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Abstract

We show that Markov couplings can be used to improve the acgunf Markov chain
Monte Carlo calculations in some situations where the stestate probability distribution is
not explicitly known. The technique generalizes the notibrontrol variates from classical
Monte Carlo integration. We illustrate it using two modelsionequilibrium transport.

| ntroduction

Markov chain Monte Carlo (MCMC) algorithms generate sammiem a probability distribution
by simulating a Markov chain that leaves the distributioramant. One estimates expected values
by time averaging over long simulations [10, 18]. For higict&racy Monte Carlo computations,
variance reduction methods are crucial. Unfortunatelyjyeswariance reduction methods are hard
to apply in MCMC, particularly when there is no explicit eegsion for the steady-state probability
distribution of the Markov chain.

In this paper, we demonstrate a technique for MCMC variaedection which can improve
accuracy by factors of up to 2 or more in certain situationgnhanapproximate steady-state
distribution is known. The technique, which we cedlupling control variates, builds on earlier
work using Markov couplings in MCMC _[15, 17, 20]. Specifigalive assume that we can ob-
tain an explicit approximation of the steady-state disttiiim, and that the expected values of this
approximate distribution are known. The basic idea is to &rscond Markov process which (i)
leaves the approximate distribution invariant, and (i&dows” (.e., closely follows) the original
Markov process. The expectations of the approximate digidn then provide an initial “guess,”
which we correct by simulating the two “coupled” processesdtimate the difference (in expected
values) between the true steady-state distribution anagonoximate distribution.

We apply the technique to certain lattice models from stasisphysics, in which the steady-
state probability distribution is approximately a prodattocal distributions when the system is
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out of equilibriunﬂ These systems are of interest in the theory of transportege@s such as
heat conduction. In this paper, we consider models congistf a linear chain of lattice sites
coupled to “heat baths” at each end; each bath is charaatieby thermodynamic parameter(s)
like temperature, chemical potentiagc. The steady-state probability distribution is a Gibbs-
Boltzmann distribution if the bath parameters are equais iBmot the case for unequal heat baths.
However, a large lattice out of equilibrium may still haveteasly-state distribution that Iscally

in equilibrium,e.g., for heat flow, the statistics at a given location is apprately governed by a
Gibbs-Boltzmann distribution with a local temperaturee(Sect( R for details). We will show how
such “local equilibrium” distributions can be used to agkigariance reduction.

We note that similar ideas have appeared in previous stuttieaddition to the works cited
earlier, another example is “shadow hybrid Monte Carlo” iol@cular dynamics [8]. See alda [6]
for a version of this idea applied to Markov sensitivity aysas. Finally, we point out that Markov
couplings have been used in a quite different way to perfotaceMonte Carlo sampling [16].

1 Coupling control variates

1.1 General framework

We begin by recalling the technique of control variates @sslcal Monte Carlo (MC) integra-
tion [7]: supposeX is a random variable with probability densjiy, and we want to estimate its

[e.e]

expected valu = E[X] = J°.. x - px(z) dz. The standard Monte Carlo estimator.6fis

~ 1 <&
X, =—
k=1
whereX;, X, - - - , are independent samples from the distributign The variance of the estima-

tor is Var[X,,| = Var[X]/n. It is not generally possible to improve thgn scaling; more accurate
estimates are usually obtained by reducing the variandeecdstimand.

A control variatefor X is a random variabl® whose expected valué = E[Y] is known and
is correlated withX. One can estimat& using thecontrol variate estimator

~ 1 — _
Xevan =~ d [Xita- (Y -Yi)]. 2)
k=1
where (X, Y:), k = 1,2,--- , are samples from the joint distribution &f andY’, and« is an

adjgstable parameter. Optimizih@r[)?cvﬂm] overa gives an optimal control variate estimator
of X with variance

1
E Var[X] ’ (1 - pZXY) 5

where pxy is the correlation coefficienflov(X,Y)/(Var[X] - Var[Y])'/2. In the special case
a = 1, Eq. [2) simply corrects the initial “gues$” with an estimate o — Y.

