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Abstract 

The Fokker-Planck equation is a widely used approximation for modeling the 

Compton scattering of photons in high energy density applications. In this paper, we 

perform a stability analysis of three implicit time discretizations for the Compton­

Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit 

(SI) scheme that employs backward-Euler differencing but evaluates temperature­

dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit 

(FI) discretization that instead evaluates temperature-dependent coefficients at 

their end-of-time-step values, and (iii) a Linearized Implicit (11) scheme, which 

is developed by linearizing the temperature dependence of the FI discretization 

within each time step. Our stability analysis shows that the FI and LI schemes are 

unconditionally stable and cannot generate oscillatory solutions regardless of time­

step size, whereas the SI discretization can suffer from instabilities and nonphysical 
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oscillations for sufficiently large time steps. With the results of this analysis, we 

present time-step limits for the SI scheme that prevent undesirable behavior. We 


test the validity of our stability analysis and time-step limits with a set of numerical 


examples. 


Key word8: 


Radiative transfer, Compton scattering, Fokker-Planck approximation, 


Kompaneets' equation, Stability analysis 


Introduction 

An important aspect of radiative transfer in high energy density applications 

is the scattering of photons by free electrons, known as Compton scattering [1]. 

In this process, the change in frequency of a scattered photon results in an ex­

change of energy between the photon and target electron and energy coupling 

between radiation and matter. The differential cross section and corresponding 

integral equation that model Compton scattering are complicated and often 

simplified by a Fokker-Planck approximation [2~5J. The resulting time and 

frequency-dependent partial differential equation, also known as Kompaneets' 

equation, is valid when the photon frequency and material temperature are 

small with respect to the electron rest mass. 

The Fokker-Planck equation is typically solved by discretizing in time and 

frequency using a finite difference scheme [6, 7]. However, this equation has 
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coefficients that are functions of the material temperature. Thus, when the 

effects of radiation-matter energy coupling are included, the material temper­

ature can vary, and one must additionally approximate these temperature­

dependent coefficients. 

In this paper, we perform a stability analysis of three implicit time dis­

cretizations for the Compton-scattering Fokker-Planck equation [8,9]. These 

schemes all employ backward-Euler differencing but differ in their treatment 

of temperature-dependent coefficients. In the Semi-Implicit (SI) discretization, 

temperature-dependent coefficients are evaluated at their beginning-of-time­

step values. In contrast, the Fully Implicit (FI) scheme evaluates temperature­

dependent coefficients using their end-of-time-step values. We also examine a 

Linearized Implicit (LI) discretization, which is developed by linearizing the 

temperature dependence of the FI scheme within each time step. 

The analysis of each time discretization begins by linearizing the corresponding 

discrete Fokker-Planck equation about an equilibrium solution such that the 

resulting linearized equation describes perturbations about this equilibrium. 

Next, we determine the eigenvalues of this linearized equation, quantities that 

can predict the behavior of solutions generated by the time discretization 

as a function of time-step size and other physical parameters. For example, if 

there are eigenvalues greater in magnitude than unity, then solutions can grow 

without bound and the time discretization is considered unstable. In addition, 

if there are negative eigenvalues, then solutions can nonphysically oscillate. 

This approach is similar to von Neumann analysis [10], except the eigenfunc­

tions in our case are not simple exponentials. Instead, we use expansions based 

on the eigenfunctions of a nondimensional Fokker-Planck equation [2,11]. Our 

methodology also differs from von Neumann analysis in that it is semi-discrete; 
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we only examine the effects of temporal discretization and thus leave the fre­

quency variable continuous. 

Our stability analysis will show that theFI and LI schemes are uncondition­

ally stable and cannot generate oscillatory solutions regardless of time-step 

size, whereas the 81 discretization can suffer from instabilities and nonphysi­

cal oscillations for sufficiently large time steps. We then use the results of this 

analysis to develop two time-step limits for the 81 scheme. The first time-step 

limit prevents eigenvalues greater in magnitUde than unity and the accompa­

nying unstable solution, while the second time-step limit guarantees that all 

eigenvalues are positive and less than unity and thus avoids both instabilities 

and nonphysical oscillations. This second time-step limit is more restrictive 

but simpler and easier to implement than the first time-step limit. 

Although the Fokker-Planck equation we examine in this paper is an ap­

proximate model of Compton scattering that only considers time and fre­

quency dependence, our analysis is also relevant to more complicated radiative­

transfer problems with other physics such as photon streaming, absorption, 

and emission. For example, Compton scattering is often included in radiative­

transfer simulations through the Fokker-Planck approximation by operator 

splitting [12, 13]. In this technique, each time step proceeds by first performing 

a radiative-transfer calculation without Compton scattering, then accounting 

for Compton scattering by solving a Fokker-Planck equation. Thus, our sta­

bility analysis directly applies to the second step of this operator split if one of 

the time discretizations discussed in this paper is employed. Our methodology 

may also provide insight into more accurate schemes for modeling Compton 

scattering that do not rely on the Fokker-Planck approximation. Examples of 

these techniques include numerically evaluating the Compton-scattering dif­
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ferential cross section [14] and simulating the photon-electron collision kine­

matics via Monte Carlo [15]. The temperature dependence of these higher 

fidelity methods must also be approximated in realistic calculations, and thus 

our stability analysis can provide a framework for studying these techniques, 

as well. 

vVe begin the remainder of this paper by reviewing the Fokker-Planck equa­

tion for Compton scattering and discussing the 81, FI, and LI discretizations. 

Next, we demonstrate our linearization procedure on the undiscretized Fokker-

Planck equation. We then perform a stability analysis of each time discretiza­

tion. With these results, we develop time-step limits for the 81 scheme. Next, 

we present a set of numerical examples that test the validity of our stability 

analysis and time-step limits. vVe conclude with a brief discussion. 

The Fokker-Planck equation 

The Fokker-Planck equation for Compton scattering is [2-5] 

~ 8E = A1(T)E , (1) 
ac 8t 

where the Fokker-Planck operator is defined by 

A1(T)E = v~ [v kT 8E + ( hv 3~)El (2)
8v mc2 8v mc2 mc2 

Here, v is the photon frequency, t is the temporal variable, E(v, t) is the 

spectral radiation energy density, T(t) is the material temperature, c is the 

speed of light, k is Boltzmann's constant, h is Planck's constant, and mc2 is 

the electron rest mass in energy units. In addition, (J is the Thomson opacity, 

a quantity that is independent of photon frequency and material temperature 
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but directly proportional to the electron density. Equation (1) is also known 

as Kompaneets' equation. However, this expression is slightly different from 

the usual form of Kompaneets' equation because we have neglected induced 

scattering. Inclusion of this physical effect would make the right side of Eq. 

(2) a nonlinear function of 

Along with Eq. (1), we also specify a total energy equation that accounts for 

radiation-matter energy coupling, 

dU-+-d looo Edv=Q (3)
dt dt 0 

In this expression, U (T) is the material energy density and is related to the 

material temperature by 

dU 
(4)dT = Cv , 

where Cv(T) is the heat capacity. Because the total radiation energy density is 

simply the spectral radiation energy density integrated over frequency, Eq. (3) 

is a statement that the total (Le., radiation plus material) energy is constant. 

The Fokker-Planck equation has the important property that it conserves 

photons. This attribute is desirable because Compton scattering, the physical 

process that the Fokker-Planck equation models, neither creates nor destroys 

photons. To demonstrate this photon-conservation property, we first note that 

the photon density is defined by 

x 1 
N(t) = -hE(v, t)dv (5)

o ,vlo 
Then, multiplying Eq. (1) by (Jc/hv, integrating the resulting expression over 

frequency, and applying Eq. (5) yields 

1000dN 1 = (JC -h A1(T)Edv (6)
dt .0 v 
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In addition, we use the fact that Eq. (2) satisfies 

hv00 1 1 1 8 [ kT 8E-h lvl(T)Edv = h 8 v-2 - 3 kT. ) E] dv (o v 0 v me 8v me2 me21
00 

(7) 

o . 

Here, we have employed the boundary conditions that the spectral radiation 

energy density and its frequency derivative vanish as frequency approaches 

zero and infinity. Substituting Eq. (7) into Eq. (6) shows that the photon 

density is constant, and thus the Fokker-Planck equation conserves photons. 

Another characteristic of the Fokker-Planck equation is that its equilibrium 

solution is a \Vien distribution 1 : 

T 3 

·T rv) = hN (hV) -hv/kTW( v, ,1 2 kT e (8) 

\Vhen we evaluate Eq. (5) using Eq. (8), we see that the \Vien distribution is 

normalized to preserve the correct photon density, 

fOO 1 ~V(v, T, N)dv = N (9)
10 hv 

In addition, integrating Eq. (8) over frequency yields the total radiation energy 

density corresponding to a \Vien distribution, 

10
00 

W(v, T, N)dv = 3kTN (10) 

\Ve can define a radiation heat capacity in a manner similar to Eq. (4) by 

taking the temperature derivative of Eq. (10), 

00 

Or -d 1 lV(v, T, N)dv 3kN . (11)
dT 0 

1 If we had included induced scattering in Eq. (2), the equilibrium solution would 

instead be a Bose-Einstein distribution. 
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To demonstrate that the \Vien distribution is an equilibrium solution of the 

Fokker-Planck equation, we observe that a direct substitution of Eq. (8) into 

Eq. (2) gives 

.o/J(T)W{v, T, N) O. (12) 

Then, when the spectral radiation energy density is described by Eq. (8), Eq. 

