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Abstract

This paper proposes a hierarchical, multi-resolution awrk for the identifi-
cation of model parameters and their spatially variabilityn noisy measure-
ments of the response or output. Such parameters are frigaanountered in
PDE-based models and correspond to quantities such agydengiessure fields,
elasto-plastic moduli and internal variables in solid meetbs, conductivity fields
in heat diffusion problems, permeability fields in fluid flomwrdugh porous media
etc. The proposed model has all the advantages of tradifRmeesian formula-
tions such as the ability to produce measures of confidemtledanferences made
and providing not only predictive estimates but also quatitie measures of the
predictive uncertainty. In contrast to existing approachautilizes a parsimo-
nious, non-parametric formulation that favors sparseeasgmtations and whose
complexity can be determined from the data. The proposedenaork in non-
intrusive and makes use of a sequence of forward solversatipgrat various
resolutions. As a result, inexpensive, coarse solverssed to identify the most
salient features of the unknown field(s) which are subsettyuenriched by in-
voking solvers operating at finer resolutions. This leadsi¢mificant compu-
tational savings particularly in problems involving contgionally demanding
forward models but also improvements in accuracy. It is basea novel, adap-
tive scheme based on Sequential Monte Carlo sampling whiembarrassingly

parallelizable and circumvents issues with slow mixingeemtered in Markov
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Chain Monte Carlo schemes. The capabilities of the propossttiodology are
illustrated in problems from nonlinear solid mechanicshvéipecial attention to
cases where the data is contaminated with random noise arsddfe of variabil-
ity of the unknown field is smaller than the scale of the gricevehobservations

are collected.

1 Introduction

The prodigious advances in computational modeling of pfajgirocesses and the development of
highly non-linear, multiscale and multiphysics modelsemseveral challenges in parameter iden-
tification. We are frequently using large, forward modeldgalimply a significant computational
burden, in order to analyze complex phenomena.The extnsig of such models poses several
challenges in parameter identification as the accuracyeafsults provided depends strongly on as-
signing proper values to the various model parameters. bhardcs of materials, accurate mechan-
ical property identification can guide damage detectionanthformed assessment of the system'’s
reliability ([37]). Identifying property-cross correlahs can lead to the design of multi-functional
materials ([62]). In biomechanics, the detection of vamias in mechanical properties of human tis-
sue can reveal the appearance of diseases (arterioss|anadignant tumors) but can also be used
to assess the effectivity of various treatmenits[([4, 21Brnieability estimation for soil transport

processes can assist in detection of contaminants, oibeagiin etc. ([68, 23]).

We consider phenomena described by a set of (coupled)iellggrabolic or hyperbolic PDEs and

associated boundary (and initial) conditions:
A(y(x); f(x)) =0, Vo eD ey

where A denotes the differential operator defined on a donfaig R? , whered is the number

of spatial dimensions.A depends on spatially varying coefficientsr), € D. Advances in
computational mathematics have given rise to several efficsolvers for a wide-range of such
systems and have revolutionized simulation-based asadysl design[([53]). Our primary interest

is to identify f(x) from a set of (potentially noisy) measurements of the respgn = y(x;) at

a number of distinct locations; € D. In the case of time-dependent PDEs, the available data
might also be indexed by time. Several different processeslid and fluid mechanics, transport
phenomena, heat diffusion etc fall under this generalrggtind even though the coefficierfter)

have a different physical interpretation, the associateerse problems exhibit similar mathematical

characteristics.

Two basic approaches have been followed in addressinggsbf data-driven parametric identi-
fication. On one hand, deterministic optimization techegwhich attempt to minimize the sum of

the squares of the deviations between model prediction®bservations. Gradient or global, in-



trusive or non-intrusive techniques are introduced fofqrerning the optimization task. Usually the
objective function is augmented with regularization te(mg. Tikhonov regularization [59]) which
alleviate issues with the ill-posednesss of the problée, (26 ,[19/ 64, B, 38]). Such deterministic
inverse techniques based on exact matching or least-sjojatienization, lead to point estimates of
unknowns without rigorously considering the statisticalure of system uncertainties and without

providing quantification of the uncertainty in the inverséusion.

The direct stochastic counterpart of optimization methiogislves frequentist approaches based
on maximum likelihood estimators that aim at maximizing grebability of observations given
the inverse solution maximuni ([20,]118]). In recent yearsidicant attention has been directed to-
wards statistical approaches based on the Bayesian paradigh attempt to calculate a (posterior)
probability distribution function on the parameters okirgst. Bayesian formulations offer several
advantages as they provide a unified framework for dealirily thie uncertainty introduced by the
incomplete and noisy measurements and assessing guaeljta¢sulting inferential uncertainties.
Significant successes have been noted in applications sunkdical tomography/([69]), geological
tomography ([25,12]), hydrology[([44]), petroleum engiriag ([28,[8]), as well as a host of other
physical, biological, or social systemb ([42] 57167, 48]).

Identification of spatially varying model parameters posggeral modeling and computational is-
sues. Representations of the parametric fields in existapgoaches artificially impose a mini-
mum length scale of variability usually determined by thecdétization size of the governing PDEs
([44]). Furthermore, they are associated with a very laggar of unknowns. Inference in high-
dimensional spaces using standard optimization or sagptthemes (e.g. Markov Chain Monte
Carlo (MCMQ)), is generally impractical as it requires amlegrant number of calls to the forward
simulator in order to achieve convergence. ParticularlBayesian formulations where the infer-
ence results are much richer and involve a distributionerattian a single value for the parameters
of interest, the computational effort implied by repeatafisdo the forward solver can be enormous
and constitute the method impractical for realistic aglans. These problems are amplified if
the posterior distribution is multi-modal i.e. severalrsfigantly different scenaria are likely given
the available data. While it is apparent that, computatlgi@expensive, coarser scale simulations
can assist the identification process {[14]), the critieaktof efficiently transferring the informa-
tion across resolutions still remains([50] B1] 68]). Poeiattempts using parallel tempering (e.g.
[33]) or hierarchical representations based on Marko\st({&E]) require performing inference on

representations at various resolutions simultaneously.

In the present paper we adopt a nonparametric model whiokdépiendent of the grid of the forward
solver and is reminiscent of non-parametric kernel regmassiethods. The unknown parametric
field is approximated by a superposition of kernel-type fioms centered at various locations. The

cardinality of the representation, i.e. the number of suetnéls, is treated as an unknown to be



inferred in the Bayesian formulation. This gives rise to ayfiexible model that is able to adapt to
the problem and the data at hand and find succinct represarstaf the parametric field of interest.

Prior information on the scale of variability can be dirgétitroduced in the model.

Inference is performed using Sequential Monte Carlo sarsplEhey utilize a set of random sam-
ples, named particles, which are propagated using simpb@rtance sampling, resampling and
updating/rejuvenation mechanisms. The algorithm is tiyguarallelizable as the evolution of each
particle is by-and-large independent of the rest. The serpief distributions defined is based on
using solvers that operate on different resolutions anadlwvbluccessively produce finer discretiza-
tions. This results in an efficient hierarchical approadt thakes use of the results from solvers
operating at the coarser scales in order to update them basmthlyses on a finer scale. The partic-
ulate approximations produced provide concise repreensof the posterior which can be readily

updated if more data become available or if more accuratesoare employed.

2 Problem Definition & Motivation

In lieu of a formal definition, we discuss an extremely simgieblem which nevertheless possesses

the most important features for the purposes of this workastier the steady-state heat equation in

d (—c(x)g) —0, z€0,1] 2

the unit interval, i.e.:

dx dx
wherec(z) is the spatially varying conductivity field arifi(z) the temperature profile. Assume
that known boundary conditiori8(0) = 0 and (—c(w)%)mzl = ¢ are imposed and temperature
measurements; (without any noise) are obtained Atdistinct pointsz; € [0, 1] with the intention

of identifying the unknown conductivity and its spatial igion.

