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Typical VOF algorithms rely on an implicit slip that scales with mesh refinement, to allow
contact lines to move along no-slip boundaries. As a result, solutions of contact line phe-
nomena vary continuously with mesh spacing; this paper presents examples of that vari-
ation. A mesh-dependent dynamic contact angle model is then presented, that is based on
fundamental hydrodynamics and serves as a more appropriate boundary condition at a
moving contact line. This new boundary condition eliminates the stress singularity at
the contact line; the resulting problem is thus well-posed and yields solutions that con-
verge with mesh refinement. Numerical results are presented of a solid plate withdrawing
from a fluid pool, and of spontaneous droplet spread at small capillary and Reynolds
numbers.

Published by Elsevier Inc.
1. Introduction

Dynamic contact line phenomena involve two immiscible viscous fluids in contact with a solid surface; as one of the flu-
ids displaces the other, the contact line moves along the solid surface. Applications range from droplet spreading in various
applications to coating flows. Such flows have been studied both theoretically and experimentally (e.g. [1–6]). Simulating
such flows is complicated by the mathematical paradox of a contact line moving along a no-slip solid surface. Analytical
solutions of the Navier–Stokes equations lead to a stress singularity at the contact line [1,3]. This non-physical divergent
stress stems from the fact that continuum fluid mechanics breaks down at molecular distances from the contact line; to cir-
cumvent the stress singularity, the molecular interactions between the fluids and the solid would have to be modeled.

Various models have been proposed to deal with the contact line singularity in the context of continuum mechanics. Pre-
cursor models assume that a pre-existing thin liquid film covers the surface ahead of the contact line, so that the no-slip
condition can be applied over the entire solid surface [7–9]; these models are particularly suited for highly wetting situa-
tions. Diffuse interface models treat the interface as a finite layer across which fluid properties vary abruptly but smoothly
[10–12]; the contact line slips due to the diffusive fluxes between the fluids. Finally, slip models are used to relax the stress
singularity at the contact line [1,2,13,14]; these allow independent imposition of a non-zero contact angle and are suitable
for partially wetting contact lines that are advancing or receding over a solid surface.

Many studies have made use of a slip model. For example, Huh et al. [15] applied a free-slip model near the contact line
and a no-slip condition elsewhere. Dussan [16] concluded that when compared with the slip length, the details of a partic-
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ular slip mechanism are of little importance. Cox [13] also considered slip in his model: the results of his model agreed well
with the experimental data of Hoffman [17]. The most common slip model in the literature is the Navier-slip law, in which
the extent of slip is proportional to the shear stress
vjx¼0 � U ¼ k
ov
ox
jx¼0 ð1Þ
at the solid boundary ðx ¼ 0Þ; k is the ‘‘slip length” that defines the extent to which the no-slip boundary is relaxed; v is the
slip velocity; and U is the speed at which the solid boundary is moving.

Numerically, the approach to implementing slip depends on the method used to represent the interface. Methods that
explicitly track an interface (e.g. [18–20]) require a slip condition for the mesh node at the contact line. On the other hand,
most VOF implementations (and more generally, most interface capturing techniques) utilize cell face normal velocities to
advect volume fractions (e.g. [21–23]). This implies that the methodology includes an ‘‘implicit” (or ‘‘effective”) slip length at
no-slip boundaries. However, relying on this implicit slip length leads to a convergence breakdown, because the stress sin-
gularity at the contact line is resolved by a slip length that is proportional to mesh spacing [22,24,25].

An important property of contact line phenomena is the contact angle, the angle at which an interface appears to intersect
with a solid boundary. The static contact angle he is the angle that is obtained on a perfectly flat surface in thermodynamic
equilibrium, given by the Young relation [7]
csl þ c cos he ¼ csg ð2Þ
For example, for a liquid/gas/solid system, c is the liquid/gas surface tension, and csl and csg are the surface energies per
unit area of the wet and dry solid, respectively. It is often assumed that even in dynamic situations the contact angle at the
smallest scale is the angle given by the Young relation (Eq. (2)), although in some cases the local value of the surface tension
may differ from its equilibrium value so that the local angle will not be he. For instance, c will differ from its equilibrium
value if the fluid motion affects the distribution of tensio-active molecules on the interface; other theories involving variable
surface tensions have also been proposed [26]. Heterogeneities or roughness of the interface affect the observed contact an-
gles at scales larger than that of the surface imperfections. A dynamic contact angle at this scale will then not be given by Eq.
(2), but will result from a complex balance of small scale dissipation and energy release.