(12) shows that the right side of Eq. (1) vanishes, and thus a \Vien distribution 

is an equilibrium solution of the Fokker-Planck equation. Note that Eq. (12) 

holds for any value of T. Integrating Eq. (3) over time reveals that the correct 

equilibrium material temperature Teq satisfies 

U(Teq) + 10
00 

vV(v, Teq , N)dv = U[T(O)] + 10
00 

E(v, O)dv (13) 

Here, T(O) and E{v, 0) are the initial material temperature and spectral radi­

ation energy density, respectively, and we have integrated out to a late enough 

time such that the material temperature and spectral radiation energy density 

are at equilibrium. We can simplify Eq. (13) with Eq. (1O) to write 

U(Teq) + 3kTeqN U[T(O)] + 10
00 

E(v, O)dv . (14) 

This equation and Eq. (4) form a (possibly nonlinear) expression for Teq-

Time discretizations 

To solve Eq. (1) using the 81 discretization, we first prescribe a temporal grid 

o to < tl < t2 < .... Next, we apply backward-Euler differencing to Eq. (1) 

but evaluate the material temperature at its explicit value. The resulting 81 

scheme for Eq. (1) is given by 

En+l En = M(T )E (15)At n n+l 
(JeU n 
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Also, the corresponding discrete version of Eq. (3) is 

(16) 

In Eqs. (15) and (16), the subscript n denotes quantities evaluated at time tn, 

and ~tn tn+l tn is the time-step size. Discretizing Eq. (15) in frequency 

yields a tridiagonal system of equations for En+! that can be solved with a 

straightforward matrix inversion, An example frequency discretization is dis­

cussed in Appendix A. After calculating En +1, one can update the material 

energy density using Eq, (16), then determine Tn+1 with Eq, (4). In this man­

ner, the 81 scheme requires a single tridiagonal matrix inversion each time step. 

For a constant material temperature, Eq. (15) is fully implicit, a fact that may 

lead one to naively assume that the 81 discretization is unconditionally stable. 

However, as we will see later in this paper, the inclusion of radiation-matter 

energy coupling through Eq, (16) and the accompanying variation in mate­

rial temperature can cause the 81 scheme to generate unstable and oscillatory 

solutions. 

The FI discretization is similar to the 81 scheme except the material temper­

ature on the right side of Eq. (15) is evaluated implicitly instead of explicitly, 

(17) 

Applying a frequency discretization transforms Eqs, (4), (16), and (17) into a 

nonlinear system of equations for En+1 and T n+1 . This system must be solved 

iteratively, with each iteration requiring a tridiagonal matrix inversion. Thus, 

employing the FI scheme necessitates multiple tridiagonal matrix inversions 

each time step. 

The LI discretization is developed by linearizing the temperature dependence 
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of Eq. (17) within each time step. First, we approximate the right side of Eq. 

(17) using a linearization about Tn and En, 

) . (18) 

This approximation is the same as that employed in the first iteration of a 

Newton's method solution to Eq. (17) [16]. Next, we expand U(Tn+d in a 

Taylor series about Tn) 

(19) 

where we have made use of Eq. (4). Combining Eqs. (16)-(19) yields the 

equation for the LI scheme, 

(20) 

Only two tridiagonal matrix inversions are needed to solve Eq. (20) for En +1. 

To see this fact, we first define u(v) and v(v) as solutions to 

(21 ) 

and 

(22) 

Discretizing Eqs. (21) and (22) in frequency results in two tridiagonal systems 

of equations, one each for u and v. The right side of Eq. (22) is calculated by 

taking the temperature derivative of the discretized Fokker-Planck operator 

and forming the appropriate matrix-vector product. \Ve then express En+l as 

a linear combination of u and v, 

En+l = u + rJV (23) 
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Evaluating Eq. (20) with Eqs. (21)-(23) shows that T} is given by 

100 

(En u)dv 
(24)

CV,n + loo vdv 
ac!:ltn .0 

After calculating En+l by solving Eqs. (21) and (22) and employing Eqs. (23) 

and (24), one can update the material energy density using Eq. (16), then 

determine Tn+l with Eq. (4), just as in the 81 scheme. In this case, we see 

that the LI discretization requires two tridiagonal matrix inversions each time 

step. 

A linearized Fokker-Planck equation 

\Ve now linearize the undiscretized Fokker-Planck equation about an equilib­

dum solution such that the resulting linearized equation describes the behavior 

of small perturbations about this equilibrium. In the next section, we will use 

this linearization process as part of a stability analysis of the time discretiza­

tions described above. vVe begin by expressing the material temperature and 

spectral radiation energy density as 

T(t) Teq + oT(t) , (25) 

and 

E(IJ, t) = vV(IJ, Teq , N) + oE(IJ, t) . (26) 

Here, oT and oE are (ideally small) perturbations in the material tempera­

ture and spectral radiation energy density, respectively, about their equilib­

rium values, and Teq is again the equilibrium material temperature. When 

we substitute Eqs. (25) and (26) into Eqs. (1) and (2), ignore terms of order 

O(oTOE), and drop the subscript on Teq as it is understood that T now refers 
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to the equilibrium material temperature, we have 

a ( k8TOtV (27)= A;f(T)W + I'vI(T)8E + v av v av-

Using Eq. (8) allows us to simplify the last term on the right side of Eq. (27), 

k8Tv~ (vk8TaW 
3 W)av mc2 av mc2 

hN k8T [(hV)5 _4 (hV)4] e-hu/ kT . (28) 
2 mc2 kT A~T 

Then, evaluating Eq. (27) with Eqs. (12) and (28) shows the linearized Fokker-

Planck equation to be 

1 a 
-~8E = A1(T)8E + 8TF , (29)
acut 

where 

F(v, T, N) ~hN [(hV)5 _4 (hV)4] e-hu/ kT . (30)
mc2 2 kT kT 

Equation (29) is of the same form as Eq. (I), except there is now a source 

term on the right side that is proportional to the material-temperature per­

turbation. 

We can also develop a linearized total energy equation. Substituting Eqs. (25) 

and (26) into Eq. (3) and again dropping the subscript on Teq yields 

d rX)
8T) + dt Jo 8Edv = 0 . (31 ) 

In a manner similar to Eq. (19), we expand U(T 8T) in Taylor series about 

T and employ Eq. (4) to write 

U(T + 8T) = U(T) + 8T~~ + 0 (8T2) 
(32) 

~ U(T) + Cv (T)8T . 

\\Then we combine Eqs. (31) and (32), we see that the linearized total energy 
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equation is 
00 

Cv(T)-dd bT + dd 1 bEdv = 0 . (33)
t t 0 

This expression has the interpretation that the total energy perturbation is 

constant in a linear sense [Le., if we represent the perturbation in the material 

energy density as Cv(T)bT]. However, in general Eq. (33) does not rigorously 

conserve energy because we have approximated the temperature dependence 

of the material energy density using Eq. (32). 

One property of the linearized Fokker-Planck equation is that it conserves 

the perturbation in photon number, just as Eq. (1) conserves photons. To 

demonstrate this attribute, we first define the photon-density perturbation as 

(00 1 
bN(t) io hv bE(v, t)dv . (34) 

Note that Eq. (34) is analogous to Eq. (5). Then, multiplying Eq. (29) by 

(Jcjhv, integrating the resulting expression over frequency, and applying Eq. 

(34) gives 

!ibN 
dt 

(35) 

When we evaluate Eq. (7) with bE instead of E, we see 

00 1 1 1= 8 [ kT 8 ( hv kT ) 1-A1(TibEdv = - - v--bE + - - 3- bE dv 
o hv h 0 8v mc2 8v mc2 mc2 

f1 (36) 

o , 

where in this case we have assumed that the perturbation in the spectral 

radiation energy density and its frequency derivative vanish as frequency ap­

proaches zero and infinity. In addition, we use the fact that Eq. (30) satisfies 

~N~ (00 [(hV)4 _4(hV)3] e-hv/kTdv 
mc2 2 kT io kT kT (37) 

= 0 . 
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Equations (35)-(37) show that the photon-density perturbation is constant, 

and thus the linearized Fokker-Planck equation conserves the perturbation in 

photon number. Because the second term on the right side of Eq. (35) vanishes 

via Eq. (37), we conclude that the source term in Eq. (29) is not a net source of 

photons; it simply redistributes photons with respect to frequency to increase 

or decrease radiation energy. 

