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Abstract

This paper reformulates the two—phase solidification mab(i.e., the Stefan problem) as
an inverse problem in which a cost functional is minimizedhwiespect to the position
of the interface and subject to PDE constraints. An advantdghis formulation is that

it allows for a thermodynamically consistent treatmenttud tnterface conditions in the
presence of a contact point involving a third phase. It isiadythat such an approach
in fact represents a closure model for the original systethsome of its key properties
are investigated. We describe an efficient iterative sofuthethod for the Stefan problem
formulated in this way which uses shape differentiation adgint equations to determine
the gradient of the cost functional. Performance of the psed approach is illustrated with
sample computations concerning 2D steady solidificati@npmena.
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1 Introduction

In this investigation we propose a computational methog&ution of heat trans-
fer problems with change of phase, the so—called two—phta$arSoroblem, when
contact lines are present. Such problems arise in manycpioins, including the
modeling and control of crystal growth [1,2], melting andidification [3,4], or

optimization of advanced welding processes which is théqaar problem mo-

tivating the present research effort. By a contact line waman intersection of
the interface separating the two phases (i.e., for exantipeliquid and the solid
phase) with another interface separating the third phase ¢as), or the domain
boundaries. From the mathematical modeling perspectientain challenge is
to derive interface conditions consistent from the phyiqiiteermodynamic) point
of view and at the same time computationally tractable. Tipdet-phase contact
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problem is a subject of intensive research, both theoledicd experimental. Al-
though significant results have been achieved in both utatetsg and modeling
such problems, it remains unclear whether they can be aptdi¢he case of the
molten contact line, see [3,4] for more discussion. Whetierot a contact line is
present, the Stefan problem represenftee—boundaryroblem, i.e., one in which
the position of the liquid—solid interface is also an unknamd must be determined
in addition to solution of the governing partial differesitequations (PDEs). We
propose here to formulate this problem as an inverse proltaioh can then be
solved using methods of PDE—constrained optimizationhig &pproach a suit-
ably parametrized geometry of the interface serves as thieatwariable which is
adjusted to satisfy the interface boundary conditions nitable sense. The idea of
recasting a free—boundary problem as an optimization proli$ not new [5], and
was already applied in a general setting in the theoretizadstigations of Alt and
Cafarelli [6], Zolésio [7] and Hoffmann and Tiba [8], while the context of a one—
dimensional (1D) Stefan problem such an approach was cemesidoy Okhezin
[9]. From the computational point of view the main difficultgnsists in determin-
ing the gradient (i.e., the sensitivity) of the cost funobto modifications of the
domain geometry, the so—called “shape gradient” [10]. Amrds computational
studies, applications of this approach to some model pnableere explored by
Mannikko, Neittaanmaki, and Tiba [11], Tiihonen [12]akkainen and Tiihonen
[13], Haslinger et al. [14], Donaldson and Wetton [15] angblepet al. [16,17].

Our present work tackles a more complicated version of teé&Stproblem which
involves a contact line and a third phase. One contributfathis investigation is
to show how the constraints due to the third phase can bepocated into a con-
sistent formulation of the optimization problem, more sfieally, the definition of
the shape gradient. Another contribution is to propose astify a definition of
the cost functional that is thermodynamically more comsisthan the ones used in
previous investigations (e.g. [9,11,14]). It is also shdhat the proposed formula-
tion is in fact equivalent to introducing a closure modeltfoe capillary phenomena
at the contact line. The structure of the paper is as followghe next Section we
present the mathematical framework for the Stefan probléimavparticular focus
on the interface boundary conditions, in the following S®tive reformulate this
problem as an optimization problem, whereas an adjointedalgorithm for its so-
lution is introduced in Section 4; computational results aresented and discussed
in Section 5; summary and conclusions are deferred to Se6tio

2 Statement of the Stefan Problem: Governing Equations andriterface Con-
ditions

For the sake of simplicity, in the present work we focus ontthe—dimensional
(2D), steady case; a generalization of our approach to tlee-tllimensional (3D),
time—dependent setting is left for the future. We consideystem consisting of
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Fig. 1. Schematic of the problem geometry.

three phases: solid), liquid (L), and gas @), and shown schematically in Fig. 1.
The solid and liquid phases are assumed to occupy the dof2giasdQ, , so that
the computational domain is defined@g. = QslJQ. (“£” means “equal to by
definition”). It is also assumed that the density of the lgqand solid phase is the
same. The boundary where the solid dom@Qigis truncated will be denotells
and will be assumed fixed. The gas phase will only be treaté¢drabient” and
will not be explicitly included in our model except for thedomdary conditions on
the interface$ sgandl . Our focus will be primarily on determining the position
of the interfacd™ s and the contact poinB andB’ defined a{B,B'} ='s Nl G.

It will be assumed that the interfa€g is “structured”, i.e., can be modeled by a
surface with zero thickness, whereas the solid—gas andifgas interface$ sg
andl g will be assumed flat. The unit normal vectaorat the different interfaces
are oriented as shown in Fig. 1.

The steady heat transfer is governed by the equations

—0-(ksOT)=0  inQs, (1a)
~0-(kOT)=0 inQ, (1b)

whereT € HY(Qg)) is the temperature distributior¢(Qs)) is the Sobolev space

of functions defined oQsg; and having square—integrable gradients [18]), whereas
ks andk; are the thermal diffusivities of the solid and liquid phasespectively.

In our derivations we will allow them to be general functioofsx andy, but in

our computations we will assume for simplicity that they enastant andéts # ki .
Equations (1) are complemented with Neumann—type bourmtargitions on the
interfaced gsgandl g

oT

— ks% =¢sg onlsg (2a)
oT

—kL% =bLc onlg, (2b)



wherepsgandd g are the heat fluxes. On the boundagwe impose the Dirichlet
boundary condition

T=Ts onfls, 3
whereTs represents the far—field temperature. We will require that functions

dsa PLg, andTs be such that they satisfy the compatibility condition (@&) and
3) -
—ks—=— = tA, A 4
Say bsc  atA A, (4)

and, in addition, generate single—connected dom@jnandQs.

The classical theory of theteady-state Stefan problem [19] postulates that the
interfacel g\ is fully described by the following two conditions:

(1) continuous normal heat flux

oT -
[k%} . =0 onl gy, (5)

L
Where[k%—H . 2k 3 |, —ks3E| s with the normal derivatives defined §| . =

lime_o T(XSL+82)_T(XSL) and3l| £lim¢_o T(XSL_SZ)_T(XSL) - expression (5) rep-

resents for someg| € s, the jump of the temperature gradient across the
interface (in genera[,-]gwill denote the jump of the given quantity across the
interfacel g); we note that (5) expresses the conservation of energy Rnow
as the first principle of thermodynamics,

(2) prescribed liquid—solid transition temperature

T = 7 (interface geometrymaterial properties  onl gy, (6)

where the functior? (.. .) will be specified below; the nature of this condition
is more subtle, as itis related to the second principle ahtleelynamics which
is expressed as an inequality [19]; therefore, as discusslesy, condition (6)
may take several different thermodynamically consistenin, and the one
employed most commonly is

T= Tm on rs|_, (7)

whereTy, is a constant melting temperature.