For any intervalAz; = x;11 — z; between two observation locations, the governing PDE and
boundary conditions imply that:

Tit1 1 g —1_ q ;
</ o(x) x) " T T 3)

Similar expressions hold for all other intervals and rethaeffectiveconductivity in each subdo-
main (given by the harmonic mean) with the measured temperafThese relations however do
not uniquely identify the spatial variability ot:(x) unless the latter is assumed constant within
eachAx;. Further constraints can be imposed by assuming continfiityz) at thex;’s but these
do not necessarily hold if one considers materials thatisbosdistinct phases. Even when such
constraints seem plausible, one can readily imagine paraenfierms of ¢(x) (i.e. polynomials of
high degree) which cannot be completely identified unlegbéu constraints (e.g. continuity of the
derivatives of¢(x) atx;) are artificially imposed. The non-uniqueness persistavthe number of

measurementd’ increases even though the space of possible solutionskshrihalso precludes



the possibility of detecting significant changes:{m) that occur in length scales much smaller than
Ax; (e.g. flaws) which are generally of significance to the antalljiseir contribution to the effective
conductivity in Equatior[{|3) can be negligible unless; is of comparable size. This ill-posedness
has long been identified and can become more pronounced iortwoee dimensional domains
and if the governing PDEs are nonlinear or involve more tha@ wnknown parameters or fields
([38]). Itis also amplified if the measurements obtainedcargaminated by random noise which is

generally the case in engineering practice.

Hence there is a need for a general framework that can prahtiteates about the unknown fields
particularly with regards to the scale of their variabilitiis is especially important as the accuracy
of the predictions of computational models is greatly infloed by the the multiscale nature of
property variations. In recent years a lot of research effoave been devoted to the development
of scalable, black-box simulators that provide the coarsde solution while capturing the effect
of fine-scale fluctuations[([12]). The multiscale analydisuch systems inherently assumes that
the complete, fine-scale variation of various propertiesi{odel parameters in general) is known.
This assumption limits the applicability of these frameksasince it is usually impossible to directly
determine the complete structure of the medium of intertetsteafinest scale. More often than not,
what is experimentally available and accessible (as in ¥aenple above), are measurements of
the response of these systems under prescribed input datxaej at spatial scales much coarser
than those of the property variations. In problems of edfonzof soil permeability for example,
measurements are restricted to a few bore holes severalsnagi@rt from each other. In estimating
damage in an aircraft fuselage, measurements of the resfdisplacements, accelerations etc) are

collected at a few locations.

This limited and noisy information naturally introducesoa 6f uncertainty and necessitates view-
ing the property variation as a random field whose statigpiagperties must be consistent with the
available data. To that end the present paper proposes aatj&aenework that is based on the
Bayesian paradigm and addresses the following questiondow can one utilize deterministic,

forward solvers in order to identify spatial variability wdrious properties while accounting for the
associated uncertainty? b) How can this process produeagss at various resolutions?, c) As
these forward models are computationally demanding, howtlia process be done in a computa-
tionally efficient manner?, d) How can the available data$eduo quantify error or discrepancies

in the forward models?

In the following sections we discuss the characteristidhefproposed Bayesian model with partic-
ular emphasis on the prior specifications and their physigalications. We then present a general,
efficientinference technique for the determination of thstprior and discuss how predictions in the
context of computational models can be achieved. We finltlistrate the capabilities in numerical

examples.



3 Methodology

3.1 Hierarchical Bayesian Model

The central goal of this work is to build mathematical methtitht utilize limited and noisy ob-
servations/measurements in order to identify the spagiaakility of model parameters. Given the
significant uncertainty arising from the random noise, latkata and model error, point estimates
are of little use. Furthermore it is important to quantifg tonfidence in the estimates made but also
in the predictive ability of the the model of interest. Tottead we adopt a Bayesian perspective.
Bayesian formulations differ from classical statisticapeoaches (frequentist) in that all unknown
parameters (denoted I8y are treated as random. Hence the results of the inferencess are not

point estimates but distribution functions.

The basic elements of Bayesian models ardikeihoodfunction () = p(y | ) which is a con-
ditional probability distribution and gives a (relativeeasure of the propensity of observing data
y for a given model configuration specified by the paramefler he likelihood function is also
encountered in frequentist formulations where the unknomwdel parameter® are determined by
maximizing L(0). This could be thought as the probabilistic equivalent dédmainistic optimiza-
tion techniques commonly used in inverse problems. It céfieisirom the same issues related to
the ill-posedeness of the problem. The second componerayddan formulations is thgior dis-
tribution p(@) which encapsulates in a probabilistic manner any knowl&digemation/insight that
is available to the analyst prior to observing the data. éutyh the prior is a point of frequent crit-
icism due to its inherently subjective nature, it can proxeeanely useful in engineering contexts
as it provides a mathematically consistent vehicle foratijg the analyst’s insight and physical
understanding. The combination pfior andlikelihood based on Bayes’ rule yields thp@sterior
distribution7 (@) which probabilistically summarizes the information exted from the data with

regards to the unknows :

7(0) = p(0 | y) = W x p(y | 8) p(6) (@)

Hence Bayesian formulations allow for the possibility ofltiplie solutions - in fact any in the
support of the likelihood and the prior is admissible - whaslative plausibilityis quantified by
the posterior. Credible or confidence intervals can be headitimated from the posterior which

guantify inferential uncertainties about the unknowns.

Without loss of generality, we postulate the existence oéteiinistic, forward model which in
most cases of practical interest corresponds to a Finite&é or Finite Difference model of the
governing differential equations. Naturally, forward netglallow for various levels of discretiza-
tion of the spatial domain and letdenote the resolution they operate upon (largenplies finer

resolution). In this paper, forward solvers are viewedressengerghat carry information about

the underlying material properties as they manifest thérasén the response (mechanical, thermal



* sensor locations

{

black-box solver
coarse resolution

black-box solver
medium resolution

black-box solver

fine resolution

black-box solver
finest resolution

inferred field

Figure 1: Hierarchy of solvers operating on different raiohs




etc) of the medium of interest. This is especially true indbetext of recently developed upscaling
schemes [([34, 35, 18, 40,117,156] 63| 43]) which attempt toucaghe effect of finer scale mate-

rial variability while operating on a coarser grid. In gealethe finer the resolution of the forward

solver, the more information this provides. This howevanes at the expense of computational
effort. It is not unusual that the sufficient resolution o fhroperty fluctuations in many systems of
practical interest requires several CPU-hours for a siagidysis. Despite the fidelity and accuracy
of such high-resolution solvers, they can be of little usthacontext of parameter identification as
they will generally have to be called upon several times &avesl system analyses will have to be

performed.

Hence an accurate but expensimessenges not the optimal choice if several pieces of information
need to be communicated. In many cases however, the fidéliypanessage can be compromised
if the expense associated with the messenger is smallexiséspecially true if the loss of accuracy
can be quantified, measures of confidence can be providecuaheérimore if it leads to the same

decisions/predictions. In this project we propose a coeisisramework for using faster but less-

accurate forward solvers operating on coarser resoluitiomsler to expedite property identification.

Furthermore these solvers provide a natural hierarchy afetsathat if appropriately coupled can

further expedite the identification process. Following #malog introduced earlier, we propose
using inexpensive messengers (coarse scale solversiak@vies to communicate the most pivotal

pieces of information and more expensive messengers (fale solvers) fewer times to pass on

some of the finer details (Figuré 1).

In the remainder of this sub-section, we discuss the basipooents of the Bayesian model pro-
posed, with particular emphasis on the prior for the unknparametric fields. We then present

(sub-sectiofi 3]2) the proposed inference technigues éodébtermination of the posterior.