'vVe can determine an equilibrium solution of the linearized Fokker-Planck 

equation by considering a 'vVien distribution at a perturbed temperature T +oT 

and a perturbed photon density N + oN. Expanding this expression with a 

Taylor series about and N results in 

W(v,T+OT,N +oN) 

lV(v, T, N) + OT~~ ON~~ + 0 (OT2) + O(oToN) , (38) 

or 

oT oN 
W(v,T+OT,N+ON)~lV(v,T,N)+TV(v,T,N)+ N W(v,T,N) . (39) 

Here, we have made use of Eq. (8) to write 

a~vW(v, T, N) = 1~ vV(v, T, N) , (40) 

and to define 

a 
V(v, T, N) = T aT Hl(V, T, IV) 

(41) 
= h; [(~;) 4 _ 3 (~;) '] e~hv/k1 

Examining Eqs. (26) and (39) leads us to postulate that the equilibrium 80­
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lution of the linearized Fokker-Planck equation is of the form 

Jl11(v, JT, IN) vV(v, T + JT, N + IN) W(v, T, N) 
(42)

JT 6N r 

= T (v,T,N)+ N vV(v,T,N) , 

where we have suppressed the dependence on T and N on the left side of this 

equation as these quantities are constant. Substituting Eq. (41) into Eq. (2) 

and comparing the results to Eq. (30) reveals 

lv!(T)V(v,T,N) = -TF(v,T,N) ( 43) 

Then, when JE is described by Eq. (42), Eqs. (12) and (43) show that the 

right side of Eq. (29) vanishes. Thus, JvV is an equilibrium solution of the 

linearized Fokker-Planck equation. 

In contrast to the \Vien distribution given by Eq. (8), Eq. (42) consists of 

a linear combination of two independent functions. \Ve note that Eq. (41) 

satisfies 

{= 1
Jo hv V(v, T, N)dv = 0 , (44) 

and 

10
00 

V(v, T, N)dv 3kTN . (45) 

Equations (34) and (44) imply that there is no net photon-density perturbation 

associated with the V portion of JvV. Evaluating Eq. (34) with Eq. (42) and 

applying Eqs. (9) and (44) yields 

110= hv ovV(v,6T,JN)dv = IN (46) 

Thus, JvV preserves the correct perturbation in photon density, a quantity that 

is completely represented by the VV portion of this expression. \Ve can also 

calculate the perturbation in the total radiation energy density corresponding 
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to Eq. (42) by integrating this equation over frequency and making use of Eqs. 

(10) and (45), 

10
00 

6W(v, 6T, 6N)dv = 3k(6TN + TbN) . (47) 

Equation (42) is an equilibrium solution of the linearized Fokker-Planck equa­

tion for any value of 6T, just as the \Vien distribution is an equilibrium so­

lution of Eq. (1) for any value of the material temperature. To determine the 

correct equilibrium material-temperature perturbation 6Teq , we first integrate 

Eq. (33) over time in a manner similar to Eq. (13) to write 

Here, 6T(0) and 6E(v,O) are the initial perturbations in the material tem­

perature and spectral radiation energy density, respectively, and we have in­

tegrated out to a late enough time such that 6T and bE are at equilibrium. 

Then, substituting Eq. (47) into Eq. (48) gives an expression for 6Teq , 

Cv(T)6Teq + 3k(bTeq N + T6N) = Cv(T)6T(0) + 10
00 

6E(v, O)dv. (49) 

This equation could have alternatively been derived by linearizing Eq. (14) 

directly. 

\Ve can simplify Eqs. (29) and (33) by defining the following dimensionless 
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transformations: 

hv 
-

kT 
---7 x (50) 

kT 
-act ---7 t 
rnc2 

(51 ) 

5E(v, t)
hN ---} 5E(x, t) (52) 

oT(t) oT(t) (53)
T 

Cv(T) ---7 C (54)kN V· 

Note that x represents a nondimensional frequency. Using Eqs. (50)-(54) along 

with Eqs. (2) and (30) allows us to write Eqs. (29) and (33) as 

(55) 

and 

(56) 

where it is understood that all quantities are dimensionless. In Eq. (55), ll1 is 

now the nondimensional Fokker-Planck operator, 

(57) 

and F is the dimensionless version of Eq. (30), 

(58) 

Also, applying Eqs. (50) and (52) to Eqs. (8) and (41) yields nondimensional 

forms of these expressions, 

(59) 

and 

(60) 
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5 Stability analysis 

In this section, we perform a stability analysis of the SI, FI, and LI discretiza­

tions. The analysis of each scheme consists of linearizing the corresponding 

discrete Fokker-Planck equation according to the process described above, 

then determining the eigenvalues of the resulting linearized equation. For sim­

plicity, we assume that the time-step size is constant. vVe first investigate the 

stability of the SI discretization. Next, we will see that our linearization pro­

cedure leads to identical linearized equations for the FI and LI schemes. Thus, 

we examine these two time discretizations simultaneously. 

5.1 81 discretzzation 

Applying our linearization process to Eq. (15) shows that the linearized version 

of the SI scheme is 

(61 ) 

Also, linearizing Eq. (16) yields 

In a manner similar to Eqs. (55) and (56), we can cast Eqs. (61) and (62) into 

dimensionless form using Eqs. (50)--(54) and Eqs. (2), (30), (57), and (58) to 

write 

6En +1 - 6En = ~1.i:E' .i:fT' Ftlt iVU n+l+ U .1 n , (63) 

and 

(64) 
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Note that in Eq. (63) 6..t is a nondimensional time-step size analogous to Eq. 

(51 ). 

\Ve now look for solutions to Eqs. (63) and (64) of the form 

(65) 

and 

(66) 

Here, 8E and 8T are the spectral-radiation-energy-density and material-tem­

perature components of an eigenfunction of Eqs. (63) and (64), while w is the 

the corresponding eigenvalue or amplification factor. The amplification factor 

provides insight into the behavior of solutions generated by a particular time 

discretization as a function of time-step size and other physical parameters. For 

example, if Iwl > I, then from Eqs. (65) and (66) the magnitude of the solution 

can grow without bound and the time discretization is considered unstable. 

Conversely, Iw I ::::: 1 is the standard definition of a stable discretization [lOJ. 

Also, if w < 0, then Eqs. (65) and (66) show that the solution can nonphysically 

oscillate. 

When we substitute Eqs. (65) and (66) into Eqs. (63) and (64), we have 

1[w(I 6..tA1) 1J8E 6..t8T F (67) 

and 

(68) 

To continue, we must specify the frequency dependence of 8E. In von Neu­

mann analysis [10], the typical method for examining the stability properties 

of discretization schemes for partial differential equations, one assumes that 

the eigenfunctions are exponentials. However, in our case 8E is not an expo­
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nential function because !v! has variable coefficients and the frequency variable 

does not represent an infinite or periodic domain. Instead, we express the fre­

quency dependence of {;E with an expansion based on the eigenfunctions of 

1.1:1. The eigenvalue problem of interest is then 

(69) 

where Y>. (x) is an eigenfunction of 11.1 and ;\ is the corresponding eigenvalue. 

Kompaneets [2] and Pomraning [11] have shown that the solution to Eq. (69) 

consists of two discrete eigenfunction-eigenvalue pairs, 

1 3 -x \
Yo ()x = v'2 x e ,/\ = 0 , (70) 

and 

, ;\ = 2 , (71) 


and a continuum of eigenfunction-eigenvalue pairs, 

sinh [rra(;\)] 3/2+ia(>.) -x 

rr ;\(;\ 2) x e 

x W[-3/2 +ia(;\), 1 + 2ia(.\); xl , ;\ 2: 9/4 . (72) 

Here, W is the confluent hypergeometric function of the second kind [17], a is 

given by 

a(;\) = J;\ -1 ' (73) 

and i = These eigenfunctions are orthogonal with respect to the weight­

ing function (11] 

w(x) (74) 

Thus, an arbitrary function f(x) may be expanded as 

(75) 
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where the coefficients in this expansion are defined by 

Co 100 

f(x)yo(x)w(x)dx , (76) 

C2 = 100 

f(X)Y2(X)W(x)dx , (77) 

and 

c>. LX) f(x)y>.(x)w(x)dx . (78) 

We will present moments of Eq. (72) in Appendix B that facilitate calculating 

integrals of the form given by Eq. (78). 

Representing bE using an eigenfunction expansion similar to Eq. (75) yields 

(79) 


Here, ao, a2, and a>. are expansion coefficients that are yet to be determined. 

Also, we will show in Appendix C that Eq. (58) can be expanded as 

(80) 


where the expansion coefficients in this case are [see Eqs. (C.4), (C.5), and 

(C.7)] 

(81 ) 

(82) 

and 
7r A2(A 2) sinh [7ra(A)] 

(83)
7rA(A - 2) 

Evaluating Eq. (67) with Eqs. (79) and (80) and applying Eqs. (69), (81), and 

2 cosh [7ra(A)] 

(82) allows us to write 

(w - l)CtoYo + [w(l + 2~t) - 1]a2Y2 + (lC[w(1 + A~t) - l]a>.y>.dA
J9/4 


~tbT ( V2Y2 +1: /3>.Y>.dA) . (84) 
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By inspecting Eq. (84) and using the fact that Eqs. (70)-(72) are orthogonal, 

we see that D:o, D:2, and D:.\ must satisfy 

[w l]D:o = 0 , (85) 

[w(l + 2L1t) 1]D:2 = V2L1t6T (86) 

and 

(87) 


In addition, substituting Eq. (79) into Eq. (68) gives 

\Ve can simplify this expression by first integrating Eqs. (70)-(72) over fre­

quency, 

lox Yodx 3V2 , (89) 

10 
00 

Y2 dx V2 , (90) 

and 

1000 

o 
dY.\ x = 71 ,,\(,,\ 

cosh 

sinh [7Ia("\)] 
71'\('\ - 2) (91) 

2 
= -f3.\

,,\ 

;.Jote that we have employed Eqs. (83) and (B.ll) to write Eq. (91). Then, 

combining Eqs. (88)-(91) reveals 

\Ve are now in a position to calculate valid amplification factors using Eqs. 

