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Abstract

This paper proposes a hierarchical, multi-resolution framework for the identifi-

cation of model parameters and their spatially variabilityfrom noisy measure-

ments of the response or output. Such parameters are frequently encountered in

PDE-based models and correspond to quantities such as density or pressure fields,

elasto-plastic moduli and internal variables in solid mechanics, conductivity fields

in heat diffusion problems, permeability fields in fluid flow through porous media

etc. The proposed model has all the advantages of traditional Bayesian formula-

tions such as the ability to produce measures of confidence for the inferences made

and providing not only predictive estimates but also quantitative measures of the

predictive uncertainty. In contrast to existing approaches it utilizes a parsimo-

nious, non-parametric formulation that favors sparse representations and whose

complexity can be determined from the data. The proposed framework in non-

intrusive and makes use of a sequence of forward solvers operating at various

resolutions. As a result, inexpensive, coarse solvers are used to identify the most

salient features of the unknown field(s) which are subsequently enriched by in-

voking solvers operating at finer resolutions. This leads tosignificant compu-

tational savings particularly in problems involving computationally demanding

forward models but also improvements in accuracy. It is based on a novel, adap-

tive scheme based on Sequential Monte Carlo sampling which is embarrassingly

parallelizable and circumvents issues with slow mixing encountered in Markov
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Chain Monte Carlo schemes. The capabilities of the proposedmethodology are

illustrated in problems from nonlinear solid mechanics with special attention to

cases where the data is contaminated with random noise and the scale of variabil-

ity of the unknown field is smaller than the scale of the grid where observations

are collected.

1 Introduction

The prodigious advances in computational modeling of physical processes and the development of

highly non-linear, multiscale and multiphysics models poses several challenges in parameter iden-

tification. We are frequently using large, forward models which imply a significant computational

burden, in order to analyze complex phenomena.The extensive use of such models poses several

challenges in parameter identification as the accuracy of the results provided depends strongly on as-

signing proper values to the various model parameters. In mechanics of materials, accurate mechan-

ical property identification can guide damage detection andan informed assessment of the system’s

reliability ([37]). Identifying property-cross correlations can lead to the design of multi-functional

materials ([62]). In biomechanics, the detection of variations in mechanical properties of human tis-

sue can reveal the appearance of diseases (arteriosclerosis, malignant tumors) but can also be used

to assess the effectivity of various treatments ([4, 21]). Permeability estimation for soil transport

processes can assist in detection of contaminants, oil exploration etc. ([68, 23]).

We consider phenomena described by a set of (coupled) elliptic, parabolic or hyperbolic PDEs and

associated boundary (and initial) conditions:

A(y(x); f(x)) = 0, ∀x ∈ D (1)

whereA denotes the differential operator defined on a domainD ∈ R
d , whered is the number

of spatial dimensions.A depends on spatially varying coefficientsf(x), x ∈ D. Advances in

computational mathematics have given rise to several efficient solvers for a wide-range of such

systems and have revolutionized simulation-based analysis and design ([53]). Our primary interest

is to identifyf(x) from a set of (potentially noisy) measurements of the responseyi = y(xi) at

a number of distinct locationsxi ∈ D. In the case of time-dependent PDEs, the available data

might also be indexed by time. Several different processes in solid and fluid mechanics, transport

phenomena, heat diffusion etc fall under this general setting and even though the coefficientsf(x)

have a different physical interpretation, the associated inverse problems exhibit similar mathematical

characteristics.

Two basic approaches have been followed in addressing problems of data-driven parametric identi-

fication. On one hand, deterministic optimization techniques which attempt to minimize the sum of

the squares of the deviations between model predictions andobservations. Gradient or global, in-

2



trusive or non-intrusive techniques are introduced for performing the optimization task. Usually the

objective function is augmented with regularization terms(e.g. Tikhonov regularization [59]) which

alleviate issues with the ill-posednesss of the problem ([60, 27, 19, 64, 5, 38]). Such deterministic

inverse techniques based on exact matching or least-squares optimization, lead to point estimates of

unknowns without rigorously considering the statistical nature of system uncertainties and without

providing quantification of the uncertainty in the inverse solution.

The direct stochastic counterpart of optimization methodsinvolves frequentist approaches based

on maximum likelihood estimators that aim at maximizing theprobability of observations given

the inverse solution maximum ([20, 18]). In recent years significant attention has been directed to-

wards statistical approaches based on the Bayesian paradigm which attempt to calculate a (posterior)

probability distribution function on the parameters of interest. Bayesian formulations offer several

advantages as they provide a unified framework for dealing with the uncertainty introduced by the

incomplete and noisy measurements and assessing quantitatively resulting inferential uncertainties.

Significant successes have been noted in applications such as medical tomography ([69]), geological

tomography ([25, 2]), hydrology ([44]), petroleum engineering ([28, 8]), as well as a host of other

physical, biological, or social systems ([42, 57, 67, 48]).

Identification of spatially varying model parameters posesseveral modeling and computational is-

sues. Representations of the parametric fields in existing approaches artificially impose a mini-

mum length scale of variability usually determined by the discretization size of the governing PDEs

([44]). Furthermore, they are associated with a very large vector of unknowns. Inference in high-

dimensional spaces using standard optimization or sampling schemes (e.g. Markov Chain Monte

Carlo (MCMC)), is generally impractical as it requires an exuberant number of calls to the forward

simulator in order to achieve convergence. Particularly inBayesian formulations where the infer-

ence results are much richer and involve a distribution rather than a single value for the parameters

of interest, the computational effort implied by repeated calls to the forward solver can be enormous

and constitute the method impractical for realistic applications. These problems are amplified if

the posterior distribution is multi-modal i.e. several significantly different scenaria are likely given

the available data. While it is apparent that, computationally inexpensive, coarser scale simulations

can assist the identification process ([14]), the critical task of efficiently transferring the informa-

tion across resolutions still remains ([50, 31, 68]). Previous attempts using parallel tempering (e.g.

[33]) or hierarchical representations based on Markov trees ([65]) require performing inference on

representations at various resolutions simultaneously.

In the present paper we adopt a nonparametric model which is independent of the grid of the forward

solver and is reminiscent of non-parametric kernel regression methods. The unknown parametric

field is approximated by a superposition of kernel-type functions centered at various locations. The

cardinality of the representation, i.e. the number of such kernels, is treated as an unknown to be
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inferred in the Bayesian formulation. This gives rise to a very flexible model that is able to adapt to

the problem and the data at hand and find succinct representations of the parametric field of interest.

Prior information on the scale of variability can be directly introduced in the model.

Inference is performed using Sequential Monte Carlo samplers. They utilize a set of random sam-

ples, named particles, which are propagated using simple importance sampling, resampling and

updating/rejuvenation mechanisms. The algorithm is directly parallelizable as the evolution of each

particle is by-and-large independent of the rest. The sequence of distributions defined is based on

using solvers that operate on different resolutions and which successively produce finer discretiza-

tions. This results in an efficient hierarchical approach that makes use of the results from solvers

operating at the coarser scales in order to update them basedon analyses on a finer scale. The partic-

ulate approximations produced provide concise representations of the posterior which can be readily

updated if more data become available or if more accurate solvers are employed.

2 Problem Definition & Motivation

In lieu of a formal definition, we discuss an extremely simpleproblem which nevertheless possesses

the most important features for the purposes of this work. Consider the steady-state heat equation in

the unit interval, i.e.:
d

dx

(

−c(x)
dT

dx

)

= 0, x ∈ [0, 1] (2)

wherec(x) is the spatially varying conductivity field andT (x) the temperature profile. Assume

that known boundary conditionsT (0) = 0 and
(
−c(x)dTdx

)

x=1
= q are imposed and temperature

measurementsTi (without any noise) are obtained atN distinct pointsxi ∈ [0, 1] with the intention

of identifying the unknown conductivity and its spatial variation.

