip f ½k�þxip � f ½k��xip

� �� �
; ð2:8Þ
where we make use of the relation: q = A�1f = (RKR�1)�1f = R K�1R�1f. The eigen matrices R and R�1, as well as the eigen val-
ues in K are directly evaluated by the point values at xip. Without the linearization (2.7), the numerical simulations using
(2.8) share a more uniform convergence rate for high order.

There are L unknowns in an Lth-order scheme, thus moment constraint conditions of equal number must be specified. We
only consider the cases of LP3 in this paper. When L is an odd number, we use one constraint on the cell-integrated average
(2.5a) and 2(K + 1) constraints on the point value and derivatives at the two ends of the cell, where K is determined by
K = (L � 3)/2. When L is an even number, however, an extra moment is required to provide another constraint condition.
We introduce the first-order derivative at the cell center (xic = (xi�1/2 + xi+1/2)/2), and write (2.5b) as
dqxic

dt
¼ d

dt
@

@x
PiðxicÞ

� �
¼
XL

l¼1

dqip

dt
@

@x
cilðxicÞ

� �
¼ �f̂ ½2�xic: ð2:9Þ
As shown in the following subsections, the second-order derivative of the flux function f̂ ½2�xic in (2.9) is computed by an
approximation in terms of the flux from the interpolation reconstruction f̂ ic ¼ f ðPiðxicÞÞ as well as the flux and the derivatives
of the flux function at cell boundaries.

Provided all the values and the derivatives of the flux function, the semi-discretized system of (2.5a) and (2.5b) finally
yields the following ordinary differential equations in terms of the unknowns Q = [qi1,qi2, . . . ,qiL],
dQ
dt
¼ RðQÞ; ð2:10Þ
where R(Q) stand for the approximations in terms of the discretized flux and the derivatives of the flux function. We use the
third-order TVD Runge–Kutta method [22],
Q 1 ¼ Q 0 þ DtRðQ 0Þ;

Q 2 ¼
3
4

Q0 þ
1
4

Q 1 þ
1
4

DtRðQ1Þ;

Q 3 ¼
1
3

Q0 þ
2
3

Q 2 þ
2
3

DtRðQ2Þ:

ð2:11Þ
for time integration.
In the rest of this section, we give the examples of the MCV schemes from third- to sixth-orders.

2.1. Third-order MCV scheme

In the third-order scheme, the unknowns are three PVs (qil, l = 1, 2, 3) at three equally spaced points within cell i as shown
in Fig. 1,
qi1ðtÞ ¼ qðxi1; tÞ; qi2ðtÞ ¼ qðxi2; tÞ; qi3ðtÞ ¼ qðxi3; tÞ; ð2:12Þ
where xi1 = xi�1/2, xi2 = (xi�1/2 + xi+1/2)/2 and xi3 = xi+1/2.
A cell-wise MC-Lagrange polynomial,
PiðxÞ ¼
X3

l¼1

cilðxÞqil; ð2:13Þ
is then constructed. We impose constraint conditions on three moments, i.e. one cell-averaged value and two PVs at cell sur-
faces as
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The evolution equations of the moments (2.5a) and (2.5b) then read,
d
dt
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ð2:15Þ
The constraint conditions (2.15) finally lead to the equations to directly update the unknowns as
dqi1

dt
¼ �f̂ xi�1

2
;

dqi2

dt
¼ �3

2
f xi þ

1
4

f̂ xi�1
2
þ f̂ xiþ1

2

� �
;

dqi3

dt
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2
;

ð2:16Þ
where f xi ¼ ðf̂ iþ1=2 � f̂ i�1=2Þ=Dxi is the cell-averaged first-order derivative of the numerical flux. The numerical fluxes at cell
boundary, say xi�1/2, are obtained by solving the (derivative) Riemann problems,
f̂ i�1
2
¼ Riemann fi�1

2
q�i�1

2

� �
; fi�1

2
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i�1
2
Þ

� �� �
;
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;

ð2:17Þ
or more simply by the flux linearization (2.7)
f̂ i�1
2
¼ Riemann A�i�1

2
q�i�1

2
;Aþi�1

2
qþ

i�1
2

� �
;

f̂ xi�1
2
¼ Riemann A�i�1

2
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2
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2
qþ

xi�1
2

� �
:

ð2:18Þ
The left-side and right-side values and derivatives of the state variables are computed from the cell-wise reconstructions
as
q�i�1
2
¼ Pi�1ðxi�1

2
Þ ¼ qði�1Þ3;

q�xi�1
2
¼ @

@x
Pi�1ðxi�1

2
Þ ¼
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qþ
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2
¼ @

@x
Piðxi�1

2
Þ ¼ qi1 � 4qi2 þ 3qi3

Dxi
:

ð2:19Þ
For cell boundary xi+1/2, the same procedure applies with the cell index shifted by one.

2.2. Fourth-order MCV scheme

In the fourth-order MCV, we put the four unknowns at equidistant positions over cell i as shown in Fig. 1,
qi1ðtÞ ¼ qðxi1; tÞ; qi2ðtÞ ¼ qðxi2; tÞ; qi3ðtÞ ¼ qðxi3; tÞ; qi4ðtÞ ¼ qðxi4; tÞ; ð2:20Þ
where xi1 = xi�1/2, xi2 = (2xi�1/2 + xi+1/2)/3, xi3 = (xi�1/2 + 2xi+1/2)/3 and xi4 = xi+1/2. As aforementioned, with L being an even num-
ber, a new constraint condition needs to be imposed on the first-order derivative at the cell center (xic = (xi�1/2 + xi+1/2)/2), in
addition to the cell-averaged value and two PVs at both cell boundaries. A polynomial of four DOFs, PiðxÞ ¼

P4
l¼1cilðxÞqil, is

then derived. From (2.5a) and (2.5b), we get the following linear system,
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dqi
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which then yield the evolution equations to update the PV unknowns as
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ð2:22Þ
The numerical fluxes at cell boundary are solved as the (derivative) Riemann problems in a similar way to that in the
third-order MCV scheme. The computation of the second-order derivative of the numerical flux at the cell center f̂ ½2�xic ,
however, needs a different procedure. In the present method, given five constraint conditions on flux, i.e.
f̂ ic ¼ f ðPiðxicÞÞ; f̂ i�1

2
, f̂ iþ1

2
; f̂ xi�1

2
and f̂ xiþ1

2
; f̂ ½2�xic is evaluated from a fourth-order interpolation by
f̂ ½2�xic ¼
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Dx2
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þ
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2
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2

� �
Dxi

: ð2:23Þ
It is notified that the second-order derivative of the flux function at cell center (xic) is computed not only from the value
obtained from the interpolation reconstruction (f̂ ic), but also from the numerical fluxes and the derivative fluxes at the cell
boundaries. It makes the current method substantially different from other existing algorithms.

2.3. Fifth-order MCV scheme

For the fifth-order MCV, the unknowns are the five PVs defined at the equidistant points,
xi1 ¼ xi�1
2
; xi2 ¼

ð3xi�1
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Þ
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2
Þ

4
; xi5 ¼ xiþ1

2
; ð2:24Þ
over cell i as shown in Fig. 1. The interpolation is constructed by an MC-Lagrange polynomial P iðxÞ ¼
P5

l¼1cilðxÞqil of 5 DOFs.
The constraint conditions are imposed on 5 moments, i.e. the cell-averaged value, the PVs and first-order derivatives at the
two cell boundaries. Using the interpolation polynomial P iðxÞ, we get the following evolution equations for the PV unknowns
as,
dqi
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¼ d

dt
7qi1 þ 32qi2 þ 12qi3 þ 32qi4 þ 7qi5ð Þ
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;
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3Dxi
¼ �f̂ ½2�
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2
:

ð2:25Þ
The numerical fluxes at cell boundaries, i.e. f̂ i�1=2, f̂ xi�1=2 and f̂ ½2�xi�1=2, can be evaluated by solving the derivative Riemann prob-
lems up to second-orders. After solving the linear system (2.25), the PV unknowns are updated in time.