While relations (5) and (7) represent the classical stat¢roéthe Stefan inter-
face conditions, many important interfacial phenomenaletieviations from the
simple relation (7). An extensive review of such phenomesra lee found in the
monograph [20]. Furthermore, condition (7) is a part of alm@ar boundary value
problem, and as such raises some questions of the mathahraicare. Namely,
it follows from this condition that the interfades; must coincide with an isoline
of the solution of elliptic problem (1)—(5). In the case when~ ki the existence



Fig. 2. Neighborhood of the contact poiBt

or non—existence of such an isoline is a nontrivial quesdiod can be rigorously
established for some simple cases only, see Appendix fooef pif existence for
the case when the solution belongs to the Sobolev sHa(9s)), i.e., the space
of functions onQs; whose second weak derivatives are square—integrablelf18].
is worth noting that although the regularity of harmonicdtions on non—-smooth
domains has been well studied (see, e.g., the monograpaflifhe paper [22]),
only few results concern problems in “double—wedge” gesieeuch as the do-
main depicted in Fig. 1 (e.g., [23]).

In order to account for situations in which condition (7) megd to inconsistent
formulations, a generalized Stefan condition is derivedithe interfacial thermo-
dynamic laws describing the force and energy balances|[£#9§ be the arc—length
coordinate along the interfaée;. and6 the angle between the normal vectoaind
the OX axis of the coordinate system, so thé) = [cos, sin6]". The symbols
0" and6~ will represent the limiting values of the normal angle at tive sides
of the contact poinB (Fig. 2, the same applies ®). The tangent vector will be
denotedt. The capillary forceC acting within the interface can be expressed as
[19]

C(6) = f(8)1(8) + f'(O)n(8), (8)
wheref(0) is the interfacial free energy. The analysis carried outént®n 7.4 of
[19] yields the following two conditions as a generalizatiaf (7)

L

T-Ty dC d?f
=G n=x <f + @) on the smooth part dfgy, (9a)

C(6") - 1ic=C(07) 1.6 at the contact point8 andB/, (9b)

wherelL is the latent heat;r £ d8/ds s the interface curvature, amg is the
vector tangent to the interfadg g. As is usually the case in macroscopic models
of the Stefan problem, we will assume that the interface fenergyf is a smooth
function of the angle. We note in passing that this is not necessarily the case
in microscopicmodels which distinguish different grains in the solid nite In



such cases the interfa€g, is a piecewise linear curve with “kinks” corresponding
to the grain boundaries which result from the interfacialefrenergyf (6) in the
so—called “crystalline form” [19] featuring “cusps” at senparticular angle®.
Consequentlyd? f /d8? may become infinite and the interface should be piecewise
flat with each segment characterizeddy- 0 (called facet) corresponding to one
of these singular orientations. The orientation of a fd&€és determined from the
Herring condition [19]

(10)

T—Tm, < f(6r)T(BE) 1(8c) —C(6s) 1(Bg)
L/ T dS—Z n(6g) - 1(6c) 7

F

whereG are the facets adjacent Eg 6 andBr are the orientations of the facets
G andF, andC(6g) is the capillary force exerted by the fadgton the facet-.
Hence the local condition (9a) is replaced by the nonlocatidmn (10) together
with the assumption concerning nonsmoothnes$.ddetails of this formulation
can be found in [2], whereas questions of existence and enegs of solutions to
such problems are studied in [24]. We add that an extensisnaf formulation to
the case involving contact points is not straightforwartdj gherefore we will not
consider this formulation here.

We emphasize that, regardless of the specific form of the demyrcondition, both

(9) and (10) involve a new dependent variable, namely, ttexfacial free energy

f. Therefore, some additional information must be providedrder to determine
this quantity and close the system. As a matter of fact, ateutetermination of the
interfacial free energy is an extremely difficult task requiring information at the
microscopic level which is not usually available in macmsic computations of
the Stefan problem. In many situations involving commonamals (e.g., metals)
the interfacial energy is negligibly small which justifies the constant approxima-
tion (7), provided the interface is characterized by motdevalues of the curvature

. In the presence of contact points, condition (9b) must bisfgal in addition to

(5) and (9a). Consequently, in order to accommodate thigiaddl condition, the
right—hand side (RHS) in (9a) must be suitably adjusted aaradresult the constant
approximation (7) will no longer apply. Furthermore, we edhat condition (9b)
determines in fact theontactanglea between the interfacdss, andl g at the
contact pointd andB’ (Fig. 2). This is because (9b) represents the balance of the
capillary forces acting on the interfaces in the directiéthe “translation” of the
contact point8 andB'. This leads to the known conclusion that the steady—state
contact anglex is a constitutive property of the material [19]. Based orstheb-
servations, in Section 3 we propose an inverse formulatiagegolve this “closure
problem”.



3 Inverse model

In this Section we first reformulate the generalized Stefalem defined by (1)—
(5) and (9) as a PDE—constrained optimization (inversedlpra, and then justify
this approach as a closure model for unresolved interfatiahomena. Our atten-
tion will be focused on the proper handling of the solutiortia neighborhood of
the contact points. In Section 2 we argued that imposing eifgpeontact angle
Om induces a deviation from approximate condition (7). Whilg@rinciple this de-
viation is described by the RHS of (9a), it is expressed imgeof a microscopic
guantity, the interfacial free enerdly, for which no additional equation is readily
available. We therefore propose to close system (1)—(5)@noly postulating that
its solutions exhibit certain macroscopic properties obsg in reality. We do this
by requiring that the contact angteat B andB’ be approximately equal ta,.
Defining a cost functional in the form

9(Fs) 23 [ [T(Fs) —Tol? ds+§ [eosta(Tsn) —cosom)P|, . (1)

MsL

we state the problem as follows

min 7 (Fsy), (12)

MsL

where the dependence ®fl's|) anda(I's ) on the position of the interfades is
expressed through (1)—(5). In contrast to the interfaces £nergyf, the positive
adjustable parametéris now amacroscopiajuantity, as it weighs the deviation
from the prescribed value, of the contact angle against a measure of the devia-
tion from approximate condition (7). We also remark thatftivenulation based on
the cosine of the contact angias preferable to the formulation based on the angle
itself on two counts. Firstly, we notice that ¢as = 1s| - T g Where the tangential
vectorstgy, T g are in fact more readily available in numerical computagitiman

a. Secondly, the formulation based on the cosine is relatetbtmg’s equation
frequently arising in capillary physics [20]. It is evidahtat solutions of problem
(11)—(12) will depend on the parameteand one of the goals of this work is to
guantify this dependence. To begin with, we review two lingtcases as regards
the values of the parametérWe note that setting= 0 removes all constraints on
the contact angles, and therefore in this case we can expeanteafacel g sat-
isfying condition (7). On the other hand, considerihg: « we obtain the case in
which the conditiora(I's| ) = a, is enforced in the “hard” sense, i.e., the interface
I'sL will satisfy (9b) exactly. We defer the discussion of theenmbediate cases to
Section 5. Finally, we add that demonstrating rigorousé/gkistence and unique-
ness of solutions of problem (11)—(12) is far from triviatdfalls beyond the scope
of the present work.