(85)-(87) and (92). The naive approach at this point would be to solve Eqs. 

(85)-(87) for D:o, D:2, and D:.\) then evaluate Eq. (92) with these coefficients 

to develop a characteristic equation for w. However, we cannot simply divide 
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1 

Eqs. (85)--(87) by the bracketed terms on their left sides as these quantities 

are possibly zero, a situation that leads to singular expansion coefficients. For 

example, Eqs. (85) and (86) show that there are discrete singularities at W 

and W = WI, where 

1 
Wl=---	 (93)

1 26.t 

Also, because ,\ varies between 9/4 and infinity, we see from Eq. (87) that 

there is a continuum of singularities for 0 < W :; W2, where 

1 
(94) 

Instead, we look for valid amplification factors in the following three regions 

separately: 

(1) 	 W 1: vVe will demonstrate that this value of the amplification factor 

corresponds to an equilibrium solution of Eqs. (63) and (64). 

(2) 0 	< W :; W2: vVe will show that this case represents a continuum of 

amplification factors. 

(3) 	 W :::; 0 or W > W2, W =I 1: In this region, we will develop a characteristic 

equation for W that predicts the behavior of solutions generated by the 

SI discretization. 

Note that we only consider real values of w. We will prove that there are no 

complex amplification factors in Appendix D. 
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5.1.1 w 1 

For this value of w, Eq. (92) is always satisfied. In addition, Eq. (85) implies 

that 0:0 is arbitrary, while directly solving Eqs. (86) and (87) yields 

(95) 


and 

(96) 


\Vhen we substitute Eqs. (95) and (96) into Eq. (79) and make use of Eq. 

(83), we have 

1 7r roo A(A - 2) I sinh [7ra(A)] } 
8E = O:oYo + 8T { y12Y2 + 2 j9/4 cosh [7ra(A)] '\ 7rA(A 2) y>.dA ,(97) 

where 8T is also arbitrary. The term in braces on the right side of Eq. (97) 

is simply an eigenfunction expansion of Eq. (60), an expression we present in 

Appendix C as 

v = (oYo + (2Y2 + roo (>.y>.dA , (98)
j9/4 

with expansion coefficients given by [see Eqs. (e.9), (C.10), and (C.12)] 

(0 0 ) (99) 

(100) 


and 

7r A(A - 2) ~i sinh [7ra(A)]
(>. (101)

2 cosh [7ra(A)]· 7r A(A - 2) . 

In addition, we note that Eqs. (59) and (70) are directly proportional to each 

other, 

Yo J2vV. (102) 

Thus, we can evaluate Eq. (97) using Eqs. (98)~(102) to write 

(103) 
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Equation (103) and w 1 represent an equilibrium solution of Eqs. (63) 

and (64). \Ve refer to this solution as an equilibrium solution because, in 

the ideal situation where all other amplification factors are less in magnitude 

than unity and the 81 discretization is stable, Eqs. (65) and (66) show that this 

solution is constant and the only solution that persists after many time steps. 

Obviously, this equilibrium solution cannot display instabilities or nonphysical 

oscillations. Also, we note that Eq. (103) is a linear combination of Eqs. (59) 

and (60). Thus, we can view this expression as a dimensionless version of Eq. 

(42), the equilibrium solution of the linearized Fokker-Planck equation. The 

presence of the unspecified coefficients ao and t5T in Eq. (103) is due to the 

fact that the magnitude of an eigenfunction is arbitrary. However, we could 

calculate these coefficients by imposing energy and photon conservation. 

5.1.2 0 < w:S: W2 

In this case, dividing Eqs. (85) and (86) by the bracketed terms on their left 

sides reveals 

aD = 0 , (104) 

and 

y'2b.t 
(}:2 = w(l 2b.t) 1t5T . (105) 

Unfortunately, we cannot solve Eq. (87) in the same manner as this process 

would yield a singular expansion coefficient for every value of w in this region. 

For a given value of w, the singularity occurs at >. IL, where 

(106) 
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Instead, we use a generalized solution to Eq. (S7) of the form 

/3), f:lt 
p ( ..\f:l) 6T+,(w)6[>. Jl(w)] . (107) 

W 1 + t - 1 

Here, P denotes that the Cauchy principal value is taken under integration, 

6(z) is the delta function, and, is a function of W that is yet to be determined. 

\Vhen we substitute Eqs. (104), (105), and (107) into Eq. (S4) and apply Eq. 

(106), we see that both the singularity and the delta-function dependence van­

ish, and that these coefficients correspond to a valid eigenfunction expansion 

for 6E. 

To satisfy Eq. (92), we require that the term in brackets on the left side of 

this expression vanishes, 

(lOS) 

Evaluating Eq. (lOS) with Eqs. (104), (105), and (107) shows that this re­

quirement is met if 

---,--_2_f:l_t-,-_ + P roo /3~ 2f:lt6T [Ov 
- 1 }9/4 >. w(1 + >.f:lt) 

2 
+ ,3/-L(wJ/(w) o . (109) 

We can then solve Eq. (109) for " 

,(W) = -oT 

0 , + 2f:lt + ~p roo >.2(>. - 2)f:lt tanh[7ra(>')ld>' 

1, w(1 + 2f:lt) - 1 2 }9/4 w(1 + >.f:lt) - 1 cosh [tm(>.)]


x , (110)
7rJl(w ) [Jl(w ) 2] Isinh {7ra[Jl(w)]} 
cosh {7ra[Jl(w)]} V7rJl(w)[Jl(w) 2] 

where we have also made use of Eq. (S3). Equation (110), along with Eqs. 

(104)~(107), enables us to satisfy Eqs. (S5)~(S7) and (92) for every value of W 

in this region. (Note that 6T is again arbitrary for reasons discussed above.) 
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Thus, this case represents a continuum of amplification factors. However, we 

see from Eq. (94) that these amplification factors are all positive and less than 

unity and consequently cannot generate unstable or oscillatory solutions. 

5.1.3 W ~ 0 or W > W2, W =1= 1 

In this region, Eq. (104) again holds, and if we avoid the discrete singularity 

at WI, then we can additionally employ Eq. (105). Also, a direct solution to 

Eq. (S7) yields 

_ !3;vC::.t 6T 
,-( 

(111)0:,\ - w-' l-+-)'-.6.-t-)---1 . 

In a manner similar to the development of Eq. (109), substituting Eqs. (104), 

(105), and (111) into Eq. (lOS) shows that Eq. (92) is satisfied when 

6T [Ov + 2.6.t + (X!!3J 2.6.t d),] = O. (112)
w(l 2.6.t) - 1 J9/4), w(l + )'.6.t) - 1 

We can simplify this expression by applying Eq. (S3) and dividing through by 

6T as this quantity is again arbitrary to write 

2.6.t + ~ roo ),2(), - 2).6.t tanh [7Ta(),)] d)' 0 . (113) 
1 - 1 2 J9/4 w(l + )'.6.t) - 1 cosh [7Ta(),)] 

Equation (113) defines a characteristic equation for w, 

H(w) 0, (114) 

where 

H(w) = 

00 - )2.6.t 7T 1 ),2(), 2).6.t tanh [7Ta(),)] d\ (
Ov + --:-----,--- + - [ )] /\ . 1151 + - 1 2 9/4 W(l + )'.6.t) - 1 cosh 7Ta(), 

Valid amplification factors are roots of the characteristic equation such that 

they satisfy Eq. (114). 
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\Ve note that Eq. (ll5) has the following properties: 

lim H (w) = Cv > 0 ; 	 (ll6)
w->±oo 

dH 2(1 + 2~t)~t 

dw [w(1 + 2~t) IF 
_ 7r ('Xi :\2(:\ 2)(1 + :\~t)~t tanh [7ra(:\)] d:\ < 0 . (117) 

2 J9/4 [w(l + :\~t) 1]2 cosh [7ra(:\)] 

In addition, by inspecting Eq. (115) we see that H diverges to negative in­

finity as W approaches WI from the left and diverges to positive infinity as W 

approaches WI from the right. With these characteristics of H, we can predict 

the locations of solutions to Eq. (114): 

• 	 W ~ 0: In this region, H monotonically decreases from its asymptotic value 

of Cv to H(O). Thus, there is a single root if H(O) ~ O. Otherwise, there are 

no roots. 

• 	 W2 < W < Wl: Here, H monotonically decreases to negative infinity. Thus, 

there is a single root if H is positive near W2. Otherwise, there are no roots. 