IHere, “equilibrium” is used in the sense of statistical gbysi.e., “thermal equilibrium.” This means that the
Markov chain satisfies detailed balancel[10], and the ststatg probability distribution is a Gibbs-Boltzmann dist
bution %e*ﬁH. Steady-state distributions of Markov chains thatrastin equilibrium are known as “nonequilibrium
steady states.” We focus on the latter here.
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Consider nowMarkov chain Monte Carlo, where the samples are not independent, but are suc-
cessive states of a Markov process. For concretenesk; ¢ a time-homogeneous continuous-
time Markov process with finite state spBéé The dynamics ofX; are completely specified by
thetransition rates R(z'|z), which tell us the rate at whick; jumps from stater to stater’, i.e.,

Prob(XHAt = x"Xt = x) = R(2'|r) - At + O(At?) . We assume that the proce&s has a
unique steady-state probability distributibh so thaty " , R(z|2") P(2') =Y, R(2'|z) P(x).

Given an observable : 2 — R, one can obtain a direct estimatei®f [¢] = > ., ¢(z)- P(x)
by simulating the process, for ¢ € [0, 7] and applying the simple estimator

~ 1 [T
or=7 [ oxar. ©

This converges almost surely ¥ [¢] as7T — oo. The variance OEET is given by theKubo

variance formula [1]

Vel T oy @

whereVar|¢] is the variance of the observalilevith respect taP. The constant is theintegrated

autocorrelation time -
T = / p(t) dt ,

wherep(t) = C(t)/C(0) is thetime-autocorrelation function of ¢(X;), and

C(t) = lim COV(¢(Xt+to)a¢<Xto)) :

to—o0

Note thatr depends on both the observabland the Markov process,.

As in the case of MC integration, it is not generally posstiolémprove thec/T scaling in
Eq. (4). Variance reduction schemes typically aim to redeitieer the autocorrelation time or
the variance”'(0) of the estimand.

To extend the notion of control variates to this setting, lmodés for a second Markov process
Y; which is correlated to the process of inter&s{15,/17,20]. The notion of correlated processes
can be made precise barkov couplings[14]: if X; andY; are Markov processes with respective
transition rates?y and Ry, a Markov coupling ofX; andY; is a specification ofoint transition
rates Rxy ((«',y')|(z,y)) for transitions from(X,, ;) = (z,y) to (X, Y;) = (2/, '), so that

>y Bxv (@', y)|(z,y)) = Rx(2'|x) forally,z,a’, and
2:{:’ RXY((x/a y/)|($a y)) = RY(y/|y) for all Y, y/ .

In other words, a Markov coupling of; andY; is a Markov process on the product sp&re (2
that gives a realization oX; when projected onto the first component, and likewise giveghen
projected onto the second.

Suppose a processcan be found such that the expectatiayr¢| with respect to the stationary
distribution@ of Y; can be computed easily. We define tmeipling control variate estimator by

(5)

Geoie = 7 /0 " [60x) +a- (Brlol - o)) de. (6)

2Extending our ideas to more general settings is straightfad. See for instance Sect.]2.2.
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The procesy; is thecoupling control variate. It is possible to estimate a nearly optinaalising
the Kubo variance formul@l(4), but for simplicity we will awys setx = 1 in this papeE In order
for the coupling control variate to be effective with thisoate of o, ¢(Y;) — ¢(X;) should have
small variancei.e., the statesX; andY; should remain as close to each other as possible.

1.2 Thecoupling control variate algorithm

Now, suppose we are interested in computityg[¢] for a Markov processX; with transition
rates Ry (z'|z). Suppose further that the steady-state distribufiois not known, but that an
approximate steady-state distributihis available. Our aim is to construct a coupled process
(X+, Y:) with transition rateRRxy ((2/, v')|(x, y)) so that

(i) The marginalX; has transition rateRy, and therefore steady-state distributiBn
(i) The marginalY; has steady-state distributioh
(i) X, andY; remain as close as possible given constraints (i) and (ii).
We show here how the couplin@xy ((z’, y')|(x,y)) can be constructed from a couplifty xy of
two realizations ofRy processes. Such couplings are available in many situateesSectf. 113.
The basic idea is to apply the Metropolis-Hastings algaritlsing the second component®f, x

as proposal and the distributi@n as the target distribution. The result is a procEssatisfying
the detailed balance condition with respectxo

QW) - Ry(yly') = Q(y) - Ry (v'y) - (7)

Thus, the stationary distribution &f is ). This is a straightforward generalization of the detailed
balance condition for discrete time Markov chains; ssg, [10,/18].