We will now show that our proposed approach in fact represantlosure model



for unresolved interfacial quantities in system (1)—(53 48). In general terms,
for a system described by a set of state variaglestisfying a governing equa-
tion F(y) = 0 it is assumed that the state variables are divided into teos:
the resolved quantitieg which are explicitly included in the model, and the un-
resolved (modeled) quantitigs The closure model consists in a relationsylig-
y'(yo) which allows one to express the unresolved quantities imgesf the re-
solved ones, so that the governing equations can be “claedllowsG(yg) =
F({yo,Y(Yo)}) = 0. We note that our original problem (1)—(5) and (9) is in fact
underdetermined, because there is no equation charactetize interfacial free
energyf. Assuming thatf is an unresolved quantity, we close the system by re-
placing equation (9a) which involveswith another condition in whicl does not
appear, namely, (11)—(12). This formulation is in fact eglént to finding an in-
terfacel s which is in the the mechanical equilibrium. Indeed, we nbt the
balance of the capillary forces and other forces, includiiregtia forces, exerted by
the crystal and the melt on the interface is given by [19]

%:n-os—n-ob (13)
whereos and oy are the stress tensors of the solid and liquid phases. In efew
(9a), we observe that minimizing the temperature deviatiop,, — Tm) is in fact
equivalent to finding an interface which minimizés-os-n—n-aop-n) in the
mean square sense. This provides a physical justificatiothéofirst term in cost
functional (11).

Once problem (11)—(12) is solved and the position of therfate I's. and the
interfacial temperatur@&|r,, are determined, the unresolved (modeled) quaritity
can be determined from system (9) where the left—hand si(8ains already given.
Our present investigation is focused solely on the devetypmand validation of
a numerical technique for solution of the PDE-constrainptinoization problem
(11)—(12). Problem (9) can be solved for the interfaciad e@ergyf using standard
numerical techniques and this issue will not be addressed he

4 Solution of the Inverse Problem

In this Section we propose a gradient—based approach ttigolof the inverse
problem formulated in Section 3. Local solutions to optiatian problems such
as (12) are characterized by the first—order optimality @gores which require the
Gateaux differential of the cost functionato vanish for all perturbations. In prob-
lem (11)—(12) the control variable is the position of thesnfiicel 5, hence (11)—
(12) is in fact ashape optimizatioproblem. Problems in which the geometry of
the domain is an independent variable require specialnrest, because this ge-
ometry must be suitably parametrized before differerdrativith respect to shape
can be meaningfully defined. Such problems can be treated usethods of the



shape differential calculus [10], where perturbationshef interface geometry can
be represented as

X(t,Z) =x+tZ for x € "' (0), (14)

wherel g (0) is the original unperturbed interface addis a “velocity” field de-
fined onQgs| and characterizing the perturbation. The pok{tsZ) thus define the
perturbed interfac€s(t,Z) (expressions analogous to (14) could also be written
for Qs(t,Z) andQy (t,Z), but they are omitted here for brevity). We will use the
notationQ(0) = Q(0,Z) andr (0) = I'(0,Z) for domains and interfaces (with suit-
able subscripts), respectively. The shape differential fafinctional such as (11) in
the direction of the perturbation field is defined as

7'(F1(0):2) é!mJ(FSL(LZ))t—J(FSL(O))_

(15)

Given cost functional (11), its shape differential (15) t@computed using a clas-
sical result concerning shape differentiation [25] whielysthat for a smooth do-
mainQ(t,Z) and smooth function§ andg defined respectively on this domain and
its boundary we have

/fdQ+ / gds| = fdQ—l—/g’dS+
Qt2) 20it2) Q(0) 5(0) (16)
a9
+ / <f—|—%g+%)z-nds,
90(0)

where the prime denotes the shape derivative defined as)iatls is the unit nor-
mal vector pointing out of the domaf®. Since in the present problem the boundary
0Q, =T's Ul g is only Lipschitz continuous, we need the following genieeal
tion of the preceding result proved in [19]

Theorem 4.1 Let g be a smooth function defined on perturbatig(tsZ) of a
smooth arg/(0) = y(0,Z) = BB'. Then

/ gds /g ds+/ (%ng )Z~nds+ [gZ~tHg (17)

y(t,2)
wheret is the unit vector tangent tg0).
We now proceed with differentiation of the second term in) (htolving the con-

tact anglea. By definition, the contact angle satisfies the relation c0s) =
-1 eg(}B B whereey is the unit vector associated with the OX axis, so that using



the classical shape differentiation result [10] one olstain

cosa)) = —~(t-6) = n-6 2 " —sine) 2 s

Wherea@S is the gradient in the direction tangential to the interfRge We are now
in the position to compute the complete shape differenfiaost functional (11)
which yields

T2
7'(Ts(0);2) = /"(T—fmoTﬂL+ %£1—552—+(T—3m0%%L]Z-nds+
Ms1(0)
+ {(T_TWZ T+ [coga) —cogam)] sin(a) aé;n} :

(19)

WhereT’\L is the shape derivative &f evaluated on the liquid side of the inter-
facel s.. A fundamental result of the shape differential calculdsnred to as the
“structure theorem” [10] stipulates that the shape diffeigd of a cost functional
J(r(0,2)) defined on alosedcurvel (0,Z) can be expressed as

9'(r(0);2) = / hZ nds (20)
(o)

where the scalar—valued functitris defined on the curvE(0). As will be shown
later in this Section, in our present problem we will need ¢ogyalize expression
(20) due to the fact thdis, is an open arc, rather than a closed curve. In any case,
the gradient]7 of the cost functionall can be extracted by invoking the Riesz
theorem [26] to identify the shape differential 6fI"s.) with an inner product as
7'(Fs1(0);2) = <D],Z>X(FSL), whereX (I's)) is a Hilbert space of vector-valued
functions defined ol s,. This gradient is a central element of the following itera-
tive algorithm which can be employed to solve optimizatioolgbem (11)—(12)

k
Xl g =Xl +Ti [DJ (rgg)} . k=12..., (1)

