
norges teknisk-naturvitenskapelige
universitet

Accurate interface-tracking for arbitrary
Lagrangian-Eulerian schemes

by

Tormod Bjøntegaard, Einar M. Rønquist

preprint
numerics no. 3/2008

norwegian university of
science and technology

trondheim, norway

This report has URL
http://www.math.ntnu.no/preprint/numerics/2008/N3-2008.pdf

Address: Department of Mathematical Sciences, Norwegian University of Science and
Technology, N-7491 Trondheim, Norway.





Accurate interface-tracking for arbitrary
Lagrangian-Eulerian schemes

Tormod Bjøntegaard, Einar M. Rønquist

March 31, 2008

We present a new method for tracking an interface immersed in a given veloc-
ity field. The method is particularly relevant to the simulation of unsteady free
surface problems using the arbitrary Lagrangian-Eulerian (ALE) framework.
The new method has been constructed with two goals in mind: (i) to be able
to accurately follow the interface; and (ii) to maintain a good point distribu-
tion for the grid points along the interface. The method combines information
from a pure Lagrangian approach with information from an ALE approach.
No integration backwards in time is needed; instead, the new method relies of
the solution of several pure convection problems along the interface in order to
obtain the relevant information. The new method offers flexibility in terms of
how an "optimal" point distribution should be defined. We have been able to
verify first, second, and third order temporal accuracy for the new method by
solving two-dimensional model problems with known solutions.

1 Introduction

The ability to accurately follow time-dependent surfaces is very important in many areas
of computational science and engineering. An important class of such problems is free
surface flows, with the free surface representing the interface between two fluids, e.g., air
and water. Computational methods for solving such problems can typically be classified
into two categories: methods which explicitly track the free surface (interface-tracking
methods; e.g., [16]) and methods where the interface is more implicitly defined (e.g., level
set methods [15, 17, 14] or volume-of-fluid methods [6]); we will here focus on the former
class.

Interface-tracking methods (or sometimes also referred to as front-tracking methods)
comprise a few essential steps. At any particular point in time, a velocity field is typically
determined from the governing equations within the fluid(s), e.g., by solving the Navier-
Stokes equations. By integrating this velocity field, it is possible to obtain a new position
of the interface.

A pure Lagrangian approach applied to an evolving interface is simply based on integrat-
ing the velocity of the fluid particles along the surface to obtain the position of the surface
at a later point in time. However, in the context of a numerical approximation (e.g., using
finite-element-based methods), a pure Lagrangian approach is often not a very practical
approach since it typically results in large deformations of the computational domain.

In the context of free surface flows, the arbitrary Lagrangian-Eulerian (ALE) formulation
of the governing equations has been very successful as a point of departure for a numerical
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approximation [7, 3, 10]. A typical approach to updating the free surface is to enforce
a kinematic condition along the surface. This condition has its origin in a continuum
description, and says that the normal fluid velocity has to be equal to the normal domain
velocity at any point along the surface. An important consequence of this condition is the
fact that a fluid particle which is present somewhere along the free surface at a particular
time will also be present at the free surface at a later time.

While the kinematic condition enforces a normal condition, a tangential domain velocity
also needs to be specified along the surface; a common choice is to enforce a homogeneous
Dirichlet condition for the tangential component [18, 1]. This choice typically reduces the
deformation of the computational domain compared to a pure Lagrangian approach, how-
ever, it offers limited control over the quality of the grid used to represent the free surface.
In particular, the distribution of the grid points along the free surface may deteriorate over
time, which may ultimately result in severe loss of accuracy (or even breakdown of the
simulation). This latter issue may be dealt with in various ways, e.g., through remeshing
or other mesh update strategies [11, 4]. However, the temporal accuracy will typically
suffer using such a strategy.

The issue of a non-optimal evolution of the surface representation is particularly acute
in the context of using high order finite elements or spectral elements. The reason for
this is related to the fact that such methods depend on locally regular mappings between a
reference domain and the corresponding physical element. If the distribution of the surface
points along the free surface becomes very distorted, this mapping may not be so regular
anymore, resulting in a loss of spatial accuracy. This will again affect the calculation of
tangent and normal vectors, as well as the local curvature, since the computation of these
quantities depends on the coupling between many surface points [9, 21].

One could also imagine enforcing the kinematic condition together with a tangential
component of the domain velocity in such a way that the integration of the total domain
velocity would: (i) result in an accurate representation of the free surface; and (ii) maintain
a good distribution of the grid points along the surface [4, 2]. An obvious challenge with
this approach is how to define the overall domain velocity in such a way that not only
good spatial accuracy is achieved (with no need for remeshing), but in a way that will
also ensure good temporal accuracy (better than first order). The goal of this paper is to
propose a way to achieve these two objectives at the same time.

The paper is organized as follows. We first discuss some key aspects associated with the
two-dimensional problems we will focus on, including the notation we will use. We will
only discuss the evolution of a surface when it is "immersed" in a known two-dimensional
velocity field; no partial differential equation will be solved to obtain this velocity field.
We will let the surface evolve in time, and different computational strategies for predicting
the surface evolution will be tested and compared. In particular, we will compare two
well-known methods with the new approach proposed in this work. Numerical tests will
illustrate the similarities and differences between the methods, and conclusions will be
made based on these. This study is part of an ongoing research project on solving partial
differential equations in time-dependent geometries.