For any interval∆xi = xi+1 − xi between two observation locations, the governing PDE and

boundary conditions imply that:
(∫ xi+1

xi

1

c(x)
dx

)−1

=
q

Ti+1 − Ti
(3)

Similar expressions hold for all other intervals and relatetheeffectiveconductivity in each subdo-

main (given by the harmonic mean) with the measured temperature. These relations however do

not uniquely identify the spatial variability ofc(x) unless the latter is assumed constant within

each∆xi. Further constraints can be imposed by assuming continuityof c(x) at thexi’s but these

do not necessarily hold if one considers materials that consist of distinct phases. Even when such

constraints seem plausible, one can readily imagine parametric forms ofc(x) (i.e. polynomials of

high degree) which cannot be completely identified unless further constraints (e.g. continuity of the

derivatives ofc(x) atxi) are artificially imposed. The non-uniqueness persists when the number of

measurementsN increases even though the space of possible solutions shrinks. It also precludes
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the possibility of detecting significant changes inc(x) that occur in length scales much smaller than

∆xi (e.g. flaws) which are generally of significance to the analyst. Their contribution to the effective

conductivity in Equation (3) can be negligible unless∆xi is of comparable size. This ill-posedness

has long been identified and can become more pronounced in twoor three dimensional domains

and if the governing PDEs are nonlinear or involve more than one unknown parameters or fields

([38]). It is also amplified if the measurements obtained arecontaminated by random noise which is

generally the case in engineering practice.

Hence there is a need for a general framework that can produceestimates about the unknown fields

particularly with regards to the scale of their variability. This is especially important as the accuracy

of the predictions of computational models is greatly influenced by the the multiscale nature of

property variations. In recent years a lot of research efforts have been devoted to the development

of scalable, black-box simulators that provide the coarse-scale solution while capturing the effect

of fine-scale fluctuations ([12]). The multiscale analysis of such systems inherently assumes that

the complete, fine-scale variation of various properties (or model parameters in general) is known.

This assumption limits the applicability of these frameworks since it is usually impossible to directly

determine the complete structure of the medium of interest at the finest scale. More often than not,

what is experimentally available and accessible (as in the example above), are measurements of

the response of these systems under prescribed input or excitation, at spatial scales much coarser

than those of the property variations. In problems of estimation of soil permeability for example,

measurements are restricted to a few bore holes several meters apart from each other. In estimating

damage in an aircraft fuselage, measurements of the response (displacements, accelerations etc) are

collected at a few locations.

This limited and noisy information naturally introduces a lot of uncertainty and necessitates view-

ing the property variation as a random field whose statistical properties must be consistent with the

available data. To that end the present paper proposes a general framework that is based on the

Bayesian paradigm and addresses the following questions: a) How can one utilize deterministic,

forward solvers in order to identify spatial variability ofvarious properties while accounting for the

associated uncertainty? b) How can this process produce estimates at various resolutions?, c) As

these forward models are computationally demanding, how can this process be done in a computa-

tionally efficient manner?, d) How can the available data be used to quantify error or discrepancies

in the forward models?

In the following sections we discuss the characteristics ofthe proposed Bayesian model with partic-

ular emphasis on the prior specifications and their physicalimplications. We then present a general,

efficient inference technique for the determination of the posterior and discuss how predictions in the

context of computational models can be achieved. We finally illustrate the capabilities in numerical

examples.
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3 Methodology

3.1 Hierarchical Bayesian Model

The central goal of this work is to build mathematical methods that utilize limited and noisy ob-

servations/measurements in order to identify the spatial variability of model parameters. Given the

significant uncertainty arising from the random noise, lackof data and model error, point estimates

are of little use. Furthermore it is important to quantify the confidence in the estimates made but also

in the predictive ability of the the model of interest. To that end we adopt a Bayesian perspective.

Bayesian formulations differ from classical statistical approaches (frequentist) in that all unknown

parameters (denoted byθ) are treated as random. Hence the results of the inference process are not

point estimates but distribution functions.

The basic elements of Bayesian models are thelikelihoodfunctionL(θ) = p(y | θ) which is a con-

ditional probability distribution and gives a (relative) measure of the propensity of observing data

y for a given model configuration specified by the parametersθ. The likelihood function is also

encountered in frequentist formulations where the unknownmodel parametersθ are determined by

maximizingL(θ). This could be thought as the probabilistic equivalent of deterministic optimiza-

tion techniques commonly used in inverse problems. It can suffer from the same issues related to

the ill-posedeness of the problem. The second component of Bayesian formulations is theprior dis-

tributionp(θ) which encapsulates in a probabilistic manner any knowledge/information/insight that

is available to the analyst prior to observing the data. Although the prior is a point of frequent crit-

icism due to its inherently subjective nature, it can prove extremely useful in engineering contexts

as it provides a mathematically consistent vehicle for injecting the analyst’s insight and physical

understanding. The combination ofprior and likelihoodbased on Bayes’ rule yields theposterior

distributionπ(θ) which probabilistically summarizes the information extracted from the data with

regards to the unknownθ :

π(θ) = p(θ | y) = p(y | θ) p(θ)
p(y)

∝ p(y | θ) p(θ) (4)

Hence Bayesian formulations allow for the possibility of multiple solutions - in fact anyθ in the

support of the likelihood and the prior is admissible - whoserelative plausibilityis quantified by

the posterior. Credible or confidence intervals can be readily estimated from the posterior which

quantify inferential uncertainties about the unknowns.

Without loss of generality, we postulate the existence of a deterministic, forward model which in

most cases of practical interest corresponds to a Finite Element or Finite Difference model of the

governing differential equations. Naturally, forward models allow for various levels of discretiza-

tion of the spatial domain and letr denote the resolution they operate upon (largerr implies finer

resolution). In this paper, forward solvers are viewed asmessengers, that carry information about

the underlying material properties as they manifest themselves in the response (mechanical, thermal
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etc) of the medium of interest. This is especially true in thecontext of recently developed upscaling

schemes ([34, 35, 13, 40, 17, 56, 63, 43]) which attempt to capture the effect of finer scale mate-

rial variability while operating on a coarser grid. In general, the finer the resolution of the forward

solver, the more information this provides. This however comes at the expense of computational

effort. It is not unusual that the sufficient resolution of the property fluctuations in many systems of

practical interest requires several CPU-hours for a singleanalysis. Despite the fidelity and accuracy

of such high-resolution solvers, they can be of little use inthe context of parameter identification as

they will generally have to be called upon several times and several system analyses will have to be

performed.

Hence an accurate but expensivemessengeris not the optimal choice if several pieces of information

need to be communicated. In many cases however, the fidelity of the message can be compromised

if the expense associated with the messenger is smaller. This is especially true if the loss of accuracy

can be quantified, measures of confidence can be provided and furthermore if it leads to the same

decisions/predictions. In this project we propose a consistent framework for using faster but less-

accurate forward solvers operating on coarser resolutionsin order to expedite property identification.

Furthermore these solvers provide a natural hierarchy of models that if appropriately coupled can

further expedite the identification process. Following theanalog introduced earlier, we propose

using inexpensive messengers (coarse scale solvers), several times to communicate the most pivotal

pieces of information and more expensive messengers (fine scale solvers) fewer times to pass on

some of the finer details (Figure 1).

In the remainder of this sub-section, we discuss the basic components of the Bayesian model pro-

posed, with particular emphasis on the prior for the unknownparametric fields. We then present

(sub-section 3.2) the proposed inference techniques for the determination of the posterior.

3.1.1 Likelihood Specification

Let F r = {F r
i } : G → E denote the vector-valued mapping implied by the forward model (operat-

ing at resolutionr), which givenf(x) ∈ G (Equation (1)) provides the values of response quantities

represented by the datay = {yi} ∈ E . This function is the discretized version of the inverse of

the differential operatorA in Equation (1) parameterized byf(x). Each evaluation ofF r for a

specific fieldf(x) implies a call to the forward solver (e.g. Finite Elements) that operates on a

discretization/resolutionr. In the proposed framework, the functionF r will be treated as a black

box. Naturally data and model predictions will deviate whenthe former are obtained experimentally

due to the unavoidable noise in the measurements. Most importantly perhaps this deviation can be

the result of the model not fully capturing the salient physics either because the governing PDEs are

an idealization or because of the discretization error in their solution. We postulate the following

relationship:

8



yi
︸︷︷︸

datum i

= F
(r)
i (f(x))

︸ ︷︷ ︸

model prediction

+e
(r)
i i = 1, 2, . . . , n (5)

wheree(r)i quantify the deviation between model predictions and data,and which will naturally

depend on the resolutionr of the forward solver. Quite frequently the data available to us are in

the form of disparate observations, that correspond to different physical phenomena (e.g. temper-

atures and displacements in a thermo-mechanical problem) in which case the computational model

corresponds to a coupled multiphysics solver.