• 	 WI < w: In this region, H monotonically decreases from positive infinity to 

its asymptotic value of Cv ' Thus, there are no roots 

Equations (93) and (94) show that if there is a root satisfying W2 < W < WI, this 

root is positive and less that unity and cannot cause instabilities or nonphysical 

oscillations. Therefore, only the existence and location of the nonpositive root 

predicts the behavior of solutions generated by the SI discretization. 

In Figure 1, we plot an example of H for specific values of Cv and ~t. Note 

that this function is not defined in the shaded region (0 < W ~ W2) or at 

W 1. Although we have depicted a non positive root and a root satisfying 

W2 < W < Wl in this figure, in reality these roots may or may not exist 
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depending on the values of Cv and f:lt. 

5.2 FI and LI discretizations 

\Vhen we apply our linearization process to Eq. (17), we see that the linearized 

version of the F1 scheme is 

(118) 

Of course, this expression is accompanied by Eq. (62). Note that the only 

difference between Eq. (118) and Eq. (61), the linearized form of the 81 dis­

cretization, is that the material-temperature perturbation is now evaluated 

implicitly instead of explicitly. 

We can also determine a linearized version of the L1 scheme by employing our 

linearization procedure with Eq. (20), 

In developing the last term on the right side of this equation, we have neglected 

quantities of second order and higher in 5Tn and 5En . To simplify Eq. (119), 

we first use Eqs. (2), (8), and (30) to write 

alH r
aT l¥(v, T,}\) = F(v, T, N) (120) 

Then, substituting Eqs. (120) into Eq. (119) gives 

5En +1 - 5En 

(J'cf:lt 
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In addition, because Eq. (62) is part of this linearized discretization, too, we 

can evaluate Eq. (121) with this expression to show 

OEn+l oEn ()
~ = !vi T OEn+l + oTn+1F (122) 

ac t 

We see that Eqs. (118) and (122) are identical, and the FI and LI schemes 

have the same linearized forms. Thus, we examine that stability of these two 

time discretization simultaneously by considering Eqs. (62) and (ll8). 

Our analysis of the LI and FI schemes is very similar to the investigation of 

the SI discretization presented above, so for brevity we only discuss the major 

details. Vve begin by using Eqs. (50)(54) and Eqs. (2), (30), (57) and (58) to 

cast Eq. (ll8) into a dimensionless form, 

OEn+l oEn 
--~-t-- = MoEn+l + oTn+1F (123) 

Here, ~t is again a nondimensional time-step size. Next, combining Eqs. (65), 

(66), and (123) yields 

[w(1 ~t1v1) - 1joE = w~toTF . (124) 

If we represent oE and F with eigenfunction expansions given by Eqs. (79) 

and (80), respectively, Eq. (124) becomes 

(w l)aoYo + [w(l + 2~t) 1]a2Y2 + (oc[w(l + )..~t) - l]aAyAd)..
J9/4 

w~toT ( V2Y2 + 1: PAYAd)..) , (125) 

where we have also made use of Eqs. (81) and (82). Equation (125) and the 

orthogonality of Eqs. (70)~(72) show that ao, a2, and aA in this case must 

satisfy 

[w l]ao = 0 , (126) 
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[w(1 + 2t:.t) - l]a2 = v'2wt:.tbT , (127) 

and 

[w(1 + )..t:.t) lla).. = {3)..wt:.tbT . (12S) 

In addition, Eq. (92) holds because our stability analysis is based on Eq. (62), 

as well. 

We continue by examining Eqs. (92) and (126)~(12S) to calculate valid am­

plification factors. \l\1ith these expressions, we can demonstrate that (i) w = 1 

corresponds to an equilibrium solution of Eqs. (62) and (lIS) that is also given 

by Eq. (103), and (ii) 0 < w ~ W2 again represents a continuum of amplifi­

cation factors. Of course, these amplification factors are all positive and less 

than unity and thus cannot cause instabilities or nonphysical oscillations. For 

all other real values of w (in Appendix D we will prove that there are no com­

plex amplification factors), avoiding the discrete singularity at WI and directly 

solving Eqs. (126)~(12S) reveals 

ao = 0 , (129) 

V2wt:.t -T0 (130)
w(I + 2t:.t) - 1 , 

and 

{3)..wt:.t 
a = bT (131 ) ).. w(I+)..t:.t)-1 . 

Then, evaluating Eq. (lOS) with Eqs. (129)-(131), dividing through by bT, 

and applying Eq. (S3) shows that Eq. (92) is satisfied when 

C 2wt:.t + ~ roc )..2().. 2)wt:.t tanh [7ra()..)] d)" = 0 . (132) 
v + w(1 + 2t:.t) 1 2 19/4 w(1 + )..t:.t) - 1 cosh [7ra()..)] 

Equation (132) defines a characteristic equation for w of the form given by 
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Eq. (114), where H in this case is 

H(w) = 

C 2w!::.t 7r roo J\2(J\ 2)w!::.t tanh [7ra(J\)] dJ\ 
v + w(1 + 2!::.t) - 1 + 2 J9/4 w(1 + J\!::.t) - 1 cosh [7ra(J\)] . (133) 

Properties of Eq. (133) include 

. 	 2!::.t 
lun H(w) = Cv + !::.w-doo 	 1 + 2 t 

+ ~ roo J\2(J\ - 2)!::.t tanh [7ra(J\)] dJ\ > C (134)1 

2 J9/4 1 + J\!::.t cosh [7ra(J\)] v 

dH 2!::.t 

dw [w(1 + 2!::.t) -1]2 


7r 100 J\2(J\ - 2)!::.t tanh [7ra(J\J] d\ 
--	 A<O , (135)
2 	 9/4 [w(1 + J\!::.t) IF cosh [7ra(J\)] 

and 

H(O) = Cv > 0 . 	 (136) 

In addition, we see from Eq. (133) that H diverges to negative infinity as w 

approaches WI from the left and diverges to positive infinity as w approaches 

WI from the right. Using these attributes of H allows us to determine where 

the roots of the characteristic equation are located: 

• 	w ::;: 0: In this region, H monotonically decreases from its asymptotic value 

to Cv. Thus, there are no roots. 

• 	 W2 < W < WI: Here, H monotonically decreases to negative infinity. Thus, 

there is a single root if H is positive near W2. Otherwise, there are no roots. 

• 	 WI < w: In this region, H monotonically decreases from positive infinity to 

its asymptotic value. Thus, there are 110 roots. 

If there is a root satisfying W2 < W < WI, Eqs. (93) and (94) show that it is pos­
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itive and less than unity. \Ve conclude that there are no amplification factors 

greater than unity nor any negative amplification factors. Thus, our stability 

analysis demonstrates that the F1 and LI discretizations are unconditionally 

stable and cannot generate oscillatory solutions regardless of time-step size. 

We plot an example of H in Figure 2 in the same manner as Figure 1. Again, 

we have depicted a single root that mayor may not exist for different values 

of Cv and 6:.t. 

Time-step limits 

As discussed in the previous section, only the existence and location of the 

nonpositive root of Eq. (114) predicts if the 81 scheme will produce solutions 

that are unstable or nonphysically oscillate. \Ve now use information regarding 

this characteristic equation to develop time-step limits for the 81 discretization 

that avoid undesirable behavior. 

\Ve first present a time-step limit that prevents amplification factors less than 

negative one and the accompanying instabilities. Because Eqs. (115) and (117) 

show that H is a monotonically decreasing function of w for w ::;: 0, we can 

ensure that there are no roots of Eq. (114) less than negative one by requiring 

H be non-negative at this value, 

H I)?: 0 . (137) 

Evaluating Eq. (137) with Eq. (115) yields 

2006:.t 1f 1 ,\ (,\ 2) 6:.t tanh [1fU (,\)]
C.v - - - d'\ > 0 (138)

1 + 6:.t 2 9/4 2 + ,\6:.t cosh [1fu('\)] ­
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We see that the left side of Eq. (138) is a monotonically decreasing function 

of ~t, 

~t _ Jr (Xi A2 - ~t tanh [Jra(A)] dA} 
1 + ~t 2 J9/4 2 + A~t cosh [Jra(A)] . 