2 Two-dimensional interface-tracking

Consider first the front depicted in Figure 1. Assume that we know the front at time
tn. Assume also that a numerical approximation of the front is used, something which
requires a surface parameterization. A typical way to achieve this is to use piecewise
polynomial approximations (e.g., finite-element-based methods), which typically introduces



grid points.

Γ(tn+1)

Γ(tn)

Figure 1: A front at time tn with an “optimal” point distribution. For example, the points
can be the nodes along an edge of a deformed spectral element. The front is
"immersed" in a velocity field and the particles follow the path of the dashed
lines.

Assume now that we have an interface with “optimally” distributed grid points at time
level tn. At each point x along the surface there is an associated velocity field u. This
velocity field can be explicitly known (as in our study here), or it can be given as the
solution of an underlying partial differential equation (e.g., the solution of the Navier-
Stokes equations in a free surface problem).

We assume that the velocity at a point along the surface represents the velocity of the
corresponding "fluid particle". If we integrate the velocity of all the fluid particles along
the surface, we obtain the position of the surface at a later time. This is what a pure
Lagrangian description will give us; the motion of a particle is simply governed by the
equation

dx
dt

= u(x, t). (1)

In a computational setting, we can limit the integration of (1) to the grid points, and
then use the underlying surface parameterization to represent the entire surface at a later
time; see Figure 1. A severe problem with this approach is obvious: we have no control
over the distribution of the grid points at a later time tn+1. This will again result in a loss
of accuracy in the calculation of surface quantities, e.g., tangent and normal vectors, as
well as the local curvature.

A great advantage with the ALE formulation is that it introduces a separate domain
velocity w (also referred to as the grid velocity in the context of the discrete problem),
which limits the deformation of the computational domain. In an ALE-framework, the
position of the interface is advanced according to

dx
dt

= w(x, t) (2)

instead of the pure Lagrangian approach (1).
A continuum description dictates that w · n = u · n (the kinematic condition), where n

is the unit normal along the interface. However, no particular condition is required for the
tangential component w · t of the domain velocity (t is unit tangent vector). A common
choice is to set w · t = 0 along the surface, although this is often not an optimal choice;
see Figure 2 and Figure 3.
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Γ(tn)

Γ(tn+1)

Figure 2: A front at time tn with an “optimal” point distribution. This interface is ad-
vanced by honoring the kinematic condition, while imposing a zero tangential
grid velocity. The resulting point distribution at a later time tn+1 is obviously
no longer optimal.

Let us also comment on the issue of temporal accuracy. Integration of (1) and (2) can be
done using an explicit method; often an explicit multi-step method (e.g., Adams-Bashforth)
is used [8, 1]. The choice of an explicit method is often motivated by the wish to compute
the velocity field separately from the treatment of the geometry. If the velocity fields (u and
w) are sufficiently regular, we expect to achieve higher order temporal accuracy (second
and third) in terms of the location of individual points along the front. As mentioned above,
this approach may yield limited control over the distribution of the points along the front.
If the point distribution is non-optimal, the resulting loss of spatial accuracy willÊ affect
the accuracy of surface quantities such as normal and tangent vectors, local curvature, and
length/area, and this again may affect the accuracy of the interface tracking.

In order to construct a computational approach which will yield both high order temporal
accuracy (e.g., second or third order), as well as good spatial accuracy in the calculation of
surface quantities, we need to solve the problem of automatically obtaining a good point
distribution in a satisfactory way. This problem is particularly acute in the context of
using high order methods. Despite the importance of this issue, very limited discussion or
results appear to be available in the literature.

We also mention a complicating factor in the development and assessment of various
approaches for interface tracking: the lack of analytic solutions. In Section 4, we propose
a few examples of test problems which we will use for verification purposes.

Γ(tn+1)

Γ(tn)

Γ(tn−1)

x
n+1
i

Figure 3: The plot depicts the position of a single point along the front at three different
time levels (red circles). The point moves according to (2), with w ·n = u ·n and
w · t = 0. The position at time level tn+1 is xn+1

i . Note that the corresponding
positions at time levels tn and tn−1 do not correspond to the same fluid particle;
the path of the fluid particle (e.g., a particle which moves according to (1)) ending
up at position xn+1

i at time tn+1 follows the dashed line.



3 The new approach

We will now propose a method which gives an accurate representation of the interface
(i.e., the individual grid points end up on the correct surface), as well as the flexibility of
specifying a user defined point distribution. This method will be "automatic" in the sense
of fulfilling both goals in an "integrated" fashion, i.e., with no need for remeshing etc.

Our strategy is based on a combination of a pure Lagrangian approach and an ALE
approach, in which both (1) and (2) are integrated in order to find the new grid points.
One major feature of the new algorithm is that we search for the fluid particle at time
tn which ends up along some prescribed direction at time tn+1. Thus, this will invole an
iteration process for each grid point.

In order to make the algorithm concrete, we will limit our discussion to the case where
the entire front Γ(t) corresponds to an edge in a single spectral element. However, we
remark that the ideas behind the proposed method is equally applicable to the case where
the front is composed of a number of low order finite elements.