More precisely, recall that one way to simulate continutione finite-state Markov processes
is as follows (sometimes known as the Gillespie algorithiy: [t R(z) = >, R(2'|z) be
thetotal exit rate from a stater € ). LetT,, be the times at which the system jumps to the next
state, and leX' (n) = X1, , be the state of the system after each jumpX (i) = x, we set an
exponential clock of meaty R(z). When the clock rings, we choose a new statgith probability
P(2'|x) = R(2'|x)/R(x) and setX (n + 1) = z’. Note thatX;, = X (n) forT,, <t < T, 1.

The following simple algorithm generates one step of a cedirocesg X, Y;) satisfying
conditions (i-iii) above:

Algorithm. Let State = (x,y) be the current state of the joint process (X;,Y;). Wth rate
Rxx(2',y'|x,y), set Proposal = (2/,y’). Compute

Q(x') - Rx (x]a’)
Q(z) - Rx(2'|z)

With probability min(Z, 1), we accept Proposal and set NewState to (z/, y/).

7 —

(8)

With probability 1 — min(Z, 1), wereject Proposal and set NewState to (z/, y).

3For the models studied in this paper, it is expected that piienal oo will be ~ 1. In more general situations, it is
important (and not difficult) to estimate an optimaal
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It is easy to check that the coupled procé&s, Y;) generated by this algorithm satisfies HQ. (7).
Thus, the estimatof{6), when applied(t&,, Y;), is always consistent in thaAicouple;T — Ey[¢]
asT — oo. Note, however, that whether the variance of the couplingrob variate estimator
is lower than that of the simple estimatbr (3) depends on tlupling Rx x and the approximate
distribution@.

Remark. We note that when computing the expectation of static oladdeg using this algorithm
for continuous-time Markov chains, one can reduce variarlide bit more by replacing the time
intervals?,, ., — 7T, by the mean /R(X (n)).

1.3 Some practical considerations

Approximate stationary distribution. The choice of) is problem-dependent. In the nonequilib-
rium models discussed in Selct. 2, as in many other physitat&ins, perturbative analysis of the
relevant master equation often gives good candidate® fdlote that because the coupling esti-
mator is always consistent, it is not necessary to kagwiori how good an approximatiof is
to the true stationary distribution, so that one can takeathge of uncontrolled approximations.
However, the degree of variance reduction depends on thrébdison ¢ and the coupling?x x .

To choose the distributiof), one should follow these criteria:

(i) The expected valui|[¢] should be easy to compute. This is necessary in order to &épply
coupling control variate estimatar (6).

(i) The distribution@ should be “close enough” to the true stationary distribufity that the
rejection rate is low. We may then expé&étto remain close toX;, so that the coupling
control variate estimator may have low variance.

Constructing couplings. How do we obtain a couplin@®x x to start with? As mentioned earlier,
constructing Markov couplings is not always straightfarveHowever, couplings have long been
used as a theoretical tool for studying the ergodic propemif Markov processes, and “good”
couplings have been found for a broad range of stochastielmoti4]. In many (though not
all) cases, it suffices to simply use the same sequence ocbmandmbers to couple two Markov
processes. Examples include stochastic differentialtempsathat are contractive in the sense that
their largest Lyapunov exponent is negative [11] and theeatsid Sect P.