Fig. 1 illustrates a moving contact line and three contact angles measured at different distances from the contact line: the
microscopic contact angle, hmicro, the dynamic contact angle, hdyn, and the apparent contact angle, happ � hmicro is measured at
the microscopic length scale and here is equivalent to he � hdyn is the contact angle determined by measuring the interface
slope at the contact line; this is the angle often used as a geometric boundary condition for the solution of hydrodynamic
equations. happ, the interface slope at a finite distance from the contact line, is used as an auxiliary concept to interpret exper-
imental or numerical results. For example, for a meniscus advancing in a capillary tube or for a plate withdrawing from a
liquid pool, happ is the angle between a spherical cap fitted to the moving interface and the solid substrate; for a spreading
droplet, happ can be determined by fitting a static-like interface to the drop profile near the moving contact line.

When a contact line moves across a solid surface, there are three forces (assuming gravity is negligible) acting on the
fluid: inertial, viscous, and surface tension. Theoretical studies suggest that the viscous dissipation becomes very strong near
a moving contact line [1]. The resulting interaction between hydrodynamic and surface tension forces then yields a curvature
of the fluid/fluid interface that varies sharply near the contact line. This can cause the contact angle to differ significantly
from the interface angle measured even at short distances away from the contact line. The magnitude of this effect depends
on fluid properties, the capillary number Ca ¼ lUcl=c (Ucl is the contact line velocity, l the fluid viscosity, and c the surface
U
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micro
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Fig. 1. A schematic of different angles at a moving contact line.
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tension), and a contact line region length scale, possibly of molecular size [27]. A successful example of determining apparent
contact angles from hydrodynamic theories is the computational study of Lowndes [28] who used a finite-element method
to solve for single-phase capillary tube flow with local slip and a very small slip length. Lowndes demonstrated a dependence
of happ on Ca and on the static contact angle that agreed well with several experimental studies. Sheng et al. [29] predicted
the interface profiles in a capillary tube, solving the time-independent Stokes equations with three different slip models.
They too showed a dependence of happ on Ca, the static contact angle, and k that agreed well with theoretical expressions.
Numerical results of Latva-Kokko and Rothman [30] obtained from a lattice-Boltzmann model also showed the dependence
of happ on Ca and k that is predicted by analytical relations.

Theoretical studies also suggest that at low Ca, there exists a viscous region close to the contact line where the flow is
geometry-free. Numerical models have been proposed with the aim to provide geometry-independent boundary conditions
for modeling of dynamic contact lines (for review, see [31]). Specifically, it has been suggested that the viscous region around
the contact line can be cut off from the flow (to avoid the singularity at the contact line) and be replaced with the flow given
by the analytical solution. Bazhlekov and Chesters [32] and Somalinga and Bose [33] utilized this strategy and showed that
for Ca < 0:1, the results compared well with the results of numerical simulations which resolved the microscopic scale.

This work presents VOF-based numerical solutions of the time-dependent Navier–Stokes equations for flows with dy-
namic contact lines. We solve for the stationary state interface profiles of a receding contact line (withdrawing plate),
and transient interface profiles of an advancing contact line (spreading droplet). We first demonstrate the dependence of
the results on mesh refinement, when a no-slip or Navier-slip condition is imposed along the solid boundary, and a fixed
contact angle is imposed at the contact line. Then we present a brief review of the theoretical analysis of Cox [13], that forms
the basis for the development of our contact angle model. Finally we present simulation results using the new contact angle
model, that converge with mesh refinement.
2. Numerical methodology

We solve the equations of conservation of mass and momentum for two incompressible Newtonian fluids. Each fluid has a
constant density q and a constant viscosity l. In what follows, u represents the velocity field, p the hydrodynamic pressure,
and g the gravitational acceleration. We non-dimensionalize the variables as follows:
x� ¼ x=L; t� ¼ tU0=L; l� ¼ l=l0; q� ¼ q=q0;

u� ¼ u=U0; p� ¼ pL=ðl0U0Þ
where L;U0;q0, and l0 are characteristic length, velocity, density, and viscosity, respectively. The equations of motion then
become
r� � u� ¼ 0 ð3Þ

Re
o

ot�
ðq�u�Þ þ r� � ðq�u�u�Þ

� �
¼ �r�p� þ r� � s� þ 1

Ca
F�st þ q�

Bo
Ca

ð4Þ
where s� ¼ l�ðr�u� þ r�u�TÞ represents the dimensionless shear stress tensor, F�st denotes the dimensionless body force due
to surface tension, and the Reynolds, capillary, and Bond numbers are defined as Re ¼ q0U0L=c;Ca ¼ l0U0=c, and
Bo ¼ q0L2g=c, respectively.