2.4. Sixth-order MCV scheme

A sixth-order scheme requires six PVs located at the six points equally spaced over cell i to build a polynomial of six DOFs,
PiðxÞ ¼

P6
l¼1cilðxÞqil. In addition to the constraint conditions in fifth-order scheme, the first-order derivative moment at cell

center (xic) is added to provide a new constraint. The evolution equations for the moments (2.5a) and (2.5b) read



Table 1
The maximum CFL numbers for computational stability of the MCV schemes in 1D scalar advection test.

Accuracy 3rd 4th 5th 6th

CFL number 0.4 0.25 0.2 0.14

Table 2
Numeri

Accurac

3rd

4th

5th

6th
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dqi

dt
¼ d

dt
19qi1 þ 75qi2 þ 50qi3 þ 50qi4 þ 75qi5 þ 19qi6ð Þ

288
¼ �f xi;

dqi�1
2

dt
¼ dqi1

dt
¼ �f̂ xi�1

2
;

dqiþ1
2

dt
¼ dqi6

dt
¼ �f̂ xiþ1

2
;

dqxi�1
2

dt
¼ d

dt
�137qi1 þ 300qi2 � 300qi3 þ 200qi4 � 75qi5 þ 12qi6ð Þ

12Dxi
¼ �f̂ ½2�

xi�1
2
;

dqxiþ1
2

dt
¼ d

dt
�12qi1 þ 75qi2 � 200qi3 þ 300qi4 � 300qi5 þ 137qi6ð Þ

12Dxi
¼ �f̂ ½2�

xiþ1
2
;

dqxic

dt
¼ d

dt
�9qi1 þ 125qi2 � 2250qi3 þ 2250qi4 � 125qi5 þ 9qi6ð Þ

384Dxi
¼ �f̂ ½2�xic:

ð2:26Þ
The equations for updating the PV unknowns, qi1, . . . ,qi6, can be derived straightforwardly from the 6 � 6 linear system
(2.26).
Fig. 2. The points over cell ij to define the unknowns.

cal errors and convergence rate for the 1D linear scalar equation.

y Mesh L1 error L1 order L1 error L1 order

10 1.29E�2 – 2.00E�2 –
20 1.69E�3 2.93 2.64E�3 2.92
40 2.14E�4 2.98 3.36E�4 2.97
80 2.68E�5 3.00 4.22E�5 2.99

10 2.06E�4 – 3.19E�4 –
20 1.31E�5 3.98 2.06E�5 3.95
40 8.32E�7 3.98 1.31E�6 3.98
80 5.25E�8 3.99 8.24E�8 3.99

10 5.21E�5 – 8.05E�5 –
20 1.67E�6 4.96 2.61E�6 4.95
40 5.34E�8 4.97 8.38E�8 4.96
80 1.66E�9 5.01 2.61E�9 5.00

10 4.06E�7 – 6.27E�7 –
20 6.46E�9 5.97 1.00E�8 5.97
40 9.95E�11 6.02 1.56E�10 6.00
80 1.53E�12 6.02 2.48E�12 5.98
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Fig. 3. Advection of a square wave after one period without limiting.
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The second-order derivative of the numerical flux at cell center is evaluated from f̂ ic; f̂ i�1=2; f̂ xi�1=2 and f̂ ½2�xi�1=2 as follows,
f̂ ½2�xic ¼
12 �2f̂ ic þ f̂ i�1

2
þ f̂ iþ1

2

� �
Dx2

i

þ
9 f̂ xi�1

2
� f̂ xiþ1

2

� �
4Dxi

þ
f̂ ½2�

xi�1
2
þ f̂ ½2�

xiþ1
2

8
: ð2:27Þ
The numerical flux at the cell center are computed from the interpolation polynomial, f̂ ic ¼ f ðPiðxicÞÞ. All other flux or the
derivatives of the flux function are evaluated at the cell boundaries, thus should be computed from the Riemann solvers.

2.5. Some remarks

In the present MCV formulations, the points to define the unknown PVs are equally spaced. It is different from the Gauss–
Lobatto points used in the conservative staggered-grid Chebyshev multi-domain spectral method [14] or the SD method
[17,1], and the formula to convert (2.3) to the evolution equations for the PV unknowns, (2.5a) and (2.5b), are more efficient.
In the schemes from third-order to sixth-order, the only numerical flux computed from the interpolation function at the cell
center is f̂ ic in (2.23) and (2.27), while other flux or the derivatives of flux are evaluated at cell boundaries. We increase the
derivatives of flux at cell boundary when constructing higher schemes to provide constraints for the increased DOFs, rather
than use more fluxes at interior points as that in the Chebyshev multi-domain spectral method [14]. Our numerical tests
show that the MCV method has a satisfactory convergence rate for all schemes from third to sixth-orders presented in this
paper. Moreover, since there is not any volume integration involved in the present method, it is quite computationally
efficient.

As mentioned above, most of constraint conditions are imposed on the cell boundary as the Riemann and derivative
Riemann problems. It implies that the increase in the DOFs for higher order scheme directly leads to an increase of the
information exchanged across the cell boundary. Consequently, different from other existing schemes using local high-order
reconstruction, the current MCV method allows larger CFL number for computational stability. We have carried out numer-
ical experiments for 1D linear advection equation with smooth initial condition, and used the third-order Runge–Kutta
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Fig. 4. Numerical results of the 1D advection of a complex profile without limiter at t = 2.
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scheme (2.11) for time integration. Table 1 gives the maximum CFL numbers for stability of the MCV schemes from third-
order to sixth-order.

Compared with the maximum stable CFL number for the DG scheme and the SV scheme of the same order as given in [29],
the MCV method has a less restrictive CFL condition for computational stability.

2.6. The initial condition

In the numerical experiments presented in this paper, special care must be paid to specify the initial values of the un-
knowns, i.e. the PVs located at the equally spaced points over each mesh cell. It is trivial if the initial profile is analytically
given everywhere. Otherwise the unknown point values must be provided from high-order interpolations or from the
‘‘physical observations” that have been assimilated by a numerical model of equivalent accuracy.

As a typical case, we describe here the process to determine the initial unknowns for a mesh cell where a jump
discontinuity exists. Assuming a jump discontinuity exists in ½xi�1

2
; xiþ1

2
� and given the PVs at the cell boundaries, we decide

the initial conditions for the unknowns according to the following rules.

(i) The PVs at the boundaries of cell i are firstly specified as
qi�1
2
¼ qðxi�1

2
;0Þ:
(ii) The cell-averaged value is approximated by the PVs at the cell boundaries by a simple algebraic average,
qi ¼
qðxi�1

2
; 0Þ þ qðxiþ1

2
;0Þ

2
:

(iii) The derivatives at the cell boundaries are initially assumed to be zero,
qxi�1
2
; q½2�

xi�1
2
; � � � ¼ 0:
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Fig. 5. Comparison between the third-order MCV and sixth-order MCV schemes in the advection problem at t = 20 (after 10 periods).
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(iv) When L is an even number, the derivative at the cell center is approximated by,
qxic ¼
@

@x
~PðxicÞ;
where ~PðxÞ is the polynomial of (L � 1) DOFs where the derivative at the cell center is not involved. We estimate qxic by
a central difference in terms of the PVs at the two ends in this paper for simplicity, which slightly degrades the accuracy in
the initial conditions, but only makes negligible difference in the numerical results.

From the above conditions (i)–(iv), the initial PV unknowns can be obtained by the multi-moment interpolation polyno-
mial PiðxÞ ¼

PL
l¼1cilðxÞqil.
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Fig. 6. Numerical results of the 1D advection problem with TVB limiter (M = 200) at t = 2.



Fig. 7. Numerical results of the 1D advection problem with TVD limiter (M = 0) at t = 2.
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We give below the initial values of the PV unknowns for the MCV schemes from third-order to sixth-order.