_ 1 _ Jr (00 A2(A - 2) tanh [Jra(A)] dA < 0 ( ) 
1 + ~t)2 J9/4 (2 + A~t)2 cosh [Jra(A)] ,139 

and has a minimum value of 

lim {Cv _ ~t _ Jr (00 A2(A - tanh [Jra(A)] dA} = 


t:.t-oo 1 + ~t 2 J9/4 2 + A~t cosh [Jra(A)] 


C {1+~ (OOA(A 2) tanh [Jra(A)]dA}
v 2 J9/4 cosh [Jra(A)] . (140) 

\Ve can simplify the right side of Eq. (140) by first noting that Eq. (98) satisfies 

00 00 

10 V dx = 10 ((OYO + (2Y2 + 1: (W>..dA) dx 
(141) 

1 + ~ (00 A(A 2) tanh [Jra(A)] dA 
2 J9/4 cosh [Jra(A)] 

where we have made use of Eqs. (90), (91), and (99)~(101). Then, substituting 

Eq. (141) into Eq. (140) gives 

lim {Cv _ ~t _ ~ (00 A2(A 2)~t tanh [1J"a(A)] dA} = 


t:.t->oo 1 + ~t 2 J9/4 2 A~t cosh [Jra(A)] 


-1000 
Cu Vdx . (142) 

Next, we integrate Eq. (60) over frequency to show 

('Xi 1 (00
J V(x)dx=2Jo (x4o (143) 

= 3 , 

an expression that is the nondimensional version of Eq. (45). When we evaluate 

Eq. (142) with Eq. (143), we have 

00 · {c _ ~t _ ~1 A2(A ~t tanh [Jra(A)] d\} - C11m v A - V 3 . (144) 
t:.t-oo 1 + ~t 2 9/4 2 + A~t cosh [Jra(A)] 
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Thus, Eq. (138) is satisfied regardless of time-step size if 

(145) 

Casting Eq. (145) into dimensional form via Eq. (54) yields 

Cv(T) ~ 3kN , (146) 

or, after applying Eq. (11), 

(147) 

Equation (147) has the interpretation that, when the material heat capacity is 

larger than the radiation heat capacity, we can expect the material tempera­

ture to vary slower in time that the spectral radiation energy density, and it is 

appropriate to explicitly evaluate the material temperature in the SI scheme. 

If the inequality in Eq. (147) is not met, we must numerically solve Eq. (138) 

to determine the corresponding time-step limit. This process is most likely 

impractical in realistic calculations. 

We can develop a more restrictive time-step limit that avoids both unstable 

and oscillatory solutions by instead preventing negative amplification factors 

altogether. Analogous to Eq. (137), we require in this case that H is non­

negative at zero, 

H(O) ~ 0 . (148) 

vVhen we combine Eqs. (115) and (148), we see that 

C - t.t {2 + n (!X) ,,\2(,,\ _ 2) tanh [na("\)] d"\} > 0 (149) 
v 2 i9/4 cosh [na("\)] ­

To simplify this expression, we first integrate Eq. (80) over frequency and 
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employ Eqs. (81)~(83), (90), and (91) to show 

(Xl Fdx = roo (f30YO + f32Y2 + roo f3>.Y>.d)..) dx 
10 10 19/4 

(150) 
= 2 + ~ roo )..2().. _ 2) tanh [7ra()..)]d).. 

2 19/4 cosh [7ra()..)] 

Then, using Eq. (150) allows us to write Eq. (149) as 

C -!J.t roo Fdx ~ 0 (151)v 10 

In addition, we note that Eq. (58) satisfies 

(152) 

12 . 

Equations (151) and (152) reveal that the time-step limit in this case is 

(153) 


When we transform Eq. (153) back to dimensional units through Eqs. (51) 

and (54), we have 

All mc2 Cv(T)
ut < -- (154)

- 120"c kT kN . 

This time-step limit is simpler and easier to implement than the one rep­

resented by Eqs. (138) and (147) as it does not involve solving a nonlinear 

equation. 

Numerical results 

We now check the validity of our stability analysis and time-step limits with 

a set of numerical test problems. In these problems, the heat capacity is tem­

perature independent and has a value of Cv = 0.1 GJ/keV/cm3
, the photon 

1023density is N 6.24 X cm~3, and the Thompson opacity is 0" = 1 cm~l. 
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Evaluating Eq. (11) using this value of the photon density shows that the 

radiation heat capacity is Cr 0.3 GJ/keV/cm3 
. Thus, for these problem 

parameters, we see from Eq. (147) that it is possible to generate unstable 

solutions with the 81 discretization for sufficiently large time-step sizes. 

In the numerical results that follow, we consider two classes of test problems. 

First, we investigate the behavior of the linearized versions of the 81, FI, and 

LI schemes, which corresponds to solving a linear problem described by Eqs. 

(29) and (33). \Ve then apply these three time discretizations to two nonlinear 

problems represented by Eqs. (I), (3), and (4). 

7.1 Linear problem 

Discretizing Eqs. (61) and (62) in frequency allows us to write the linearized 

version of the 81 scheme as 

A (155) 


If G denotes the number of frequency groups, then bEn is a G x 1 vector 

of group-centered spectral-radiation-energy-density-perturbation values and 

A and B are both G + 1 x G + 1 matrices. These matrices have the forms 

I (Jct3.tJvf(T) 0 
(156)A= 
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and 

I ac!:::..tF 
(157)B= 

where I is the G x G identity matrix, 0 is a G x 1 vector of zeros, M(T) is 

a G x G matrix representing the discretized Fokker-Planck operator, F is a 

G x 1 vector constructed by evaluating Eq. (30) at each group center, and !:::..v 

is a 1 x G vector of group widths, i.e., 

!:::"Vg = Vg+l/2 - Vg-l/2 , 1:::; 9 :::; G . (158) 

For more details regarding the frequency-group structure and the discretized 

Fokker-Planck operator, see Appendix A. \Ve can also express the linearized 

versions of the FI and LI schemes in a form similar to that of (155) by 

applying a frequency discretization to Eqs. (62) and (118) and redefining the 

matrices A and B. In this case, 

I - ac!:::..tNf(T) -ac!:::..tF 
(159)A= 

!:::..V 

and 

I o 
B= (160) 

Note that Eq. (155) can be solved each time step for bEn+1 and bTn+1 through 

a matrix-vector multiplication, 

bEn+1 bEn 
= A-1B (161) 
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In the specific linear problem we examine, the equilibrium material tempera­

ture is T 1 keY, the initial material-temperature perturbation is 6T(0) = 

1 keY, and there is no initial perturbation in the spectral radiation energy 

density. Equations (51), (54), and (138) then give the time-step limit required 

to avoid instabilities as 6.t ::; 4.84 ns, while Eq. (154) shows that the time-step 

limit required to prevent nonphysical oscillations is 6.t ::; 1.42 ns. To solve this 

problem via Eq. (161), we employ 100 frequency groups uniformly spaced from 

okeY to 20 keY. 

As an initial check of our stability analysis, we calculate the minimum ampli­

fication factor corresponding to a particular time discretization and time-step 

size in two different ways and compare the results. First, we compute the 

smallest eigenvalue of the matrix A-I B and equate this quantity to the min­

imum amplification factor. Justification for this procedure is given by Eqs. 

(65), (66), and (161). The second way is to use the minimum amplification 

factor predicted by our theory. For the SI scheme, this quantity is the neg­

ative root of the characteristic equation defined by Eqs. (114) and (115) if 

this root exists or zero otherwise, while for the FI and Ll schemes our theory 

predicts that the minimum amplification factor is always zero. Note that, in 

both cases, zero is the infimum of the amplification-factor continuum, which 

is present regardless of time-step size. 

In Figure 3, we plot the minimum amplification factor determined by each 

of the two methods described above as a function of time-step size for the 

SI discretization. From this figure, we see that our theory agrees extremely 

well with the smallest eigenvalue of the matrix A-I B. \Ve also plot the two 

time-step limits as vertical lines in Figure 3. These time-step limits accurately 

predict when the amplification factor decreases with increasing time-step size 
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below zero (oscillatory time-step limit) and negative one (stability time-step 

limit), respectively. 

\Ve have repeated this calculation for the FI and LI schemes and display the 

results in Figure 4. This plot shows that the smallest eigenvalue of the matrix 

A-I B is always slightly greater than zero, as predicted by our theory. 

We continue by examining the behavior of actual solutions to this linear prob­

lem generated by both the 81 discretization and the FIILl discretization (again 

note that the FI and Ll schemes have the same linearized form). Vve simulated 

this problem using each time discretization out to an elapsed time of 60 ns 

with time-step sizes of .6.t = 1, 3, and 6 ns. The material-temperature pertur­

bation resulting from these calculations is plotted in Figures 5-7. From these 

figures, we see that the 81 solution approaches equilibrium without oscillating 

for .6.t = 1 ns, nonphysically oscillates but eventually reaches equilibrium for 

.6.t 3 ns, and is unstable for.6.t 6 ns. Comparing these time-step sizes to 

the time-step limits given above shows that the 81 discretization behaves as 

expected in all three cases. In addition, the FIILl material-temperature per­

turbation monotonically decreases towards equilibrium regardless of time-step 

size, an outcome that is also predicted by our stability analysis. 

7.2 Nonlinear problems 

In the two nonlinear problems we consider, we employ 200 frequency groups 

logarithmically spaced from 0.02 keY to 2000 keY. Also, to determine the 

time-step limits for the 81 discretization, we first calculate the equilibrium 

material temperature through Eqs. (4) and (14). vVe then use this quantity to 
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both solve Eq. (138), along with Eqs. (51) and (54), for the stability time-step 

limit and evaluate Eq. (154) for the oscillatory time-step limit. 