The probabilistic model foreri in Equation (5) gives rise to thelikelihood function(Equation (4)). In

the simplest case wheree(r)i are assumed independent, normal variates with zero mean andvariance

σ2
r :

pr(yi | f(x), σr) ∝ 1

σr
exp{−1

2

(

yi − F
(r)
i (f(x))

)2

σ2
r

}

and pr(y | f(x), σr) ∝ 1

σn
r

exp{− 1

2σ2
r

n∑

i=1

(

yi − F
(r)
i (f(x))

)2

} (6)

More complex models which can account for the spatial dependence of the error varianceσ2
r or the

detection of events associated with sensor malfunctions atcertain locations, can readily be formu-

lated. In general the variancesσ2
r are unknown (particularly the component that pertains to model

error) and should be inferred from the data. When a conjugate, Gamma(a, b) prior is adopted for

σ−2
r , the error variances can be integrated out from Equation (6)further simplifying the likelihood:

Lr(f(x)) = p(y | f(x)) ∝ Γ(a+ n/2)
(

b+ 1
2

∑n
i=1

(

yi − F
(r)
i (f(x)

)2
)a+n/2

(7)

whereΓ(z) =
∫ +∞
0 tz−1 e−t dt is the gamma function.

It should be noted that in some works ([39, 32]), explicit distinction between model and observation

errors is made, postulating a relation of the following form:

observation/data = model prediction + model error + observation error (8)

As it has been observed ([70]), independently of the amount of data available to us, these three

components are notidentifiable, meaning several different values can be equally consistent with the

data. This however does not imply that all possible values are equally plausible. For example a large

number of values of the observation error that are all positive or all negative (for all observations)

are not consistent with the perception of random noise but most likely imply a bias of the model

or perhaps a miscalibrated sensors used to collect the data.Bayesian formulations are highly suited

for such problems as they provide a natural way of quantifying a priori and a posteriori relative

measures of plausibility. In the following we restrict the presentation on models of Equation (5) as

the focus of is on identifying the scale of variability of material propertiesf(x).
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3.1.2 Prior Specification

The most critical component involves the prior specification for the unknown material properties as

represented byf(x). In existing Bayesian ([67, 37]), but also deterministic (optimization-based),

formulations,f(x) is discretized according to the spatial resolution of the forward solver. For ex-

ample, in cases where finite elements are used, the property of interest is assumed constant within

each element and therefore the vector of unknowns is of dimension equal to the number of elements.

This offers obvious implementation advantages but also poses some difficulties since the scale of

variability of material properties is implicitly selectedby the solver rather than the data. This is

problematic in several ways. On one hand if the scale of variability is larger than the grid, a waste

of resources takes place, at the solver level which has to be run at unnecessarily fine resolutions, and

at the level of the inference process which is impeded by the unnecessarily large dimension of the

vector of unknowns. Furthermore, as the number of unknowns is much larger by comparison to the

amount of data it can lead toover-fitting. This will produce erroneous or even absurd values for the

unknowns that may nevertheless fit perfectly the data. Such solutions will have negligiblepredictive

ability and would be useless in decision making. On the other hand, ifthe scale of variability is

smaller than the grid, it cannot be identified even if the solver provides sufficient information for

discovering this possibility.

In order to increase the flexibility of the model, we base our prior models for the unknown field(s)

f(x) on the convolution representation of a Gaussian process. Analternative representation of a

stationary Gaussian process involves a convolution of a white noise processa(x) with a smoothing

kernelK(.;φ) depending on a set of parametersφ ([3, 29]):

f(x) =

∫

K(x− z;φ) a(z) dz (9)

The kernel form determines essentially the covariance of the resulting process, since:

cov (f(x1, f(x2)) = E[f(x1, f(x2)] =

∫

K(x1 − z;φ)K(x1 − z;φ) dz (10)

For computational purposes, a discretized version of Equation (9) is used:

f(x) =

k∑

j=1

a(zj)K(x− zj ;φ) =

k∑

j=1

ajK(x− xj ;φ) (11)

In order to increase the expressive ability of the aforementioned model we introduce two improve-

ments. Firstly we consider that the set of kernel parametersφ is spatially varying resulting in a

non-stationary process:
f(x) = a0 +

k∑

j=1

ajKj(x;φj) x ∈ D (12)

wherea0 corresponds to a value ofφ0 such that the corresponding kernel is1 everywhere. Such

representations can be viewed as a radial basis network as in[61]). Furthermore by interpreting

the kernels as basis functions, Equation (12) it can be seen as an extension of the the representer
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theorem of Kimeldorf and Wahba ([41]). Overcomplete representations as in Equation (12) have

been advocated because they have greater robustness in the presence of noise, can be sparser, and

can have greater flexibility in matching structure in the data ([46, 47]). One possible selection for

the functional form ofKj, that also has an intuitive parameterization with regards to the scale of of

variability in the material properties, is isotropic, Gaussian kernels:

K(x;φj = (xj , τj)) = exp{−τj ‖ x− xj ‖2} (13)

The parametersτj directly correspond to the scale of variability off(x). Largeτj ’s imply narrowly

concentrated fluctuations and large values slower varying fields. The center of each kernel is speci-

fied by the location parameterxj . Other functional forms (e.g. discontinuous) can also be used on

their own or in combinations to enrich the expressivity of the expansion in Equation (12). Wavelets,

steerable wavelets, segmented wavelets, Gabor dictionaries, multiscale Gabor dictionaries, wavelet

packets, cosine packets, chirplets, warplets, and a wide range of other dictionaries that have been

developed in various contexts ([6]) offer several possibilities.

The second important improvement is that we allow the size ofthe expansionk to vary. It is obvious

that such an assumption is consistent with theprinciple of parsimony, which states that prior models

should make as few assumptions as possible and allow their complexity to be inferred from the data.

Hence thecardinality of the model, i.e. the number of basis functionsk is the key unknown that

must be determined so as to provide a good interpretation of the observables.

Independently of the form of the kernel adopted, the important, common characteristic of all such

approximations (as in Equation (12)) is that the field representationdoes not depend on the resolution

of the forward model. The latter affects inference only through the black-box functionsF r
i (Equation

(5), Figure 1)) as it will be illustrated in the next sections.

The parameters of the prior model adopted consist of:

• k: the number of kernel functions needed,

• {aj}kj=1, the coefficients of the expansion in Equation (12). Each of those can be a scalar

or vector depending on the number of material property fieldswe want to infer simultane-

ously. For example, in a problem of thermo-mechanical coupling where the data consists of

temperatures and displacements and we want to identify elastic modulus and conductivity,

eachaj will be a vector inR2.

• {τj}kj=1 the precision parameters of each kernel which pertain to thescale of the unknown

field(s), and

• {xj}kj=1 the locations of the kernels which are points inD.

In accordance with the Bayesian paradigm, all unknowns are considered random and are assigned

prior distributions which quantify any information, knowledge, physical insight, mathematical con-
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straints that is available to the analyst before the data is processed. Naturally, if specific prior infor-

mation is available it can be reflected on the prior distributions. We consider prior distributions of

the following form (excluding hyperparameters):

p(k, {aj}kj=0, {τj}kj=1, {xj}kj=1) ∝ p(k)

× p({aj}kj=0 | k)

× p({τj}kj=1 | k)

× p({xj}kj=1)) (14)

In order to increase the robustness of the model and exploit structural dependence we adopt a hier-

archical prior model ([24]).