� Third-order:
qi1ð0Þ
qi2ð0Þ
qi3ð0Þ

0
@

1
A ¼ 1 0

1=2 1=2
0 1

2
4

3
5 qðxi�1

2
;0Þ

qðxiþ1
2
;0Þ

 !
; ð2:28Þ
� Fourth-order:
qi1ð0Þ
qi2ð0Þ
qi3ð0Þ
qi4ð0Þ

0
BBB@

1
CCCA ¼

1 0
2=3 1=3
1=3 2=3

0 1

2
6664

3
7775

qðxi�1
2
;0Þ

qðxiþ1
2
;0Þ

 !
; ð2:29Þ
� Fifth-order:
qi1ð0Þ
qi2ð0Þ
qi3ð0Þ
qi4ð0Þ
qi5ð0Þ

0
BBBBB@

1
CCCCCA ¼

1 0
27=32 5=32

1=2 1=2
5=32 27=32

0 1

2
666664

3
777775

qðxi�1
2
;0Þ

qðxiþ1
2
;0Þ

 !
; ð2:30Þ
� Sixth-order:
qi1ð0Þ
qi2ð0Þ
qi3ð0Þ
qi4ð0Þ
qi5ð0Þ
qi6ð0Þ

0
BBBBBBB@

1
CCCCCCCA
¼

1 0
2608=3125 517=3125
1881=3125 1244=3125
1244=3125 1881=3125
517=3125 2608=3125

0 1

2
66666664

3
77777775

qðxi�1
2
;0Þ

qðxiþ1
2
;0Þ

 !
: ð2:31Þ



Table 3
Numerical errors and convergence rate for ut + (u2/2)x = 0 at t = 0.5/p.

Accuracy Mesh L1 error L1 order L1 error L1 order

3rd 20 5.43E�4 – 2.83E�3 –
40 9.91E�5 2.45 6.79E�4 2.06
80 1.49E�5 2.73 1.34E�4 2.34

160 2.11E�6 2.82 3.55E�5 1.92
320 2.83E�7 2.90 8.82E�6 2.01

4th 20 2.49E�5 – 1.80E�4 –
40 1.41E�6 4.14 1.39E�5 3.69
80 7.86E�8 4.17 9.21E�7 3.92

160 4.57E�9 4.10 6.56E�8 3.81
320 3.17E�10 3.85 6.78E�9 3.27

5th 20 3.44E�6 – 2.77E�5 –
40 2.27E�7 3.92 2.98E�6 3.22
80 1.35E�8 4.07 1.84E�7 4.02

160 5.94E�10 4.51 8.38E�9 4.46
320 2.18E�11 4.77 4.28E�10 4.29

6th 20 9.12E�8 – 5.93E�7 –
40 1.59E�9 5.84 1.75E�8 5.08
80 4.56E�11 5.12 5.98E�10 4.87

160 6.50E�13 6.13 1.69E�11 5.15
320 1.58E�14 5.36 3.87E�13 5.45
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2.7. Limiting projection

To eliminate the spurious numerical oscillation, we apply the slope-limiting operator KPi proposed in [7] to the solutions
at each Runge–Kutta step. The slope-limiting operator KPi is a linear approximation defined as
Fig. 8.
by a co
KPiPiðxÞ ¼ qi þ ~qxiðx� xicÞ; ð2:32Þ
where ~qx is the limited gradient. It is required that the limiting procedure satisfies
Z
dxi

KPiPiðxÞdx ¼
Z

dxi

PiðxÞdx ¼ Dxi�qi ð2:33Þ
for the numerical conservativeness.
The limited gradient ~qxi is computed based on the TVD concept [9]. We apply the superbee limiter,
~qxi ¼ maxmod minmod Dqi�1
2
; bDqiþ1

2

� �
;minmod Dqiþ1

2
;bDqi�1

2

� �� �
; ð2:34Þ
where Dqi�1/2 = qic � q(i�1)c, Dqi+1/2 = q(i+1)c � qic and b is a positive to control the gradient sharpness, and is set to 1.8–2.0 in
this paper.
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Numerical results for the nonlinear Burger’s equation at t = 1.5/p on a 40-cell mesh. The reference (”exact”) solution is computed 20,480-cell mesh
nventional second-order finite volume method. The TVB parameter is M = 200.
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The minmod and maxmod functions are given respectively as
Table 4
Numeri

Accurac

3rd

4th

5th

6th
minmodða1; a2Þ ¼
s minðja1j; ja2jÞ; if s ¼ signða1Þ ¼ signða2Þ;
0; otherwise;

�
ð2:35Þ
and
maxmodða1; a2Þ ¼
s maxðja1j; ja2jÞ; if s ¼ signða1Þ ¼ signða2Þ;
0; otherwise:

�
ð2:36Þ
As it is well-known that the TVD limiter might over-smooth the local extremes in the numerical solution, we introduce
also the TVB limiter [21]. We slightly modified the formulation to get a smooth transition between the limited and unlimited
regions,
qil ¼
qil; if j � qi1 þ qiLj 6 MDx2

i \ ð�qi1 þ qiLÞð�qði�1ÞL þ qðiþ1Þ1Þ > 0;
KPiPiðxilÞ; otherwise;

(
ð2:37Þ
(l = 1, . . . ,L). The parameter M is a switching parameter, and is somewhat problem-dependent as in other high-order
schemes. As will be seen later in the numerical tests, the limiting procedure affects the local solutions depending on the
TVB parameter which needs to be specified in advance in the current formulation. It should be a common challenging issue
cal errors and convergence rate for the 1D Euler equations.

y Mesh L1 error L1 order L1 error L1 order

10 2.59E�3 – 3.99E�3 –
20 3.38E�4 2.94 5.28E�4 2.92
40 4.28E�5 2.98 6.71E�5 2.98
80 5.37E�6 2.99 8.43E�6 2.99

10 4.12E�5 – 6.37E�5 –
20 2.62E�6 3.98 4.12E�6 3.95
40 1.66E�7 3.98 2.61E�7 3.98
80 1.05E�8 3.98 1.65E�8 3.98

10 1.04E�5 – 1.61E�5 –
20 3.35E�7 4.96 5.22E�7 4.95
40 1.06E�8 4.98 1.66E�8 4.97
80 3.39E�10 4.97 5.33E�10 4.96

10 8.11E�8 – 1.25E�7 –
20 1.25E�9 6.02 1.98E�9 5.98
40 1.98E�11 5.98 3.09E�11 6.00
80 3.38E�13 5.87 6.01E�13 5.68
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Fig. 10. Numerical results of Sod’s problem at t = 0.2.
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for all high-order schemes to maintain high order in smooth region while get rid of spurious oscillation at discontinuity.
Some schemes with the WENO idea [18] may probably provide a solution.

3. Extension to 2D Cartesian grid

In Cartesian grid, it is straightforward to extend the MCV method to multi-dimensions. Due to the regularity of the mesh,
we can directly implement the one-dimensional formulation to x and y directions, respectively.