Factors affecting scaling of errors. The variance of the coupling control variate estimate is

Val“ <;{couple) = Var[(b(X) C;?(Y)] : Tcouple _'_ O(l/T2> Y (9)
whereT.. IS here the integrated autocorrelation time)oX,;) — ¢(Y;), andVar[¢p(X) — ¢(Y)]

is the variance of the random varialaléX') — ¢(Y") with respect to the stationary distribution of
the coupled process on the product space (). Note that if the coupling is effective in keeping
o(Xy) —o(Y;) small, then the variance in EQJ (9) will be small. Howevergwla proposed move is
rejected by our algorithm, the procegs‘stands still.” The process; (and hence(X;) — ¢(Y}))
may therefore have a slower correlation time tBgn That is, the amount by which the variance
of the estimator is reduced may reflect competition betweeei variance and larger correlation

time.
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Figure 1: The symmetric simple exclusion process.

Overhead and running time. Another practical consideration is the complexity(@fand the cou-
pling Rxx: a “good” coupling that is computationally expensive to lempent may not, in the
end, be worth the effort. Couplings that are easy to implépienexample simply using the same
sequence of random numbers, have a distinct advantagesiretiard.

2 Nonequilibrium transport processes

2.1 Symmetric simple exclusion process

The first model we consider is trsgmmetric simple exclusion process (SSEP) in one space di-
mension([12]. This is a stochastic lattice gas model of aalimeedium with a reservoir placed at
each end. The two reservoirs are typically maintained & miht densities, so that there is a net
flow of particles through the medium. More precisely, the doms a linear chain oN sites, with
each site holding at most one patrticle at any given time. Tthgsstate of the system < () can

be thought of as a binary string of length, with || = 2. The dynamics are as follows: each
particle carries an exponential clock of rate 1. When thelchings, the particle will try to jump
to a neighboring site, choosing left and right with equalbataility; the particle does not move if
the target site is occupied. The left reservoir will placeagtiple in site 1, when it is unoccupied,
at ratea; and remove a particle from site 1, when it is occupied, & pafT he right reservoir acts
on site N in an analogous manner, at rateand-y, respectively. See Figl 1. Note that the total
particle number is conserved, except when the reservgastiar remove a patrticle.

We begin by summarizing some known results on the SSEP; s@€]4or details. It is easy
to show that the SSEP has a unique stationary distributipn Much is known aboufPy. In
particular, various probabilities can be calculated dyagting the “matrix method.” The SSEP
thus provides a convenient test case for illustrating dagptontrol variates in nonequilibrium
transport models. A central motivation for studying modids the SSEP is to understand how
macroscopic transport processes arise from microscopiardics. One quantity of interest is the
macroscopic density profile: (0,1) — R, defined by

p(ﬂ?) = ]&EHOOEN[U[QUN]L HS (O7 1) ) (10)

whereEy[-] denotes expectation with respect . Another quantity of great interest is the
correlation between distant sites (see below).

Specifically, letp;, = o/(a+ 5) andpr = §/(6 + ). These quantities can be thought of as
the particle densities of the reservoirs. When= pr = po, the SSEP satisfies detailed balance,
and it is easy to check that the equilibrium distribution is

Py(0) = Hp(az-) , (11)
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wherep(1) = p, andp(0) = 1 — py. The occupation numbers become IID Bernoulli random
variables. Note that this meapé&r) = py.
If pr, # pr, it can be shown that

p(x) =pr-(1—x)+pr-z. (12)

The non-constant profile reflects the presence of a nonzerentuThe stationary distributioRy
is no longer a product: the covarianCev y (o;, 0;) is nonzero fori # j. The dynamics no longer
satisfies detailed balance.
The large/ scaling of spatial correlations is also known. Eixy, so that) < =z < y < 1.
Then [4]
lim N - COVN(O’[QCN], a[yN}) = —(pr—pr)? -z (1—y). 13)

N—oo

Thus, forN >> 1 andi, j not too near the end points ¢, 1), we haveCovy (0;, ;) = O(1/N).
We note that thid /V scaling is not unique to the SSEP — it has been observed im sétiEngs
as well [2,/4] 13| 19]. The correlation is thus quite weak Borge N. This means that comput-
ing correlations in nonequilibrium transport models like SSEP presents numerical difficulties:
when the covariances af&(1/N) and the occupation numbers themselves remai®(1), a di-
rect computation entails subtracting two quantities o llkagnitude to estimate a much smaller
number.