3.1.1 Likelihood Specification

Let F" = {F]} : G — £ denote the vector-valued mapping implied by the forward eh¢aperat-

ing at resolution), which givenf (z) € G (Equation[(1)) provides the values of response quantities
represented by the data= {y;} € £. This function is the discretized version of the inverse of
the differential operatosd in Equation [(1) parameterized bf(x). Each evaluation o™ for a
specific field f(x) implies a call to the forward solver (e.g. Finite Elementsttoperates on a
discretization/resolution. In the proposed framework, the functidi will be treated as a black
box. Naturally data and model predictions will deviate whemformer are obtained experimentally
due to the unavoidable noise in the measurements. Most tamgbyr perhaps this deviation can be
the result of the model not fully capturing the salient phgither because the governing PDEs are
an idealization or because of the discretization error @irtolution. We postulate the following

relationship:



v = F(@) +e” i=12...n (5)
datum i model prediction
whereeg") qguantify the deviation between model predictions and data, which will naturally
depend on the resolutionof the forward solver. Quite frequently the data availableis$ are in
the form of disparate observations, that correspond termdifft physical phenomena (e.g. temper-
atures and displacements in a thermo-mechanical probfemhich case the computational model

corresponds to a coupled multiphysics solver.

The probabilistic model foe] in Equation[(b) gives rise to tHikelihood functionEquation[(#)). In

the simplest case Wheeé") are assumed independent, normal variates with zero mearasiadce
2.

%' v~ FO(f (@)
pr(yi | f(z),00) %exp{—%( 2 )}
andp,(y | [(a).00) o —expl—gy > (v E (7)) ©)
T =1

More complex models which can account for the spatial depecelof the error varianee’ or the
detection of events associated with sensor malfunctionsréin locations, can readily be formu-
lated. In general the variance$ are unknown (particularly the component that pertains toeho
error) and should be inferred from the data. When a conjugateima(a, b) prior is adopted for
0,72, the error variances can be integrated out from Equdfiofu¢@)er simplifying the likelihood:
Lo(F(@) = ply | F@)) o Hoxn2
G+%Z£Jm—ﬂWﬂm)>

at+n/2 (7)

_ (oo

wherel'(z) = [;" ¢*~! e~ dt is the gamma function.

It should be noted that in some workis ([39] 32]), explicitidistion between model and observation

errors is made, postulating a relation of the following form
observation/data = model prediction + model error + observation error (8)

As it has been observed ([70]), independently of the amotidtata available to us, these three
components are nadentifiable meaning several different values can be equally congistiéimthe
data. This however does not imply that all possible valueggually plausible. For example a large
number of values of the observation error that are all p@sitr all negative (for all observations)
are not consistent with the perception of random noise bugt tilcely imply a bias of the model
or perhaps a miscalibrated sensors used to collect the Bayasian formulations are highly suited
for such problems as they provide a natural way of quantifyanpriori and a posteriori relative
measures of plausibility. In the following we restrict thegentation on models of Equatidn (5) as

the focus of is on identifying the scale of variability of regal propertiesf (x).



3.1.2 Prior Specification

The most critical component involves the prior specifigafiar the unknown material properties as
represented by (z). In existing Bayesian [([67,-37]), but also deterministipt{mization-based),
formulations,f(x) is discretized according to the spatial resolution of thevésd solver. For ex-
ample, in cases where finite elements are used, the prodarntecest is assumed constant within
each element and therefore the vector of unknowns is of diinerequal to the number of elements.
This offers obvious implementation advantages but alsepssme difficulties since the scale of
variability of material properties is implicitly selectdxy the solver rather than the data. This is
problematic in several ways. On one hand if the scale of bditiais larger than the grid, a waste
of resources takes place, at the solver level which has tarbatrunnecessarily fine resolutions, and
at the level of the inference process which is impeded by tireecessarily large dimension of the
vector of unknowns. Furthermore, as the number of unknos/naiich larger by comparison to the
amount of data it can lead tver-fitting This will produce erroneous or even absurd values for the
unknowns that may nevertheless fit perfectly the data. Soictiens will have negligiblgredictive
ability and would be useless in decision making. On the other harlde iscale of variability is
smaller than the grid, it cannot be identified even if the espprovides sufficient information for

discovering this possibility.

In order to increase the flexibility of the model, we base aiwmpmodels for the unknown field(s)
f(x) on the convolution representation of a Gaussian processaltdmative representation of a
stationary Gaussian process involves a convolution of éewitise process(x) with a smoothing
kernel K (.; ¢) depending on a set of parameterg3], [29]):

f(x) = / K(z - 2¢) a(z) dz ©)

The kernel form determines essentially the covarianceefekulting process, since:

cov (f(z1, f(x2)) = E[f(z1, f(x2)] = /K(iﬂl —2z;0)K(x1 — 2;¢) dz (10)

For computational purposes, a discretized version of Eoguéd) is used:
k

J

k
fl@)=> a(zj))K(x - z;;¢) = > _ a;K(x — x5 0) (11)
. =1

1
In order to increase the expressive ability of the aforeimaet model we introduce two improve-
ments. Firstly we consider that the set of kernel parametdssspatially varying resulting in a

non-stationary process: k
f(m):ao—l-ZajKj(m;qu) xeD (12)
j=1

wherea corresponds to a value @f, such that the corresponding kernelligverywhere. Such
representations can be viewed as a radial basis network [&d]in Furthermore by interpreting

the kernels as basis functions, Equation (12) it can be se@m &xtension of the the representer

10



theorem of Kimeldorf and Wahba([41]). Overcomplete repngations as in Equatiof ([12) have
been advocated because they have greater robustness ireseaqe of noise, can be sparser, and
can have greater flexibility in matching structure in thead@6,[47]). One possible selection for
the functional form ofi;, that also has an intuitive parameterization with regasdlé scale of of

variability in the material properties, is isotropic, Gaias kernels:
K(x;¢; = (x,75)) = exp{~7; [| & — z; ||} (13)

The parameters; directly correspond to the scale of variability pfx). Larger;’s imply narrowly
concentrated fluctuations and large values slower varyadsii The center of each kernel is speci-
fied by the location parameter;. Other functional forms (e.g. discontinuous) can also lel s
their own or in combinations to enrich the expressivity @& éxpansion in Equatiof(1L2). Wavelets,
steerable wavelets, segmented wavelets, Gabor dictemamiultiscale Gabor dictionaries, wavelet
packets, cosine packets, chirplets, warplets, and a witgeraf other dictionaries that have been

developed in various context§[([6]) offer several posiies.

The second important improvement s that we allow the sizb@é&xpansioi to vary. It is obvious
that such an assumption is consistent withghiaciple of parsimonywhich states that prior models
should make as few assumptions as possible and allow thapleaity to be inferred from the data.
Hence thecardinality of the model, i.e. the number of basis functigns the key unknown that

must be determined so as to provide a good interpretatidmeodibservables.

Independently of the form of the kernel adopted, the impuarteommon characteristic of all such
approximations (as in Equatidn{12)) is that the field repnéstiondoes not depend on the resolution
of the forward modelThe latter affects inference only through the black-baxctionsF;” (Equation

(8), Figurd1)) as it will be illustrated in the next sections

The parameters of the prior model adopted consist of:

k: the number of kernel functions needed,

{a; }?Zl, the coefficients of the expansion in Equatibnl (12). Eaclho$é can be a scalar
or vector depending on the number of material property fieldsvant to infer simultane-
ously. For example, in a problem of thermo-mechanical dogpihere the data consists of
temperatures and displacements and we want to identiftielasdulus and conductivity,

eacha; will be a vector inR?.