We consider the 2D hyperbolic system,
qt þ f ðqÞx þ gðqÞy ¼ 0; ð3:1Þ
with f and g being the flux functions in x and y directions, respectively.
The unknown PVs are defined at the points shown in Fig. 2. For an Lth-order scheme, the unknowns over cell ij are qijlm

defined at points (xijl,yijm); l = 1, . . . ,L, m = 1, . . . ,L with
xij1ð¼ xi�1=2Þ; xij2; . . . ; xijl; . . . ; xijLð¼ xiþ1=2Þ and yij1ð¼ yj�1=2Þ; yij2; . . . ; yijm; . . . ; yijLð¼ yjþ1=2Þ
being equally spaced over [xi�1/2,xi+1/2] and [yj�1/2,yj+1/2], respectively.
The 1D scheme is then implemented over the line segments xij1xijL \ yijm; ðm ¼ 1; . . . ; LÞ in x direction and

xijl \ yij1yijL; ðl ¼ 1; . . . ; LÞ in y direction separately.
We introduce the averaged values along line segment xij1xijL \ yijm in x direction by
qðxÞijmðtÞ �
1

Dxi

Z
dxi

qðx; yijm; tÞdx ð3:2Þ



Fig. 11. Numerical results of Lax’s problem at t = 0.13 with TVB parameter M = 20.
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and the point-wise value and derivatives at two ends of the line segment by
q½k�ðxÞ
xi�1

2jm
ðtÞ � @

kq
@xk
ðxi�1

2
; yijm; tÞ; with k ¼ 0;1;2; � � � ;K: ð3:3Þ
Along line segment xijl \ yij1yijL in y direction, the moments are defined by
qðyÞijl ðtÞ �
1

Dyj

Z
dyj

qðxijl; y; tÞdy ð3:4Þ
and
q½k�ðyÞ
yij�1

2l
ðtÞ � @

kq
@yk
ðxijl; yj�1

2
; tÞ; with k ¼ 0;1;2; � � � ;K: ð3:5Þ
The unknown PVs along xij1xijL \ yijm in x direction is defined by
qðxÞijlmðtÞ � qðxijl; yijm; tÞ; with l ¼ 0;1;2; � � � ; L ð3:6Þ
and those along xijl \ yij1yijL in y direction by
qðyÞijlmðtÞ � qðxijl; yijm; tÞ; with m ¼ 0;1;2; � � � ; L: ð3:7Þ
We summarize the solution procedure of the 2D Lth-order MCV scheme as follows,

(i) Give the initial values for all PV moments over all cells,
qijlmð0Þ ¼ qðxijl; yijm; 0Þ; ðl ¼ 1; . . . ; L; m ¼ 1; . . . ; LÞ:



Fig. 12. Same as Fig. 11, but M = 100.
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(ii) Construct 1D MC-Lagrange polynomial interpolation along each line in x and y directions. In x direction, the interpo-
lation function reads
PðxÞijmðxÞ ¼
XL

l¼1

cðxÞijl ðxÞq
ðxÞ
ijlm; ðm ¼ 1; . . . ; LÞ; ð3:8Þ
where the basis function cðxÞijl ðxÞ ðl ¼ 1; . . . ; LÞ only depends on x. In y direction, the interpolation function is
PðyÞijl ðyÞ ¼
XL

m¼1

cðyÞijmðyÞq
ðyÞ
ijlm; ðl ¼ 1; . . . ; LÞ; ð3:9Þ
and the basis function cðyÞijmðyÞ ðm ¼ 1; . . . ; LÞ only depends on y.
(iii) The numerical formulations of the flux and the derivatives of the flux function, f̂ i�1=2jm; f̂

½k�
xi�1=2jm; (m = 1, . . . ,L) at cell

boundary xi�1/2 are evaluated by,
f̂ i�1
2jm ¼ Riemann fi�1

2jm q�i�1
2jm

� �
; fi�1

2jm qþ
i�1

2jm

� �� �
;

f̂ xi�1
2jm ¼ Riemann fxi�1

2jm q�i�1
2jm; q

�
xi�1

2jm

� �
; fxi�1

2jm qþ
i�1

2jm
; qþ

xi�1
2jm

� �� �
;

..

.

f̂ ½k�
xi�1

2jm
¼ Riemann f ½k�

xi�1
2jm

q�i�1
2jm; q

�
xi�1

2jm; . . . ; q½k��
xi�1

2jm

� �
; f ½k�

xi�1
2jm

qþ
i�1

2jm
; qþ

xi�1
2jm
; . . . ; q½k�þ

xi�1
2jm

� �� �
;

ð3:10Þ



Fig. 13. The cells where limiting is applied. TVB parameter is M = 20.
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where the left-side and right-side values at the cell boundary are computed by
q�i�1
2jm ¼ P

ðxÞ
i�1jmðxi�1

2
Þ; . . . ; q½k��

xi�1
2jm
¼ @k

@xk
PðxÞi�1jmðxi�1

2
Þ;

qþ
i�1

2jm
¼ PðxÞijmðxi�1

2
Þ; . . . ; q½k�þ

xi�1
2jm
¼ @k

@xk
PðxÞijmðxi�1

2
Þ;

ðm ¼ 1; . . . ; LÞ:
Analogously, the same procedure applies in the y direction at cell boundary yj�1/2 for ĝij�1=2l; ĝ
½k�
yij�1=2l; ðl ¼ 1; . . . ; LÞ as
ĝij�1
2l ¼ Riemann gij�1

2l q�ij�1
2l

� �
; gij�1

2l qþ
ij�1

2l

� �� �
;

ĝyij�1
2l ¼ Riemann gyij�1

2l q�ij�1
2l; q

�
yij�1

2l

� �
; gyij�1

2l qþ
ij�1

2l
; qþ

yij�1
2l

� �� �
;

..

.

ĝ½k�
yij�1

2l
¼ Riemann g½k�

yij�1
2l

q�ij�1
2l; q

�
yij�1

2l; . . . ; q½k��
yij�1

2l

� �
; g½k�

yij�1
2l

qþ
ij�1

2l
; qþ

yij�1
2l
; . . . ; q½k�þ

yij�1
2l

� �� �
;

ð3:11Þ
where
q�ij�1
2l ¼ P

ðyÞ
ij�1lðyj�1

2
Þ; . . . ; q½k��

yij�1
2l
¼ @k

@yk
PðyÞij�1lðyj�1

2
Þ;

qþ
ij�1

2l
¼ PðyÞijl ðyj�1

2
Þ; . . . ; q½k�þ

yij�1
2l
¼ @k

@yk
PðyÞijl ðyj�1

2
Þ;

ðl ¼ 1; . . . ; LÞ:



Fig. 14. Same as Fig. 13, but M = 100.
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(iv) If L is an even number, the first-order derivatives in respect to x and y at the center points of line segments
xij1xijL \ yijm; ðm ¼ 1; . . . ; LÞ and xijl \ yij1yijL; ðl ¼ 1; . . . ; LÞ need to be evaluated as the constraint conditions, which then
requires the second-order derivatives of the flux functions. We use formulations in 1D, such as (2.23) and (2.27), and
compute the second-order derivatives of the flux functions by
f̂ ½2�xicjcm ¼ T f̂ icjcm; f̂ i�1
2jm; f̂ xi�1

2jm; . . .
� �

ðm ¼ 1; . . . ; LÞ;

ĝ½2�yicjcl ¼ T ĝicjcl; ĝij�1
2l; ĝyij�1

2l; . . .
� �

ðl ¼ 1; . . . ; LÞ:
ð3:12Þ
where T denotes the numerical approximation to the second-order derivative in terms of the center point value, the
flux and the derivatives of the flux at the cell boundary.

(v) From (2.5a) and (2.5b), the time evaluation equations in x direction for different moments are written as
dqðxÞijm

dt
¼

f̂ iþ1
2jm � f̂ i�1

2jm

Dxi
;

dq½k�ðxÞ
xi�1

2jm

dt
¼ �f̂ ½kþ1�

xi�1
2jm

; k ¼ 0; . . . ;K;

dqðxÞxicjcm

dt
¼ �f̂ ½2�xicjcm;

ð3:13Þ



Fig. 15. Numerical results of the shock–turbulence interaction with M = 500 at t = 1.8.
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for m = 1, . . . ,L, and those in y direction read
dqðyÞijl

dt
¼

ĝijþ1
2l � ĝij�1

2l

Dyj
;

dq½k�ðyÞ
yij�1

2l

dt
¼ �ĝ½kþ1�

yij�1
2l
; k ¼ 0; . . . ;K;

dqðyÞyicjcl

dt
¼ �ĝ½2�yicjcl;

ð3:14Þ
for l = 1, . . . ,L.
(vi) The evolution equations for the x and y components of the unknown PVs, qðxÞijlm and qðyÞijlm are separately cast as
dqðxÞijlm

dt
¼ SðxÞðf̂ ½2�xicjc; f̂ i�1

2jm; f̂ xi�1
2jm; . . .Þ;

dqðyÞijlm

dt
¼ SðyÞðĝ½2�yicjc; ĝij�1

2l; ĝyij�1
2l; . . .Þ;

ð3:15Þ
for l = 1, . . . ,L and m = 1, . . . ,L. The operators SðxÞ and SðyÞ stand for the numerical formulations derived from the mo-
ment constraint conditions (3.13) and (3.14).
Finally, time evolution equations of the PV unknowns are obtained by summing up the x and y components by
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Fig. 16. Numerical results of the shock–turbulence interaction with M = 2500 at t = 1.8.