The first nonlinear problem we examine has an initial material temperature 

of 100 keY and an initial spectral radiation energy density described by a 

Wien distribution at 1 keY. These initial conditions result in an equilibrium 

material temperature of 25.75 keY, and the corresponding time-step limits 

are then tlt ::; 0.188 ns to avoid instabilities and tlt ::; 0.0552 ns to prevent 

nonphysical oscillations. We simulated this problem out to an elapsed time of 

6 ns using time-step sizes of tlt = 0.05 ns (slightly less than the oscillatory 

time-step limit), 0.15 ns (almost three times the oscillatory time-step limit 

but less than the stability time-step limit), 0.2 ns (slightly larger than the 

stability time-step limit), and 1 ns (approximately five times the stability 

time-step limit). The material temperature generated by these calculations is 

displayed in Figures 8-11. From Figures 8 and 9, we see that the 81 solution 

monotonically decreases for tlt = 0.05 ns and nonphysically oscillates before 

reaching equilibrium for tlt = 0.15 ns. Thus, both time-step limits performed 

as intended in this problem. In addition, Figure 10 shows that increasing the 

time-step size to tlt = 0.2 ns caused the 81 scheme to exhibit undamped 

oscillations and that the calculation is barely stable. Further increasing the 

time-step size to tlt = 1 ns precipitated a negative material temperature at 

the end of the first time step, and thus we do not present results for the 81 

discretization in Figure 11. In contrast, the FI and LI schemes yielded more 

physically reasonable solutions that, for the most part, approach equilibrium 

without oscillating as expected. The exception to this statement is in Figure 

11, where the LI material temperature slightly undershoots at the end of the 

first time step. 
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In the second nonlinear problem, the initial material temperature is 1 keV, 

while the initial spectral radiation energy density is characterized by a Gaus­

sian profile, 
2 Nhv e~(v-())2/2f,2 

E(v, 0) (162)
-{- erfc(-8/V2{) 

Here, erfc(z) is the complimentary error function [18]. Equation (162) repre­

sents a Gaussian distribution of photons, not radiation energy, and thus this 

expression difi'ers slightly from the standard form of the Gaussian function 

(Le., there is an extra factor of frequency). \Vhen we substitute Eq. (162) 

into Eq. (5), we see that the correct photon density is preserved. Also, in­

tegrating Eq. (162) over frequency yields the total radiation energy density 

corresponding to this expression, 

00 e-()2/2e[If 1E(v, O)dv = hN 8 + { - (163)fa· 7r erfc(-8/V2{) 

\Ve set 8 = 100 keY and { 10 keV such that photons are distributed re1­

ative1y narrowly about a frequency of 100 keY (i.e., more narrowly than a 

Wien distribution at 100 keV). \\lith these problem parameters, the equilib­

dum material temperature is 25.25 keY, and the resulting time-step limits are 

!J..t ::; 0.192 ns to prevent instabilities and !J..t ::; 0.0563 ns to avoid nonphysical 

oscillations. 

\Ve simulated this problem again using time-step sizes of !J..t 0.05, 0.15, 

0.2, and 1 ns out to an elapsed time of 6 ns. These time-step sizes have the 

same relationships to the time-step limits for the SI discretization as they 

did in the first nonlinear problem. The material temperature calculated by 

these simulations is plotted in Figures 12-15. The first two of these figures 

show that the SI material temperature monotonically approaches equilibrium 

for !J..t = 0.05 ns and nonphysically oscillates but eventually reaches equilib­
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rium for ~t = 0.15 ns, both of which are consistent with the stability and 

oscillatory time-step limits. In addition, we see from Figure 14 that the SI 

solution displays barely damped oscillations for ~t = 0.02 ns. Just as in the 

first nonlinear problem, employing a time-step size of ~t = 1 ns caused the 

SI discretization to generate a negative material temperature, this time at 

the end of the second time step. For this reason, there are no SI results in 

Figure 15. Also, Figures 12~15 show that the L1 scheme behaves quite dif­

ferently for this problem than in the first nonlinear problem, exhibiting large 

overshoots in the material temperature at the end of the first time step for all 

but the smallest time-step size. However, these overshoots relax after several 

additional time steps, and the material temperature subsequently reaches its 

equilibrium value. Along with these material-temperature overshoots, we did 

observe that a few frequency groups had negative spectral radiation energy 

densities. This type of behavior was not seen when using either of the two 

other time discretizations in this problem, or any of the time discretizations 

in the first nonlinear problem. As predicted, the F1 solution monotonically 

increases towards equilibrium regardless of time-step size. 

In our discussion of the numerical results above, we noted that the LI dis­

cretization sometimes displayed undesirable behavior (undershoots and over­

shoots in the material temperature, negative values for the spectral radiation 

energy density) that is not predicted by our stability analysis. The reason 

for this is that our analysis is only strictly valid near equilibrium (i.e., when 

the material-temperature and spectral-radiation-energy-density perturbations 

in our linearization process are small). Nevertheless, the initial conditions in 

these two nonlinear problems are far from equilibrium, and the negative and 

oscillatory material temperatures generated by the SI scheme were not ob­
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served with either the LI or Fl discretizations. In particular, it is essential 

to avoid negative material temperatures in realistic calculations as they can 

cause severe difficulties, for example when solving Eq. (4). 

Conclusions 

We have performed a stability analysis of three implicit time discretizations for 

the Compton-Scattering Fokker-Planck equation. This analysis shows that the 

FI and LI schemes are unconditionally stable and cannot generate oscillatory 

solutions regardless of time-step size, whereas the SI discretization can suffer 

from instabilities and nonphysical oscillations for sufficiently large time steps. 

\Ve have used the results of this analysis to develop two time-step limits for 

the SI scheme. The first time-step limit prevents unstable solutions, while the 

second avoids both instabilities and nonphysical oscillations. Although this 

second time-step limit is more restrictive than the first, it is also simpler and 

easier to implement. 

With a set of numerical examples, we have demonstrated the validity of our 

stability analysis and time-step limits. In these test problems, we did observe 

that the 11 discretization sometimes exhibited undesirable behavior that was 

not predicted by our analysis. However, the unstable and oscillatory solutions 

and subsequent negative material temperatures that were generated by the SI 

scheme were not seen when using the 11 discretization, orthe FI discretization 

for that matter. 

There are several aspects of our stability analysis that are incomplete. First, 

we have neglected induced scattering in our formulation of the Fokker-Planck 
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equation and the resulting time discretizations. We feel justified in ignoring 

this effect because, in most problems, induced scattering enhances, but does 

not dominate, radiation-matter energy coupling. Thus, our stability analysis 

and time-step limits should also be useful in calculations that include induced 

scattering. In addition, our analysis does not address the effect that frequency 

discretization has on stability as it is only semi-discrete. If a coarse frequency­

group structure is selected with poorly chosen frequency groups, then our 

stability analysis and time-step limits may be completely invalid. However, the 

semi-discrete Fokker-Planck equation upon which are analysis is based should 

accurately model its fully discrete counterpart when a reasonable frequency­

group structure is prescribed. In this case, our stability analysis and time­

step limits should hold. Some evidence for this statement is given by our 

numerical results, all of which involve a frequency discretization. Extending 

our analysis to include frequency discretization and induced scattering, as well 

as explaining the behavior of the LI scheme in nonlinear problems, remains as 

future work. 
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A Frequency discretization of the Fokker-Planck operator 

In this paper, we employ a frequency discretization of the Fokker-Planck opera­

tor that is based on a general class of finite difference schemes given by Larsen 

et al. [7]. To develop this discretization, we first specify a frequency-group 

structure consisting of G groups with group edges VI/2 < v3/2 < ... < vCH/2' 

We also use group centers defined as group-edge averages, 

_ vg-l/2 + Vg+I/2 
Vg - I~g::;G , (A.I)

2 

although alternate prescriptions are possible. Next, we write Eq. (2) as 

a [ kT aE (hV kT) 1Nf(T)E=v- V--+ 2 -3-2 E 
av mc2 av mc mc

v-a [kT__ . a . 1 (A.2)v4e-hv/kT_ (v-3ehv/kTE) 
av mc2 av 

a [hv4 1= v- -- a v-3ehv/kTE 
av mc2 oehv/ kT ( ) 

The second expression on the right side of Eq. (A.2) corresponds to the first 

differencing method described by Larsen et al. [7], while the third expression 

is used in their second differencing method. vVe will base our frequency dis­

cretization upon this third expression and second method. Then, applying a 

straightforward finite difference in frequency to the third expression in Eq. 

(A.2) yields the discretized Fokker-Planck operator, 

[AI(T)E]g (A.3) 
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where 

5g+ 1/2 = 

9 = 0 or 9 G 
(A.4) 

I~g<G-I , 

and Eg is the group-centered value of the spectral radiation energy density. 

Equations (A.3) and (A.4) form a tridiagonal system of G equations for Eg • 

Note that Eq. (A.4) imposes boundary conditions for 9 o and 9 G 

by assuming Eg and its frequency derivative vanish at 1/1/2 and 1/c,1/2' This 

assumption requires that 1/1/2 is chosen sufficiently small and 1/c-r-1/2 is chosen 

sufficiently large. 

B Moments of Y>.. 