{7; }le the precision parameters of each kernel which pertain tsd¢hke of the unknown
field(s), and

{a;}%_, the locations of the kernels which are pointgin

In accordance with the Bayesian paradigm, all unknowns @ansidered random and are assigned

prior distributions which quantify any information, knaedge, physical insight, mathematical con-

11



straints that is available to the analyst before the datedisgssed. Naturally, if specific prior infor-
mation is available it can be reflected on the prior distidng. We consider prior distributions of

the following form (excluding hyperparameters):

p(k}, {aj};?:Ov {Tj}lev {mj },]7?:1)

xR
=

X
=
—
S
—~

X
—

>~
N~—

(14)
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—
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—
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—
S~—
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In order to increase the robustness of the model and explodtaral dependence we adopt a hier-

archical prior model [[24]).

Model Size:

Pivotal to the robustness and expressivity of the modelds#iection of the model size, i.e. of the
number of kernel functions in Equation[(IR). This number is unknown a priori and in theeatze
of specific informationsparserepresentations should be favored. This is not only adgaotas
for computational purposes, as the number of unknown pasme proportional td;, but also
consistent with the parsimony of explanation principle mc@m'’s razor ([36, 54, 52]). For that

purpose, we propose a truncated Poisson priok for

e AL i k< ks
p(k [ A) o ' , (15)
0 otherwise

The truncation parametét, ... is selected based on computer memory limitations and dettirees
support of the prior. This prior allows for representati@is/arious cardinalities to be assessed
simultaneously with respect to the data. As a result the murabunknowns is not fixed and the
corresponding posterior has support on spaces of diffdier@nsions as discussed in more detail in
the sequence. In this work, an exponential hyper-priorésldsr the hyper-parametarto allow for
greater flexibility and robustness ig(\ | s) = s exp{—A\ s}. After integrating out\ we obtain:

1

P(MS)O(m,

fork=0,1,..., knax (6)

Scale:

The most critical perhaps parameters of the mode{ajr}ag?:l which control thescale of variability

in the approximation of the unknown field(s). If prior infoation about this is available then it can
be readily accounted for by appropriate prior specificatinrthe absence of such information how-
ever multiple possibilities exist. In contrast to deteristic optimization techniques where ad-hoc
regularizationassumptions are made, in the Bayesian framework proposssibfm solutions are
evaluated with respect to thgitausibility as quantified by the posterior distribution. This provides

a unified interpretation of various assumptions that areemadarding the priors of the parameters

12



involved. For example, consider a genekalmmal(a., b, ) prior:

a
ba-

k
P{riYer | by arsb) = [T o5 exp(=brmy) (17)
j=1 7

This has a mean. /b, and coefficient of variation /,/a,. Diffuse versions can be adopted by
selecting smalk-. A non-informative priorp(7;) o 1/7; arises as a special case fgr = 2 and

b, = 0 which is invariant under rescaling. Furthermore. it offarsinteresting physical inter-
pretation as it favors “slower” varying representations.(ismallerr’s). In order to automatically

determine the mean of the Gamma prior, we expbess 1;a, wherey; is a location parameter

for which an Exponential hyper-prior is used with a hyperapaetera,, i.e. p(n;) = aie*“j/“u.
Integrating out the:;’s leads to following prior:
k (ar—1)
I'lar+1) ;i 1
k T a J
Ak, ara,) = agr 18
SR | b (o s e
Other Parameters:
For the coefficients; a multivariate normal prior was adopted:
{a;}_o | k.07 ~ N(0,07 Its1) (19)

wherel . is the(k + 1) x (k + 1) identity matrix. The hyper-parametef which controls the
spread of the prior is modeled by the standard inverse ganstrébdtion Inv — Gamma(ag, b).

It can readily be integrated-out leading to the followin@pfor a;’s:

1 F(ao + ﬂ)
Nk _ 2
p({aj}j:O | kv ao,bo) - (27T)(k+1)/2 L & ) ao+(k+1)/2 (20)
(bO + 5 Zj:O aj)
Finally, for the unknown kernel Iocatior{gcj}g?:l, a uniform prior inD is proposed i.e.:
& 1
p({mj}jzl | k) = W (21)

where| D | is the length or area or volume @& in one, two or three dimensions respectively.
Naturally if prior information is available about subreggwith significant property variations this

can be incorporated in the prior.
Complete Model:

Let8y = {{a;}}_o. {m5}i_1,{z;}}_,} € O, denote the vector containing all the unknown param-
eters and = (k, 6y). Sincek is also assumed unknown and allowed to vary, the dimensiép i
variable as well an®,, £ (R*+! x (R*)¥ x D*. In 2D for example and assuming a scalar unknown
field f(x) in the expansion of Equatiof(112) the dimensior@gfis (k + 1) + k + 2k = 2 + 4k.

Based on Equatiof (14) and Equations (16)] (17} (20) lany {B& complete prior model is given
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The combination of the prigs(0) with the likelihoodLZ,.(@) (Equation[[¥)) corresponding to a for-
ward solver operating on resolutiengive rise to theposteriordensityr,.(6) which is proportional

to:
7Tr(0) = pr(e | y) X Lr(o) p(e) (23)

Even though several parameters have been removed fromdtoe éunknown$® and marginalized

in the pertinent expressions, the corresponding posgecan be readily be obtained, or rather be
sampled from, once the posteriars(@) have been determined. As it is shown in the numerical
examples, of interest could be the varianeof the error term (EquationEl(5L1(6)) which quantifies
the magnitude of the deviation between model and data andezae as a validation metric (in the
absence of observation error) or be used for predictiveqgaap(see sectibn 8.3). From Equat[dn (5)
and the conjugate prior model adopted édr it can readily be shown that the conditional posterior

is given by a Gamma distribution:

po;%0]y) = plo;?]6)m(0]y)

and

2
9 n Z?:l (yl - Fi( )(0))
plo,“|10) = Gamma|a+ =,b+

2 2 (24)

In the context of Monte Carlo simulation, this trivially ifigs that once samples from «,. have

been obtained, the samplesxgf? can also be drawn from the aforementioned Gamma.

The support of the posteriors. lies onuﬁ’;gz{k} x @. Two important points are worth empha-
sizing. Firstly, Equation[{23) definessequence of posterior densitiesach corresponding to a
different likelihood and a different forward solver of réstion r. Itis clear that the black-box func-
tions F(") appearing in the likelihood in Equationl (6) impiiensemappings for smaller. This

is because solvers corresponding to coarser resolutiotteeajoverning PDEs are more myopic
(compared to solvers at finer resolutions) to small scaléuaions of the spatially varying model
parameterd (x) (parameterized bg). As a result the likelihood functions, and the associated
posteriorsr,. will be flatter and have fewer modes for smalteiThe task of identifying these poste-

riors becomes increasingly more difficult as we move to gsleé higher refinement (i.e. largey.
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It is this feature that we propose of exploiting in the nexdties in order to increase the accuracy
and improve on the efficiency of the inference process. liitiaxig the posteriors:,. are only known

up to a normalizing constant (determinipgy) in Equation[(#) involves an infeasible and unneces-
sary integration in a very high dimensional space). Eacluatian of ,. for a particula® requires
caIcuIatingF(T) and therefore calling the corresponding black-box solkereach of these runs of
the forward solver may involve the solution of very largeteyss of equations they can be extremely
time consuming. It is important therefore to determinaot only accurately, but also with the least
possible number of calls to the forward solver. Since selvarresponding to coarser resolutions
(smallerr) are faster, it would be desirable to utilize the informatibey provide in order to reduce

the number of calls to more expensive, finer resolution selve

3.2 Determining the Posterior - Inference

The posterior defined above is analytically intractabler. that reasoniMonte Carlomethods pro-
vide essentially the only accurate way to infer TraditionallyMarkov Chain Monte Carldech-
niques (MCMC) have been employed to carry out this task (#3044 ,/66[ 2R]). These are based
on building a Markov chain that asymptotically convergethi target density (in this case) by
appropriately defining a transition kernel. While convercgecan be assured under weak conditions
([49,155]), the rate of convergence can be extremely slowraqdire a lot of likelihood evaluations
and calls to the black-box solver. Particularly in casesreliiee target posterior can have multiple
modes, very largenixing timesmight be required which constitute the method impracticahe
feasible. In addition, MCMC is not directly parallelizablenless multiple independent chains are
run simultaneously and it can be difficult to design a googpsal distribution when operating in
high dimensional spaces. More importantly perhaps, stand&€MC is not capable of providing a
hierarchical, multi-resolutiorsolution to the problem. Consider for example, the casesinadral
samples have been drawn using MCMC from the posteripicorresponding to a solver operating
on resolution- = 1. If samples of the posterior,, are needed, corresponding to a solver of finer
resolutionry > 71 but not significantly different from,, then MCMC iterations would have to be
initiated anew Hence there is no immediate way to exploit the inferencedenaboutr,., even

though the latter might be quite similar g, .