Model Size:

Pivotal to the robustness and expressivity of the model is the selection of the model size, i.e. of the

number of kernel functionsk in Equation (12). This number is unknown a priori and in the absence

of specific information,sparserepresentations should be favored. This is not only advantageous

for computational purposes, as the number of unknown parameters is proportional tok, but also

consistent with the parsimony of explanation principle or Occam’s razor ([36, 54, 52]). For that

purpose, we propose a truncated Poisson prior fork:

p(k | λ) ∝







e−λ λk

k! if k ≤ kmax

0 otherwise
(15)

The truncation parameterkmax is selected based on computer memory limitations and definesthe

support of the prior. This prior allows for representationsof various cardinalities to be assessed

simultaneously with respect to the data. As a result the number of unknowns is not fixed and the

corresponding posterior has support on spaces of differentdimensions as discussed in more detail in

the sequence. In this work, an exponential hyper-prior is used for the hyper-parameterλ to allow for

greater flexibility and robustness i.e.p(λ | s) = s exp{−λ s}. After integrating outλ we obtain:

p(k | s) ∝ 1

(s+ 1)k+1
, for k = 0, 1, . . . , kmax (16)

Scale:

The most critical perhaps parameters of the model are{τj}kj=1 which control thescale of variability

in the approximation of the unknown field(s). If prior information about this is available then it can

be readily accounted for by appropriate prior specification. In the absence of such information how-

ever multiple possibilities exist. In contrast to deterministic optimization techniques where ad-hoc

regularizationassumptions are made, in the Bayesian framework proposed possible solutions are

evaluated with respect to theirplausibility as quantified by the posterior distribution. This provides

a unified interpretation of various assumptions that are made regarding the priors of the parameters
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involved. For example, consider a generalGamma(aτ , bτ ) prior:

p({τj}kj=1 | k, aτ , bτ ) =
k∏

j=1

baτ
τ

Γ(aτ )
τaτ−1
j exp(−bττj) (17)

This has a meanaτ/bτ and coefficient of variation1/
√
aτ . Diffuse versions can be adopted by

selecting smallaτ . A non-informative priorp(τj) ∝ 1/τj arises as a special case foraτ = 2 and

bτ = 0 which is invariant under rescaling. Furthermore. it offersan interesting physical inter-

pretation as it favors “slower” varying representations (i.e. smallerτ ’s). In order to automatically

determine the mean of the Gamma prior, we expressbτ = µjaτ whereµj is a location parameter

for which an Exponential hyper-prior is used with a hyper-parameteraµ i.e. p(µj) = 1
aµ

e−µj/aµ .

Integrating out theµj ’s leads to following prior:

p({τj}kj=1 | k, aτ , aµ) =
k∏

j=1

Γ(aτ + 1)

Γ(aτ )
aaτ
τ

τ
(aτ−1)
j

aµ

1

(aττj + a−1
µ )(aτ+1)

(18)

Other Parameters:

For the coefficientsaj a multivariate normal prior was adopted:

{aj}kj=0 | k, σ2
a ∼ N(0, σ2

a Ik+1) (19)

whereIk+1 is the(k + 1) × (k + 1) identity matrix. The hyper-parameterσ2
a which controls the

spread of the prior is modeled by the standard inverse gamma distributionInv −Gamma(a0, b0).

It can readily be integrated-out leading to the following prior for aj ’s:

p({aj}kj=0 | k, a0, b0) =
1

(2π)(k+1)/2

Γ(a0 +
k+1
2 )

(

b0 +
1
2

∑k
j=0 a

2
j

)a0+(k+1)/2
(20)

Finally, for the unknown kernel locations{xj}kj=1, a uniform prior inD is proposed i.e.:

p({xj}kj=1 | k) = 1

| D |k (21)

where| D | is the length or area or volume ofD in one, two or three dimensions respectively.

Naturally if prior information is available about subregions with significant property variations this

can be incorporated in the prior.

Complete Model:

Letθk = {{aj}kj=0, {τj}kj=1, {xj}kj=1} ∈ Θk denote the vector containing all the unknown param-

eters andθ = (k, θk). Sincek is also assumed unknown and allowed to vary, the dimension ofθk is

variable as well andΘk , (Rk+1×(R+)k×Dk. In 2D for example and assuming a scalar unknown

field f(x) in the expansion of Equation (12) the dimension ofθk is (k + 1) + k + 2k = 2 + 4k.

Based on Equation (14) and Equations (16), (17), (20) and (21), the complete prior model is given
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by:

p(θ | s, aτ , aµ, a0, b0) =
1

(s+ 1)k+1

×
k∏

j=1

Γ(aτ + 1)

Γ(aτ )

aaτ
τ

τ
(aτ−1)
j

1

aµ

1

(aτ τj + a−1
µ )(aτ+1)

× 1

(2π)(k+1)/2

Γ(a0 +
k+1
2 )

(

b0 +
1
2

∑k
j=0 a

2
j

)a0+(k+1)/2

× 1

| D |k (22)

The combination of the priorp(θ) with the likelihoodLr(θ) (Equation (7)) corresponding to a for-

ward solver operating on resolutionr, give rise to theposteriordensityπr(θ) which is proportional

to:

πr(θ) = pr(θ | y) ∝ Lr(θ) p(θ) (23)

Even though several parameters have been removed from the vector of unknownsθ and marginalized

in the pertinent expressions, the corresponding posteriors can be readily be obtained, or rather be

sampled from, once the posteriorsπr(θ) have been determined. As it is shown in the numerical

examples, of interest could be the varianceσ2
r of the error term (Equations (5), (6)) which quantifies

the magnitude of the deviation between model and data and canserve as a validation metric (in the

absence of observation error) or be used for predictive purposes (see section 3.3). From Equation (5)

and the conjugate prior model adopted forσ2
r , it can readily be shown that the conditional posterior

is given by a Gamma distribution:

p(σ−2
r , θ | y) = p(σ−2

r | θ) πr(θ | y)

and

p(σ−2
r | θ) = Gamma




a+

n

2
, b+

∑n
i=1

(

yi − F
(r)
i (θ)

)2

2




 (24)

In the context of Monte Carlo simulation, this trivially implies that once samplesθ from πr have

been obtained, the samples ofσ−2
r can also be drawn from the aforementioned Gamma.

The support of the posteriorsπr lies on∪kmax

k=0 {k} × Θk. Two important points are worth empha-

sizing. Firstly, Equation (23) defines asequence of posterior densities, each corresponding to a

different likelihood and a different forward solver of resolution r. It is clear that the black-box func-

tionsF (r) appearing in the likelihood in Equation (6) implydensermappings for smallerr. This

is because solvers corresponding to coarser resolutions ofthe governing PDEs are more myopic

(compared to solvers at finer resolutions) to small scale fluctuations of the spatially varying model

parametersf(x) (parameterized byθ). As a result the likelihood functionsLr and the associated

posteriorsπr will be flatter and have fewer modes for smallerr. The task of identifying these poste-

riors becomes increasingly more difficult as we move to solvers of higher refinement (i.e. largerr).
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It is this feature that we propose of exploiting in the next section in order to increase the accuracy

and improve on the efficiency of the inference process. In addition, the posteriorsπr are only known

up to a normalizing constant (determiningp(y) in Equation (4) involves an infeasible and unneces-

sary integration in a very high dimensional space). Each evaluation ofπr for a particularθ requires

calculatingF (r) and therefore calling the corresponding black-box solver.As each of these runs of

the forward solver may involve the solution of very large systems of equations they can be extremely

time consuming. It is important therefore to determineπr not only accurately, but also with the least

possible number of calls to the forward solver. Since solvers corresponding to coarser resolutions

(smallerr) are faster, it would be desirable to utilize the information they provide in order to reduce

the number of calls to more expensive, finer resolution solvers.

3.2 Determining the Posterior - Inference

The posterior defined above is analytically intractable. For that reason,Monte Carlomethods pro-

vide essentially the only accurate way to inferπr. TraditionallyMarkov Chain Monte Carlotech-

niques (MCMC) have been employed to carry out this task ([30,45, 44, 66, 22]). These are based

on building a Markov chain that asymptotically converges tothe target density (in this caseπr) by

appropriately defining a transition kernel. While convergence can be assured under weak conditions

([49, 55]), the rate of convergence can be extremely slow andrequire a lot of likelihood evaluations

and calls to the black-box solver. Particularly in cases where the target posterior can have multiple

modes, very largemixing timesmight be required which constitute the method impractical or in-

feasible. In addition, MCMC is not directly parallelizable, unless multiple independent chains are

run simultaneously and it can be difficult to design a good proposal distribution when operating in

high dimensional spaces. More importantly perhaps, standard MCMC is not capable of providing a

hierarchical, multi-resolutionsolution to the problem. Consider for example, the case thatseveral

samples have been drawn using MCMC from the posteriorπr1 corresponding to a solver operating

on resolutionr = r1. If samples of the posteriorπr2 are needed, corresponding to a solver of finer

resolutionr2 > r1 but not significantly different fromr1, then MCMC iterations would have to be

initiated anew. Hence there is no immediate way to exploit the inferences made aboutπr1 even

though the latter might be quite similar toπr2 .