The ‘‘volume-of-fluid” (VOF) method is used to track the interface [34]. A balanced-force implementation of the ‘‘contin-
uum surface force” (CSF) method [35,36] is used to discretize the surface tension force. The ‘‘height function” (HF) method-
ology [36,37] is implemented for calculating interface normals and curvatures and for imposing a contact angle as a
boundary condition at the contact line [37].

The basis for our in-house numerical model is an early version of GERRIS [38,39]. The flow equations are discretized using a
projection method based on a variable-density fractional-step scheme. (However, all the results in this paper are all of con-
stant density interfacial flows.) The domain is discretized adaptively using quadtree finite volumes arranged hierarchically.
Primitive variables are collocated at cell centers; normal velocities are also specified at faces (MAC scheme). Advection terms
are discretized using a second-order upwind scheme. In the fractional-step projection method, an interim velocity is com-
puted first; this velocity field is projected onto a divergence-free velocity field, with the pressure field obtained as the solu-
tion of a Poisson equation. As the face-centered velocities are exactly divergence-free, the volume fractions are advected
using these velocities.

As mentioned previously, for most VOF implementations including ours, explicit velocity boundary conditions are not re-
quired at a contact line. Instead, volume fractions in cells that contain a contact line are advected with the (non-zero) veloc-
ities that are a half cell from the solid boundary, as illustrated in Fig. 2.
3. Mesh-dependent results, applying no-slip and Navier-slip boundary conditions

We begin by presenting results that depend on mesh resolution, when the no-slip or the Navier-slip boundary condition
is applied at the solid surface along which a fluid/fluid interface moves. Fig. 3 illustrates the implementation of the boundary
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Fig. 2. VOF methods use cell face normal velocities, vb and v t , to advect the cell center volume fraction f, and so move the contact line.
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Fig. 3. The discretization of Eq. (1): (a) k!1, (b) 0 < k <1, and (c) k ¼ 0ðv ¼ 0Þ.

S. Afkhami et al. / Journal of Computational Physics 228 (2009) 5370–5389 5373
conditions, by specifying velocities in the so-called ‘‘ghost cells” just outside the fluid domain. The Navier-slip model (Eq. (1))
is discretized using central differences so that the ghost cell velocity is
vg ¼
2UD� ðD� 2kÞv1

Dþ 2k
ð5Þ
and the slip velocity v along the solid boundary is
v ¼ UDþ 2kv1

Dþ 2k
ð6Þ
where v1 is the component of the tangential fluid velocity one half cell width from the wall (illustrated in Fig. 3), and D is the
(uniform) mesh size. Note that k ¼ 1 (Fig. 3(a)) corresponds to the free-slip condition, and k ¼ 0 (Fig. 3(c)) is the usual no-
slip condition.

The following numerical results are for a plate withdrawing from a fluid pool (receding contact line), and for contact line-
driven spreading of a viscous droplet on a horizontal solid boundary, in the absence of gravity (advancing contact line). Both
of these problems have been studied extensively, both experimentally and theoretically (e.g. [7,8,40–45]). To evidence the
dependence of the solutions on mesh size, D was varied from 1/32 to 1/512. Note that D represents the maximum mesh res-
olution on a locally refined adaptive mesh; the interface was always resolved at this maximum resolution.
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3.1. Withdrawing plate

Consider a solid plate withdrawing from a square fluid pool of length L ¼ 1, where �0:5 6 x; y 6 0:5. Gravity g acts down-
wards. The lower fluid is initially 0.4 high and at equilibrium when the left wall begins to withdraw from the pool at a con-
stant velocity U ¼ 1 (see Fig. 4). Surface tension c ¼ 7:5 and both fluids have equal density, 1, and viscosity, 0.25. The density
and viscosity ratios were set to one to minimize the computational cost; a fixed contact angle h ¼ 90� was imposed at the
contact line. The corresponding values of Re and Ca are 4 and 0.03, respectively. The results were computed to stationary
state at a non-dimensional time step of 10�5, where the non-dimensional time s ¼ tU=L.

The results when imposing a no-slip boundary condition along the left wall are presented first. As noted before, the
numerical model introduces an effective slip which is on the scale of the mesh size. Fig. 5 illustrates the flow fields about
the contact line, at different times s. The streamlines depict the slip of the contact line along the wall, as it evolves to a sta-
tionary state by s ¼ 1:8.

Fig. 6 presents the dependence of the time variation of contact line height on mesh spacing; as expected, these curves do
not converge as D! 0. Fig. 7 illustrates the corresponding stationary state interface profiles and further demonstrates the
lack of convergence. The logarithmic variation of the stationary contact line location with D is shown in Fig. 8. The height
of the contact line increases from 0.55 to 0.82 as D varies from 1/32 to 1/512. To evidence the stress singularity at the contact
line, the shear rate ov=ox along the solid boundary is plotted in Fig. 9; the shear stress at the contact line clearly diverges
with mesh refinement.