L

wherex|r<k) represents the position of the interfdcg_ at thek—th iteration andy

is the IenaLth of the step in the descent direction. The fongidetermines the spe-
cific form of the optimization algorithm used (e.g., the gtest descent, conjugate
gradients, or quasi—-Newton method, etc., [27]). We notejgwver, that expression
(19) does not yet have a form compatible with (20), as it &qbyi depends on the
shape derivativ@ ’. Shape differential (19) can be transformed into a suittdste
by introducing theadjointstateT* € H1(Qs) and considering the following weak

10



formulation of (1)—(5) in which the adjoint state serveslastest function

—/D-(kLDT)T*dQ—/D-(kSDT)T*dQ:O. 22)
QL Qs

After integrating by parts and using boundary conditions-(2) we obtain

/kL(DT ~ DT*)dQ+/kS(DT OT*)dQ + / T+ dst

Q Qs Mo
oT " oT (23)
+/ [T k%Lder/T q)seds—/ksT 5| ds=0.
MsL Mse s

We note that before shape differentiation is performed wg nw use (5) to sim-

L
plify the term involving [T* k%—H < Next we apply shape differentiation formulas
(16) and (17) to weak formulation (23) which yields

/k._(DT’~DT*)dQ+/ks(DT’~DT*)dQ+/T*q),’_Gds—
Q. Qs

MNe
/
L /
_ / {T*ka—T] ds +/T*cp’SGc:ls—/ksT*ai ds+ (24
on |g on |g
Msu(t,2) IsG s
+/ KOT -OT*)gZ -nds+T* (L — dse) Z- &) _=o.
SL

Using (17) together with boundary condition (5), the shaifferential of the inte-
gral overl g, can be expressed as

/

L L
/ [T*ka—T] ds| = / i[T*ka—T] Z nds—
on|g on on|g

Fsu(t,Z) Fs(0) (25)
+7L
_ [k 0T oT ] 7 .nds
)

on an |g

FsL(0

L
where we used the fact thég = [k%—H <= 0 onl gy, so thatps, admits an exten-
sion with zero into the domair@sandQ, . Using this result in (24) and performing

11



integration by parts one more time leads to

MsL

+7L
—/D.(kLDT*)T’dQ—/D-(k._DT*)T’dQ-I—/ {kT’aT ] dst
on |g
Q. Qs
* * L
+f (kLT’a;-n L+T*¢[G) as— | [kaaTn ‘;_H Z-ndst
Mo st S (26)

T T o’

ke T’ T* 9! /k T’ i Sl
+r/ ( SV nls™ ¢SG) ds+r S( I5n I on s) dst
SG S

+ [ [KOT-OT*]¢Z -nds+T*[(dLc — dse) Z-& |g =0O.

st

We remark that the shape derivative fiflld is discontinuous across the interface
I'sL. Shape differentiation of boundary condition (3) and of thlationshipT |s =
T|L expressing the continuity of the temperature field acrosgtterfacd s yields
[25]

T'=0 onls, (27)
L

AL 0T B
[T}S-i- an SZ-n_O onlgL. (28)

We assume that the functiopgg and$_ g appearing in boundary conditions (2a)
and (2b) are invariant with respect to perturbations of tbmdin given byZ, so
that

Lc=0. (29b)

Let us now suppose that the adjoint statesatisfies the following equations

—0-(ksOT") =0 in Qg, (30a)
—0-(kOT*) =0 inQ, (30b)
with the boundary conditions
oT*]*"
— [k an }S—T—Tm on |_5|_, (31)
oT*
—ks an 0 onlsg, (32)
oT*
—k P onl g, (33)
T =0 onls. (34)

12



Using relations (27)—(28) together with the definition of tdjoint system in (30)—
(34) allows us to simplify expression (26), so that we obtain

/[—(T’\L i Tz )T Tim) — {k%a;*]sz-n] ds+

MsL

+ FSL<[k(DT-DT*)]; {ka—TaT*L>z-nds (39)

on 0
+T"[(dLc — bsc) Z - & \E/ =0,

where we also used the equality

{kT’aT } (T \L+0—T Z~n) {kaT } — {ka—TaT } Z-n (36)
on |g L on |g on on |g

which is a consequence of (28). After further simplifica@md regrouping certain
terms (35) becomes

oT oT* oT oT*
/({k£ as} {kan 0nL>Z'ndSJr

MsL

T*[(bLc—0s0) Z-8d |5 = /(T—Tm) (T'}L +%)Lz-n) ds

st

(37)

where we used the fact thafl = an Tny —T One recognizes that the terms on the
RHS in (37) also appear in expression (19) for the shaperdifteal 7' (s (0);2),
so that (37) can be used to elimindtéfrom this expression which gives

T oT* ]t oT aT*]" (T —Tm)?

’ ) o v - v m .

J(FSL(0>,Z>_F/<[k = asL [kan an];%iz Z -nds+
SL

+ lT* (¢LG_¢SG)Z‘GS<+£T_—2TmEZ‘T} ’:/+

+ ¢ [coqa) —coqam)] sin(a) (%Z T+ 0z n) ‘

B/
0s B

(38)
We note that, sinc& appears explicitly in (38), this expression of the costettiff
ential is now consistent with the Riesz theorem and (20),camdbe employed to

identify the cost functional gradient. For example, chagdi?(I's) as the func-
tion spacex (I'sy) in Riesz identity, we identify expression (38) with kA inner

13



product as?’(l's (0);Z) = <DL2j,Z)L2(|—SL), so that we obtain

oToT*]" [ aT aT*]" (T —Tm)?
0 = | k2 ~kZ Vo m
J H 0s 6SL { on anL—i_% 2 nt
. 2
[T* (¢LG —bsc) &+ iT—ZTmLT-l- (39)