In this work we advocate the use ofSequential Monte Carlotechniques (SMC). They represent a

set of flexible simulation-based methods for sampling from asequence of probability distributions

([51, 16]). As with Markov Chain Monte Carlo methods (MCMC),the target distribution(s) need

only be known up to a constant and therefore do not require calculation of the intractable integral

in the denominator in Equation (4). They utilize a set of random samples (commonly referred to

asparticles), which are propagated using a combination ofimportance sampling, resamplingand

MCMC-basedrejuvenationmechanisms ([11, 10]). Each of these particles, which can bethought
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of as a possible configuration of the system’s state, is associated with animportance weightwhich

is proportional to the the posterior value of the respectiveparticle. These weights are updated se-

quentially along with the particle locations. Hence if{θ(i)
r , w

(i)
r }Ni=1 representN such particles and

associated weights for distributionπr(θ) then:

πr(θ) ≈
N∑

i=1

W (i)
r δ

θ
(i)
r
(θ) (25)

whereW (i)
r = w

(i)
r /

∑N
i=1 w

(i)
r are the normalized weights andδ

θ
(i)
r
(.) is the Dirac function cen-

tered atθ(i)
r . Furthermore, for any functionh(θ) which isπr-integrable ([9, 7]):

N∑

i=1

W (i)
r h(θ(i)

r ) →
∫

h(θ) πr(θ) dθ almost surely (26)

Before discussing the SMC sampler proposed, it is worth recapitulating the basic desiderata:

a) Accuracy: the Monte Carlo scheme should be able to correctly sample frommulti-modal

distributions

b) Hierarchical, Multiscale: the Monte Carlo scheme shouldbe able to exploit inferences

made using forward solvers corresponding to coarser resolutions and refine them as more

elaborate forward solvers are used.

c) Efficiency: the Monte Carlo sampler should require the fewest possible calls to the forward

solver. It should be directly parallelizable and utilize inferences made using cheaper for-

ward solvers corresponding to coarser resolutions in orderto reduce the number of calls to

more expensive forward solvers corresponding to finer resolutions.

The goal is to obtain samples from each of the posterior distributions in Equation (23) correspond-

ing to solvers with increasingly finer spatial resolution ofthe governing PDEs,r = r1, r2, . . . , rM

wherer1 is the coarsest torM the finest. For economy of notation we define the artificial posterior

πr0(θ) = p(θ) that coincides with the prior (which is common to all resolutions and independent of

the forward solver). To demonstrate the proposed process itsuffices to consider a pair of these pos-

terior densitiesπ1(θ) ∝ L1(θ) p(θ) andπ2(θ) ∝ L2(θ) p(θ) corresponding to forward solvers at

two successive resolutionsri1 andri2 (Figure 2) and discuss the inferential transitions. Letπ12,γ(θ)

denote a sequence of artificial, auxiliary distributions defined as follows:

π12,γ(θ) = π
(1−γ)
1 (θ) πγ

2 (θ) = L
(1−γ)
1 (θ) Lγ

2(θ) p(θ) γ ∈ [0, 1] (27)

whereγ plays the role ofreciprocal temperature. Trivially for γ = 0 we recoverπ1 and forγ = 1,

π2. The role of these auxiliary distributions is tobridge the gap betweenπ1 andπ2 and provide a

smooth transition path where importance sampling can be efficiently applied. In this process, in-

ferences from the coarser scale solver aretransferred and updatedto conform with the finer scale

solver. Starting with a particulate approximation forπr0(θ) = p(θ) (which trivially involves draw-

ing samples from the prior with weightsw(i)
0 = 1), the goal is to gradually update the importance
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Figure 2: Illustration of bridging densities as defined in Equation (27) between posterior distribu-

tionsπ1(θ), π2(θ) corresponding to different resolutions of the governing PDEs. These allow for

accurate and computationally efficient transmission of theinferences made to finer scales.

weights and particle locations in order to approximate the target posteriors at various resolutions. In

order to implement computationally such a transition we define an increasing sequence of{γs}Ss=1

with γ0 = 0 andγS = 1 (see sub-section 3.2.1). An SMC-based inference scheme would then

proceed as described in Table 1.

SMC algorithm:

1. For s = 0, let {θ(i)
0 , w

(i)
0 }Ni=1 be the initial particulate approximation to

π12,γ0 = π1. Sets = 1.

2. Reweigh: Update weightsw(i)
s = w

(i)
s−1

π12,γs (θ
(i)
s−1)

π12,γs−1
(θ

(i)
s−1)

3. Rejuvenate: Use an MCMC kernelPs(., .) that leavesπ12,γs
invariant to

perturb each particleθ(i)
s−1 → θ(i)

s

4. Resample: Evaluate the Effective Sample Size,ESS = 1/
∑N

i=1(W
(i)
s+1)

2

and resample the population if it is less than a prescribed thresholdESSmin.

5. The current population{θ(i)
s , w

(i)
s }Ni=1 provides a particulate approximation

of π12,γs
in the sense of Equations (25), (26).

6. If s < S (andγs < 1) then sets = s+ 1 and goto to step 2. Otherwise stop.

Table 1: Basic steps of an SMC algorithm
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Notes:

• The role of theReweighingstep is to correct for the discrepancy between the two successive

distributions in exactly the same manner that importance sampling is employed. TheRe-

samplingstep aims at reducing the variance of the particulate approximation by eliminating

particles with small weights and multiplying the ones with larger weights. The metric that

we use in carrying out this task is the Effective Sample Size (ESS, Table 1) which provides

a measure of degeneracy in the population of particles as quantified by their variance. If

this degeneracy exceeds a specified threshold, resampling is performed. As it has been

pointed out in several studies ([15]), frequent resamplingcan deplete the population of its

informational content and result in particulate approximations that consist of even a single

particle. Throughout this workESSmin = N/2 was used. Although other options are

available,multinomial resampling is most often applied and was found sufficient in the

problems examined.

• A critical component involves the perturbation of the population of samples by a standard

MCMC kernel in theRejuvenationstep as this determines how fast the transition takes

place. Although there is freedom in selecting the transition kernelPs(., .) (the only require-

ment is that it isπ12,γs
-invariant), there is a distinguishing feature that will beelaborated

further in the next sub-section (see 3.2.2). The target posteriorsπr (as well as the interme-

diate bridging distributions in Equation (27)) live in spaces of varying dimensions as pre-

viously discussed. Hence an exploration of the state space must involvetrans-dimensional

proposals. Pairs of such moves can be defined in the context ofReversible-Jump MCMC

(RJMCMC , [26]) such asadding/deletinga kernel in the expansion of Equation (12), or

splitting/mergingkernels (see 3.2.2). Even though it is straightforward to satisfy the invari-

ance constraint in the RJMCMC framework, it is more difficultto design moves that also

mix fast. As each (RJ)MCMC requires a likelihood evaluationand a call to a potentially

expensive forward solver, it is desirable to minimize theirnumber while retaining good

convergence properties.

• In most implementations of such SMC schemes, the sequence ofintermediate, bridging dis-

tributions is fixed a priori. In order to ensure a smooth transition, a large number is selected

at very closely spacedγs. It is easily understood that for reasons of computational effi-

ciency, it is desirable to minimize the number of intermediate bridging distributions while

ensuring that the successive distributions are not significantly different. In sub-section

(3.2.1) we discuss a novel adaptive scheme that allow the automatic determination of these

distributions resulting in significant computational savings.
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• It should be noted that the framework proposed is directlyparallelizable, as the evolution

(reweighing, rejuvenation) of each particle isindependentof the rest. Hence the computa-

tional effort can be readily distributed to several processors.

• The particulate approximations obtained at each step, provide aconcise summary of the

posterior distribution based on the respective forward solver. This can be readily updated

in the manner explained above, if forward solvers at finer resolutions become available

or computationally feasible.Similar bridging distributions can be established between

distinct forward solvers with differences going beyond their respective resolutions. This is

made possible by thenonparametric Bayesian modelwhich is independent of the forward

solver and theflexible inference engine based on SMC.