In this work we advocate the use 8kquential Monte Carltechniques (SMC). They represent a
set of flexible simulation-based methods for sampling frosequence of probability distributions
([51,[16]). As with Markov Chain Monte Carlo methods (MCM@)g target distribution(s) need
only be known up to a constant and therefore do not requicutzdlon of the intractable integral
in the denominator in Equatiofil(4). They utilize a set of mmdsamples (commonly referred to
asparticleg, which are propagated using a combinationmportance samplingresamplingand
MCMC-basedrejuvenationmechanisms [([11,10]). Each of these patrticles, which catideght
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of as a possible configuration of the system’s state, is @&tsolcwith animportance weightvhich
is proportional to the the posterior value of the respeqtiadicle. These weights are updated se-
guentially along with the particle locations. Hence@@lﬁi), wﬁi) N | representV such particles and

associated weights for distribution (8) then:
N .
m(0) ~ Y W T () (25)
=1

whereW,” = w("’ /SN w(” are the normalized weights argl. (.) is the Dirac function cen-

tered a®"). Furthermore, for any functioh() which is,-integrable ([9L7]):
N
> W hel) - / h(6) 7, (0) d@ almost surely (26)
=1
Before discussing the SMC sampler proposed, it is worthpitating the basic desiderata:

a) Accuracy: the Monte Carlo scheme should be able to cdyrsatmple frommulti-modal

distributions

b) Hierarchical, Multiscale: the Monte Carlo scheme shcdwddable to exploit inferences
made using forward solvers corresponding to coarser réspotuand refine them as more

elaborate forward solvers are used.

c) Efficiency: the Monte Carlo sampler should require thedstwpossible calls to the forward
solver. It should be directly parallelizable and utilizéeirences made using cheaper for-
ward solvers corresponding to coarser resolutions in doderduce the number of calls to

more expensive forward solvers corresponding to finer utisols.

The goal is to obtain samples from each of the posterioribigtons in Equation(23) correspond-
ing to solvers with increasingly finer spatial resolutiortlodé governing PDES; = r1,79,...,7
wherer is the coarsest te,; the finest. For economy of notation we define the artificiakger
7r, (0) = p(0) that coincides with the prior (which is common to all reswos and independent of
the forward solver). To demonstrate the proposed procssdfites to consider a pair of these pos-
terior densitiesr; () «x L1(0) p(0) andm2(0) « L2(6) p(@) corresponding to forward solvers at
two successive resolutiong andr;, (Figurel2) and discuss the inferential transitions. 1t ()

denote a sequence of artificial, auxiliary distributionBroel as follows:
T2 (0) =717 (0) 73(0) = Ly (0) L3(8) p(6) v € [0.1] (27)

where~ plays the role ofeciprocal temperatureTrivially for v = 0 we recoverr; and fory = 1,
2. The role of these auxiliary distributions is bidge the gap betweern, and s and provide a
smooth transition path where importance sampling can beiegitly applied. In this process, in-
ferences from the coarser scale solvertamasferred and updateth conform with the finer scale
solver. Starting with a particulate approximation for (6) = p(@) (which trivially involves draw-

ing samples from the prior with Weightagi) = 1), the goal is to gradually update the importance
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Figure 2:
tionsm(0), m2(6) corresponding to different resolutions of the governing®BDThese allow for

accurate and computationally efficient transmission ofitfierences made to finer scales.

weights and particle locations in order to approximate énget posteriors at various resolutions. In
order to implement computationally such a transition wergeéin increasing sequencefof,}_;
with 79 = 0 andys = 1 (see sub-sectidn 3.2.1). An SMC-based inference schemé when

fine

lllustration of bridging densities as defined irugtion [27) between posterior distribu-

proceed as described in Table 1.

SMC algorithm:
1.

. Reweigh Update weightso!” = w ",

. Rejuvenate Use an MCMC kernelP;(.,.) that leavesri, . invariant to
. Resample Evaluate the Effective Sample SizESS = 1/ ZfV:l(WS(Ql)Q
. The current populatio{ﬂgi), wgi)}f\il provides a particulate approximatian

. If s < S (andvy, < 1) then sets = s + 1 and goto to step 2. Otherwise stop.

o

Fors = 0, let {08), w((f)}f\;l be the initial particulate approximation {

T12,79 = T1- Sets = 1.

T2, (087 )

T12,v5_1 (e(sill)

perturb each particle”, — 6"
and resample the population ifit is less than a prescribes$boldE S S, -

of m2 4, in the sense of Equatiors {25).126).

Table 1: Basic steps of an SMC algorithm

17



Notes:

e Therole of theReweighingtep is to correct for the discrepancy between the two seees
distributions in exactly the same manner that importanogpiag is employed. Th&e-
samplingstep aims at reducing the variance of the particulate apmpetion by eliminating
particles with small weights and multiplying the ones wilnger weights. The metric that
we use in carrying out this task is the Effective Sample S, Tabl&l1l) which provides
a measure of degeneracy in the population of particles astifjed by their variance. If
this degeneracy exceeds a specified threshold, resamplipgriormed. As it has been
pointed out in several studie$ ([15]), frequent resampdiaig deplete the population of its
informational content and result in particulate approxintas that consist of even a single
particle. Throughout this worl&'SS,,,;, = N/2 was used. Although other options are
available,multinomialresampling is most often applied and was found sufficienhan t

problems examined.

e A critical component involves the perturbation of the p@tian of samples by a standard
MCMC kernel in theRejuvenatiorstep as this determines how fast the transition takes
place. Although there is freedom in selecting the transikiernelP; (., .) (the only require-
ment is that it ismy2 , -invariant), there is a distinguishing feature that will ddaborated
further in the next sub-section (dee 312.2). The targegpiossn, (as well as the interme-
diate bridging distributions in Equatioh (27)) live in spacof varying dimensions as pre-
viously discussed. Hence an exploration of the state spast¢involvetrans-dimensional
proposals. Pairs of such moves can be defined in the cont®e\arsible-Jump MCMC
(RIMCMC , [26]) such asdding/deletinga kernel in the expansion of Equatidni12), or
splitting/mergingkernels (seE3.2.2). Even though it is straightforward tisfsethe invari-
ance constraint in the RIMCMC framework, it is more diffidoldesign moves that also
mix fast. As each (RJ)MCMC requires a likelihood evaluatéord a call to a potentially
expensive forward solver, it is desirable to minimize thmimber while retaining good

convergence properties.