Following a standard spectral element discretization [12], the front Γ(t) is parameterized
as follows: for a given ξ ∈ Γ̂ = [−1, 1], the corresponding point x on Γ(t) is given as
x = (x1, x2) = (x1(ξ), x2(ξ)). In general, any field variable ϕ associated with the front can
be represented in terms of the reference variable ξ. In particular, an Nth order polynomial
approximation ϕN of ϕ at time tn can be expressed in terms of the following nodal basis:

ϕn
N (ξ) =

N∑
j=0

ϕn
j `j(ξ). (3)

Here, ϕn
j represents an approximation of ϕ(ξj , t

n), ξj is the j-th Gauss-Lobatto Legendre
(GLL) point, and `j(ξ) is the Nth order Lagrangian interpolant through the GLL points;
as usual, `j(ξi) = δij .

Without presenting all the details at once, we first discuss the key ingredients in a
second order temporal scheme. We will later return to discuss all the details, as well as
the extension to a third order temporal scheme.

We assume that the following surface variables are known:

xn
1 , xn

2 , un
1 , un

2 , un−1
1 , un−1

2 .

Here, (xn
i )j is the i’th coordinate of the j’th point at time tn and (un

i )j is the i’th velocity
component of the j’th point at time tn. We use underscore to denote a vector comprising
all the nodal values associated with a field variable, i.e., j = 0, . . . , N ; see (3).

In Algorithm 1 we present the first version of the new algorithm. A few comments are
required at this stage. First, convergence in this setting is related to the point distribution.
The position computed in Step 4 represents the integration of (1) using a second order
Adams-Bashforth scheme, however, we don’t know if the computed grid point on Γ(tn+1)
(grid point j) is in a good position relative to its neighbors. Thus, we obtain convergence
when we have chosen the “correct” particle, which amounts to choosing the “correct” ξ at
time tn (which we denote as ξn). However, we need to quantify this and we will return to
this issue shortly.

Second, Step 2 in Algorithm 1 involves finding ξn−1, which is the reference coordinate
at time tn−1 for the particle which at time tn has the reference coordinate ξn; see also
Figure 3. Hence, the computation of ξn−1 appears to involve integration backwards in
time. However, what we actually need is the velocity the particle in question had at time
tn−1, and not necessarily the position it had at time tn−1. In Section 3.1 we will propose
a way to compute û2

i , i = 1, 2, which does not involve integration backwards in time.
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Third, when we have converged to the correct position (xn+1
i )j of a grid point j on

Γ(tn+1), see Step 4, we also compute the corresponding grid velocity (wn
i )j such that an

integration of (2) using a second order Adams-Bashforth method will result in the same
position; this is done in Step 6. Here, (xn

i )j , (xn+1
i )j , and (wn−1

i )j are known, while (wn
i )j

is unknown. The reason for computing the grid velocity in this way is that: (i) it gives
consistency with a pure Lagrangian approach; (ii) we are indirectly satisfying the kinematic
condition; and (iii) we are indirectly and "automatically" able to specify a tangential grid
velocity such that we obtain a good point distribution.

Algorithm 1 First version of a second order temporal scheme
for j = 0 to N do

1. Guess ξn.
repeat

2. Find ξn−1(ξn).
3. Compute

x̂1
i = xn

i (ξn) i = 1, 2,

û1
i = un

i (ξn) i = 1, 2,

û2
i = un−1

i (ξn−1) i = 1, 2.

4. Compute (xn+1
i )j = x̂1

i + ∆t
(

3
2 û1

i − 1
2 û2

i

)
, i = 1, 2.

5. Update ξn.
until convergence

6. Compute (wn
i )j from (xn+1

i )j = (xn
i )j + ∆t

(
3
2wn

i − 1
2wn−1

i

)
j
, i = 1, 2.

end for

Let us now discuss more precisely what we mean by convergence in Algorithm 1. Es-
sentially, convergence is related to quantifying a good point distribution. We will consider
two alternative strategies. The first strategy is illustrated in Figure 4. Starting from the
front at time tn, we move the end points to time level tn+1. How these points are moved
will be problem dependent, but it may for instance be a pure Lagrangian motion where the
two end points follow the path of the fluid particles from tn to tn+1 (see (1)), or the end
points may move according to a standard ALE-formulation (see (2)). When this is done,
we construct the chord between the two end points, and distribute grid points along this
chord according to the desired distribution (e.g., a GLL distribution). Next, the normal
from the chord is constructed at each of these points. Thus, using this strategy we search
for the particle at time tn which, when advanced through a pure Lagrangian motion, is
located along this normal up to a given tolerance. The advantage of this approach is that
we are in full control of the inner grid-points at each time-step. The disadvantage is that
it may not be so easy to extend the approach to three dimensions.

The second strategy is illustrated in Figure 5. Again, the end points are first advanced
to tn+1. Next, for each end point, a vector which connects the end point at tn to the
end point at tn+1 is constructed. Then, directional vectors for the interior nodes are
constructed through a linear interpolation on the reference domain, Γ̂, of the end point
vectors. Finally, the requirement is to find the particle at time tn which, when advanced
to tn+1, is located along this interpolated vector starting at the grid point at time tn. This
strategy has the advantage that it is more easily extended to three dimensions. However,



Γ(tn)

Γ(tn+1)

Figure 4: Strategy 1.

we have less explicit control over the interior grid points at each time level.