The flow in the vicinity of the contact line is strongly dominated by viscous effects that are balanced by surface tension,
causing the interface slope to vary dramatically near the contact line. To demonstrate the local change of that slope the inter-
face curvature is plotted in Fig. 10 as a function of distance from the wall x (scaled by D=2). As illustrated, the curvature in-
creases dramatically as the interface approaches the wall; far from the wall the curvature approaches zero. Fig. 10 also
demonstrates the mesh dependence of the interface curvature.

We now turn to results when the Navier-slip model (Eq. (1)) is imposed along the entire solid boundary. We adopted this
approach because it has been suggested that using a small slip length results in effective slip only near the contact line [14],
which weakens the local singularity and allows the contact line to slip along the solid boundary. The advantage of the Na-
vier-slip model is that it specifies a slip length instead of relying on the mesh-dependent effective slip of the numerical
discretization.

We chose a slip length k ¼ 0:001 that is approximately twice smaller than the finest mesh size, to demonstrate that solu-
tions do not converge when the slip length is not well resolved. Fig. 11 presents the contact line height versus D; the shear
rates along the solid boundary are plotted in Fig. 12. As expected, the results depend on mesh size, although the dependence
appears to weaken as the mesh is refined, suggesting that further reductions in mesh size would lead to convergence. Unfor-
tunately, further refinement would also require excessive computation time.

Finally, recall that contact line height increases logarithmically with mesh refinement when the no-slip condition is ap-
plied (see Fig. 6); this is not the case for the Navier-slip condition, as shown in Fig. 11. Also, contact line height decreases
when the Navier-slip condition is applied, compared to the no-slip condition. The maximum shear rate at the contact line
is also significantly reduced by the slip condition (compare Fig. 12 to Fig. 9). All of this implies that the results obtained when
the Navier-slip condition is applied underestimate actual values, unless a very small slip length is employed.

3.2. Spreading droplet

The second test is of the spontaneous spread of a viscous droplet. An initially semicircular droplet ðh ¼ 90�Þ of radius
R ¼ 0:5 is placed on a solid surface in a square domain of length L ¼ 1, where �0:5 6 x; y 6 0:5; for reasons of symmetry only
half the droplet is modeled. The droplet moves across the solid surface towards a new equilibrium configuration defined by a
change in hð¼ 60�Þ. Surface tension c ¼ 7:5 and both fluids have equal density, 1, and viscosity, 0.25. Re and Ca, based on the
U g

Fig. 4. The withdrawing plate, initially at s ¼ 0, and after the plate begins to move ðs > 0Þ.
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maximum velocity of the flow and the initial radius of the drop R, are approximately 2 and 0.03, respectively. Results are
presented at non-dimensional times s ¼ tl=qR2; a constant non-dimensional time step of 10�5 was specified for all cases.

First, the no-slip boundary condition was imposed along the solid boundary, and a fixed h ¼ 60� was specified. The finest
mesh size varied from D ¼ 1=32 to 1/256. Fig. 13 provides details of the flow field about the droplet at different times s for
D ¼ 1=256. The streamlines depict the vortices induced above the droplet. At early times ðs ¼ 0:01Þ, strong flow occurs close
to the contact line as the droplet evolves to its equilibrium state. These vortices dissipate at later times as the droplet ap-
proaches its equilibrium position.

Fig. 14 shows rðsÞ=R, the ratio of the instantaneous droplet radius to the initial droplet radius, at different mesh res-
olutions, as a function of s. As shown, rðsÞ=R does not converge with mesh refinement; rather, the contact line velocity
is higher on a coarse mesh, which is a consequence of a larger effective slip length; conversely, a finer mesh leads to less
slip, which slows the contact line. Fig. 14 also shows that the equilibrium configuration converges with grid refinement.
Table 1 presents the convergence of the equilibrium position and shape with grid refinement by comparing the equilib-
rium volume fraction field with the expected volume fractions (corresponding to a circular segment of the same volume,
with h ¼ 60�):
L1 ¼
XN

i¼1

jfi;exact � fi;approx:jD2
i ð7Þ

L1 ¼ max jfi;exact � fij ð8Þ



Fig. 7. Stationary state interfaces at different mesh resolutions D ¼ 1=32, 1/64, 1/128, 1/256, and 1/512 (from bottom to top).
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N is the number of cells in the domain, and Di represents the size of a cell i in the adaptive mesh. The results show that the
mean and maximum errors decrease with mesh refinement. More important, however, is that the maximum errors are well
below one, which implies that the equilibrium position and shape are well within a single mesh cell of the exact solution.