3688 S. Ii, F. Xiao / Journal of Computational Physics 228 (2009) 3669–3707
dqijlm

dt
¼

dqðxÞijlm

dt
þ

dqðyÞijlm

dt
¼ SðxÞðf̂ ½2�xicjc; f̂ i�1

2jm; f̂ xi�1
2jm; . . .Þ þ SðyÞðĝ½2�yicjc; ĝij�1

2l; ĝyij�1
2l; . . .Þ; ð3:16Þ
for l = 1, . . . ,L and m = 1, . . . ,L.

It is easy to show that the volume-integrated average (VIA moment),
qij ¼
Z

dxi

Z
dyj

qðx; y; tÞdxdy

 !,
ðDxiDyjÞ
is numerically conserved. In fact, the total 2D VIA is the summation of the averages over the line segments,
qðxÞij ðyÞ; q

ðyÞ
ij ðxÞ in x and y directions, i.e.
dqij

dt
¼ 1

Dyj

Z
dyj

dqðxÞij ðyÞ
dt

dyþ 1
Dxi

Z
dxi

dqðyÞij ðxÞ
dt

dx: ð3:17Þ
The integrals qðxÞij ðyÞ ¼
R

dxi
qðx; y; tÞdx=Dxi and qðyÞij ðxÞ ¼

R
dyj

qðx; y; tÞdy=Dyi are then cast into a discretized form as
dqij

dt
¼
XL

m¼1

xm

dqðxÞijm

dt
þ
XL

l¼1

xl

dqðyÞijl

dt
; ð3:18Þ
where x are the weighting constants for the quadrature. From (3.13) and (3.14), the 2D VIA are evaluated by the total fluxes
across the cell boundary by
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Fig. 17. Numerical results of two interacting blast waves at t = 0.038.

Table 5
Numerical errors and convergence rate for the 2D linear scalar equation.

Accuracy Mesh L1 error L1 order L1 error L1 order

3rd 10 1.25E�2 – 1.93E�2 –
20 1.67E�3 2.90 2.61E�3 2.89
40 2.13E�4 2.97 3.34E�4 2.97
80 2.68E�5 2.99 4.21E�5 2.99

4th 10 1.86E�4 – 2.88E�4 –
20 1.27E�5 3.87 1.97E�5 3.87
40 8.19E�7 3.95 1.28E�6 3.94
80 5.25E�8 3.96 8.25E�8 3.96

5th 10 5.35E�5 – 8.26E�5 –
20 1.72E�6 4.96 2.71E�6 4.93
40 5.88E�8 4.87 9.24E�8 4.87
80 1.71E�9 5.10 2.69E�9 5.10
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dqij

dt
¼ �

XL

m¼1

xm

f̂ iþ1
2jm � f̂ i�1

2jm

Dxi
�
XL

l¼1

xl

ĝijþ1
2l � ĝij�1

2l

Dyj
¼ �

f̂ iþ1
2j � f̂ i�1

2j

Dxi
�

ĝijþ1
2
� ĝij�1

2

Dyj
; ð3:19Þ
where f̂ i� 1
2 j ¼

PL
m¼1xm f̂ i � 1

2 jm and ĝij� 1
2
¼
PL

l¼1xlĝij� 1
2 l are the numerical fluxes across the 2D cell boundaries in x and y

directions. The total 2D VIA is then computed by a completely conservative formulation of flux-form.
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Fig. 18. Exact (initial) solution of the 2D advection problem.
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4. Numerical examples

4.1. 1D Linear scalar equation

In this subsection numerical tests to advect 1D profiles are solved by the MCV schemes for the following scalar equation
qt þ qx ¼ 0: ð4:1Þ
4.1.1. Accuracy test
First, we check the convergence rate of the present method via the grid refinement tests. Smooth distribution are initially

given as
qðx;0Þ ¼ sinðpxÞ ð�1 6 x 6 1Þ: ð4:2Þ
We refined the grid for the schemes of different orders. The numerical errors at t = 2 (after one period) are examined. Two
kinds norms are used to measure the errors, i.e. L1 ¼

Pimax
i¼1 jqe

i � qn
i j=imax and L1 ¼max16i6imaxðqe

i � qn
i Þ, where qe is the exact

solution and qn
i the numerical one.

The convergence rates of the cell-averaged value from third-order to sixth-order schemes are shown in Table 2. It is ob-
served that the expected convergence rate for different order schemes are obtained.

4.1.2. Advection of a square wave
This numerical example is to test the capability of MCV schemes to capture a jump discontinuity. The key for a scheme to

resolve a piecewise jump discontinuity essentially depends on the interpolation reconstruction. It is well-known that with
increased wave number the Fourier series converges to such a function almost everywhere except at the jump discontinuity
where the Gibbs phenomenon of a finite overshoot or undershoot occurs.

We computed the following square wave advected by (4.1),
qðx; 0Þ ¼
1 for jxj 6 0:4
0 otherwise

�
ð�1 6 x 6 1Þ: ð4:3Þ
The initial conditions of the unknowns for different order schemes are given in the way described in Section 2.6.
To see how the multi-moment reconstruction approaches the square wave, we ran the test without the limiting projec-

tion for one revolution. We use meshes of 200, 133, 100 and 66 cells for third-, fourth-, fifth- and sixth-order MCV schemes
separately to maintain the total number of DOFs being roughly 400 for all cases. Here, we share the PV moment on cell
boundary without limiting. The numerical solutions are shown in Fig. 3. The multi-moment reconstruction behaves in a
manner quite similar to the spectral method. The sixth-order scheme gives the most converged numerical solution compared
to other lower order schemes.



Fig. 19. Numerical results of the 2D advection problem without limiter.
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4.1.3. Jiang and Shu’s problem [13]
This example was used in [13] to evaluate the capability of the schemes in capturing both discontinuity and smooth solu-

tion. The initial distribution includes four types of profiles as
qðx; 0Þ ¼

1
6 Gðx; b; z� dÞ þ Gðx;b; zþ dÞ þ 4Gðx;b; zÞð Þ for � 0:8 6 x 6 �0:6;
1 for � 0:4 6 x 6 �0:2;
1� j10ðx� 0:1Þj for 0:0 6 x 6 0:2;
1
6 Fðx;a; a� dÞ þ Fðx;a; aþ dÞ þ 4Fðx;a; aÞð Þ for 0:4 6 x 6 0:6;
0; otherwise;

8>>>>>><
>>>>>>:

ð4:4Þ
where the functions are defined by Gðx; b; zÞ ¼ e�bðx�zÞ2 and Fðx;a; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð1� a2ðx� aÞ2;0Þ

q
. The constants are specified as

a = 0.5, z = �0.7, d = 0.005, a = 10 and b = log2/(36d2). We computed over a 200-cell mesh with and without the use of the
slope limiter.



Fig. 20. Numerical results of the 2D advection problem with TVD limiter (M = 0).

Table 6
Numerical errors and convergence rate for the advection of density perturbation.

Accuracy Mesh L1 error L1 order L1 error L1 order

3rd 10 2.50E�3 – 3.86E�3 –
20 3.34E�4 2.90 5.22E�4 2.89
40 4.25E�5 2.97 6.68E�5 2.97
80 5.36E�6 2.99 8.41E�6 2.99

4th 10 3.73E�5 – 5.75E�5 –
20 2.54E�6 3.88 3.95E�6 3.86
40 1.64E�7 3.95 2.57E�7 3.94
80 1.04E�8 3.98 1.63E�8 3.98

5th 10 1.04E�5 – 1.61E�5 –
20 3.39E�7 4.94 5.33E�7 4.92
40 1.08E�8 4.97 1.69E�8 4.98
80 3.41E�10 4.99 5.36E�10 4.98
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Table 7
Numerical errors and convergence rate for the vortex propagation test at t = 2.