To apply coupling control variates to this problem, we nee@pproximate stationary distri-
bution ) and a coupling. For nonequilibrium transport models like 85EP, a choice ap is
suggested by the notion ¢dcal thermal equilibrium (LTE): in physical terms, even though the
system cannot be in thermal equilibrium because the two arglsn contact with reservoirs at
different densities, for largé/ it is generally expected that small parts of the medium weidiah
approximate local thermal equilibriurn![3]. For the SSER)as been shown that LTE holds in
the following sense: fixc € (0,1) and a positive integet. Then, asN — oo with z and k&
fixed, the occupation numbess, vy, oz nj41, - - - » On)+x CONVerge in distribution to independent,
identically-distributed Bernoulli random variables withob(c = 1) = p(x), wherep is the linear
profile given in Eq.[(IR). Heuristically, this tells us thatea though the system cannot attain a
global thermal equilibrium whep; # pg, it does approach local equilibrium wheéwn > 1. It
also suggests that we use as our approximate stationarpdigin

N
Qn(o) = H%‘(Uz') ) (14)
i=1

whereg;(1) = p(z;), ¢:(0) = 1 — p(z;), andz; = 7=, The distributionQy can be thought of
as a local equilibrium distribution, in which the sites acewpied independently with probability
p(x;). The LTE property suggests th@ty may become a better approximation/ef asN — oo,
at least locally.

The other ingredient we need & x, a coupling of the SSEP to itself, so that we can use the
algorithm in Sectl_112 to construct a coupling control v&iarhis is straightforward [12]: given
two copies of SSEP, we simply carry out the same moves in bmtles whenever possible, and
move independently when not. More precisely,Métves(o) denote the set of all available moves
for o, where a move means a particle jumping from site sitej (for all 7, 7 with |i — j| = 1) or
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changing the occupation number of site 1 or $iteTo each move i/ oves(o) U Moves(d), we
attach an independent exponential clock of the appropragge— 1/2 for jumpsq for injection by
the left reservoirgtc. When a clock goes off, check if the corresponding move &fisves(o) N
Moves(7), i.e., whethers ands can make the same move. If so, update lzoéimds accordingly.
If the move is inMoves(o) \ Moves(d), i.e, if only o can make the move, then update oaly
Similarly for moves inMoves(&) \ Moves(o). This algorithm couples two copies of the SSEP
process.

We can now apply the Metropolis-Hastings construction f@eat[1.2. This yields a coupling
control variate for the SSEP, with Metropolis ratidgyiven by the following table:

Transition from site to j, |i — j| =1 Z;; = 1;_’” s
i j

Injection (removal) by left reservoir Z, , = ; flpl

Injection (removal) by right reservoir Z;, = 1f’;

(ZL,out - ]-/ZL,in)
(ZR,out - ]-/ZR,in)

Note that theZ ratios involve only local quantities because the distidu€) ; has product form.
Note also that the rejection probabilities are quite smakémN > 1: sincep, — p; = O(1/N),
the Metropolis-Hastings ratia8 above arel + O(1/N) (as long a$) < p., pr < 1). Thus, the
Metropolis-Hastings algorithm rejects fewer and fewer glesmiasVv — oc.

SRR ™ |

Numerical results. To assess the effectiveness of the coupling control vaneeaise a metric we

call the error ratio . 1/2
Vary [Qscouple}
— | LN [Feouple] 15
EN [¢] < VaI‘N [;ﬂ > ( )

for a given observable. The error ratio measures the amount by which the estirr@)%e
improves the accuracy of the estimate.