• An advantageous feature of the proposed framework is that the confidence in the estimates

made can be readily quantified by establishing posterior (orcredible) intervals, i.e. the

posterior probability that the unknown field of interestf(x) exceeds or not a specified

threshold, from the particulate approximations (Equation(25)). It is these credible intervals

(or in general measures of the variability in the estimates such as the posterior variance) that

can guideadaptive refinementof the governing PDEs. Traditionally, adaptive refinement

has been based on estimates of some error norm in the solutionof the governing PDEs ([1]).

This however is inefficient and inadequate for the purposes of identifying spatially varying

model parameters as solution errors are not necessarily correlated with the confidence in

the estimates. It is envisioned that the posterior varianceat each pointx ∈ D in the domain

interest can serve as the basis for increasing the resolution of the solver at select regions

and making optimal use of the computational resources available.

3.2.1 Bridging distributions π12,γs

The role of these auxiliary distributions is to facilitate the transition between two different posteriors

π1 andπ2 corresponding to two distinct solvers. It is easily understood that ifπ1 andπ2 are not

significantly different, then fewer bridging distributions will be needed and vice versa. As it is

impossible to know a priori how pronounced these differences are, in most implementations a rather

large number of bridging distributions is adopted, erring on the side of safety. We propose an

adaptive SMC algorithm, that extends existing versions ([10, 11]) in that it automatically determines

the number of intermediate bridging distributions needed.In this process we are guided by the

Effective Sample Size (ESS, Table 1) which provides a measure of degeneracy in the population of

particles. IfESSs is theESS of the population after the steps and in the most favorable scenario

that the next bridging distributionπ12,γs+1 is very similar toπ12,γs
,ESSs+1 should not be that much

different fromESSs. On the other hand if that difference is pronounced thenESSs+1 could drop

dramatically. Hence in order to determine the next auxiliary distribution, we define an acceptable
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reduction in theESS, i.e. ESSs+1 ≥ ζ ESSs (whereζ < 1) and prescribeγs+1 (Equation (27))

accordingly. The revised Adaptive SMC algorithm is summarized in Table 2.

Adaptive SMC algorithm:

1. For s = 0, let {θ(i)
0 , w

(i)
0 }Ni=1 be the initial particulate approximation to

π12,γ0 = π1 andESS0 the associated effective sample size. Sets = 1.

2. Reweigh: If w
(i)
s (γs) = w

(i)
s−1

π12,γs (θ
(i)
s−1)

π12,γs−1
(θ

(i)
s−1)

are theupdated weights as a

function ofγs then determineγs so that the associatedESSs = ζESSs−1

(the valueζ = 0.95 was used in all the examples). Calculatew
(i)
s for thisγs.

3. Resample: If ESSs ≤ ESSmin then resample.

4. Rejuvenate: Use an MCMC kernelPs(., .) that leavesπ12,γs
invariant to

perturb each particleθ(i)
s−1 → θ(i)

s

5. The current population{θ(i)
s , w

(i)
s }Ni=1 provides a particulate approximation

of π12,γs
in the sense of Equations (25), (26).

6. If γs < 1 then sets = s+ 1 and goto to step 2. Otherwise stop.

Table 2: Basic steps of theAdaptive SMC algorithm proposed

3.2.2 Trans-dimensional MCMC

As mentioned earlier, a critical component in the SMC framework proposed is the MCMC-based

rejuvenation step of the particlesθ. It should be noted that the kernelPs(., .) in the rejuvenation

step (Step 3 of the SMC algorithm) need not be known explicitly as it does not enter in any of

the pertinent equations. It is suffices that it isπ12,γs
-invariant which is the target density. For the

efficient exploration of the state space, we employ a mixtureof moves which involve fixed dimension

proposals (i.e. proposals for which the cardinality of the representationk is unchanged) as well as

moves which alter the dimensionk of the vector of parametersθ. We consider a total ofM = 7

such moves, each selected with a certain probability as discussed below. Of those, four involve

trans-dimensional proposals which warrant a more detaileddiscussion.

It is generally difficult to design proposals that alter the dimension significantly while ensuring a

reasonable acceptance ratio. For that purpose, in this workwe consider proposals that alter the

cardinalityk of the expansion by1 i.e. k′ = k− 1 or k′ = k+1. We adopt the the Reversible-Jump

MCMC (RJMCMC) framework introduced in [26] according to which such moves are defined in

pairs in order to ensure reversibility of the Markov kernel (even though the reversibility condition is

not necessary, it greatly facilitates the formulations). We consider two such pairs of moves, namely

birth-deathandsplit-merge. Let a proposal from(k, θ) to (k′, θ′) that increases the dimension i.e.

20



k′ = k + 1 andθ ∈ Θk, θ′ ∈ Θ
k+1 (see last paragraph of sub-section 3.1.2). Letp(k → k′)

the probability that such a proposal is made (user specified)andp(k′ → k) the probability that the

reverse, dimension-decreasing proposal is made. In order to account for them = dim(Θk+1) −
dim(Θk) difference in the dimensions ofθ andθ′, the former is augmented with a vectoru ∈ R

m

drawn from a distributionq(u). Consider a differential and one-to-one mappingh : Θk+1 → Θk+1

that connects the three vectors asθ′ = h(θ,u). Then as it is shown in [26], the acceptance ratio of

such a proposal is:

min

{

1,
π12,γs

(θ′)p(k → k′)

π12,γs
(θ)p(k′ → k)

1

q(u)

∣
∣
∣
∣

∂θ′

∂(θ,u)

∣
∣
∣
∣

}

(28)

where
∣
∣
∣

∂θ′

∂(θ,u)

∣
∣
∣ is the Jacobian of the mappingh. Such a proposal is invariant w.r.t. the density

π12,γs
. Similarly one can define, the acceptance ratio of thereverse, dimension-decreasing move:

min

{

1,
π12,γs

(θ)p(k′ → k)

π12,γs
(θ′)p(k → k′)

q(u)

∣
∣
∣
∣

∂θ′

∂(θ,u)

∣
∣
∣
∣

−1
}

(29)

In the following we provide details for the reversible pairsused in this work.

Birth-Death: In order to simplify the resulting expressions, we assign the following probabilities

of proposing one of these movespbirth = c min{1, p(k+1)
p(k) } = c 1

s+1 (from Equation (16)) and

pdeath = c min{1, p(k−1)
p(k) } = c (from Equation (16)). The constantc is user-specified (it is taken

equal to0.2 in this work). Obviously ifk = kmax, pbirth = 0 and ifk = 0, pdeath = 0.

For the death move:

• A kernel j (1 ≤ j ≤ k ) is selected uniformly and removed from the representationin

Equation (12).

• The correspondingaj is also removed.

For the birth move:

• A new kernelk + 1 is added to the expansion while the existing terms remain unaltered.

• The associated amplitudeak+1 is drawn fromN (0, σ2
4) (the varianceσ2

4 is equal to the

average of the squared amplitudesaj over all the particles at the previous iteration)

• The associated scale parameterτk+1 is drawn from the prior, Equation (18)

• The associated kernel locationxk+1 is also drawn from the prior, Equation (21).