To evidence the stress singularity at the contact line, the shear rate along the solid boundary is plotted in Fig. 15 at time
s ¼ 0:4. The peak shear rate clearly increases with mesh refinement. Droplet profiles at s ¼ 0:4 are shown in Fig. 16: the ef-
fect of mesh refinement is most apparent near the contact line; the interface profile away from the contact line region is less
influenced by the mesh size. These observations are all consistent with the interpretation of an effective slip length.

Figs. 17 and 19 illustrate results when the Navier-slip law, with k ¼ 0:001, is imposed along the solid boundary. The max-
imum mesh size varies from D ¼ 1=32 to 1/256. Fig. 17 shows rðsÞ=R at different mesh resolutions. The shear rate along the
solid boundary is plotted in Fig. 19 at s ¼ 0:4. Like for the no-slip condition, both rðsÞ=R and the shear rate at the contact line
depend on mesh spacing when the Navier-slip condition is imposed.

A grid refinement study is also presented using k ¼ 0:02, to show that convergence is achieved when the mesh size is
smaller than the slip length. Fig. 18 shows that for k ¼ 0:02; rðsÞ=R converges with mesh refinement, indicating that one
can obtain mesh-independent results when the slip length is resolved.
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Finally, Voinov [40] presents an analysis of advancing contact lines that predicts a contact line velocity for 2D droplet
spreading that behaves as A= lnðB=kÞ, where A depends on the difference between interface slope away from the contact line
and the static contact angle, and B depends on the instantaneous radius of the droplet. The results here are consistent with
this theoretical prediction: a larger slip length (on a coarser mesh) leads to an increase of the contact line velocity. This is to
be expected, as a larger slip length leads to a decrease in viscous stresses in the vicinity of the contact line (Fig. 15).

4. A brief review of Cox [13]

There are two major difficulties that arise when modeling moving contact lines: the specification of hdyn, and the modi-
fication of the no-slip boundary condition to remove the singularity at the contact line. Here we present a contact angle
boundary condition derived from fundamental hydrodynamics, that overcomes both of these difficulties in a simple and con-
sistent way. We begin with a review of the analysis of Cox [13], and then present a new numerical contact angle model based
on this analysis.

Cox [13] provides a general hydrodynamic description of a moving contact line, that relates hdyn to characteristic dimen-
sions of a flow, ucl (or Ca), a contact angle, and k [13]. Beginning from a generalized form of lubrication theory (extended to
two fluids), and a general geometry for the system (valid for arbitrary slopes), Cox divides the domain into three distinct
regions (illustrated in Fig. 20): (i) an outer macroscopic region of characteristic length rout; (ii) a contact line or intermediate
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region, over which the interface slope changes sharply, characterized by a balance of viscous and surface tension forces; and
(iii) an inner region of characteristic length rin that is of near molecular size. Let U be the characteristic velocity for the flow
when fluid #2 (of viscosity l2 and density q2) displaces fluid #1 (of viscosity l1 and density q1). During this motion, slip
occurs at distances of order rin so that e ¼ rin=rout � 1. Surface tension dominates the flow so that the capillary number
Ca ¼ l2U

c is small; inertial effects are also negligible, and so the Reynolds number Re ¼ q2UL
l2

is small.

Cox then uses the solution of the Stokes equations for a wedge flow, and via a double expansion in terms of Ca and e
matches the solutions in two or three regions of expansion at different distances from the contact line. Cox shows that
two regions of expansion are necessary if, as Ca! 0 and e! 0;Ca lnðe�1Þ ! 0, in which case the interface is almost planar;
three regions of expansion are necessary if, as Ca! 0 and e! 1, Ca lnðe�1Þ ¼ Oð1Þ, in which case the angle that the interface
makes with the solid surface can change by an amount of order unity.

Fig. 20 illustrates the three regions and the corresponding contact angles: hm is the angle in the outer region rout , and hw is
the angle in the inner region rin (the angle that a planar interface makes with the solid surface at the contact line). Cox then
shows that an asymptotic form of the solution in the outer region rout written in terms of intermediate variables yields
GðhðrÞÞ ¼ GðhmÞ þ Ca lnðrÞ þ Ca
Q �o

f ðhm; qÞ

� �
ð9Þ
where q ¼ l2=l1. Q �o must be determined from a particular outer solution and depends on q, hm, dhm=dt, and on the geometry
of the outer region, and
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GðhÞ ¼
Z h

0

dh
f ðh; qÞ ð10Þ
where
f ðh; qÞ ¼ 2 sin hfq2ðh2 � sin2 hÞ þ 2q½hðp� hÞ þ sin2 h� þ ½ðp� hÞ2 � sin2 h�g
qðh2 � sin2 hÞ½ðp� hÞ þ cos h sin h� þ ½ðp� hÞ2 � sin2 h�ðh� cos h sin hÞ

ð11Þ



 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

r(τ
)/R

τ

Δ=1/32
Δ=1/64

Δ=1/128
Δ=1/256

Fig. 14. Dependence of rðsÞ=R on mesh spacing, for a no-slip boundary condition.