Γ(tn+1)

Γ(tn)

Figure 5: Strategy 2.

There will probably be other strategies for addressing the issue of grid distribution as
well, however, this will only change the convergence condition. The rest of the algorithm
which will be presented in the subsequent sections will remain the same.

3.1 Finding a fluid particle’s earlier velocities

The second order scheme presented in Algorithm 1 requires information about the velocities
at time levels tn and tn−1 for those fluid particles along the interface which end up at
the grid points xn+1

j , j = 0, . . . , N , along Γ(tn+1). We would like to avoid tracking the
characteristics backwards in time since this requires interpolation and can be expensive for
high order methods [19, 5]. In addition, we need to deal with the fact that the interface Γ
changes shape as a function of time.

Since we assume that the same particles remain on the surface at all time, it is suffi-
cient to solve a one-dimensional convection problem forward in time. In order to explain
the procedure, consider the following pure time-dependent convection problem along the
interface Γ(τ): Find ϕ(s, τ) such that

∂ϕ

∂τ
+ us

∂ϕ

∂s
= 0, on Γ(τ),

ϕ(s, τ = 0) = ϕ0(s), on Γ(τ = 0).

Here, s is an arc-length variable and us = u · t is the tangential component of the fluid
velocity; in all our model problems us = 0 on ∂Γ(τ). We can easily derive the ALE
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formulation of this problem: Find ϕ(s; τ) ∈ X such that

d
dτ

∫
Γ̂

vϕJs dξ +
∫

Γ̂
v(us − ws)

∂ϕ

∂ξ
dξ −

∫
Γ̂

vϕ
∂ws

∂ξ
dξ = 0, ∀v ∈ X,

ϕ(ξ; τ = 0) = ϕ0(ξ).
(4)

Here, X is an appropriate function space, e.g., X = H1/2(Γ) if all the field variables
correspond to the trace of H1-functions in the adjacent fluid domains. Furthermore, Js =((

∂x1
∂ξ

)2
+
(

∂x2
∂ξ

)2
)1/2

is the surface Jacobian, and ws = w ·t is the tangential component

of the domain velocity; note that both us and ws are zero on ∂Γ for all the model problems
in our study. We also remark that we have used the same symbol ϕ for a field variable
expressed both in the arc-length variable and in the reference coordinate.

We discretize the convection problem (4) using a standard spectral method in space
based on high order polynomials, and arrive at the following set of ordinary differential
equations:

d(Bs ϕ)
dτ

= −Cs(u,w) ϕ,

ϕ(τ = 0) = ϕ
0
.

(5)

Here, Bs is the surface mass matrix, Cs is the discrete convection operator along the
surface (including the "surface divergence" of the domain velocity); note that both Bs and
Cs are time-dependent.

If we integrate (5) from 0 to ∆t with ϕ
0

= un−1
i , i = 1, 2, we observe that ϕ(τ = ∆t)

will be an approximation to the i’th velocity component at time tn−1 of the fluid particles
which at time tn are located at the grid points along Γ(tn). This approach is inspired
by the ideas presented in [13] in the context of constructing convection-Stokes splitting
schemes.

Note that û2
i in Algorithm 1 generally represents the velocity of a fluid particle at time

tn−1 which does not coincide with a grid point along Γ(tn). However, by computing the
velocities at time tn−1 of the fluid particles which coincide with the grid points of Γ(tn)
(i.e., by solving (5)), we can use the polynomial expansion (3) to find the velocity at any
value of the parameter ξ. Moreover, one particular value of ξ will now give us information
about the velocity of a fluid particle at two different time levels (tn and tn−1). This is also
exactly the type of information we need in our algorithm; in fact, access to this information
avoids entirely the need to find ξn−1(ξn) in Step 2 of Algorithm 1 and thus represents a
significant simplification.

The approach is readily extended to velocities at earlier time levels as well. For instance,
if we choose ϕ

0
= un−2

i in (5), ϕ(τ = 2∆t) will be an approximation to the i’th velocity
component at time tn−2 of the fluid particles which at time tn are located at the grid points
along Γ(tn).

For the integration of (5) we have chosen the classical explicit fourth order Runge-Kutta
scheme. Similar to the convection subproblem treated in [13], the convection velocities
u and w, as well as the surface geometry x, are each approximated as a polynomial
in time of one order lower than the Adams-Bashforth scheme used in Step 4 and Step
6 of Algorithm 1. Thus, for a second order temporal scheme, a first order polynomial
interpolation/extrapolation in time is used for these quantities when solving (5), while the
extension to a third order scheme will use a second order polynomial approximation in
time for u, w and x.



To summarize this section: in Algorithm 1 we are interested in the velocities that par-
ticular fluid particles had at time level tn and tn−1. We choose ϕ

0
= un−1

i in (5) and
set ũn

i = ϕ(τ = ∆t), i = 1, 2. We now have six sets of nodal values, xn
i , un

i , and ũn
i ,

i = 1, 2, all associated with the interface Γ(tn). By using the polynomial expansion (3), we
have thus six polynomial approximations, and all of these are defined along Γ(tn). Hence,
one particular value of ξ corresponds to the same particle. Thus, there is no longer need
to compute ξn−1(ξn) in Step 2 of Algorithm 1. We may now only focus on finding the
appropriate ξn which will allow us to achieve convergence in Step 4.