+ 3£ [coga) — cogam)] sin(a)r} 5(s—sg) — (s sa)] +

¢]coqa) —cog0pm)] sin(a) [5(8—85/) —6(5—35)] n onlg,

wheresg and sg are the arc—length coordinates of the contact paghend B/,
wherea represents the distributional derivative of the Diracadltarises through
integration by parts with respect ®of the terms defined at the contact poiBts

and B'. We note that the gradierEﬂsz, being a vector-valued function defined
on the interfacd s has components in both the direction normal and tangential
to the interface, which might appear to contradict the ‘Ste theorem” as ex-
pressed in (20). The reason for this discrepancy is thavaléwn of (20) supposes
the interface to be a closed, smooth manifold, so that thgetatial terms never

arise. As is evident from (39), the tangential componenhefgradienﬂ]"zj is
localized at the contact poinBandB' only. Hence, this component can be inter-
preted as locally “stretching” the interfa€g so that the contact points stay at the
top surfacd sglJI'Lg when the interfac€& g| is displaced in the normal direction
n. We also note that, owing to the presence of the Dirac deitast® and their
distributional derivatives localized atB andB/, the L2 gradient given in (39) is
a very non-smooth distribution. Whil&? gradients are the most common choice
in adjoint—based optimization of PDE systems [28], theyctéearly inapplicable in
the present problem. The reason is that the interface céeisplaced in a discon-
tinuous manner, as this would be inconsistent with the oaiti of the medium.
We will solve this problem by imposing some smoothness requénts on the
gradient and to simplify the derivation we introduce the mfitg & = ‘i—‘ where

r £ [x,y]" is the position vector determined with respect to an origicated on
the boundary segmeni . We will restrict our attention to the perturbation fields
in the formZ = (&, wherel is a scalar function defined on the interfdcg. We
note that sincé e is tangential td sg|JI g atB andB’, the tangential component
of the gradient is not required to keep the contact pointhaitoundary segment.
The Riesz identity now becomes

X(Tsy)

7'(Fs1(0):2) = (07,2 (0fr.2e),
st 40
- <e( ' DX]’Z>)~C(FSL) - <D?C]’Z>)~C(FSL) B ]/(FSL(O);Z), ~

where we denotedX 7 £ ¢ - 0" 7 theradial component of the gradient which is a
scalar function, and(T's|) is the Hilbert space of scalar functions defined @p.
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We now require that this gradient should belong to the SotepaceH?(I"s,) with
the inner product defined as

du ov 0%u 0%v
2 40°U 0%V
(WY )we(r /rSL <”V+'1 5505 12 02 652) d

2 0%u 454
41
/rSL<“ '102 2as,4)"c'S+ (41)

220 °  auove
19s 203 252 05 le

whereu,v € HZ(I'SL) andl; andl, are adjustable parameters with the meaning
of a length—scale. Choosing?(I's) as the spacel(I's) in the Riesz identity,
one can identify expression (38) with &7 inner product (41) ag’(Is.(0);0) =
<D'r*2], OH2(rg)- In view of the arbitrariness af we obtain

2 ,020"%7 . J0H° g
r 1 a 2 2 684
oT oT* oT aT*]" (T —Tm)?
[{k% 68} —|:k% an} +%72 n-e onl g,
(42a)
ooy 0%y (T —Tm)?
2 4 * m
|1 s -1 a;f, =T (dLc—dsc) ec-& + 5 Tet
+{ 3¢ [coga) — cogOm)] SiN(0) T- & atB,B’,
(42b)
2 H?
Iﬁ‘% = ([coga) —cogam)] sin(a)n - & atB,B’.
(42c)

Thus, theD'ﬁzj gradient can be determined by solving a fourth—order bognda
value problem defined on the interfalce,. In order to avoid certain technicalities
related to solution of this problem in practice, our compiotaal results reported
in Section 5 will correspond to the limlif — 0 in which the terms with the highest
derivatives in (42) vanish, and instead oftdA gradient we obtain aRl! gradient
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defined by a system with the Helmholtz operator

2H!
Hl 26 |:| ] .
O gl asrz -
oToT*1" [ aT aT*]" (T —Tm)?
“kg 63}5_[k% anL %? n-e onlgsy, (43a)
ooty | T —T)2
1 ars =T (¢LG—¢SG)GS<'er+7( 2m> T-g+
+0 5 [coga) — cog )] sin(0) T & atB,B’,
(43b)

We add that taking the limib — 0 in (42) is in fact equivalent to neglecting the
terms invoIvingg—i -nin (38). In the context of adjoint—based PDE-constrained
optimization, an approach involving® gradients was investigated in [29], where
it was shown that the inverse Helmholtz operator is in faavadpass filter with
the cut—off proportional td; %, so that the parametér can be used to control the

smoothness of the gradiet*lj. For a general overview of Sobolev gradients we
refer the reader to the monograph [30]. We add that some afethdts presented
here were computed using both tHé andH? gradients and in each case the gain
from using theH? gradient was rather insignificant (on average, less thenrb% i
terms of the value of the cost functional at any iterationg fidally remark that
assuming the boundary perturbation in the fafm= (e, and therefore working
with the gradient defined as a scalar function, significasitiyplifies determination
of the Sobolev gradients, because one does not have tcetliffete the unit vectors
n(s) andt(s) in (41).

5 Computational Results

In this Section we present numerical results illustratiegf@grmance of the pro-
posed method in the following test cases:

(1) (Case A) no conditions on the contact angleBandB/, i.e.,/ =0 in (11),
which is equivalent to neglecting condition (9b); this caskserve as a ref-
erence,

(2) (Case B) contact angtey, prescribed aB, but not atB’,

(3) (Case C) system (1)—(5) considered in a moving frame fefeace with no
conditions imposed on the contact angBeandB’; this case may serve as an
approximate model of a welding process in the steady—stgime.

Before discussing the results for each of these cases inl,detareview some
diagnostics concerning the determination of the cost fanat gradients and the
convergence of the iterations. In terms of iterative pre¢@4) we employ the con-
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jugate gradient method to determine the descent directicombined with a line
minimization to determine the length of the stgp[27]. This algorithm is imple-
mented as follows ¢” denotes assignment):
k—1
) — initial guess
repeat
solve direct problem (1)—(5)
solve adjoint problem (30)—(34)

solve (43) to determingH" 7(r %))
perform line minimization minJ (x| g +1g™) to find the step-size,
SL

deforml g along the conjugate directi@[Dﬁlj(Fgﬁ)} with the step sizey,

if (7% — () < 2 (17r&) 4 197 )] 4 £a) then
1 max(l1/2,£|)
end if
k—k+1
until | Ty| < &

whereey, €,, € ande; are different adjustable tolerances. We note that the kengt
scalel; is adaptively decreased in the course of the iterationshabtheH?! gra-
dients gradually approadt? gradients for increasing The initial guesseE(SlL) in

cases A and C are chosen as arcs with some arbitrary shapesashe case B it

is taken as the solutid’ng’i) obtained in case A. We note that optimization problem
(11)—(12) is nonconvex and, in principle, different locahimizers can be obtain
from different initial guesses. While the presence of sushumique solutions was
indeed observed in some of our computations, we made suréhthaesults pre-
sented in this Section belong to the same family of solut{pasametrized by,
and/). The thermal diffusivities are selected kks= 200 andk. = 100. Since our
mathematical model intends to represent a simplified welnl peeated during a
welding process, we choose boundary conditions (2a) andof2lthe top surface
to represent the heat flow into the weld pool, i.e.,