Accuracy h L1 error L1 order L1 error L1 order

3rd 1/2 1.63E�4 – 1.10E�2 –
1/4 2.72E�5 2.58 1.91E�3 2.53
1/8 3.73E�6 2.87 2.76E�4 2.79

1/16 4.80E�7 2.96 3.55E�5 2.96

4th 1/2 9.49E�6 – 5.92E�4 –
1/4 6.42E�7 3.89 5.13E�5 3.53
1/8 3.89E�8 4.04 3.16E�6 4.02

1/16 2.38E�9 4.03 1.78E�7 4.15

5th 1/2 6.78E�6 – 3.41E�4 –
1/4 2.52E�7 4.75 1.88E�5 4.18
1/8 8.25E�9 4.93 7.44E�7 4.66

1/16 2.67E�10 4.95 2.44E�8 4.93
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Fig. 21. Density profiles of the 2D vortex propagation problem with Nx = Ny = 32 on y = 0 cross section at t = 10 and t = 100.
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Fig. 22. Time evolution of the numerical errors for 2D vortex propagation problem from the third-, fourth- and fifth-order MCV methods.
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The numerical results at t = 2 (after one period) without limiter is plotted in Fig. 4. It is clearly observed that a higher or-
der scheme produces better results for both discontinuity and smooth region. The sixth-order MCV scheme gives the best
results, not only for the smooth solution but also for the discontinuous jumps which were revolved within two mesh cells
as shown in the previous test.

We continued the computations until t = 20 (after 10 period) and compared the numerical results from the third-order
and the sixth-order MCV schemes. The numerical results are shown in Fig. 5. Compared to the third-order one, which is more
dissipative, the sixth-order scheme looks much superior for long term integration.

Numerical results with a TVB limiter for M = 200 and M = 0 are shown in Figs. 6 and 7, respectively. When the limiting
projection applied to eliminate the spurious oscillation, the difference in the numerical results from the schemes of different



Fig. 23. Numerical results of Mach 3 wind tunnel with a step at t = 4.0 with 120 � 40 cells.
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orders is not much significant. Furthermore, the parameter M in the TVB scheme affects the numerical results, but is prob-
lem-dependent. As in other high-order schemes, the limiting projection is still a topic worth further investigations.

4.2. 1D nonlinear inviscid Burger’s equation

The 1D nonlinear Burger’s equation without the effect of viscosity is written as,
ut þ
1
2

u2
� �

x
¼ 0: ð4:5Þ
In this example, we compute the numerical flux at cell boundary xi�1
2

by
f̂ ½k�
xi�1

2
¼ 1

2
f ½k��
xi�1

2
þ f ½k�þ

xi�1
2
� sgn ai�1

2

� �
f ½k�þ
xi�1

2
� f ½k��

xi�1
2

� �� �
; ð4:6Þ
where ai�1=2 ¼ ðui�1 þ uiÞ=2. As an alternative, the multi-moment reconstruction is built in terms of the flux function
f = (u2/2) instead of the conservative variable u.

A smooth profile
uðx; 0Þ ¼ 0:5þ sinðpxÞ ð0 6 x 6 2Þ ð4:7Þ



Fig. 24. Numerical results of Mach 3 wind tunnel with a step at t = 4.0 with 240 � 80 cells.
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was used as the initial condition. As can be expected, shock waves will develop in the course of time due to the nonlinearity.
In order to evaluate the accuracy, or the convergence rate in respect to grid refinement, we ran the computation
up to t = 0.5p before the formation of the shocks. The mesh are gradually refined by 20, 40, 80, 160 and 320 cells. The numer-
ical errors in L1 and L1 norms as well as the convergence rate for third-, fourth-, fifth- and sixth-order MCV schemes
are shown in Table 3. It is observed that a roughly spectral decline in the numerical errors is obtained when a finer mesh
is used.

We continued the computation on the 40-cell mesh until t = 1.5p. A TVB limiter is used to remove the numerical oscil-
lation in the presence of the shock waves. The numerical results of 3rd and 5th schemes are plotted in Fig. 8. To further
examine the numerical errors and the effects of the limiting projection in the case where a shock is developed, we show
the error distributions of third- and fifth-order schemes in Fig. 9. It is found that the convergence due to both h-refinement
and p-refinement are obtained. In the vicinity of discontinuity where the TVB limiter switches the reconstruction to lower
order, however, the orders of the schemes on all meshes degrade. It reveals that the TVB limiter maintains to some extent the
numerical accuracy of a high order scheme in the smooth region, but the determination of the TVB parameter remains a
problem requiring further investigation.

4.3. 1D Euler equations

The 1D Euler equations are written as
q ¼ q;qu; Eð ÞT ; f ðqÞ ¼ qu;qu2 þ p; uðEþ pÞ
� 	T

; ð4:8Þ
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Fig. 25. Numerical results of Mach 3 wind tunnel with a step at t = 4.0 with 480 � 160 cells.

3696 S. Ii, F. Xiao / Journal of Computational Physics 228 (2009) 3669–3707
where q is the density, u the velocity, p the pressure and E the total energy. For perfect gas, we have the equation of state as,
E ¼ p
c� 1

þ 1
2
qu2; ð4:9Þ
where c = 1.4.
For the Euler systems, we decompose conservative variables to the characteristic variables using the right and left eigen

matrix (for detail see [19]). In the computations of the Euler equations, we apply the Roe approximate Riemann solver [19].

4.3.1. Advection of density perturbation [18]
In order to check the convergence rate of the present schemes for the nonlinear systems, we consider the propagation of

smooth density perturbation. Constant pressure and velocity are initially specified as u(x,0) = 1 and p(x,0) = 1. A smooth dis-
tribution of the density is given by q(x,0) = 1 + 0.2sin(px), the solution of this problem will evolve as the propagation of the
density perturbation.

We measured the L1 and L1 errors at t = 2 with periodic conditions over [0,2]. The cell is doubly refined from 10 to 80. The
results of the density for the grid refinement are shown in Table 4. A satisfactory convergence rate is obtained.

4.3.2. Sod’s problem [25]
The initial distribution is defined as
ðq0;u0;p0Þ ¼
ð1;0;1Þ for 0 6 x 6 0:5
ð0:125;0;0:1Þ otherwise

�
ð0 6 x 6 1Þ: ð4:10Þ
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Fig. 26. Numerical results of Mach 3 wind tunnel with a step at t = 4.0 with 960 � 320 cells.
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We carried out the computation until t = 0.2 with 100 cells by third-order, fourth-order and fifth-order MCV schemes. In this
test, the TVB parameter M = 150 is applied.

The numerical results of density are shown in Fig. 10. The results from different schemes are not much different. These
numerical results look overall competitive to those of the DG scheme reported in [5].

4.3.3. Lax’s problem
This test is known as Lax’s problem, another 1D shock tube starting from the following initial condition,
ðq0;u0;p0Þ ¼
ð0:445; 0:698;3:528Þ for 0 6 x 6 0:5
ð0:5;0; 0:571Þ otherwise

�
ð0 6 x 6 1Þ: ð4:11Þ
We computed this test on a 100-cell mesh with third, fourth and fifth-order MCV schemes, and examined the effects of
the TVB limiter.