Fig.[2(a) shows the error ratido, x| for the occupation numbers at a few selected locations
along the chain, specifically € {0.3,0.5,0.8}. The error ratio decreases with increasiNg
The improvement withV is expected, since the local equilibrium distributiQrn is expected to
be a better approximation of the true stationary distriouf’y when NV is big. Indeed, our data
show that the rejection rate of the Metropolis-Hastingp sliecreases as increases. In Fid.]2(b),
the error ratio for the products;,jo,n) are shown for pairgz,y) at distances ranging from
“infinitesimal” (nearest neighbors) ta: — y| = 0.7. These results show that coupling control
variates can effectively improve the accuracy of calcalaiinvolving hard-to-estimate quantities
like spatial correlations.

Fig.[3 shows the error ratios for the occupation numbgss as as functions of spatial location

€ (0,1), for N € {50,100,500}. As can be seen, the error ratio has a strong dependence on
spatial location, nearly vanishing at the boundaries bididyiattaining a near-linear profile in the
interior of the domain. The figure show that some degreeetiiom couple better than others, and
that sites in a “boundary layer” near the reservoirs couppeeially well. An explanation is that
in order for the two processes to couple at, say, Isitee need only that their occupation numbers
at site 1 agree, whereas for coupled moves to occur in in teaan of the system requires that the
occupation numbers of two neighboring sites agree. In asg,aespite this dependence on spatial
location, overall the coupling control variate has impmbtee accuracy of MCMC estimates by a
factor of > 40% for N ~ 500.
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Figure 2: The SSEP error ratis. system sizeV. In (a), we show the error ratiey (see text) for the
estimated density at = 0.3 (solid discs),x = 0.5 (open circles), and: = 0.8 (squares). In (b), we
show the error ratio for the near-neighbor prodaigty| - o[, n41 With z = 0.5 (solid discs), and for the
productso, n - op,n) With (z,y) = (0.4,0.7) (open circles) andz,y) = (0.2,0.9) (squares). The errors
are estimated using batched means estiméitors [18]. Theptees arexr = 2, 5 = 0.1, § = 0.3, andy = 1.

We note that the coupling control variate estimator can @eémented with overhead of less
than twice the running time of a single SSEP simulation. Ifrae two independent copies of
SSEP simulations and average the results, the standarebéthe resulting estimate will decrease
by a factor of1/v/2 ~ 0.7, i.e, a 30% gain. We see that for single-site density estimakes, t
coupling control variate offers a noticeable improvemarmreimply running more copies of the
simulation, and performs significantly better for two-sgtimates.

The Kubo formulal(#) tells us that when the simulation tiés sufficiently large, the error
ratio (15) can be written as a product of two factors:

(Var[p(0) = 6]\ Teoupie 12
6N[¢]N( Var[é(a)} > ( T ) (16)

= evar;N[¢] : eT;NI:¢] .

The reasoning in Sedt. 1.2 suggests that the error ¢atieflects both the gain in the first factor
evarsy DY reducing variance, and possible loss due to an increaieeisecond factoe.., by
increasing correlation times. To assess the situation,ave plottece,, y[¢], with ¢ = o, for

a few locationse, in Fig.[4(a). This curve should coincide with the plotegf in Fig.[2(a)if the
correlation time of the SSEP were equal to that of the cogptiontrol variate. Instead, we find
thate,...n < ey. Fig.[4(b) shows the ratio of integrated autocorrelatiames. As can be seen, the
coupling control variate may increase correlation timethatsame time that it reduces variance.
Here, the reduced variance wins over the increased coorel@ne.