Table 1
L1 and L1 norms of errors in volume fractions at equilibrium.

D L1 L1

1/32 3:89� 10�4 1:11� 10�2

1/64 1:00� 10�4 6:18� 10�3

1/128 3:31� 10�5 4:39� 10�3

1/256 6:92� 10�6 1:69� 10�3
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Fig. 15. Shear rate at different mesh resolutions at s ¼ 0:4, for a no-slip boundary condition.
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Eq. (9) gives the slope of the fluid/fluid interface at a distance rðr=rout � 1Þ using information from the outer region. A
similar expansion yields the solution in the inner region rin in terms of intermediate variables
GðhðrÞÞ ¼ GðhwÞ þ Ca lnðe�1rÞ þ Ca
Q �i

f ðhm; qÞ

� �
ð12Þ
where Q �i is a constant that depends on q; hmicro, and the specific slip law used. Eq. (12) gives the slope of the fluid/fluid inter-
face at a distance rðrin=r � 1Þ using information from the inner region.

Combining Eqs. 9 and 12 yields an expression that relates hm and hw, by matching the two aforementioned solutions in the
intermediate region where Ca lnðr=routÞ ¼ Oð1Þ:



Fig. 16. Droplet shapes at different mesh resolutions at s ¼ 0:4, for a no-slip boundary condition. D ¼ 1=32, 1/64, 1/128, and 1/256 (from right to left). The
contact line moves from left to right.
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Fig. 17. Dependence of rðsÞ=R on mesh spacing, for the Navier-slip boundary condition, k ¼ 0:001.
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Fig. 18. Convergence of rðsÞ=R with grid refinement is shown for the Navier-slip boundary condition with k ¼ 0:02.
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GðhmÞ ¼ GðhwÞ þ Ca lnðe�1Þ � Ca
Q �o

f ðhm; qÞ

� �
þ Ca

Q �i
f ðhm; qÞ

� �
ð13Þ
Eq. (13) correct to order Ca0 is
GðhmÞ ¼ GðhwÞ þ Ca lnðe�1Þ þ OðCaÞ ð14Þ
Eq. (14) relates the macroscopic and microscopic contact angles, and is only a function of hw and the relative length e, that
corresponds to the slip length. However, neither hw nor e are uniquely defined, in that hw can depend on velocity, and e is the
ratio of rin to rout where neither length is a unique quantity. The same equations also result if fluid #2 recedes, but then U < 0
and Ca < 0.

For hw 6 hm < 135� and q� 0, Eq. (14) assumes the limiting form
h3
m ¼ h3

w þ 9Ca lnðe�1Þ ð15Þ
This is the so-called ‘‘Hoffman–Voinov–Tanner” law [46] that was originally derived from experimental results for small
Ca. Also, Sheng and Zhou [29] showed that Eq. (14) can be well approximated by
cosðhwÞ � cosðhmÞ ’ 5:63Ca lnðK=rinÞ ð16Þ
provided that q ¼ 1 and j cos hj < 0:6, where K is a constant (with a dimension of length) that depends on the slip model and
the outer region length scale rout .
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5. A new numerical contact angle model

The asymptotic matching presented above is the basis of the numerical contact angle model presented here. The theory of
Cox relates h at various distances; here we draw an analogy to obtain a contact angle boundary condition as a function of
mesh size, that yields the same macroscopic contact line configuration.

Fig. 21 illustrates three regions of expansion, corresponding length scales, and contact angles. ro is an outer length scale
that could correspond to the length of a domain; ri corresponds to the resolution of the computational mesh; and the length
scale at which slip occurs is D=2. By analogy to Cox, happ corresponds to hm, and hnum (the contact angle boundary condition at
the solid wall) corresponds to hw.