3.2 Finding the “correct” particle

Assume that we are searching for the position of a fluid particle at time level tn, as well
as its velocities at time levels tn and tn−1, such that we can compute the position of the
fluid particle at time level tn+1 according to Step 4 in Algorithm 1. As explained in the
previous section, the problem can be reduced to finding one particular value of ξ ∈ Γ̂.

Assume that we are currently interested in updating the information about the grid point
in the middle of the reference domain Γ̂ (i.e., this point is associated with the index j in
Algorithm 1), and that we are searching for information about a particle located somewhere
in Γ̂. Finding this particle is certainly possible, but will be somewhat cumbersome if
the interface Γ comprises several elements (either low order finite elements or high order
spectral elements). The reason for this is that we do not a priori then know which element
the particle belongs to at the different time levels, and some kind of search algorithm needs
to be used.

Instead of finding the coordinate of this fluid particle (or the equivalent value of ξ), we
propose to find a corresponding artificial time τ̃ which convects this particle to our grid
point (index j) using an artificial convecting velocity U ; see Figure 6. To this end, we
consider the one-dimensional convection problem

∂ϕ

∂τ
+ U

∂ϕ

∂ξ
= 0, on Γ̂,

ϕ(τ = 0) = ϕ0.

(6)

We assume that U = 0 on ∂Γ̂ (a similar condition was assumed for us in the previous sec-
tion), and we will thus not specify any particular boundary condition for ϕ. We discretize
(6) using a spectral method based on high order polynomials and arrive at the following
set of ordinary differential equations

B̂
dϕ

dτ
+ Ĉ ϕ = 0,

ϕ(τ = 0) = ϕ
0
.

(7)

In (7) , B̂ and Ĉ are the mass matrix and discrete convection operator, respectively; the
hat indicates that both matrices are associated with Γ̂. The idea is that, instead of finding
a suitable ξ in searching for the suitable particle, we search for a τ̃ such that we obtain
the information we need when we integrate (7) from τ = 0 to τ = τ̃ . Hence, instead of
moving along the surface searching for a particle, we will sit at a fixed point and convect
the pertinent information about the particle to us. Thus, the new procedure requires
no backward time integration, and eliminates the need for a search and interpolation
algorithm; see [20, 5] in the context of semi-Lagrangian schemes.

Note that the particular value of τ̃ is actually of no interest to us; all we need is ϕ(τ̃).
For this reason we only need to consider a fixed domain (in our case, Γ̂). There is also
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ξjξn
1−1

τ̃

U

Figure 6: Six sets of nodal values, xn
i , un

i , and ũn
i , i = 1, 2, are associated with the reference

domain Γ̂. By integrating (7) from τ = 0 to τ = τ̃ , we can artificially convect the
information associated with a particular ξ ∈ Γ̂ (i.e., associated with a particular
fluid particle) and check if Step 4 in Algorithm 1 will give us a "valid" new
position for a grid point along Γ(tn+1).

great flexibility in the choice of the convective velocity, U . This is because, for a specific
particle somewhere along the surface, and for a reasonable choice of U , there will always
be a corresponding τ̃ (perhaps negative) which convects this particle to the current grid
point. An easy and reasonable choice is U(ξ) = 1 − ξ2 since this velocity is very smooth,
it does not change sign, and it is also compatible with the condition us = 0 at ∂Γ (which
is the case for our numerical examples).

Note that ϕ in (7) is a vector with nodal values from the entire surface (corresponding
to a single spectral element as in our study, or perhaps multiple finite elements). We need
to carry the entire vector in the computation in order to evaluate the spatial derivative.
On the other hand, we are only interested in the information convected to our current grid
point. Thus, we need to solve one problem of the type (7) for each grid point.

3.3 Final version of a second order temporal scheme

The discussion from the preceding sections leads us to an improved algorithm for a second
order temporal scheme; see Algorithm 2Ê below. Let us say a few words about how we
achieve convergence in the new grid positions. In Step 1 we guess a τ̃ . For each grid
point, we then solve (7) six times. From the resulting information, we update the new
grid position as indicated in Step 3. We can check how this position compares with a
"valid" position according to our chosen convergence strategy, see Figure 4 and Figure 5.
A Newton-iteration can then be used to find the correct τ̃ , which again implies the correct
ξ (or choosing the correct fluid particle). In our case, we obtain derivative information for
the Newton iteration from the last stage in the explicit Runge-Kutta scheme that we use
to integrate (7). For the test problems considered in this study, convergence is achieved in
2 or 3 Newton iterations.

Finally, we remark that the loop j = 0, . . . , N over the grid points includes the two
end points of the interface. These two end points may be treated differently compared to
the inner points; this depends on the particular information which is available for the end
points. For instance, for our numerical test problems, the end points are moved in a pure
Lagrangian fashion.

3.4 Extension to a third order temporal scheme

Algorithm 3 represents a third order version of this method. We see that we now have to
first solve two problems of the type (5) for each velocity component. During the integration
of these problems, we need to use a second order polynomial approximation in time of the



Algorithm 2 Final version of a second order temporal scheme
Solve (5) with ϕ

0
= un−1

i and set ũn
i = ϕ(τ = ∆t) for i = 1, 2.

for j = 0 to N do
1. Guess τ̃ .
repeat

2. Integrate (7) from 0 to τ̃ six times with ϕ
0

= xn
i , ϕ

0
= un

i , ϕ
0

= ũn
i , for i = 1, 2.