Hence the vector of dimension-matching parametersu consists ofu = (ak+1, τk+1,xk+1) and the

corresponding proposalq(u) is:

q(u) =
1√
2π

1

σ4
e−

1
2 a2

k+1/σ
2
4

baτ
τ

Γ(aτ )
τaτ−1
k+1 exp(−bττk+1)

1

| D | (30)

It is obvious that the Jacobian of such a transformation is1.
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Split-Merge These moves correspond to splitting an existing kernel intotwo or merging two existing

kernels into one. Similarly to the birth-death pair, they alter the dimension of the expansion by1

and are selected with probabilitiespsplit = 1
s+1 andpmerge = c. For obvious reasons,psplit = 0

if k = kmax andpmerge = 0 if k ≤ 1. Consider first the merge move between two kernelsj1

andj2. In order to ensure a reasonable acceptance ratio, merge moves are only permitted when the

(normalized) distance between the kernels is relatively small and when the amplitudesaj1 , aj2 are

relatively similar. Specifically we require that the following two conditions are met:

‖ xj1 − xj2 ‖
√

τ−1
j1

+ τ−1
j2

≤ δx | aj1 − aj2 |≤ δa (31)

(the valuesδx = δa = 1 were used in this work). Two candidate kernels are selected uniformly

from the pool of pairs satisfying the aforementioned conditions. The proposed kernelsj1 andj2 are

removed from the expansion and are substituted by a new kernel j with the following associated

parameters:

•
τj =

(
τ−1
j1

+ τ−1
j2

)−1
(32)

•
aj =

√
τj(

aj1√
τj1

+
aj2√
τj2

) (33)

This ensures that theaveragevalue of the previous expansion (withj1 andj2) in Equation

(12) when integrated inRd is the same with the new (which containsj in place ofj1 and

j2)

•
xj =

xj1 + xj2

2
(34)

The split move is applied to a kernelj (selecteduniformly) which is substituted by two new kernels

j1, j2. In order to ensurereversibility, kernelsj1 andj2 should satisfy the requirements of Equation

(31) and the application of a merge move in the manner described above, should return to the original

kernelj. There are several ways to achieve this, corresponding essentially to different vectorsu and

mappingsh in Equation (28). In this work:

• A scalaruτ is drawn from the uniform distributionU [0, 1] andτ−1
j1

= uττ
−1
j andτ−1

j2
=

(1− uτ )τ
−1
j . This ensures compatibility with Equation (32).

• A vectorux is drawn uniformly in the ball of radiusR whereR = δx
2
√
τj

. The center of the

new kernels are specified asxj1 = xj−ux andxj2 = xj+ux. This ensures compatibility

with the first of Equation (31) as well as Equation (34).

• A scalarua is drawn from the uniform distributionU [− δa
2 , δa

2 ]. The amplitudes of the new

kernels are determined byaj1 = â− ua andaj2 = â+ ua, whereâ =
a+ua(

√
uτ−

√
1−uτ )√

uτ+
√
1−uτ

.

This ensures compatibility with the second of Equation (31)as well as Equation (33).
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Figure 3: Trans-dimensional RJMCMC proposals

The vector of dimension-matching parametersu (in Equation (28)) consists ofu = (uτ ,ux, ua) and

the corresponding proposalq(u) is a product of uniforms in the domains specified above. Aftersome

algebra, it can be shown that the Jacobian of such a transformation is2d+1 τ
u2
τ (1−uτ )2

1√
uτ+

√
1−uτ

.

The remaining three proposals, involve fixed-dimension moves that do not change the cardinality of

the expansion but rather perturb some of the terms involved.In particular, we considered updates

of the amplitudeaj, scaleτj or locationxj of a kernelj selecteduniformly (naturally, in the case

of the amplitudes, the constanta0 (Equation (12)) is also a candidate for updating). Each of these

three moves is proposed with probability13 (pbirth + pdeath + psplit + pmerge) =
2 c
3 ( 1

s+1 + 1). In

particular:

1. Updateaj → a′j : A coefficientaj (in Equation (12)) isuniformlyselected and perturbed

as:

a′j = aj + σ1 Z ,Z ∼ N (0, 1) (35)

2. Updateτj → τ ′j : A scale parameterτj (in Equation (12)) isuniformly selected and per-

turbed as:

τ ′j = τje
σ2Z , Z ∼ N (0, 1) (36)

(this ensures positivity ofτ ′j )

3. Updatexj → x′

j : A locationxj ∈ D ⊂ R
d (in Equation (12)) isuniformlyselected and

perturbed as:

x′

j = xj + σ3 Z, Z = (Z1, . . . , Zd), Zi ∼ N (0, 1) (37)

The acceptance ratios are calculated based on the standard MCMC formulas usingπ12,γs
as the

target density. It should be noted that the variances in the random walk proposals are adaptively

selected so that the respective acceptance rates are in the range0.2 − 0.4. As it is well-known

(chapter 7.6.3 in [55]) adaptive adjustments of Markov Chains based on past samples can breakdown
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ergodic properties and lead to convergence issues in standard MCMC contexts. In the proposed SMC

framework however, such restrictions do not apply as it suffices that the MCMC kernel is invariant.

This is an additional advantage of the proposed simulation scheme in comparison to traditional

MCMC.

3.3 Prediction

The significance of mathematical models for the computational simulation of physical processes

lies in theirpredictive ability. It is these predictions that serve as the basis for engineering decisions

in several systems of technological interest. The proposedframework provides a seamless link

from experiments/data collection, to model validation andultimately prediction. In the presence

of significant sources of uncertainty it is important not only to provide predictive estimates but

quantify the level of confidence one can assign to the predicted outcome. The inferred posteriorsπr

corresponding to various model resolutions can be used to carry out this task. In accordance with

the Bayesian mind-set, all unknowns are considered random.If ŷ denotes the output to be predicted

(under specified input, boundary & initial conditions) then, thepredictive posteriorp(ŷ | y) based

on the available datay can be expressed as ([24]):

p(ŷ | y) =

∫

p(ŷ, θ | y) dθ =

∫

pr(ŷ | θ,y) p(θ | y)
︸ ︷︷ ︸

posterior

dθ (38)

=

∫

Lr(ŷ | θ)
︸ ︷︷ ︸

likelihood

πr(θ) dθ ≈
N∑

i=1

W (i)
r Lr(ŷ | θ(i)

r )

The termp(ŷ | θ) is the likelihood of the predicted data determined by the forward solver at reso-

lution r as in Equation (7). Equation (38) offers an intuitive interpretation of the predictive process.

The predictive posterior distribution is a mixture of the corresponding likelihoods evaluated at all

possible statesθ of the system , with weights proportional to the their posterior values. In the context

of Monte Carlo simulations, samples ofŷ from p(ŷ | y) can be readily drawn using the particulate

approximation of eachπr (Equation (25)). These samples can subsequently be used to statistics of

the predicted output̂y such as moments, probabilities of exceedance which can be extremely useful

in engineering practice.

4 Numerical Examples

The method proposed is illustrated in problems from nonlinear solid mechanics using artificial data.

The governing PDEs are those of small-strain, rate-independent, perfect plasticity with a von-Mises
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yield criterion and associative flow rule ([58]):

∇ · σ(x) = 0 (conservation of linear momentum)

σ = C(E, ν) : (ǫ− ǫp) (elastic stress-strain relationships)

h(σ) :=

√

‖ σ ‖2 −1

3
(tr[σ])2 −

√

2

3
σyield (yield surface)

ǫ̇p = λ
∂h

∂σ
(flow rule)

(39)

whereσ is the Cauchy stress-tensor,ǫ = 1
2 (∇u+ u∇) andǫp the total and plastic-part of the strain

tensor,v = (vx, vy, vz) is the displacement vector,C(E, ν) is the elastic moduli which depends on

the Young’s modulusE (it was assumed that it was knownE = 1, 000) and Poisson’s ratioν (it was

assumed that it was knownv = 0.3). The field of interest in all the problems examined was the yield

stressσyield(x) which was assumed to vary spatially. The yield stress determines the boundary of

the elastic domain in the material response. A square two-dimensional domainD = [0, 1] × [0, 1]

under plane stress conditions was considered and the forward solvers were Finite Element models

which discretize the governing PDEs of Equation (39) forx ∈ D. In order to construct a sequence

of solvers operating at different resolutions, we considered4 different partitions corresponding to

uniform8× 8, 16× 16, 32× 32 and64× 64 grids (i.e. with element sizes18 × 1
8 , 1

16 × 1
16 , 1

32 × 1
32

and 1
64 × 1

64 respectively). A critical issue with spatially varying parameters is how this variability

is accounted in the discretized representation. In this work, we adopted a simple rule according

to which each finite element was assigned a constant yield stress value which was equal to the

average of the fieldσyield(x) within the element. This scheme by no means represents a consistent

upscaling of the governing PDEs let alone being optimal. It can be easily established that it can

introduce significant deviations in the effective responsewhich depends on the full details of the

spatially varying field. This poor selection is made howeverto emphasize the point that inaccurate

solvers can be useful and can lead to significant improvements in accuracy and efficiency. Their

role is to provide a computationally inexpensive approximation to the fine-scale posterior that can

be efficiently updated and refined using a reduced number of runs from more expensive solvers.