We consider only the leading terms of the asymptotic expansions. Based on Eq. (9), the asymptotic solution in the outer
region ro written in terms of intermediate variables yields
GðhðrÞÞ ¼ GðhappÞ þ Ca lnðrÞ ð17Þ
Similarly, based on Eq. (12), the solution in the inner region ri written in terms of intermediate variables yields
GðhðrÞÞ ¼ GðhnumÞ þ Ca ln
ro

D=2
r

� �
ð18Þ
hnum is the angle that the interface makes with the solid surface at a distance on the order of D=2. Combining Eqs. 17 and 18
yields a relationship between hnum and happ:
GðhnumÞ ¼ GðhappÞ þ Ca ln
D=2
ro

� �
ð19Þ
where the function G is defined by Eq. (10). hnum is the mesh- and velocity-dependent geometric boundary condition required
for the solution of the macroscopic hydrodynamic equations. happ ¼ happðCa; he; . . .Þ is the apparent contact angle in the mac-
roscopic region, that we expect to converge to with mesh refinement. This approach to applying a boundary condition at the
contact line allows one to use mesh sizes that are very much coarser than the molecular scale, yet obtain realistic results.
Finally, note that Cox’s theory places no restrictions on the form of the microscopic contact angle, a role played here by
hnum: it can be constant or velocity-dependent.

happ in Eq. (19) can be obtained from existing empirical correlations (e.g. [17,46–48]). In most cases described in the lit-
erature, happ is a function of Ca and the equilibrium contact angle he. It has been suggested that when viscous drag near the
contact line is dominant, then the dynamic behavior of this contact angle versus Ca manifests itself in a ‘‘universal” manner
[17]: that is, the viscous hydrodynamics near the contact line define the variation of happ with Ca.
6. Results

In the remainder of this paper, we present results using the new boundary condition: hnum is prescribed at the contact line,
and the no-slip condition is applied along the entire wall. The results demonstrate that the model appears to eliminate the
contact line singularity and so yields a well-posed problem that leads to mesh-independent results.
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Fig. 21. Outer region: interface slope is happ; inner region: interface slope is hnum; and intermediate region: interface has a slope h ¼ hðrÞ.
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6.1. Withdrawing plate

To begin, we consider the withdrawing plate of Section 3.1, for which Ca ¼ 0:03 is a constant, and present results of two
sets of simulations. For the first, we calculated a result by applying hnum ¼ 90

�
on a fine mesh ðD ¼ 1=512Þ; we then used a

trial-and-error approach to determine values of hnum at other D that yielded very similar stationary state interface profiles.
For the second set of simulations, we did the opposite: we calculated a stationary state result by prescribing hnum ¼ 90� on a
coarse mesh ðD ¼ 1=32Þ, and then ran many more simulations on finer meshes to determine the values of hnum that again
yielded very similar interface profiles.

Fig. 22 shows the converged stationary state interface profiles for each of the two sets of results, corresponding to
hnum ¼ 90�, 84�, 78�, 72�, and 63� for the first set, and hnum ¼ 114�, 108�, 102�, 97�, and 90� for the second set of simulations.
In each case these values correspond to D ¼ 1=512, 1/256, 1/128, 1/64, 1/32. Of interest is whether the variation of hnum
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Fig. 22. Stationary state interfaces magnified near the contact line; D ¼ 1=512, 1/256, 1/128, 1/64, 1/32. The corresponding values of hnum are: (a) 90�, 84�,
78�, 72�, 63�, and (b) 114�, 108�, 102�, 97�, 90�.
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versus D required to obtain this convergence (i.e. to a single happ) is of the form of Eq. (19). For simplicity, we used a variation
of Eq. (16) to approximate Eq. (19)
Fig. 24.
values
cosðhnumÞ ¼ cosðhappÞ þ 5:63Ca lnðK=ðD=2ÞÞ ð20Þ
From the results illustrated in Fig. 22 we measured happ as the angle between the solid boundary and the interface extrap-
olated to the solid boundary, as illustrated in Fig. 23. With a as the apex height and r the distance between the planes con-
taining the apex and the contact line, we calculated happ ¼ cos�1½2ra=ðr2 þ a2Þ�.

Fig. 24 illustrates a plot of cosðhnumÞ � cosðhappÞ versus 5:63Ca lnðK=ðD=2ÞÞ. An excellent fit is obtained with K ¼ 0:2, which
is a value also presented in the work of Sheng and Zhou [29]. Fig. 24 clearly shows that the contact angle boundary condition
hnum scales logarithmically with the numerical slip length. The numerical results, therefore, affirm the validity of the contact
angle boundary condition model. Also, as expected, the contact angle increases as the mesh size decreases, thereby allowing
the surface tension force to balance the stress singularity. The stationary state shear rate along the solid boundary is plotted
in Fig. 25 at different mesh resolutions using the new boundary condition for hnum ¼ 90�, 84�, 78�, 72�, and 63�; it is noted
that maximum shear rates are about the same as those presented in Fig. 9.