bsc onlsc 20 if |x| > 0.5,
bec = = , (44)
bc onlc 2-10%hab 1(x) +20 if|x| < 0.5,

where haf, m,,(X) is a smoothed version of the hat function centered at thet ggin
with the support of measums,p (smoothing is applied so that the second deriva-
tive is continuous). Both the direct and the adjoint probleere solved using the
finite element method (FEM) on an unstructured, locallyredimesh which was
implemented in the multiphysics modeling environment CA$31], where ad-
ditional subroutines were developed by the authors to testihe optimization algo-
rithm. The discretization points for the free boundag; were chosen among the
finite element mesh points (finer resolution was not necgsaarthe gradient ac-
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Fig. 3. Dependence of the quantkycf. (45)] one. The perturbatior is a piecewise linear
function of the arc—length coordinate coinciding with atngélement basis function with
the support contained ins;: (empty symbols) perturbation adjacent to the contacttd®in
and (solid symbols) perturbation far from the contact mint

curacy is ultimately limited by the accuracy of the solutafrthe direct problem).
A cubic spline interpolation was used to define the displaadrm all other points
on the free boundary.

We begin presentation of our results with a test showingisterscy of the gradient
computations. To fix attention, we focus on case A. In thatspif32], we define
the quantity

e MI(Tsu(e,0) — I (TsL(0))]
K(E)= 051,00 ’

where the numerator is a finite—difference approximatiothefGateaux shape dif-
ferential 7/ (s (0); {) computed for some perturbatignwhereas the denominator
expresses this differential in terms of the adjoint fieldughdeviation ok (€) from
unity is a measure of the inconsistency of the gradient. ¢n Five observe that the
quantityk(€) is indeed very close to the unity for different perturbas@nwhen
the magnitude of the perturbation varies over almost three orders of ntagei
Deviation ofk(g) from the unity observed for very small valuesofs the result
of the round-off (subtractive cancellation) errors, wiasréhe deviations observed
for large values ot are due to truncation errors (loss of validity of the linepr a
proximation). We remark that in such tests one cannot apgftufbations whose
support is not entirely contained Ins. which is due to the presence of singular
terms in (38) with the magnitude of the singularity depegdn the contact angle.
We also emphasize that since we use here the “differentisa—discretize” rather
than “discretize—then—differentiate” approach, the gratdshould not be expected
to be accurate up to the machine precision [28].

(45)
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Fig. 4. Cost functionaﬂ(rgkﬂ) as a function of the iteration couktusing (solid symbols)
complete gradients defined in (43), and (empty symbols)nmete gradients with the
“contact point terms” omitted.

Convergence of iterations is shown in Fig. 4 where we ilatstthe decrease of the

cost functional](r(ska) with the iterationsk. We note a rapid decrease, by about
eight orders of magnitude, occurring over 80 iterations. éamparison, we also
illustrate the convergence of an iterative process usiagignts with the “contact
point term” [i.e., the second term on the RHS in (42b)] onditt8uch “contact
point terms” are present in the boundary conditions defitin@ggradient even if no
constraints are imposed on the contact angl@&aatdB’ [see the last term in (17)].
A noticeably slower convergence observed in this case lindsrthe importance
of such “contact point terms”. In Figs. 5a,b we show the déwieof the interface
temperaturd |, from the melting temperatuik, together with the corresponding
gradient at the different iterations. As expected, in th&eoaith no constraints on
the contact angle, we observe that the interface temper&fyg, gradually settles
at the constant valu&, everywhere along the interface, so thﬂrgﬂ —Tm) — 0

ask — . In fact, in Appendix we prove that in problems with no coasits on the
contact angles free boundaries coincide with temperasatanes. We conclude the
discussion of case A by showing in Fig. 6 the temperaturenissltogether with
the position of the interfacEs in a converged solution.

Next we consider case B in which we prescribe the contackeaagll compare the
results to the case with no constraints on the contact aRgiecomparison pur-
poses, the contact angle is prescribed at the left contaat Bonly. The problem
with an imposed contact angle is more delicate, thereforgom@eent our results
for this case in greater detail. We will first show resultsresponding td = 102
which is a rather large value of this parameter and ensumgsthie effect of the
fixed contact angle can be detected over relatively largamues from the con-
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Fig. 5. (a) Deviations of the interface temperatiifg,, from Tn, and (b) theH* gradients
of the cost functionall (", ) along the interfac€ g|_at (solid line) the 5th iteration, (dashed
line) 10th iteration, and (dotted line ) 20th iteration.

tact point. In the sequel we will also consider the problemaaange of differ-
ent values off. We begin by investigating the convergence of the the swigti
to problem (11)—(12) with respect to grid refinement. Thelgs refined in the
neighborhood of the contact point only using standard teeklable in COM-
SOL. In this numerical experiment we find interfaces coroggfing to four suc-
cessive grid refinements with the average grid size arouaddntact point given
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Fig. 6. Temperature isolin€B(x,y) — Ty, and (dashed line) the interfag in the solution

of the problem in case A.
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Fig. 7. Analysis of convergence with respect to mesh refimgraeing the displacement

&N for (solid) h = 5 x 1078, (dotted)h = 5 x 102, (dash—dottedh = 5 x 104, (dashed)
h=5x1073,

byh={5x107%,5%x107°5x 1074 5% 10~3}. In each of these cases the average
grid size away from the contact points is the same and equal£o5 x 10-3. We
analyze convergence by examining the position of the iaterbbtained for differ-
ent numerical resolutiortsand related to the best resolved computation, i.e., using
the quantity

() 2 |[X"(S) — xrer(9)] - Nret(s)| X" € TR, Xeer € Ms1, (46)

where the objects with the superscript’ ‘are computed with the corresponding
resolution, whereas the objects with the subscript “ref'tespond to the reference
(finest) resolutiorhes = 1078, The parametrization of the cur\ﬁ%L with sis de-
fined in such a way that for evegithe pointx"(s) is at the intersection afie(s)

and Fgl_. The results of the convergence study are presented in Richefe we
show&"(s) for different values oh. In this Figure we note the systematic decrease
of the error&" for all s as the mesh size is refined. Remarkably, while the mesh
refinement takes place in the vicinity of the the contact pomly, the errors are
reduced globally over the entire interfaCg_. In view of the these rather small
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Fig. 8. Deviations of the interface temperatufg-,, from T along the interfacd s

for different imposed contact angles: (sol), = 60°, (dash—dotted),, = 50° (dashed)
am = 40°, and (dottedpx, = 30°; figure (a) represents the entire interfdcg and uses the
logarithmic scale with the origin cut out for the indepenteariables, whereas figure (b)
shows the magnification of the neighborhood of the contaictt i@using the linear scale.
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Fig. 9. Positions of the interfades, corresponding to different values of the contact angle
Om prescribed aB: (solid) no contact angle prescribed (case A), (dash—dpttg = 50°,

(dashedy, = 40°, and (dottedy,, = 30°.

errors, unless stated otherwise, in the subsequent testglingse the mesh size
h=hy=5x10"3.