e In mostimplementations of such SMC schemes, the sequenteohediate, bridging dis-
tributions is fixed a priori. In order to ensure a smooth titzms, a large number is selected
at very closely spaced;. It is easily understood that for reasons of computatioffal e
ciency, it is desirable to minimize the number of interméeliaridging distributions while
ensuring that the successive distributions are not sigmifig different. In sub-section
(3:2.1) we discuss a novel adaptive scheme that allow tfeeraatic determination of these

distributions resulting in significant computational s&s.
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e It should be noted that the framework proposed is dirgeélsallelizablg as the evolution
(reweighing, rejuvenation) of each particlanslependentf the rest. Hence the computa-

tional effort can be readily distributed to several prooess

e The particulate approximations obtained at each step,igie@concise summary of the
posterior distribution based on the respective forwargdeolThis can be readily updated
in the manner explained above, if forward solvers at fineoltg®ns become available
or computationally feasible Similar bridging distributions can be established between
distinct forward solvers with differences going beyondrthespective resolutionsThis is
made possible by theonparametric Bayesian modehich is independent of the forward

solver and thdlexible inference engine based on SMC

e An advantageous feature of the proposed framework is teatdhfidence in the estimates
made can be readily quantified by establishing posterioc(edible) intervals, i.e. the
posterior probability that the unknown field of interg&tz) exceeds or not a specified
threshold, from the particulate approximations (Equafi)). It is these credible intervals
(orin general measures of the variability in the estimatied &s the posterior variance) that
can guideadaptive refinemerdf the governing PDEs. Traditionally, adaptive refinement
has been based on estimates of some error norm in the sabfitiegoverning PDES[([1]).
This however is inefficient and inadequate for the purpo$etentifying spatially varying
model parameters as solution errors are not necessarilglatad with the confidence in
the estimates. It is envisioned that the posterior variaheach poink € D in the domain
interest can serve as the basis for increasing the resolafithe solver at select regions

and making optimal use of the computational resourcesablell

3.2.1 Bridging distributions s -,

The role of these auxiliary distributions is to facilitateettransition between two different posteriors
m andmy corresponding to two distinct solvers. It is easily undeostthat ifr; andr, are not
significantly different, then fewer bridging distributisiwill be needed and vice versa. As it is
impossible to know a priori how pronounced these differsraze, in most implementations a rather
large number of bridging distributions is adopted, erringtbe side of safety. We propose an
adaptive SMC algorithm, that extends existing versidn@,[I1l]) in that it automatically determines
the number of intermediate bridging distributions need&dthis process we are guided by the
Effective Sample Size (ESS, Talble 1) which provides a measiudegeneracy in the population of
particles. IfE2SS; is the E'S'S of the population after the stepand in the most favorable scenario
that the next bridging distributiom; ,_, , is very similar tor3 -, 55,1 should not be that much
different fromE£'S'S;. On the other hand if that difference is pronounced thett,, 1 could drop

dramatically. Hence in order to determine the next auxil@istribution, we define an acceptable
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reduction in theE'SS, i.e. ESS,.1 > ¢ ESS, (where¢ < 1) and prescribey,,; (Equation[(2F))
accordingly. The revised Adaptive SMC algorithm is summediin TabléR.

Adaptive SMC algorithm:

(@)

1. Fors = 0, let {Oéi), w((f)}if\;l be the initial particulate approximation {
Ti2,4, = T1 @aNdES S, the associated effective sample size. Set 1.

mi2,4,(087))
T12,v5_ 1 (9217)1)

function of v, then determine/, so that the associatddSS; = (ESSs_1

2. Reweigh If w;) (vs) = w§21 are theupdated weights as 4

(the valuel = 0.95 was used in all the examples). Calculax@ for this~s.
3. Resamplelf ESS, < ESS,,:, then resample.

4. Rejuvenate Use an MCMC kernelP, (., .) that leavesris 5, invariant to

perturb each particle”, — 6"

5. The current populatiof@'”, w'" }¥ | provides a particulate approximatign
of w12, in the sense of Equatiorfs{25).126).

6. If v < 1then sets = s 4+ 1 and goto to step 2. Otherwise stop.

Table 2: Basic steps of thidaptive SMC algorithm proposed

3.2.2 Trans-dimensional MCMC

As mentioned earlier, a critical component in the SMC framéwproposed is the MCMC-based
rejuvenation step of the particlés It should be noted that the kernkl(.,.) in the rejuvenation
step (Step 3 of the SMC algorithm) need not be known expfi@t it does not enter in any of
the pertinent equations. It is suffices that itiis - -invariant which is the target density. For the
efficient exploration of the state space, we employ a mixdfireoves which involve fixed dimension
proposals (i.e. proposals for which the cardinality of tepresentatiotk is unchanged) as well as
moves which alter the dimensidnof the vector of parametefs We consider a total o/ = 7
such moves, each selected with a certain probability asusésd below. Of those, four involve

trans-dimensional proposals which warrant a more detdikgzlission.

It is generally difficult to design proposals that alter theension significantly while ensuring a
reasonable acceptance ratio. For that purpose, in this werkonsider proposals that alter the
cardinalityk of the expansion by i.e. ¥’ = kK — 1 ork’ = k + 1. We adopt the the Reversible-Jump
MCMC (RIMCMC) framework introduced in [26] according to whisuch moves are defined in
pairs in order to ensure reversibility of the Markov kerrealdn though the reversibility condition is
not necessary, it greatly facilitates the formulationsg &¥nsider two such pairs of moves, namely

birth-deathandsplit-merge Let a proposal frontk, 0) to (k¥’, 8”) that increases the dimension i.e.
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K =k+1andd € ©, 0" ¢ ©"! (see last paragraph of sub-section 3.1.2). @t — ')

the probability that such a proposal is made (user specifiedp(k’ — k) the probability that the
reverse dimension-decreasing proposal is made. In order to atcdouthe m = dim(@p11) —
dim(©y,) difference in the dimensions 6fand@’, the former is augmented with a vectore R™
drawn from a distributiog (). Consider a differential and one-to-one mapping®y+1 — Og41
that connects the three vectors#s= h(6,u). Then as it is shown i [26], the acceptance ratio of

such a proposal is:

; T2, (0))p(k = k) 1 ‘ 00’ ‘}
min < 1, 28
{ T12, (O)p(K — k) g(u) |90, w) (28)
Where‘%‘ is the Jacobian of the mappirtg Such a proposal is invariant w.r.t. the density

Ti2,4.- Similarly one can define, the acceptance ratio ofréiverse dimension-decreasing move:

min {17 T12,4. (0)p(K" — k) 06’ 1} (29)

e S ) 5
In the following we provide details for the reversible paised in this work.

Birth-Death: In order to simplify the resulting expressions, we assignftilowing probabilities

of proposing one of these moveg;,.., = ¢ min{1, ”;’“(Z)l)} =c ﬁ (from Equation[(I6)) and
1)

Pdeath = ¢ min{l, pS“T_)} = ¢ (from Equation[(IB)). The constanis user-specified (it is taken

equal to0.2 in this work). Obviously ifk = k.azs Poiren = 0 @nd ifk = 0, pgearn = 0.

For the death move:

e Akernelj (1 < j < k) is selected uniformly and removed from the representdtion
Equation[(IP).

e The corresponding; is also removed.
For the birth move:

e Anew kernelk + 1 is added to the expansion while the existing terms remaitieneal.

e The associated amplitude.,; is drawn fromN\ (0, o7) (the variancer? is equal to the

average of the squared amplitudgsover all the particles at the previous iteration)
e The associated scale parametgr; is drawn from the prior, Equatiof (1L8)
e The associated kernel locatian . ; is also drawn from the prior, Equatidn {21).