Define the results as x̂i, û1
i , û2

i , respectively.
3. Compute (xn+1

i )j = (x̂i)j + ∆t
(

3
2 û1

i − 1
2 û2

i

)
j

for i = 1, 2.
4. Update τ̃ .

until convergence
5. Compute (wn

i )j from (xn+1
i )j = (xn

i )j + ∆t
(

3
2wn

i − 1
2wn−1

i

)
j

for i = 1, 2.
end for

Algorithm 3 Final version of a third order temporal scheme
Solve (5) with ϕ

0
= un−1

i and set ũn
i = ϕ(τ = ∆t), i = 1, 2.

Solve (5) with ϕ
0

= un−2
i and set ˜̃u

n
i = ϕ(τ = 2∆t), i = 1, 2.

for j = 0 to N do
1. Guess τ̃ .
repeat

2. Integrate (7) from 0 to τ̃ eight times with ϕ
0

= xn
i , ϕ

0
= un

i , ϕ
0

= ũn
i , ϕ

0
= ˜̃u

n
i ,

i = 1, 2. Define the results as x̂i, û1
i , û2

i , û3
i , respectively.

3. Compute (xn+1
i )j = (x̂i)j + ∆t

(
23
12 û1

i − 4
3 û2

i + 5
12 û3

i

)
j
, i = 1, 2.

4. Update τ̃ .
until convergence
5. Compute (wn

i )j from (xn+1
i )j = (xn

i )j + ∆t
(

23
12wn

i − 4
3wn−1

i + 5
12wn−2

i

)
j
, i = 1, 2.

end for

grid, the fluid velocity, and the grid velocity in order to maintain a third order temporal
convergence rate. Obviously, the overall integration scheme for integrating (5) must also
be at least of third order in time. As before, we use a fourth order explicit Runge-Kutta
scheme, so this will not cause any problems. The solution of (7) will be the same as for the
second order scheme. In Step 3 and Step 5, we use a third order Adams-Bashforth scheme
for computing the new position and the new grid velocity of each grid point, respectively.

4 Numerical results

In this section we will perform numerical experiments in order to validate and compare the
different algorithms for tracking the interface. For all the test problems we will define a
two-dimensional, time-dependent velocity field, and at time t = 0 we will specify an initial
interface. With the interface "immersed" in this two-dimensional velocity field, we will
then monitor:

1. how accurately we are able to follow the exact interface; and

2. the quality of the corresponding point distribution.

The velocity fields will be prescribed in such a way that we are able to obtain analytic
solutions for the exact interfaces at all times.

11



4.1 Error computation

The way we compute the error, E1, in following the interface is illustrated in Figure 7.
We first compute the chord between the end points of our numerical solution, and then
compute the normal, nc, to this chord. For each grid point, (xn)j , j = 0, . . . , N , along
our numerically approximated interface, we find the intersection between the analytical
front and the line originating from (xn)j and moving in the nc -direction. We call this
intersection (xe)j and compute

ej =
√

((xe
1)j − (xn

1 )j)2 + ((xe
2)j − (xn

2 )j)2.

Finally, we define the error E1 as

E1 =
1

N + 1

N∑
j=0

ej . (8)

The way we will measure the grid quality is by computing the error, E2, in the length
of the interface. For a high order approximation, this measure will generally give an
indication of the quality of the point distribution (although there are special situations
when this is not the case). Thus, we first compute the length, Sn, of our numerically
computed interface. Using GLL quadrature we compute

Sn =
N∑

α=0

ρα(Jn
s )α =

N∑
α=0

ρα

((
∂xn

1

∂ξ

)2

+
(

∂xn
2

∂ξ

)2
)1/2

α

, (9)

where Jn
s is the surface Jacobian at time T = tn, and ρα, α = 0, . . . , N are the GLL

quadrature weights. We then define the error

E2 = |Sn − Se|, (10)

where Se is the length of our exact interface.

(xn)j

(xe)j

t = T

Figure 7: The solid line corresponds to our numerically computed interface at time T > 0,
while the dashed line represents the corresponding exact interface.

4.2 Convergence tests

In order to more clearly see the strengths and the weaknesses of the different approaches,
we will first consider three examples where the velocity field is chosen such that the front
keeps it shape. For these three tests, we will compare four different approaches:



(i) the new proposed method using Strategy 1 (see Figure 4);
(ii) the new proposed method using Strategy 2 (see Figure 5);
(iii) enforcing the kinematic condition as well a zero tangential grid velocity (denoted as
the "Normal" method in the following);
(iv) a pure Lagrangian approach.
The fourth and last test will involve a more complex interface and a more complex velocity
field; in this test we will only compare (i) and (iv).

4.3 Test 1

In the first example, the interface motion is only in the x2-direction. The initial front given
by

x2(x1) =
1
2

(
1 − cos

(
π(x1 − 1)

3

))
, 1 ≤ x1 ≤ 4,

while the prescribed velocity field is given as

u1(x1, t) = 0,

u2(x1, t) = −1
2

+
1
2
et/4(1 + cos(πt)).