In this appendix, we calculate moments corresponding to Eq. (72) of the form 

10
00 

xmy>..(x)dx 

sinh( [7Ta(A;l [00 xm+3/2+ia(>")e-x\IF[_3/2 + ia(A), 1 + 2ia(A); x]dx . (B.I) 
7T A A 2 fa 

\Ve specifically consider the cases of m = 1, 0, and -1. To perform this 

integration, we note that \IF satisfies [19] 

f(b + 1 + ia)r(b + 1 ia) . (B.2) 
f(b 1/2) 

Here, f is the gamma function and has the following properties [18]: 

f(z 1) = zf(z) (B.3) 

f(I/2 + iz)f(I/2 iz) (B.4)
cosh (7TZ) 
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1 1 
(8.5)1) = f(2) = 1 

1 
(B.6)f(O) = 0 . 

Using Eqs. (73) and (8.2)~-(8.6) allows us to write 

. . 7r -\(-\ + 4)(-\ 2)
W[-3/2+w(-\), 1+2w(-\); x]dx = [( )] ,(8.7)

cosh 7ra -\ 

(Xi x3/2+ia(>')e-XW[_3/2 +ia(-\), 1 + 2ia.(-\);xJdx = 7r-\(-\ - 2) , (8.8)
10 cosh [7ra(-\)] 

and 

1

1000 

xl/2+ia(>')e-XW[_3/2 + ia(-\), 1 + 2ia(-\);x]dx = 0 (8.9) 

When we substitute Eqs. (B.7)-(B.9) into Eq. (8.1), we have 

00 ()d _ 7r -\(-\ + 4)(-\ 2) sinh [Tta(-\)] 
(8.10)xy>. x x - [( )] ()'o cosh Tta. -\ 7r -\ -\ 2 

rOO 7r-\(-\-2) sinh [Tta(-\)] 
(8.11)10 y>.(x)dx = cosh [7ra(-\)] Tt-\(-\ - 2) 

and 

100 1 
-y>.(x)dx o . (B.12) 

o x 

C Eigenfunction expansions of F and V 

We now develop eigenfunction expansions of Eq. (58), 

(C.1) 


and Eq. (60) 

V (x) = ~ (X4 - 3x3) (C.2) 

of the form given by Eqs. (75)-(78). 
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C.l Eigenfunction expansion of F 

We first determine an eigenfunction expansion of F, 

(C.3) 


Evaluating Eq. (76) with Eqs. (70), (74), and (C.1) yields 

(C.4) 


= 0 . 

Also, performing the integration in Eq. (77) using Eqs. (71), (74), and (C.1) 

shows that 

{32 fooo F(X)Y2(X)W(x)dx 

= 2~ fooo (X4 - 6x3+ 8x2) e-xdx (C.5) 

V2. 

\Vhen we substitute Eqs. (74) and (C.l) into Eq. (78), we have 

(3).. = fox F(x)y)..(x)w(x)dx 

1100 
(C.6) 

- (x - 4)y)..(x)dx . 
2 0 

Applying Eqs. (RIO) and (B.ll) to Eq. (C.6) allows us to write 

sinh [ITa(A)] 
(C.7)

IT A(A - 2) 
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G.2 Eigenfunction expansion of V 

Next, we calculate an eigenfunction expansion of V, 

(C.8) 


When we perform the integration in Eq. (76) with Eqs. (70), (74) and (C.2), 

we see that 

(C.g) 

Substituting Eqs. (71), (74), and (C.2) into Eq. (77) yields 

(2 .fX! V(x)Y2(x)w(x)dx 

= 1m roo (X3 _ 5x2+ 6x) e-xdx (C.10)
2v 2 .fo 
1 

We can evaluate Eq. (78) using Eqs. (74) and (C.2) to write 

c 10
00 

V(x)y>.(x)w(x)dx 
(C.ll) 

= ~ roo (1 - ~) y>.(x)dx
2.fo x 

If we make use of Eqs. (B.ll) and (B.12), Eq. (C.Il) becomes 

7r J\(J\ 2) sinh [7ra(J\J]
(>. = - -~--'---:- (C.12)

7rJ\(J\ - 2)2 cosh [7ra(J\)] 
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D A proof that the amplification factors are real 

In this appendix, we demonstrate that there are no complex amplification 

factors associated with either the SI discretization or the FI and LI discretiza­

tions. Our proof consists of first assuming a complex amplification factor does 

exist, then showing that this assumption results in a contradiction. We begin 

by observing that when w is not real, Eq. (92) is satisfied through Eq. (108), 

(D.1) 

Multiplying this expression by the complex conjugate of JT gives 

where the asterisk denotes a complex conjugate. We can then take the complex 

conjugate of Eq. (D.2) to write 

o . (D.3) 

Here, we have employed the fact that Cv and /3>, are real [see Eq. (83)]. Sub­

tracting Eq. (D.3) from (D.2) yields 

roo 2 o . (D.4)+ J9/4 A 

For the SI scheme, because w is complex and we avoid the singularities in Eqs. 

(85)-(87), Eqs. (104), (105), and (111) again hold, 

0:0 = 0 , (D.5) 

(D.6) 
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and 

(D.7)
w(1 + A6t) - 1 

\Vhen we multiply Eqs. (D.6) and (D.7) by rST*, we have 

(D.8) 


and 

'T* - f3>..6t I-I:TI2u 0:>.. - --:--~-:--- u' . (D.9)
w(1 + A6t) 1 

Note that these two expressions are complex only through their dependence 

on w because 6t and ,8>.. are real. The complex conjugates of Eqs. (D.8) and 

(D.9) are then 

(D.1O) 


and 

* f3>..6t . 2 (D,ll)rSTo:>.. = ( A6 ) IrSTI .w* 1 + t - 1 

Substituting Eqs. (D.5) and (D.8)-(D.ll) into Eq, (DA) reveals 

(w* _ w)lrSTl2 [ 2(1 + 26t)6t 

Iw(l + 26t) - 112 


00 f3~ 2(1 + A6t)6t d\] = 0 ( )+1 A) 12 /\ . D.12 
9/4 Awl( + Aut - 11 

Except for the trivial solution where rST = 0, Eq. (D.12) is only satisfied if 

w w*, a statement that the amplification factor is real. However, this fact 

contradicts our assumption, and we conclude that the SI discretization has no 

complex amplification factors. 

In the case of the FI and LI schemes, the solutions to Eqs. (126)-(128) when 

w is complex are once more given by Eqs. (129)--(131), 

0:0 = 0 , (D.13) 

(D.14)
w(1 + 26t) 1 
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and 

a = (3)..w6.t oT (D.15)
>.. w(l + A6.t) - 1 . 

Multiplying Eqs. (D.14) and (D.15) by oT* allows us to write 

V2w6.t 2OT"a2 = 	 , (D.16)1loTIw(l + 26.t) 

and 
(3)..w6.t

oT*a>.. 11OT21 	 (D.17)
w(l + A6.t) 

In a manner similar to the development of Eqs. (D.1O) and (D.ll), only the 

dependence on w can cause Eqs. (D.16) and (D.17) to be complex, and thus 

the complex conjugates of these two equations are 

OTa; = V2w* 6.t loTl2, (D.1S)
w* + 26.t) - 1 

and 

oTa* = ,fl>..w" 6.t loT21. (D.19) 
>.. w* + - 1 

'When we evaluate Eq. (D.4) with Eqs. (D.13) and (D.16)-(D.19), we see that 

2 [ 26.t 

(w* w)loTI Iw(l +26.t) _ 112 


(3~ 26.t 1+ 00 
-"--1-(--)-1--'-12 dA = 0 . (D.20)19/4 	 Awl + A6.t 

Analogous to Eq. (D.12), this expression implies that w is real and contra­

dicts our assumption. \Ve consequently surmise that there are no complex 

amplification factors associated with the FI and LI discretizations, either. 
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Fig. 1. An example of H(w) for the SI discretization. 
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Fig. 2. An example of H(w} for the FI and LI discretizations. 
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Fig. 3. Minimum amplification factor for the SI discretization. 
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Fig. 4. Minimnm amplification factor for the FI and LI discretizations. 
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Fig. 5. Linear problem material-temperature perturbation for !:::..t = 1 ns. 
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Fig. 6. Linear problem material-temperature perturbation for At = 3 ns. 

61 


60 



5r---~----~----~============~ 
. ---*- SI Discretization 

4 -a-- FIILI Discretizationi 


10 20 30 40 50 60 

Time (ns) 


Fig. 7. Linear problem material-temperature perturbation for b.t = 6 ns. 
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Fig. 8. First nonlinear problem material temperature for tlt 0.05 ns. 
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Fig. 9. First nonlinear problem material temperature for 6.t 0.15 ns. 
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Fig. 10. First nonlinear problem material temperature for tJ.t = 0.2 ns. 
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Fig. 11. First nonlinear problem material temperature for /).t = 1 ns. 
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12. Second nonlinear problem material temperature for tlt 0.05 ns. 
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Fig. 13. Second nonlinear problem material temperature for b..t 0.15 ns. 
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Fig. 14. Second nonlinear problem material temperature for Ilt = 0.2 ns. 
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Fig. 15. Second nonlinear problem material temperature for b..t 1 n8. 
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