2.2 KMP mod€

The second model we consider is the Kipnis-Marchioro-Rte@&MP) model [9]. This is a
stochastic idealization of a chain of coupled harmonic oscillators placed at the vertices of a
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Figure 3: The SSEP error ratio for the occupation nunae; as a function of location. The curves are,
from top to bottom N = 50, 100, 500. The parameters are=2, 5 = 0.1, = 0.3, andy = 1.
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Figure 4: The variance and correlation time components @fetinor ratio for the SSEP. In (a), we show
the factore, v, as defined in Eq[(16), fap = 0Ny With z = 0.3 (solid discs),x = 0.5 (open circles),
andx = 0.8 (squares). In (b), we show the corresponding ratios of taifom times. Correlation times
are computed by checking numerically that Kubo scaliig ¢4pieffect (batched means estimates of the
estimator error for integration timés8 € [10°,107] show that the mean squared errofl’~1/2). Then, the
correlation time is “reverse-engineered” using the Kubwriala, and spot-checked by direct computation
of time correlation functions. Variances are computed imetaveraging fot0® time units. The parameters
area =2, =0.1,0 = 0.3, andy = 1.
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regular lattice. We think of théth oscillator as having energy, given by a nonnegative real
number, so that the state spacélis= [0, 00)". Note that unlike the SSEP, is uncountable. At
sites 0 andV + 1, we place “heat baths” with temperatufg and Ty, respectively. There are
thus N + 1 bonds in the system, linking sitewith i + 1 fori = 1,--- | N. Associated with each
bond is an independent exponential clock of rate 1. If thelcfor the bond(i, i + 1) rings and
1 <7 < N — 1, then the energies of oscillatarg&nd: + 1 are pooled together and redistributed
randomly,.e, e = U - (¢ +¢;,4) ande, = (1 —U) - (¢; + £,,,), whereU is a uniform ran-
dom variable or0, 1] independent of everything elsef denotes energy after the redistribution,
ande~ denotes the prior energy. If the clock for the bang 0 rings,e; jumps to a new energy
level u with probability density3,e=?c*, 3;, = 1/Ty. Similarly for the bond NV, N + 1), but with
parametefir = 1/Tx. Notice that the dynamics conserves energy except at saad ¥, just as
the interior dynamics of the SSEP conserves particle number

The KMP process provide a simple microscopic model of heatlaotion. Wherl;, = T =
Tp, the system attains thermal equilibrium: the dynamicsB8as detailed balance, the stationary
distribution Py is a product of Gibbs distributions with densitiése="¢ (3, = 1/T;), and the
temperature at all sites is equalfp. WhenT;, £ T, we have a linear temperature profile

T(x)=T, - (1—2)+Tr-x, z e (0,1), (17)

whereT'(r) = limy_.o En[efy]. This non-constant profile reflects the flow of a nonzero gnerg
current through the system. The spatial correlations hasiendar scaling as the SSEP| [2]: the
limit

c(z,y) = lim NCOVN(g[xN],E[yN])

N—oo

exists, and
c(x,y) o< (Tr —Tp)* - x(1 —y), O<z<y<l.

Like the SSEPCovy(ezny, eyn) = O(1/N). Thus, one encounters similar difficulties when
estimating spatial correlations numerically.

It has been shown that the KMP model attains LTEVas+ oo, i.e. k-site marginals converge
to a product of Gibbs distributions, with a local temperatfiifx) given by the linear profile above.
This suggests that we use

N
Qn(e) =[] Bie =, (18)
=1

where 5, = 1/T(z;), as approximate stationary distribution. A simple couplof the KMP
process to itself is also available: given two copies of thdKprocess, we make the same bonds
“ring” at the same time. For interior bonds, we use the sani®um random number#’ to split
energy in both copies; for heat baths, we set the boundaey titthe same new energy. The
coupling is illustrated in Fid.15: it entails having th@rocess use the same “randomness” ag the
process to redistribute energy between nearby sites.

One difference from the SSEP is that the KMP model has an umable state space, so the al-
gorithm described in Sedtl 1 requires slight modificatiohnisTs straightforward for Markov jump
processes with transition densities: one can simply repiae ratio of transition rate coefficients
Rx in Eq. (8) with the ratio of the corresponding densities. KiMP process does not only have
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Figure 5: lllustration of the KMP coupling. Because the iatgion conserves energy, the poiid;, X;1)
is constrained to lie on the lin¥; + X, = const both before and after the interaction.
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Figure 6: The KMP error ratio as a function of system si¥e In (a), we show the error ratio for the
estimated mean energiesiat 0.3 (solid discs),x = 0.5 (open circles), ana = 0.8 (squares) as functions
of N. In (b), we show the error ratio for the near-neighbor pro@ugy; - €, n)+1 With = = 0.5 (solid discs),
and for the productsy, x| - e, n) With (z,y) = (0.4,0.7) (open circles) andz, y) = (0.2,0.9) (squares).
The errors are estimated using batched means estimatoparameters aré;, = 10 and7r = 100.