Figs. 11 and 12 show the numerical results with TVB parameter being M = 20 and M = 100 respectively. The limiter
effectively removes the spurious oscillations, but makes the numerical outputs look nearly identical in this shock dominant
problem. To evaluate further the performance of the TVB limiter, we plotted out the spots where the limiting procedure is in
effect on the x � t plane in Figs. 13 and 14, respectively for M = 20 and M = 100 cases. It is observed that the limiting is
brought into play around shock wave, contact discontinuity and the front of the expansion fan where the discontinuous nat-
ure is remarkable in the solution. Compared to M = 20, the case of M = 100 allows a less restrictive condition on the smooth-
ness which results in the switch-off of the limiting on the front of the expansion fan in the later stage.
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Fig. 27. Numerical results of double Mach reflection at t = 0.2 with 180 � 60 cells.
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4.3.4. Shock–turbulence interaction [24]
Second example in the Euler equations was proposed by Shu [24], where the initial conditions are
ðq0;u0;p0Þ ¼
ð3:857148;2:629369;10:333333Þ for 0 6 x 6 1
ð1þ 0:2 sinð5x� 5Þ;0;1Þ otherwise

�
ð0 6 x 6 10Þ: ð4:12Þ
We computed this example with two values of M, i.e. M = 500 and M = 2500.
The results of density at t = 1.8 with 200 cells are displayed in Figs. 15 and 16. As expected, when M = 500, higher order

scheme can well resolve the solution around smooth region. When M = 2500, the fourth-order MCV scheme reproduces bet-
ter the smooth profile compared to the third-order scheme. However, the result from the fifth-order scheme has some
numerical oscillations. This might partly due to the limiting procedure, and implies that higher order scheme needs other
type of limiter such as those using the WENO reconstruction [16,13].

4.3.5. Two interacting blast waves [34]
The problem including strong interacting shock waves is tested as well. The initial conditions with very large pressure

difference are defined as
ðq0;u0;p0Þ ¼
ð1; 0;1000Þ for 0 6 x 6 0:1
ð1; 0;0:01Þ for 0:1 6 x 6 0:9
ð1; 0;100Þ otherwise

8><
>: ð0 6 x 6 1Þ: ð4:13Þ
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Fig. 28. Numerical results of double Mach reflection at t = 0.2 with 360 � 120 cells.
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We use 400 cells and impose reflective boundary conditions at the two ends of the computational domain. The TVB param-
eter is set to M = 500.

The results of density at t = 0.38 are shown in Fig. 17. It is a case where discontinuity and shock wave are dominant, thus
the numerical solutions computed by schemes of different orders look fairly identical.

4.4. 2D Linear scalar equation

We consider the 2D linear advection equation,
qt þ uqx þ vqy ¼ 0; ð4:14Þ
where (u,v) are the velocity components in x and y directions.

4.4.1. Accuracy test
In order to evaluate the convergence rate for the linear scalar equation, we conducted a mesh refinement test with the

smooth initial condition defined by q(x,y,0) = sin(p(x + y)). The velocity is set to be constant as (u,v) = (1,1). A periodic bound-
ary conditions are specified. The L1 and L1 errors at t = 2 are shown in Table 5. Expected convergence rates of the MCV
schemes from third- to fifth-orders are verified.
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Fig. 29. Numerical results of double Mach reflection at t = 0.2 with 720 � 240 cells.
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4.4.2. Rotation test
We extend the 1D Jiang and Shu’s problem [13] to 2D with the rotational velocity field defined by (u,v) = (�2py,2px). The

computational domain is [�1,1] � [�1,1]. The initial distribution, shown in Fig. 18, is defined by
qðx; y; 0Þ ¼

1
6 Gðr1 þ d;bÞ þ Gðr1 � d;bÞ þ 4Gðr1;bÞð Þ for jr1j 6 0:2;
1 for jxj 6 0:2; �0:8 6 y 6 �0:4;
1� j5r2j for jr2j 6 0:2;
1
6 Fðr3 þ d;aÞ þ Fðr3 � d;aÞ þ 4Fðr3;aÞð Þ for jr3j 6 0:2;
0; otherwise;

8>>>>>><
>>>>>>:

ð4:15Þ
where
r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 0:6Þ2 þ y2

q
; r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:6Þ2 þ y2

q
; r3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy� 0:6Þ2

q
; ð4:16Þ
and Gðr; bÞ ¼ e�br2
; Fðr;aÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð1� a2r2;0Þ

p
. The constants are valued as d = 0.01, a = 5 and b = log2/(36d2). The compu-

tation is run up to t = 1 (after one revolution) with 100 � 100 cells.
The numerical results without limiter are shown in Fig. 19, the result from the fifth-order result is much better than that

of the third-order scheme. The results with the TVD superbee limiter are shown in Fig. 20. Similar to the 1D case, when a
limiter is applied, all schemes become more diffusive so that the higher order scheme looks only marginally superior. More
sophisticated limiting is still demanding.
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Fig. 30. Numerical results of double Mach reflection at t = 0.2 with 1440 � 480 cells.
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4.5. 2D Euler equations

The 2D Euler equations are given by
q ¼ q;qu;qv; Eð ÞT ;

f ðqÞ ¼ qu;qu2 þ p;quv; uðEþ pÞ
� 	T

;

gðqÞ ¼ qv;quv ;qv2 þ p; vðEþ pÞ
� 	T

;

ð4:17Þ
where q is the density, (u,v) the velocity components in x and y directions, p the pressure and E the total energy given by
E ¼ p
c� 1

þ 1
2
qðu2 þ v2Þ: ð4:18Þ
We apply Roe’s approximate Riemann solver with Harten’s entropy fix [9];
jk	mj ¼
jkmj if jkmjP �;
ðk2

m þ �2Þ=ð2�Þ; otherwise;

�
ð4:19Þ
where k	m is the modified m component of the characteristics velocity and � is a small positive.
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Fig. 31. Blew-up views of double Mach reflection at t = 0.2 with 720 � 240 cells.
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4.5.1. Advection of density perturbation [18]
Again, we evaluated the convergence rate for the Euler equations by the grid refinement test. The smooth density profile

is initially given by q(x,y,0) = 1 + 0.2sin(p(x + y)). Constant velocity and pressure are specified by u(x,y,0) = 0.7, v(x,y,0) = 0.3
and p(x,y,0) = 1.

We measured the L1 and L1 errors at t = 2 with periodic conditions over [�1,1]. From Table 6, it is clear that our schemes
achieve expected orders of accuracy even for 2D nonlinear systems.

4.5.2. Isentropic vortex [23]
Advection of an isentropic vortex in a free stream [23] has been also computed to examine the order of accuracy of the

presented method in a flow that shares the strong nonlinearity of the Euler equations.
An isotropic vortex perturbation is propagated in a mean flow given by (q,u,v,p) = (1,1,1,1). The perturbation is defined

as,
ðdu; dvÞT ¼ �
2p

exp
1� r2

2

� �
ð�y; xÞT ; dT ¼ �ðc� 1Þ�2

8cp2 expð1� r2Þ; dS ¼ 0;
where r2 = x2 + y2, temperature T = p/q, entropy S = p/qc and the vortex parameter is set to � = 5. The solution at any
time is the initially specified vortex translated over a distance by the velocity (1,1). Similar to [8], the computational domain
is taken as [�10,10]2. In this test, we make use of the flux splitting solver (2.8) for the flux function and its derivatives
to get the uniform convergence rate. We define the grid size as h = 20/Nx = 20/Ny, where Nx and Ny are the cell numbers
in x and y directions respectively. Numerical experiments were carried out with the grid size gradually refined. The
numerical errors in L1 and L1 norms at t = 2, as well as the convergence rates for the schemes of different orders are given
in Table 7.

We can obtain third-, fourth- and fifth-order accuracy by the corresponding schemes in this more realistic test for the
nonlinear Euler equations.
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Fig. 32. Blew-up views of double Mach reflection at t = 0.2 with 1440 � 480 cells.
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In order to visually illustrate the accuracy of the numerical solutions, we re-computed the test on the computational do-
main of [�5,5]2 with periodical boundary conditions, so that the vortex returns to its initial position at an interval of t = 10.
The cell number is set to Nx = Ny = 32. We plot the density profiles on y = 0 for third-, fourth- and fifth-order MCV methods at
t = 10 (1 cycle) and t = 100 (10 cycles) in Fig. 21. All the results at t = 10 are perfectly preserved, however, the result of third-
order MCV method looks dissipative after a long term run at t = 100. The results of the fourth- and fifth-order MCV methods
at t = 100, on the other hand, maintain visually identical to the analytical solution (the initial profile). The time evolution of
the numerical errors measured by L1 and L1 norms are shown in Fig. 22, which manifests again the numerical accuracy of the
schemes.