Next, Fig. 8 illustrates the deviation of the interface temgtureT |-, from the
constant valudy, as the contact angte,, deviates from approx. 64vhich was the
angle obtained in case A, i.e., without any constraintscé&the deviatio |rg, —
Tm is quite localized near the contact poBitin Fig. 8a we employ a logarithmic
scale for the coordinatewhich allows us to represent the entire interfgg in the
figure. We notice that changes of the imposed contact angfetiglobally affect
the solution and the observed deviationg ¢f;, — T, from zero are local and grow
as the contact angle decreases. It is also visible that tigaitnde of this deviation
depends on how the prescribed contact angle differs fromahee obtained with no
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constraints. The local (in space) nature of this effectds abserved in Fig. 9 where
we present the interfacdss, obtained as solutions of the optimization problems
corresponding to different values of the contact arnglgrescribed aB.

It was mentioned in Section 3 that the parameéteppearing in definition (11)
of the cost functional has the meaning of the inverse of ikgatariation of the
length—scale characterizing the distance from the comgartt where condition
(9a) significantly deviates from (7). This effect is clearlgible in Fig. 10 in which
we show how the absolute value of the deviatiorT¢$)|r;, from Ty varies with
the distance from the contact point for different values of the paramétéi/e ob-
serve that with an increase 6the deviationT(s)|rg, — Tm| Vanishes much faster
with s, but its magnitude as = 0" increases. In other words, the deviation be-
comes much more localized for large values/ofThere is arguably a universal
pattern discernible in Fig. 10, and by quantifying this pattwe will attempt to
reveal the intrinsic nature of the parameteAs regards characterizing the distance
from the contact point where the deviatiph(s)|r, — Tm/| is significant, there are
many different possibilities and, to fix attention, we witiresider the following two
guantities

[T — Tl

Ql(g) = 2r m (478.)
T2
Quo(t) & s ST~ Tm6S (47b)

 Jr (T—=Tm)2ds”

We note that wherf — oo, the distance measur€y and Q, do not vanish, but
instead approach some finite limiting valu@s= lim,_.. Q;(¢), i = 1, 2. Therefore,

in Fig. 11 we plot the normalized quantitié% —1),i=12,asafunction of the

paramete¥. The results reported in Fig. 11 were obtained with the retsmh h —
5x 10-6. We note that the data reveals a linear scaling for both edoquantities
which, given the log—log scale used in the plot, implies thikWing approximate
behavior for the quantitie®; andQ>

(%@ ~ ) ~al™t = Q) ~Q+blt i=1,2, (48)

|

wherea and b are some positive constants. Empirical relation (48) ieglihat
our measure®1 andQ> of the distance from the contact point where relation (9a)
significantly deviates from (7) depends on the paraméserd this dependence has
a well-defined universal behavior. More specifically, thstahce has a minimum
value given byQ;, i = 1,2, and grows proportionally t6-. Thus, the parametér
in (11) can be interpreted as the inverse of the length—sxedewhich the contact
points affect the temperature distribution along the ifiaige in our closure model.
Remarkably, as is evident from Fig. 11, the scaling expéseequation (48)
holds over about three orders of magnitudé.iis regards the bound from below
on this interval, it corresponds tQ;(¢) on the order of the length of the entire
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Fig. 10. Deviations of the interface temperatdrg, from Tny, along the interfacé& s, for
different values of the parametér (solid) ¢ = 5 x 104, (dashedy = 103, and (dotted)
¢ =1071; figure (a) shows the neighborhood of the contact point aes ttse logarithmic
scale with the origin cut out for the independent variaglevhereas figure (b) shows a
larger part of the interfacEg, using the linear scale.

Fig. 11. Scaling of (triangles(%—(f) — 1> and (circles)(%m — 1> as a function of the
2

1
parameter. The solid line has the slopge™.

interface, i.e., (9a) deviates from (7) everywherd@p (cf. Fig. 5a). On the other
hand, the upper bound on this scaling range is related touheerical resolution
which determines the accuracy with which the integrals if) gre evaluated.

We finally come to case C corresponding to the heat sourcengatia constant
velocity U e, which provides a simplified model of weld pool formation in ald-
ing process. In general, such process is unsteady and isilmkesdy the time—
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Fig. 12. Temperature isolinds(x,y) — T, and (dashed line) the interfafg in the solution
of the problem in case C.

dependent versions of equations (1). However, assumirighitbdime—scale asso-
ciated with the free boundary formation is much shorter tthentime—scale of the
heat source translation, this phenomenon may be regardpebas-stationary in a
moving frame of reference given by the transformatigh x) £ x —tU e. There-
fore, definingT (t,X(t,x)) £ T(t,x) we obtain

oT| oT oT
| = —U=— 4
ot |, oty ox |’ (49)
so that the assumed stationarity in the moving frame of wtm% ¢ = 0yields
the following “corrected” forms of equations (1)
S T
—0-(ksOT)=U %—)N( in Qsg, (50a)
N of .
—0-(kOT)=U % inQ, (50b)

wherel] represents differentiation with respect to the transfatweriableX, which
are supplemented with the same boundary conditions as ndée ioriginal sys-
tem. Following the procedure described in Section 3, weinlitee corresponding
adjoint system

L o

—0-(ksOT*) =-U aa),( in Qs, (51a)
~ . aT* .

-0k OT")=-U 3% in Q. (51b)

The boundary conditions and expressions characteriziagythdient remain the
same as in (31)—(34) and (38), respectively. Fig. 12 ilatss the temperature dis-
tribution and the position of the interface obtained in tbése, where we used
U = 100 and did not impose the contact angles. We note a defammafi the
shape of the interfades induced by the advection.
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6 Conclusions

This paper is concerned with the formulation of the Stefasbf@m involving con-
tact points (lines) as a PDE optimization problem where ttepe of the interface
serves as the control variable. By allowing for a system@didation of the inter-
face temperatur@ |, from the constant melting temperatufg it is possible to
accommodate a prescribed macroscopic contact anghhich is known to be a
constitutive property of the material [19]. Since the RH®®pression (9a) is gen-
erally given in terms of unknown microscopic quantitie® groposed method can
be regarded as a closure model for the governing system atiegs. In this sense
it is related to “subgrid—scale” models used commonly in patations of high
Reynolds number turbulent flows [33]. The key differencénet twhile in subgrid—
scale models for turbulence simulations the unresolveddéteal) quantities are
defined at length—scales smaller than the grid size evemgnihehe solution do-
main, in the present problem the closure model mostly ingtet neighborhood
of the contact point, and the characteristic dimension isfieighborhood is con-
trolled by the parametét Our proposed approach to dealing with the contact point
singularities in the Stefan problem has similarities tottkatment of contact points
in the momentum (Navier—Stokes) equation which result@Navier boundary
conditions [34,35]. In analogy to the relaxation of Diriehboundary condition (7)
for the temperature, in the Navier boundary condition thegtip constraint on the
velocity is replaced with a formulation allowing for a fingép velocity in a neigh-
borhood of the contact point. As is the case in our problem tto® dimension of
this neighborhood (i.e., the “slip length”) is a macroscgmarameter.