Thus, each particle on the initial front will only move in the x2-direction. Note that, for
the Normal approach, we compute the normals analytically (which we can do since we
know the analytical expression of the front at all times), and not numerically. A numerical
computation of the normals will lead to the Normal algorithm breaking down due to the
bad interpolation properties when the point distribution becomes poor. Figure 8 shows
the initial point distribution and the point distribution at the final time T = 6.2 for the
four different methods. In Figures 9 and 10 we report the errors E1 and E2, respectively.
We observe that all four methods perform well in terms of “hitting” the front. However,
for the Normal approach, the point distribution is poor at T = 6.2 due to the shape of the
front; this again leads to a poor approximation of the length of the front. For the three
other methods, the error E2 reaches machine precision since u2 does not depend on x1,
and we use a sufficiently large polynomial degree, N .
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Figure 8: The interface and the point distribution at the initial time t = 0 and at the final
time T = 6.2 for Test 1 using the four different strategies. A polynomial degree
N = 16 is used for the spectral approximation.
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Figure 9: The error E1 at time T = 6.2 for Test 1 using the four different strategies. A
polynomial degree N = 16 is used for the spectral approximation.
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Figure 10: The error E2 at time T = 6.2 for Test 1 using the four different strategies.
A polynomial degree N = 16 is used for the spectral approximation. The
computed value for the length of the interface, Sn, does not converge for the
Normal method due to an incorrect point distribution.
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4.4 Test 2

Next, we will consider a trivial interface, but a velocity field with a more substantial
tangential contribution. The initial interface is given by

x2(x1) = 0, 1 ≤ x1 ≤ 4,

while the prescribed velocity field is

u1(x1, t) =
2
5

sin
(

π(x1 − 1)
3

)
,

u2(x1, t) = −1
2

+
1
2
et/4(1 + cos(πt)).

Hence, the front has no curvature, and all the normals point in the x2-direction. Thus,
u1(x, t) corresponds to a pure tangential component. Figure 11 shows the initial point
distribution and the point distribution at the final time T = 6.2 for the four different
methods. In Figures 12 we report the error E1. In this example, Strategy 1 and Strategy
2 give identical results. We get first, second and third order temporal convergence in
capturing the interface for all four methods.

In Figure 11 we see that the pure Lagrangian approach leads to a poor point distribution.
However, this is not reflected in the computation of the length due to the simplicity of the
front. For this simple interface, (9) reduces to

Sn =
N∑

α=0

ρα

(
∂(x1)N

∂ξ

)
α

=
∫ 1

−1

∂(x1)N

∂ξ
dξ,

since ∂(x1)N

∂ξ is an (N − 1)’th degree polynomial which is integrated exactly using GLL
quadrature. In addition, since∫ 1

−1

∂(x1)N

∂ξ
dξ = (x1)N (1) − (x1)N (−1),

and since the end points are the same for all strategies, we achieve machine precision for
all four methods regardless of the quality of the grid. It should be emphasized that this is,
indeed, a very special case.
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Figure 11: The interface and the point distribution at the initial time t = 0 and at the
final time T = 6.2 for Test 2 using the four different strategies. A polynomial
degree N = 16 is used for the spectral approximation.
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Figure 12: The error E1 at time T = 6.2 for Test 2 using the four different strategies. A
polynomial degree N = 16 is used for the spectral approximation.
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4.5 Test 3

We now consider a combination of the previous two tests. The initial front is the same as
in Test 1, but we prescribe a velocity field with non-zero components in both the x1- and
the x2-direction. In particular, we choose the same velocity field as in Test 1, but with
the modification that we also add another tangential component. Hence, the interface will
still keep its shape during the simulation. Our initial interface is then given by

x2(x1) =
1
2

(
1 − cos

(
π(x1 − 1)

3

))
, 1 ≤ x1 ≤ 4,

while the prescribed velocity field is given as

u1(x1, t) = ut
1,

u2(x1, t) = −1
2

+
1
2
et/4(1 + cos(πt)) + ut

2,

with

ut
1 =

2
5

sin
(

π(x1 − 1)
3

)
,

ut
2 =

π

6
sin
(

π(x1 − 1)
3

)
2
5

sin
(

π(x1 − 1)
3

)
.

Here, ut = ut
1e1 +ut

2e2 is a vector which points in the tangential direction of the interface.
Figure 13 shows the initial point distribution and the point distribution at the final time
T = 6.2 for the four different methods.

In Figures 14 and 15 we report the errors E1 and E2, respectively. These results are in
agreement with the two previous numerical experiments. We observe that all four methods
perform well in terms of "hitting" the front.

Strategy 1 and 2 still perform well with respect to both error measures. The Normal
approach gives the same results as for Test 1 since the only difference with this example
is the addition of a tangential velocity component. The grid quality for a pure Lagrangian
approach is poor, which is what we would expect.

Another thing we observe is that the error level for E2 (the length computation) is about
a factor 102 − 103 smaller than the error level for E1 (the interface error). The reason for
this is that the interface error is rather uniform, which again is due to the simplicity of
the problem. This makes the error in the spatial derivative of the interface substantially
smaller than the interface error, which again leads to a better approximation of the length
of the front.
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Figure 13: The interface and the point distribution at the initial time t = 0 and at the
final time T = 6.2 for Test 3 using the four different strategies. A polynomial
degree N = 16 is used for the spectral approximation.
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Figure 14: The error E1 at time T = 6.2 for Test 3 using the four different strategies. A
polynomial degree N = 16 is used for the spectral approximation.
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Figure 15: The error E2 at time T = 6.2 for Test 3 using the four different strategies. A
polynomial degree N = 16 is used for the spectral approximation. The com-
puted value for the length of the interface, Sn, does not converge for the Normal
method and for the Lagrangian method due to an incorrect point distribution.