4.5.3. Mach 3 wind tunnel with a step [34]
This problem was originally reported in [34] to verify 2D shock capturing schemes. The uniform compressible flow of

Mach 3 attacks a step from left in a tunnel with a size of [0,3] � [0,1]. An inflow condition is imposed on the left boundary,
and an outflow condition on the right boundary. The upper and lower boundaries are reflective walls. We run the compu-
tation until t = 4 with a TVB superbee limiter where parameters M = 5 and b = 1.8 in (2.37) and (2.34) are used.

The numerical results with the mesh number increased from 120 � 40 to 960 � 320 from the third-, fourth- and fifth-or-
der MCV schemes are shown in Figs. 23–26. In our simulation, the non-physical Mach stem problem caused by the singular
point at the step corner does not appear even without any modifications. It is also noted that the fifth-order MCV can better
resolves the vortex structures generated at the joint point of the three shocks, as shown in Fig. 26. Our results are compet-
itive to the results of the high-order DG method [7].

4.5.4. Double Mach Reflection [34]
This is also a widely used test problem to validate schemes for capturing both shock and vortex structures. The compu-

tation domain is set as [0,3.2] � [0,1]. Compressible flow of Mach 10 moves obliquely and is reflected on the bottom wall at
the section x P 1/6. The left and top boundary conditions are imposed by the post-shock conditions and right boundary is
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specified as outflow condition. We use the uniform grid with the meshes of different resolutions. The computation is carried
out up to t = 0.2.

The numerical results are shown in Figs. 27–30, and the blew-up solutions for the vortex structures on the fine meshes
are shown in Figs. 31 and 32. With increased mesh resolution, the vortex structures and instability along the slip lines are
resolved adequately. It is observed that the fifth-order scheme gives the best solution, as shown in Fig. 31. Solutions with a
1440 � 480 mesh in Fig. 32 reproduce the complicated flow structures quite similar to that of the ninth-order WENO scheme
given in [20].

5. Concluding remarks

We have proposed and tested a conservative and high-order finite volume method, so-called multi-moment constrained
finite volume (MCV) method, for the 1D and 2D hyperbolic conservation laws. The unknowns are the point values defined
within single cell at equally spaced points. The time evolution equations used to update the unknowns are derived from a set
of constraint conditions imposed on different kinds of moments, i.e. the cell-averaged value and the point-wise value of the
state variable and its derivatives. The constraint on the cell-average guarantees the numerical conservativeness of the meth-
od. Most constraint conditions are imposed on the cell boundaries, where the numerical flux and its derivatives are solved as
general Riemann problems. A multi-moment Lagrange interpolation reconstruction converts the evolution equations of the
moments to those of the unknowns.

The equally spaced points are used to defined the unknowns in the present method, yielding a more simple and efficient
formulation to derive the evolution equations from the moment constraint conditions. The MCV method allows larger CFL
numbers for computational stability compared to other high-order schemes using local reconstructions. We have given the
MCV schemes from third to sixth-orders in this paper. The numerical tests show that the MCV method is able to produce
competitive results and is promising as a high-order method for CFD applications. The basic idea reported in this
paper can be easily extended to unstructured mesh. We will report the formulation on unstructured mesh in a separate
paper.

Appendix A. A The multi-moment constrained Lagrange interpolation

In an MCV scheme, multi-moment constrained Lagrange polynomial (MC-Lagrange polynomial) is used for reconstruc-
tion. Different from the conventional Lagrange interpolation, the values at the interior points are determined from con-
straints in terms of multi-moments.

We use a local coordinate system n 2 [0,1] that is connected to the real mesh cell x 2 [xi�1/2,xi+1/2] by
n ¼
x� xi�1

2

Dxi
; ðA:1Þ
where Dxi = xi+1/2 � xi�1/2.
Consider a set of sample points (n1(=0),n2, . . . ,nL(=1)) equally spaced in [0,1], we denote the samples of function q(n) by

q1,q2, . . . ,qL. An MC-Lagrange polynomial is in the form of Lagrange polynomial,
PðnÞ ¼
XL

l¼1

clql; ðA:2Þ
where
cl ¼
YL

j¼1;j–l

n� nj

nl � nj
ðA:3Þ
is the basis function of the Lagrange interpolation.
Given the constraints in terms of the multi-moments as follows
Pðn1Þ ¼ q1;

PðnLÞ ¼ qL;R 1
0 PðnÞdn ¼ q;
@k

@kn
Pðn1Þ ¼ @k

@kn
qðn1Þ ¼ q½k�n1;

@k

@kn
PðnLÞ ¼ @k

@kn
qðnLÞ ¼ q½k�nL ;

k ¼ 1;2; . . .

8>>>>>>>>>><
>>>>>>>>>>:

ðA:4Þ
the values at the cell ends, i.e. q1 and qL are determined from the first two equations in (A.4) in the way same as the con-
ventional Lagrange interpolation. The values at the interior points (q2,q3, . . . ,qL�1) are found from the rest relationships in
(A.4), which is essentially different from sampling the data at the discrete points (q(n2),q(n3), . . . ,q(nL�1)) as in the conven-
tional Lagrange interpolation.
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We give two examples of the MC-Lagrange polynomial as below,

� Quadratic MC-Lagrange polynomial.
Three DOFs in a quadratic MC-Lagrange polynomial (q1,q2,q3) are uniquely determined by following constraints,
Pðn1Þ ¼ q1;

Pðn3Þ ¼ q3;R 1
0 PðnÞdn ¼ q:

8><
>: ðA:5Þ
The only interior point value is
q2 ¼ ð6q� q1 � q3Þ=4: ðA:6Þ
� Quartic MC-Lagrange polynomial.
Five constraint conditions are given as
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Fig. 33. Interpolation for fitting q(x) = 1/(1 + 25x2) by conventional Lagrange reconstruction.
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Fig. 34. Interpolation for fitting q(x) = 1/(1 + 25x2) by MC-Lagrange reconstruction.
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Pðn1Þ ¼ q1;

Pðn5Þ ¼ q5;R 1
0 PðnÞdn ¼ q;
@
@nPðn1Þ ¼ @

@n qðn1Þ ¼ qn1;

@
@nPðn5Þ ¼ @

@n qðn5Þ ¼ qn5:

8>>>>>>><
>>>>>>>:

ðA:7Þ
The three interior point values are
q2 ¼ 51
128 q1 þ 27

512 qn1 � 95
256 q5 þ 21

512 qn5 þ 135
128 q;

q3 ¼ � 3
8 q1 � 1

32 qn1 � 7
16 q5 þ 1

32 qn5 þ 15
8 q;

q4 ¼ � 61
128 q1 � 21

512 qn1 þ 81
256 q5 � 27

512 qn5 þ 135
128 q:

8><
>: ðA:8Þ
Imposing the multi-moment constraints, such as the cell-average and the derivatives of the function, in the process of
determining interpolation function, the MC-Lagrange polynomial is very stable and less oscillating. To show this, we approx-
imate function
qðxÞ ¼ 1=ð1þ 25x2Þ ðA:9Þ
which makes the conventional Lagrange interpolation fail due the well-known Runge phenomenon.
The VIA moment as well as the PV moment and derivatives of different orders at the domain boundary are used as the

multi-moment constraints to determine the MC-Lagrange polynomial.
We include the results of the conventional Lagrange interpolation for comparison in Fig. 33. As well-known, the Lagrange

interpolation that samples the values at equidistance points suffers a large oscillation at two ends of the domain, thus fails to
converge to the original function, and even worse, the interpolation becomes unstable as one increases the order of the
polynomial.

The MC-Lagrange polynomial, as shown in Fig. 34, demonstrates a well regulated behavior and converges to the original
function at almost a linear rate.

Finally, we should note that the multi-moment constraining is a general concept. We by no means limit ourselves to the
Lagrange interpolation and constraints discussed here, and other alternatives are worthy of further exploration.
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