Hence the vector of dimension-matching parametecsnsists ofu = (ag41, Tk+1, r+1) and the

corresponding proposalu) is:

1 1 12 2 ber 1
— -~ .3 ak+1/04 T ar—1 _b - 30
a(w) \/?04e ’ F(ar)TkH p(~brir1) | D | (30)

It is obvious that the Jacobian of such a transformatidn is

21



Split-Merge These moves correspond to splitting an existing kerneliméoor merging two existing

kernels into one. Similarly to the birth-death pair, theteathe dimension of the expansion by

and are selected with probabilitig,;;+ = S% andpperge = c¢. For obvious reasong,p;i: = 0

if & = Kmae @aNdpperge = 0if & < 1. Consider first the merge move between two kerpels
andj.. In order to ensure a reasonable acceptance ratio, mergesmo® only permitted when the
(normalized) distance between the kernels is relativelglsamd when the amplitudes;, , a;, are

relatively similar. Specifically we require that the followg two conditions are met:

| zj, — s |

—1 —1
\V Ti1 + Tjo

(the valuesy, = 6, = 1 were used in this work). Two candidate kernels are seleatddmmly

< 0y | gy — Qjy |< da (31)

from the pool of pairs satisfying the aforementioned cdodg. The proposed kernels andj, are
removed from the expansion and are substituted by a new kgnuih the following associated

parameters:

_ -1
T = (Tj11 + szl) (32)
[ ]
aj, aj,
a; = \/Tj(—\/% + —\/%) (33)

This ensures that theeveragevalue of the previous expansion (wifhandj,) in Equation
(I2) when integrated iiR? is the same with the new (which contaip# place ofj; and
J2)
z; = 2l (34)
The split move is applied to a kerng(selectediniformly) which is substituted by two new kernels
j1, jo. In order to ensureeversibility, kernelsj; andj, should satisfy the requirements of Equation
(31) and the application of a merge move in the manner desstebove, should return to the original
kernelj. There are several ways to achieve this, correspondingtiasbeto different vectora, and

mappings: in Equation[(2B). In this work:

e Ascalaru, is drawn from the uniform distributiot/ [0, 1] and7; ' = u,7; ' andr;' =

(1-— uT)rJfl. This ensures compatibility with Equatidn{32).

e A vectoru, is drawn uniformly in the ball of radiug whereR = 2:;/%. The center of the

new kernels are specified ag, = «; —u, andx;, = x; +u,. This ensures compatibility
with the first of Equation(31) as well as Equatiénl(34).

e A scalaru, is drawn from the uniform distributioH[—%ﬂ, %]. The amplitudes of the new

kernels are determined by, = @ — u, andaj, = @ + u,, wherei = ‘”“&ET v lu:“*).

This ensures compatibility with the second of Equatiod ¢l yvell as Equatioh (33).
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Figure 3: Trans-dimensional RIMCMC proposals

The vector of dimension-matching parameteisn Equation[[2B)) consists af = (u., u,, u,) and

the corresponding proposghu) is a product of uniforms in the domains specified above. Altene

; ; i eod+1 1
algebra, it can be shown that the Jacobian of such a tranafimnmis2 ug(liuT)Q NS e

The remaining three proposals, involve fixed-dimension@sdtiat do not change the cardinality of
the expansion but rather perturb some of the terms involiregarticular, we considered updates
of the amplitudez;, scaler; or locationx; of a kernel;j selectecuniformly (naturally, in the case

of the amplitudes, the constamg (Equation [IR)) is also a candidate for updating). Each e$¢h

three moves is proposed with probabilypyir s + pacath + Psplit + Pmerge) = £ (s37 + 1) I

particular:

1. Updatea; — a: A coefficienta; (in Equation [(IR)) isuniformly selected and perturbed
as:

ay=aj+o1Z ,Z~N(0,1) (35)

2. Updater; — 7;: A scale parametet; (in Equation [(IR)) isuniformly selected and per-

turbed as:
Th=T1e?, Z ~N(0,1) (36)
(this ensures positivity of;)
3. Updater; — ’;: A locationz; € D C R? (in Equation[(IR)) isuniformlyselected and
perturbed as:

:B,j:mj+032, Z:(Zl,...,Zd), ZlNN(O,l) (37)

The acceptance ratios are calculated based on the standaMCMormulas usingri2 -, as the
target density. It should be noted that the variances in@heom walk proposals are adaptively
selected so that the respective acceptance rates are iartge(r2 — 0.4. As it is well-known

(chapter 7.6.3ir[55]) adaptive adjustments of Markov @e&iased on past samples can breakdown
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ergodic properties and lead to convergence issues in staR{zaMC contexts. In the proposed SMC
framework however, such restrictions do not apply as it ceffithat the MCMC kernel is invariant.
This is an additional advantage of the proposed simulatairerme in comparison to traditional
MCMC.

3.3 Prediction

The significance of mathematical models for the computatismulation of physical processes
lies in theirpredictive ability It is these predictions that serve as the basis for engigedecisions
in several systems of technological interest. The propdsedework provides a seamless link
from experiments/data collection, to model validation atémately prediction. In the presence
of significant sources of uncertainty it is important notyotd provide predictive estimates but
quantify the level of confidence one can assign to the predictitcome. The inferred posteriors
corresponding to various model resolutions can be usedrty oat this task. In accordance with
the Bayesian mind-set, all unknowns are considered rantfojrdenotes the output to be predicted
(under specified input, boundary & initial conditions) théme predictive posteriop(y | y) based
on the available datg can be expressed as([24]):

p(@ly) = /¢@ﬂ|wd0:/n@nayww|wd0 (38)
——

posterior

N
:/u@mm@w%ZWWMMWU
— i=1

likelihood

The termp(y | 0) is the likelihood of the predicted data determined by thevéod solver at reso-
lution r as in Equation({]7). Equatioh (38) offers an intuitive intetation of the predictive process.
The predictive posterior distribution is a mixture of theresponding likelihoods evaluated at all
possible stateg of the system , with weights proportional to the their pasteralues. In the context
of Monte Carlo simulations, samples #ffrom p(¢ | y) can be readily drawn using the particulate
approximation of each,. (Equation[(2b)). These samples can subsequently be uséatistiss of
the predicted outpuj such as moments, probabilities of exceedance which cantienely useful

in engineering practice.

4 Numerical Examples

The method proposed is illustrated in problems from noalirselid mechanics using artificial data.

The governing PDEs are those of small-strain, rate-indégetn perfect plasticity with a von-Mises
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yield criterion and associative flow rulé ([58]):

(x)=0 (conservation of linear momentum)
C(E,v): (e —€) (elastic stress-strain relationships)
\/| o|? - tr \/>oyzeld (yield surface)
= 80 (flow rule)
(39)

whereo is the Cauchy stress-tenser= %(Vu + V) ande? the total and plastic-part of the strain
tensory = (v, vy, v,) is the displacement vectdf;(E, v) is the elastic moduli which depends on
the Young’s modulug (it was assumed that it was knovlth= 1, 000) and Poisson’s ratio (it was
assumed that it was known= 0.3). The field of interest in all the problems examined was tleddyi
stressoycq () which was assumed to vary spatially. The yield stress détesrthe boundary of
the elastic domain in the material response. A square tw@dsional domai® = [0, 1] x [0, 1]
under plane stress conditions was considered and the fowedvers were Finite Element models
which discretize the governing PDEs of Equatibn (39)#oe D. In order to construct a sequence
of solvers operating at different resolutions, we congderdifferent partitions corresponding to

uniforms x 8, 16 x 16, 32 x 32 and64 x 64 grids (i.e. with element sizesx £, &= x &, & x 2

16 X 167 33 X 3
andﬁ—l4 X @ respectively). A critical issue with spatially varying paneters is how this variability
is accounted in the discretized representation. In thikwae adopted a simple rule according
to which each finite element was assigned a constant yieddsstralue which was equal to the
average of the field;.;4(x) within the element. This scheme by no means represents éstanis
upscaling of the governing PDEs let alone being optimal.ah be easily established that it can
introduce significant deviations in the effective respowséch depends on the full details of the
spatially varying field. This poor selection is made howeweemphasize the point that inaccurate
solvers can be useful and can lead to significant improvesriardccuracy and efficiency. Their
role is to provide a computationally inexpensive approxiorato the fine-scale posterior that can
be efficiently updated and refined using a reduced numberrd from more expensive solvers.
Naturally, if more sophisticated upscaling schemes arediiced, the transitions in the sequence of

posterior become smoother and the computational effoutrteér reduced.