4.6 Test 4

The three previous test cases where all constructed to illuminate some of the strengths
and weaknesses of the different methods for tracking an interface; for this reason they were
chosen to be rather simple. We now consider a more complicated numerical example in
order to demonstrate the applicability of the new strategy to solve more general problems.
We still choose a velocity field which depends on the initial shape of the front, and in such
a way that we are able to derive an analytical expression for the shape of the front at
all times. A major difference from the previous test cases is that we now choose a time
dependent front. In particular, we demand that the shape of the front is given by

x2(x1, t) =
1
4

cos(πt)
(

cos
(

π(x1 − 1)
3 + 0.4t

)
− cos

(
3π(x1 − 1)
3 + 0.4t

))
. (11)

Hence, the front will have a time-dependent amplitude and a time-dependent wavelength.
We also wish to rotate the front in a circular motion, and in order to achieve this, the
velocity field must be chosen in a careful manner. In particular, it consists of four contri-
butions:

• an angular velocity which is responsible for a pure rotation of the initial front. The
angle is computed with respect to a circle with center (−4, 0), and a constant angular
velocity uθ = 0.1 is imposed;

• a velocity field which accounts for the time-dependent amplitude in (11);

• a velocity field which “stretches” the front in accordance with the time-dependent
wavelength in (11);

• an additional velocity field which points in the tangential direction on the front.

By adding these four contributions, we obtain a smooth, two-dimensional, time-dependent
velocity field. Apart from spatial and temporal discretization errors, the initial front
x2(x1, t = 0) will keep the shape given by (11) when "immersed" in our velocity field;
see Figure 16.

In Figure 17 we show the initial point distribution and the point distribution at the final
time T = 5 using Strategy 1 and a Lagrangian approach. In Figures 18 and 19 we report
the errors E1 and E2 for the two methods, respectively. We see that Strategy 1 performs
well both in terms of "capturing" the front and in terms of giving the correct length. The
Lagrangian approach is also able to "capture" the front, but the point distribution is poor
such that the error in the length of the front is large. Also, compared with Test 3, the
difference between the error levels for E1 and E2 is now much smaller; this is due to the
time-dependent amplitude in (11), which makes the interface error much less uniform.

5 Conclusions

We have presented a new approach for tracking an interface immersed in a given veloc-
ity field. The method is particularly relevant to the simulation of unsteady free surface
problems using the arbitrary Lagrangian-Eulerian framework. The new method has been
constructed with two goals in mind: (i) to be able to accurately follow the interface; and
(ii) to maintain a good point distribution for the grid points along the interface. The
method combines information from a pure Lagrangian approach with information from an
ALE approach. No interpolation of data is needed; instead, we have been able to obtain
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Figure 16: The front x2(x1, t) in (11) at different times when "immersed" in the prescribed
velocity field.
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Figure 17: The interface and the point distribution at the initial time t = 0 and at the
final time T = 5 for Test 4 using Strategy 1 and the Lagrangian approach. A
polynomial degree N = 24 is used for the spectral approximation.

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

∆t

E
rr

or

 

 

1.order
2.order
3.order

(a) Strategy 1

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

∆t

E
rr

or

 

 

1.order
2.order
3.order

(b) Lagrangian

Figure 18: The error E1 at time T = 5 for Test 4 using Strategy 1 and the Lagrangian
approach. A polynomial degree N = 24 is used for the spectral approximation.
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Figure 19: The error E2 at time T = 5 for Test 4 using Strategy 1 and the Lagrangian
approach. A polynomial degree N = 24 is used for the spectral approximation.
The computed value for the length of the interface, Sn, does not converge for
the Lagrangian method due to an incorrect point distribution.
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the relevant information by solving several pure convection problems along the interface.
In this respect, the new approach represents a semi-Lagrangian method applied to surface
information.

We have been able to construct two-dimensional model problems offering analytical ex-
pressions for both the interface as well as the prescribed velocity field in which the interface
(or front) is "immersed". This has allowed us to verify and compare the temporal accuracy
of different methods: the new approach, a pure Lagrangian approach, and an approach
honoring the kinematic condition in the normal direction, but imposing a homogeneous
Dirichlet condition for the tangential component of the grid velocity (called the Normal
approach).

Using the new approach we have been able to achieve both of our primary objectives;
in particular, we have verified first, second, and third order temporal accuracy for all four
model problems. The new method is particularly important in the context of using high
order spatial discretization schemes.

Both the Lagrangian approach and the Normal approach generally give a non-optimal
point distribution along the interface, something which again may result in large errors in
the computation of important surface quantities (e.g., normal and tangent vectors, local
curvature, length etc). Such errors may, in worst case, result in a complete breakdown of
the interface tracking.

The new method should be extended to, and tested in, more general situations, in
particular, by solving real free surface problems using an ALE approach, and by extending
the approach to three dimensions.
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