an uncountable state space, though — it also has singuteitican rate measures (this is a conse-
guence of energy conservation). Nonetheless, it can b&etighat the ratios are well-defined in
this case, and yield the following Metropolis ratios:

Interaction resulting ife;, €;) — (¢},€}), |1 —j| =1 Zi; = exp ([ﬁm + Bie;] — [Bigs + ﬁjeg])
Left heat bath setting; — ¢}  Z, =exp (8 — 51) - (€] — &1))
Right heat bath setting, — ¢/, Zr = exp ((Br — Bn) - (€}, — €1))

n

Applying the algorithm in Seck._1.2 with these ratios yieddsoupling control variate which pre-
serves the local equilibrium distributid@py .

Numerical results. Fig.[8(a) shows the error ratios for various sites in the KM&sl. As is the
case for the SSEP, the coupling control variate signifigartiuces the variance of the estimator. In
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Figure 7: The variance and correlation time componentsegthor ratio for the KMP process. In (a), we
show the factore,,n, as defined in EqL(16), fap = [,y for z = 0.3 (solid discs),» = 0.5 (open
circles), andr = 0.8 (squares). In (b), we show the corresponding “reverseneieged” ratio of correlation
times. The parameters df¢ = 10 and7r = 100.

contrast to the SSEP, the amount by which the error is reddepends more strongly on location,
ranging from 20 to 60%. Fid.I7(b) shows the error ratios f@ pnoducts:|,n; - €, for pairs
(x,y) located at various distances. These ratios are much moséstemnt and tend te: 40% for
the range ofV tested.

Fig.[4(a) shows the corresponding factgy,.n. As in the case of the SSER,,,.y is strictly
smaller than the error ratiey; at the same time, the ratig, 5 of correlation times increase; see
Fig.[d(b). Thus, Metropolis rejections can have a dramdfeceon the correlation time of the
coupling control variate. Despite that, the overall parfance of the coupling control variate
estimator is quite good: even at its worst, the accuracy bas mproved by 40%.

Conclusion

We have shown that Markov couplings, when available, candael effectively to improve the
accuracy of Markov chain Monte Carlo calculations. Thismoetuseful in situations where the
stationary distribution is not known explicitly, as in thase of nonequilibrium transport models.
As shown by the examples considered in this paper, good datedi for approximate stationary
distribution can be found based on physical reasoning, drehwan effective coupling is available
for the Markov process at hand, one can construct an eféectiupling control variate.

The numerical results suggest various directions for img@mzent. In particular, the observa-
tion that coupling control variate has larger correlatiomets than the original process suggests that
one try to “trade” variance for correlation time. Howevemple ideas like resampling the energy
of random sites at random times, as in heat bath / partiatmelsag, may very well increase vari-
ance more than it decreases correlation time, resultingiet gain of error. A related issue is the
dependence of the estimator error ratio on observablesamyrapplications, it is desirable to be
able to optimize the error ratio only for observables ofliest. (One does not expect to be able to
have small error ratios for all observables unless the aqpiatte and true stationary distributions
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are close in the total variation norm.)

Finally, we mention that it might be possible to use relatedpting methods for sensitivity
analysis. If the Markov process depends on paramétéhen the observablgin Eg. (6) becomes
¢y and the sensitivities are derivativesgfwith respect t@. Sensitivities are used, for example,
in numerical computation of optimal stochastic controlsiituations where the curse of dimen-
sionality makes dynamic programming impractical. If thisra known formula for the stationary
distribution Py, two common methods for evaluating sensitivities, ¢hsmon random variables
(or same paths) methol and theikelihood ratio (or score function) methods. Glynn [6] and others
have generalizations of the likelihood ratio method toatitatns wherel” is known but notP. It
also might be helpful to have such a generalization of theegaaths method.
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