6.2. Spreading droplet

Finally we present the results of applying the new mesh-dependent contact angle model to droplet spreading. This time
Eq. (20) was used directly to compute the dynamic contact angle boundary condition at the contact line. A fixed happ ¼ 60�

was set, i.e. hnum ! 60� as Ca! 0, which is the equilibrium contact angle. Unlike the withdrawing plate, Ca ¼ lucl=c is veloc-
ity-dependent: ucl is the tangential component of the velocity at the contact line one half cell above the solid surface (v1 in
Fig. 3(c)). K was set to 0.02 and k ¼ D=2. The small value of K was chosen to avoid large differences between hnum and happ,
since Eq. (20) is only valid for j cos hj < 0:6. As noted before, the constant K is not known a priori and depends on the slip
r
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U

Fig. 23. The apparent contact angle is measured by fitting a circle to the interface and extending it to the solid surface.
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model and the size of the macroscopic region (probably a role played here by the radius of the drop R). The true value of K
could be determined by fitting numerical data to data obtained experimentally or theoretically.
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Fig. 25. Stationary state shear rates at different mesh resolutions using the new boundary condition hnum.

Fig. 26. Droplet shapes converge with mesh refinement. D ¼ 1=32, 1/64, 1/128, and 1/256, at s ¼ 0:4. The contact line moves from left to right.
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Fig. 27. Convergence of rðsÞ=R with mesh refinement. The dynamic contact angle model is used to compute the contact angle boundary condition
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Table 2
Droplet radii versus time as a function of mesh refinement. The exact radius corresponding to a circular segment of the same volume with h ¼ 60� is 0.6925.

D s ¼ 0:2 s ¼ 0:4 s ¼ 0:6 s ¼ 0:8 s ¼ 1:0 s ¼ 2:0

1/32 0.6102 0.6619 0.6779 0.6877 0.6879 0.6881
1/64 0.6117 0.6633 0.6799 0.6877 0.6882 0.6887
1/128 0.6118 0.6640 0.6801 0.6875 0.6887 0.6898
1/256 0.6119 0.6640 0.6798 0.6860 0.6888 0.6915

Table 3
L1 and L1 norms of errors in volume fractions at equilibrium.

D L1 L1

1/32 4:49� 10�4 3:28� 10�2

1/64 1:18� 10�4 1:79� 10�2

1/128 3:89� 10�5 8:10� 10�3

1/256 1:05� 10�5 5:92� 10�3
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Fig. 28. Variation of hnum as a function of s. Note that hnum ! 60� as s!1.
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Examination of Eq. (20) reveals a gradually varying influence of the contact line velocity on the contact angle model; in
particular, estimates of contact line velocities evaluated at finer resolutions are of smaller magnitude than corresponding
velocities at coarser resolutions, resulting in smaller contact angles. Eq. (20) also serves as a scaling model for hdyn with mesh
refinement, which leads to convergence of the numerical solutions. Fig. 26 shows droplet shapes that converge with grid
refinement. Fig. 27 demonstrates that with this new dynamic contact angle model, rðsÞ=R converges with mesh refinement.
Fig. 27 also shows that the equilibrium configuration converges with grid refinement. Table 2 provides quantitative data of
the droplet radii versus time at different resolutions. Table 3 presents the convergence of the equilibrium configuration with
grid refinement as measured by the norms defined by Eqs. (7) and (8).

Eq. (20) determines a dynamic contact angle that varies according to mesh size and the contact line velocity. As a result,
larger contact angles are computed at coarser resolutions, thus slowing the moving contact lines; the smaller contact angles
computed at finer resolutions allow the contact line to speed up. Figs. 28 and 29 demonstrate the variation of hnum and the
contact line velocity ucl in terms of Ca ð¼ lucl=cÞ, as a function of non-dimensional time s, respectively. Fig. 29 illustrates that
the contact line velocity is largely independent of mesh resolution, as a result of the dramatic variations of hnum illustrated in
Fig. 28, especially early in the drop spreading, when the velocities are highest.

7. Conclusion

Many numerical solutions of moving contact line phenomena depend on mesh spacing. In particular, one cannot expect
the results of simulations to converge when the only slip is the ‘‘effective slip” associated with the particular implementation
of an algorithm [22,24,25]. Here we presented further evidence of this mesh dependence, when applying both no-slip and
Navier-slip boundary conditions. Based on the theoretical analysis of Cox [13], a numerical contact angle model has been
developed, that relates hnum and happ. On the basis of simulations, the linear dependence of cosðhnumÞ � cosðhappÞ on
Ca lnðK=ðD=2ÞÞ is shown. This scaling relationship is then used as a means to evaluate hnum as a function of happ;Ca;D, and
K, that yielded mesh-independent solutions of moving contact line phenomena. We showed that our approach is an effective
way to deal with under-resolved slip lengths in a consistent manner with hydrodynamics.
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