Naturally, if more sophisticated upscaling schemes are introduced, the transitions in the sequence of

posterior become smoother and the computational effort is further reduced.

Sinceσyield(x) > 0 ∀x, we used our model to inferlog(σ(x)) i.e. in Equation (12),f(x) =

log(σ(x)). The adaptive SMC scheme (Table 2) withN = 100 orN = 500 particles was employed

in the examples presented withζ = 0.95 andESSmin = N/2. The following values for the

hyperparameters of the prior model were used (section 3.1.2):

• kmax = 100 ands = 0.1 (Equation (16))

• aτ = 1.0 (Equation (17)) andaµ = 0.0001 (Equation (18))
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(a) 2D view (b) 3D view

Figure 4: Referenceσyield(x) field for Example A

• a0 = 1.0 andb0 = 1.0 (Equation (20))

• a = 2. andb = 1.× 10−6 (Equation (7))

4.1 Example A

In this example it was assumed that the yield stress varied asfollows (Figure 4):

log σyield(x) = −1 exp{−10 x2 − 2 (y − 1)2} − 1 exp{−2 (x− 1)2 − 10 y2} (40)

The nonlinear governing PDEs (Equation (39)) were solved using a64× 64 uniform finite element

mesh with the following boundary conditions:

• vx = vy = 0 alongx = 0

• vx = −vy = 0.001 alongx = 1

The displacementsvx, vy at a regular grid consisting of72 points with coordinates

(0.125 i, 0.125 j), for i = 1, . . . , 8 andj = 0, . . . , 8 were recorded resulting inn = 144 data points

(as in Figure 4). The empirical mean (of the absolute values)of these observationsµA was calcu-

lated and the recorded values were contaminated by Gaussiannoise of standard deviation5% µA in

order to obtain sets ofobservablesdenoted by{yi}ni=1 in our Bayesian model (Equation (5)). We

note that in this example the scale of variability of the unknown fieldσyield(x) is larger than the

scale of observations, i.e. the grid size where displacements were recorded.

Table 3 reports the number of degrees of freedom per solver and the normalized computational time

for a single run w.r.t. the64 × 64 solver. As mentioned earlier, each finite element was assigned

a constant yield stress equal to the average value inside theelement. This is of course inconsistent

26



Solver Degrees of Normalized Computational

Resolution Freedom Time (Actual in sec)

16× 16 510 1
156 (0.55)

32× 32 2, 046 1
18 (4.8)

64× 64 8, 190 1 (86)

Table 3: Computational cost of different resolution solvers for Example A

(a) Posterior mean (b) Posterior5% and95% quantiles

Figure 5: Posterior inference using only the64× 64 solver

with the governing PDEs as the geometry of the variability plays a critical role for the effective

properties of each element. It is easily understood though that the corresponding posterior should

have some similarities arising from the mere nature of theirconstruction.

At first, we attempted to solve the problem by operating solely on the finest solver. Using the Adap-

tive SMC scheme proposed withN = 100 particles, this resulted in a sequence of163 (between the

prior π0 and the target posterior) auxiliary bridging distributions constructed as mentioned earlier.

The inferred field (posterior mean and quantiles) are depicted in Figure 5. Even though they exhibit

similarities with the ground truth (Figure 4), there are also considerable differences which suggest

that the algorithm probably got trapped in some mode of the posterior. This is to be expected due to

the highly nonlinear nature of the forward solver and the large state space. It is possible however that

the correct solution could be recovered if the size of the population and/or the number of bridging

distributions is increased. Inspite of that, it is the significant computational effort that makes such

an approach impractical. In particular16, 300 (i.e. 163× 100) calls to the most expensive forward

solver were required.
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Solver Number of Bridging Computational Effort

Resolution Distributions (w.r.t. calls to64× 64 solver)

16× 16 176 113

32× 32 73 452

64× 64 54 5, 700

Total 6, 265

Table 4: Computational cost for inferences for Example A. Note that the effective cost when using

only the64× 64 solver was16, 300

In contrast, when a sequence of3 solvers was used the results obtained are significantly closer to

the ground truth as it can be seen in Figures 6 and 7. It is observed that even using the coarsest

solver (16 × 16), we are able to correctly identify some of the basic features of the underlying

field. The inferences are greatly improved as solvers at finerresolutions are invoked. Figure 8

depicts the number of bridging distributions needed at eachresolution and the respective reciprocal

temperaturesγs (Equation (27)). These wereautomatically determinedby the proposed Adaptive

SMC with N = 100 particles. It is also observed that the number of intermediate distributions

needed decreased as finer resolution solvers are used. This is a direct consequence of the ability

of the proposed scheme to accumulate information from coarser scale solver. These results are

summarized in Table 4 which also reports theeffectivecomputational cost at the various stages and

in total. It can be seen that a reduction of the total number ofcalls is achieved (16, 300 vs. 6,265).

Figure 9 depicts the posterior densities of the inferred model error standard deviationsσr described

in Equation (6). It is readily seen that the proposed technique is able to quantify the magnitude of

the model error for solvers of various resolutions. Furthermore for the reference resolution64× 64

it correctly detects that the error contamination is of the level of5%µA. Finally Figure 10 depicts

the marginal posterior onk , i.e. the cardinality of the expansion at various resolutions. It should

be noted that the method leads tosparserepresentations (on averagek = 5 and therefore only

21 parameters are needed) without sacrificing the accuracy. Traditional formulations (deterministic

or probabilistic) usually have as many unknowns as elements(i.e. in the64 × 64 mesh,4, 096

parameters) and therefore require operations in very high dimensional spaces with all the negative

implications this carries.

5 Conclusions

A general Bayesian framework has been presented for the identification of spatially varying model

parameters. The proposed model utilizes a parsimonious, non-parametric formulation that favors

sparse representations and whose complexity can be determined from the data. An efficient infer-
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(a) Resolution16× 16 - quantile5% (b) Resolution16× 16 - quantile95%

(c) Resolution32× 32 - quantile5% (d) Resolution32× 32 - quantile95%

(e) Resolution64× 64 - quantile5% (f) Resolution64× 64 - quantile95%

Figure 6: Posterior quantiles at various solver resolutions for Example A
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(a) Resolution16× 16 (b) Resolution32× 32

(c) Resolution64× 64

Figure 7: Posterior mean at various solver resolutions for Example A
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Figure 8: Evolution of reciprocal temperatureγs (Equation (27)) and number of bridging distribu-
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Figure 10: Posterior for the cardinalityk of the field representation

ence scheme based on SMC has been discussed which is embarrassingly parallelizable and well-

suited for detecting multi-modal posterior distributions. They key element is the introduction of an

appropriate sequence of posteriors based on a natural hierarchy introduced by various forward solver

resolutions. As a result, inexpensive, coarse solvers are used to identify the most salient features of

the unknown field(s) which are subsequently enriched by invoking solvers operating at finer resolu-

tions. The overall computational cost is further reduced byemploying a novel adaptive scheme that

automatically determines the number of intermediate steps. The proposed methodology does not re-

quire that Markov Chains using all the solvers to be run simultaneously as in other multi-resolution

formulations ([31]) . The particulate approximations provide a concise way of representing the pos-

terior which can be readily updated if the analyst wants to employ forward models operating at even

finer resolutions or in general more accurate solvers. The output of the inference algorithm provides

estimates of the model error or noise contained in the data. An important feature is the ability to

readily provide not only predictive estimates but also quantitative measures of thepredictive uncer-

tainty. Hence it offers a seamless link between data, computational models and predictions. The

efficiency of the sampling schemes proposed could be greatlyimproved if the proposed moves in-

corporate information about the governing PDEs and if upscaling relations are available. A feature

that was not explored in the examples presented is the possibility of performing adaptive refine-

ment, not for the purposes of improving the forward solver accuracy but rather for increasing the

resolution of the unknown fields. This can be achieved in two ways and is a direct consequence of

the ability of the proposed model (and Bayuesian models in general) to produce credible intervals

for the estimates made at each step. Hence in regions where the variance of the estimates (or some

other measure of random variability) is high, the resolution of the forward solver can be increased.

Furthermore, additional measurements/data can be obtained at these regions if such a possibility
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exists. Hence the proposed framework allows for near-optimal use of the computational resources

and sensors available.
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