The Stefan problem formulated in this way turns out to be gshaptimization
problem, and the shape differential calculus is a key emaifle@ computational
algorithm employed to solve such a problem. We use a suitdelfyned adjoint
system to determine the shape gradient of the cost fundtiand the main novelty
here is a definition of the gradient consistent with the presef the contact points.
Optimization was performed using smoothed (Sobolev) sheguients, which was
shown in [29] to have the effect of regularization. Our conapional examples
confirm the efficiency of the proposed approach on a few testcarhe results
obtained reveal a systematic deviation of the interfacggature fromrl, in the
neighborhood of a contact point as a function of the imposediact angler,,. The
length—scale over which this deviation occurs exhibits aamsal behavior with
respect to the parametérThe results reported in Section 5 show that for vanishing
values off this length—scale becomes comparable with the charattetimension

of the interface, while the magnitude of the deviation vaag On the other hand,
for increasing values of, this length—scale decreases and approaches a (small)
fixed distance while the magnitude of the deviation increase

As regards the computational performance, we remark tregitbethe formal lin-
earity of equations (1), the Stefan problem is in fgebmetricallynonlinear, hence
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its computational solution must necessarily involve sowrenfof iterations, re-
gardless of the method used. It should be stressed thattbieagterfacd g is the
control variable, it is always represented explicitly asdsach does not have to be
reconstructed a posteriori to satisfy the interface coolt. Another novelty of the
proposed approach is that in this way we relax temperatunéiton (7), rather
than flux condition (5) as was proposed in some earlier st dubich is shown
to be thermodynamically more consistent. We also emphdkatethe presented
method admits a straightforward generalization to thremetisions. Our future
work on this class of problems will involve generalizatiasfghe present method
to a time—dependent problem and problems involving trarisgdhe momentum
modeled by the Navier—Stokes equation. We also intend tty dpjs method to
the study of actual inverse problems where some input paemeeed to be opti-
mized to meet certain objectives. On the technical sideptmasting question is to
determine Sobolev gradients for general perturbatiorise., not restricted to the
formZ =(eg).
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Appendix — Regularity of Solutions of the Classical Stefan Poblem in Do-
mains with Corners

In this appendix we present the proof of existence of a smealtition belonging to
the Holder clas€’? of the free boundary problem defined in (1)—(5) and (7), pro-
vided a certain regularity of the bounddrgcUT | ¢ and corresponding boundary
data can be guaranteed. We emphasize that this proof refére situation where
no contact angles are imposed. The idea of the proof is to reduc@roblem to

a form which can be treated using results from the existitegdiure on elliptic
boundary value problems in domains with corners (e.qg.,)[36F will first con-
sider the case dds = k_ £ k, and then extend this result to the casé&o# k_. We
begin by stating the following assumptions:

— the boundary sgUTl g isC?,
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— the Dirichlet and Neumann data (cf. (2)—(3))

Ts onlsg,
¢SG on rsc;, (A-l)

dbc onlc

is in the spacéNQ’/Z p(rs) x W1/2, p(FSGU FLG), p=>2,
— compatibility condition (4) is satisfied,
—VxeTls Ts<Tmand3ix e Mg, T|x > Tm.

We note that the last assumption guarantees the existermmtzfct points on the
top surface. In regard to the cage= ki, the trace theorems in [21] (Subsection 1.5)
allow us to conclude that there exists an unique W2 P(R?), such that its trace
{VIrs(T), Virsqris (0T /0N)} is in W3/2P(T's) x WY/2P(FsgUTg). Moreover,
for p > 2 one has the following Sobolev imbedding theorem [18]

W2 P(Qg) C CL%(Qg)), 0O<a=1-2/p<l (A.2)

The Stefan problem defined in (1)—(5), (7) and wigh= k. may thus be reduced
to a boundary value problem with the homogeneous boundargittons for the

unknown(T — T) € H}(Qg)) satisfying

/ED(T-T‘)-Dde:/D-(Emﬂvdg WweHYQs).  (A3)
Qg Qs

The following result is a special case of the theorem prond@6] and is important
for the study of the regularity of the solution of (A.3)

Theorem A.1 We assume thatps+2,s€ {-1,0,1,---}. Let T— T be a solution
of problem(A.3) with 0 (kOT) € WSP(Qgy). Then T- T € W?*SP(Qg)) if and
only if VA& {21+ 1|l € Z,1 #0},0< Rg(A) <s+2-2/p.

We note that{2| + 1|I € Z,| # 0} is the set of the eigenvalues of some Laplace—
Beltrami operator corresponding to our particular bougdalue problem. This

set is determined by the type of the boundary conditions segan the boundary
segments 0dQg and by the measures of the angles between these segments [36]
Whenp > 2, then 1< 2—2/p < 2, and the assumptions of Theorem A.1 are satis-
fied fors = 0 implying that the solutiod and its gradient are continuous up to the
boundary. If now the solutiolm assumes the valuk, somewhere insidQg,, there

must exist an entire isoline satisfying the classical Stefandition (7).
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I:et us now turn to the less trivial case whieai> k. . We introduce a new variable
T € H(Qs1) which satisfies a system equivalent to (1)—(5) and (7), mamel

—AT:O inQsUQ, (A.4a)
—% - kiislz onlsg, (A.4Db)
—% = kZSﬁLEL onl g, (A.4c)

T=(1+4p)Ts onls, (A.4d)
[%] ; o onrs. (A4e)

wherep = (ks — ki )/(ks+k_). According to the result proved above, there exists
a solution of (A.4) in the spadg’®(Qs|). Moreover, one can identify an isoline
corresponding to each value assumed by this solution ink&ldomaimg,. Sup-
posing that this value is noyd + p) Ty, one can verify that

71-12me inQ,

T={ 7P (A.5)
T inQ
1+p S,

andrl s, defined as the isoline correspondingitgrovides an uniqu€%(Qr) x
CL%(Qs) solution of original system (1) (5) also satisfying classical Stefan con-
dition (7). This guarantees the existence of contact paintthe top surface.
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