Sinceoy;cia(x) > 0 Va, we used our model to infdbg(c(x)) i.e. in Equation[(IR)f(x) =
log(o(x)). The adaptive SMC scheme (Table 2) with= 100 or N = 500 particles was employed
in the examples presented with= 0.95 and £SS,,;, = N/2. The following values for the
hyperparameters of the prior model were used (setfion)3.1.2

e kmar = 100 ands = 0.1 (Equation[(15))

e a, = 1.0 (Equation[(1V)) and, = 0.0001 (Equation[(1B))
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Figure 4: Reference;.;a(x) field for Example A

e ap = 1.0 andby = 1.0 (Equation[[2D))

e a =2 andb = 1. x 10-% (Equation[(T))

4.1 Example A

In this example it was assumed that the yield stress variéallas/s (Figure 4):

log oyieta(x) = —1 exp{—102* — 2 (y — 1)*} — 1 exp{—2 (z — 1)* = 10 y*} (40)

The nonlinear governing PDEs (Equatiénl(39)) were solveagus64 x 64 uniform finite element

mesh with the following boundary conditions:

e v, =v, =0alongz =0

® v, = —vy = 0.001 alongzr =1

The displacementsy,, v, at a regular grid consisting off2 points with coordinates
(0.12514, 0.125j),fori =1,...,8andj =0, ...,8 were recorded resulting im = 144 data points
(as in Figuré¥). The empirical mean (of the absolute valoé#f)ese observations, was calcu-
lated and the recorded values were contaminated by Gaussismof standard deviatidi¥ 4 in
order to obtain sets afbservableslenoted by{y;}" , in our Bayesian model (Equationl (5)). We
note that in this example the scale of variability of the umkn field 0.4 () is larger than the

scale of observations, i.e. the grid size where displacésweere recorded.

Table[3 reports the number of degrees of freedom per soleettemnormalized computational time
for a single run w.r.t. th&4 x 64 solver. As mentioned earlier, each finite element was asdign

a constant yield stress equal to the average value insidgehgent. This is of course inconsistent
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Solver Degrees of| Normalized Computationall
Resolution| Freedom Time (Actual in sec)
1
16 x 16 510 =5 (0.55)
32 x 32 2,046 L (4.8)
64 x 64 8,190 1 (86)

Table 3: Computational cost of different resolution sadvier Example A

X

(a) Posterior mean (b) Posterio% and95% quantiles

Figure 5: Posterior inference using only hex 64 solver

with the governing PDEs as the geometry of the variabilityypla critical role for the effective
properties of each element. It is easily understood thohghthe corresponding posterior should

have some similarities arising from the mere nature of tb@istruction.

At first, we attempted to solve the problem by operating gadel the finest solver. Using the Adap-
tive SMC scheme proposed wifti = 100 particles, this resulted in a sequencd 63 (between the
prior o and the target posterior) auxiliary bridging distribuotonstructed as mentioned earlier.
The inferred field (posterior mean and quantiles) are degiict Figuréh. Even though they exhibit
similarities with the ground truth (Figufé 4), there areoatensiderable differences which suggest
that the algorithm probably got trapped in some mode of theéguimr. This is to be expected due to
the highly nonlinear nature of the forward solver and thgéastate space. Itis possible however that
the correct solution could be recovered if the size of theufatpn and/or the number of bridging
distributions is increased. Inspite of that, it is the sfigaint computational effort that makes such
an approach impractical. In particulss, 300 (i.e. 163 x 100) calls to the most expensive forward

solver were required.
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Solver Number of Bridging Computational Effort
Resolution Distributions (w.r.t. calls to64 x 64 solver)
16 x 16 176 113
32 x 32 73 452
64 x 64 54 5,700
Total 6,265

Table 4. Computational cost for inferences for Example AteNtbat the effective cost when using
only the64 x 64 solver wasl6, 300

In contrast, when a sequenced®$olvers was used the results obtained are significantleclos
the ground truth as it can be seen in Figurks 6 and 7. It is ebddhat even using the coarsest
solver (16 x 16), we are able to correctly identify some of the basic feawethe underlying
field. The inferences are greatly improved as solvers at fiegolutions are invoked. Figure 8
depicts the number of bridging distributions needed at easblution and the respective reciprocal
temperatures, (Equation[[2Fr)). These wemtomatically determinedy the proposed Adaptive
SMC with N = 100 particles. It is also observed that the number of interntedistributions
needed decreased as finer resolution solvers are used. sThidiiect consequence of the ability
of the proposed scheme to accumulate information from eoasale solver. These results are
summarized in Tablgl4 which also reports #ffectivecomputational cost at the various stages and

in total. It can be seen that a reduction of the total numben#$ is achievedi, 300 vs. 6,265).

Figure[® depicts the posterior densities of the inferredehedor standard deviatiors. described

in Equation[(6). It is readily seen that the proposed tedmig able to quantify the magnitude of
the model error for solvers of various resolutions. Furnthane for the reference resolution x 64

it correctly detects that the error contamination is of #neel of 5% 4. Finally Figurd 10 depicts
the marginal posterior oh , i.e. the cardinality of the expansion at various resohgiolt should
be noted that the method leadsgparserepresentations (on average= 5 and therefore only
21 parameters are needed) without sacrificing the accuraaglitional formulations (deterministic
or probabilistic) usually have as many unknowns as elem@iats in the64 x 64 mesh,4,096
parameters) and therefore require operations in very higlemsional spaces with all the negative

implications this carries.

5 Conclusions

A general Bayesian framework has been presented for théfidation of spatially varying model
parameters. The proposed model utilizes a parsimoniouspatametric formulation that favors

sparse representations and whose complexity can be detsifiom the data. An efficient infer-
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Figure 6: Posterior quantiles at various solver resolgtion Example A
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Figure 7: Posterior mean at various solver resolutions k@miple A
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Figure 10: Posterior for the cardinalikyof the field representation

ence scheme based on SMC has been discussed which is ersingiyagarallelizable and well-
suited for detecting multi-modal posterior distributioi$ey key element is the introduction of an
appropriate sequence of posteriors based on a naturaldtigiatroduced by various forward solver
resolutions. As a result, inexpensive, coarse solverssaé 1o identify the most salient features of
the unknown field(s) which are subsequently enriched bykimgpsolvers operating at finer resolu-
tions. The overall computational cost is further reduce@imploying a novel adaptive scheme that
automatically determines the number of intermediate sféps proposed methodology does not re-
quire that Markov Chains using all the solvers to be run siamdously as in other multi-resolution
formulations ([31]) . The particulate approximations do®va concise way of representing the pos-
terior which can be readily updated if the analyst wants tplegnforward models operating at even
finer resolutions or in general more accurate solvers. Thaubof the inference algorithm provides
estimates of the model error or noise contained in the datain#ortant feature is the ability to
readily provide not only predictive estimates but also ditiative measures of theredictive uncer-
tainty. Hence it offers a seamless link between data, computdtinadels and predictions. The
efficiency of the sampling schemes proposed could be griagiyoved if the proposed moves in-
corporate information about the governing PDEs and if upsgaelations are available. A feature
that was not explored in the examples presented is the [litgsiif performing adaptive refine-
ment not for the purposes of improving the forward solver accytaut rather for increasing the
resolution of the unknown fields. This can be achieved in tagswand is a direct consequence of
the ability of the proposed model (and Bayuesian models ireg#d) to produce credible intervals
for the estimates made at each step. Hence in regions wheevatiance of the estimates (or some
other measure of random variability) is high, the resoluti6 the forward solver can be increased.

Furthermore, additional measurements/data can be obtainthese regions if such a possibility
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exists. Hence the proposed framework allows for near-adtime of the computational resources

and sensors available.
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