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A method to simulate linear stability of impulsively

accelerated density interfaces in ideal-MHD and gas

dynamics
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Abstract

We present a numerical method to solve the linear stability of impulsively
accelerated density interfaces in two dimensions such as those arising in the
Richtmyer-Meshkov instability. The method uses an Eulerian approach, and
is based on an unwind method to compute the temporally evolving base
state and a flux vector splitting method for the perturbations. The method
is applicable to either gas dynamics or magnetohydrodynamics. Numerical
examples are presented for cases in which a hydrodynamic shock interacts
with a single or double density interface, and a doubly shocked single density
interface. Convergence tests show that the method is spatially second order
accurate for smooth flows, and between first and second order accurate for
flows with shocks.

Key words: Numerical linear stability, upwind method,
Richtmyer-Meshkov
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1. Introduction

The Richtmyer-Meshkov (RM) instability is the subject of extensive ex-
perimental, theoretical and computational research because of its importance
in technological applications such as inertial confinement fusion, as well as
astrophysical phenomena such as supernovae collapse. A linear stability anal-
ysis was performed originally by Richtmyer [1], followed by experimental con-
firmation by Meshkov [2]. Richtmyer analyzed with the interaction of a shock
wave with a perturbed contact discontinuity separating gases of different
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densities and concluded that the perturbations on the contact discontinuity
grew linearly with time. The linear analysis was further developed by Yang
et al. [3] in which they also considered the case when the reflected wave is a
rarefaction. Computing the linear response for both the reflected shock and
reflected rarefaction cases requires special consideration for each case, and a
different set of equations must be solved. Such simulations exploit the fact
that the base state is a self-similarly evolving solution with a finite number
of waves (a transmitted shock, a contact discontinuity, and either a reflected
shock or a reflected rarefaction). The reflected and transmitted waves usu-
ally bound the computational domain for computing the linear quantities [3].
Analytical extensions of the linear stability analysis when the base state is
more complicated than the one considered by Richmyer and Yang et al.have
not been performed.

Hawley and Zabusky [4] provided a vortex dynamics interpretation to
the RM instability. The density interface in gas dynamics is the site of baro-
clinically generated vorticity which is the essential driving mechanism of the
instability. We will appeal to such an interpretation in discussing results from
our numerical simulations. Recently, Samtaney [5] has shown that the RM
instability is suppressed by the presence of a magnetic field, which was also
confirmed analytically by Wheatley et al. [6]. The magneto-hydrodynamics
(MHD) RM instability includes nonlinear MHD waves such as a slow-mode
shock [5, 7]. Also, there have been the other gas dynamics configurations
such as the Air-SF6 gas curtain experiments [8, 9]. Furthermore, there are
situations where the density interface may not be sharp, i.e., there is a finite
density gradient in moving from one fluid to another for which computing
the linear stability may be desired. Extending the classical analytical way of
linear stability in the context of MHD, the gas-curtain type configurations,
or diffuse interface, is daunting. One way to compute these flows, at consid-
erable computational expense, is to simulate the nonlinear equations in two
dimensions with a small amplitude perturbation. An alternative possibility is
to numerically compute the linear response by simulating the linearized equa-
tions. A generalized numerical approach for hyperbolic conservation laws was
developed by Godlewski & Raviart [10] in which they formulate the approach
in terms of finding measure solutions of the linearized equations, and proved,
for a scalar conservation law, that the measure solution is recoverable as the
limit of solutions of regularized linear systems in which the discontinuity of
the basic solution has been smoothed out. Our approach is to simulate the
system of linearized PDEs using an Eulerian approach with the regulariza-
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tion that the the contact discontinuity and shocks are numerically smoothed
out. The objective of this paper is precisely to develop an Eulerian numer-
ical method to compute the linear stability of accelerated density interfaces
which can be generally applicable to situations other than the classical one
considered by Richtmyer. The outline of the paper is as follows. In Section
2 we present the equations of MHD in 2D, followed by the linearized system.
It should be noted that the base state of the instability is time dependent
and governed by a one dimensional nonlinear system of hyperbolic PDEs.
In section 3, we present a numerical method to solve such a system. This
is followed by numerical examples and convergence tests in Section 4, and a
brief conclusion and recommendations for future work in Section 5.

2. Equations for the Base State and Perturbations

We begin by writing the equations of compressible MHD in conservative
form in two dimensions as follows.

∂U

∂t
+

∂F (U)

∂x
+

∂G(U)

∂y
= 0, (1)

where the solution vector U ≡ U(x, y, t) is,

U = {ρ, ρu, ρv, ρw, Bx, By, Bz, e}
T , (2)

where ρ is the density, (ρu, ρv, ρw) represents the momentum, (Bx, By, Bz)
is the magnetic field, and e is the total energy per unit volume. The vectors
F (U) and G(U) are the fluxes of mass, momentum, magnetic field and total
energy in the x, and y directions, respectively, and are given by

F (U) =






ρu
ρu2 + pt − B2

x

ρuv − BxBy

ρuw − BxBz

0
uBy − vBx

uBz − wBz

(e + pt)u − (B · u)Bx






, G(U) =






ρv
ρuv − BxBy

ρv2 + pt − B2
y

ρvw − ByBz

vBx − uBy

0
vBz − wBy

(e + pt)v − (B · u)By






, (3)

where pt denotes the sum of the gas pressure and the magnetic pressure. The
equations are closed by the following equation of state e = p

γ−1
+ ρ

2
ukuk +
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1
2
BkBk, The ratio of specific heats is denoted by γ and taken to be 5/3

through out this work.
Writing the solution as U(x, y, t) = U0(x, t) + ǫ Û(x, t) exp(iky), where

U0(x, t) is a one-dimensional temporally evolving base state, and Û(x, t) exp(iky)
is the perturbation. Substituting these back in to equation (1) we get the
nonlinear system of hyperbolic PDEs in 1D governing the evolution of the
base state.

∂U0

∂t
+

∂F (U0)

∂x
= 0. (4)

The perturbations are governed by the system of coupled linear wave equa-
tions written as

∂Û

∂t
+

∂A(U0)Û

∂x
= −ikS(U0)Û , (5)

where the wave speeds are given by the eigenvalues of A(U0), the Jacobian
of the F (U0) with respect to U0, and where S(U0) is the Jacobian of G(U0)
with respect to U0.

A consequence of Faraday’s law is that an initially divergence free mag-
netic field leads to a divergence free magnetic field for all times corresponding
to the lack of observations of magnetic monopoles in nature. This solenoidal
property is expressed as ∇ · B = 0. The base state magnetic field is also
required to be divergence free, and because this magnetic field is only a func-
tion of x, a direct consequence is that the x-component of the magnetic field
B0

x is constant. The perturbed field has to satisfy

∂B̂x

∂x
+ ikB̂y = 0, (6)

3. Numerical Method

We adopt the method of lines approach in which each equation is written
as

∂U

∂t
= R(U), (7)

and employ either a second-order or a third-order TVD Runge-Kutta ap-
proach. The third-order TVD RK approach is outlined below (where n indi-
cates the time step index):

U0 = Un
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U1 = U0 + ∆tR(U0)

U2 =
3

4
U0 +

1

4
U1 +

∆t

4
R(U1)

U3 =
1

3
U0 +

2

3
U2 +

2∆t

3
R(U2)

Un+1 = U3. (8)

We use an upwind approach to solve the system given by equations (4)
and (5). This upwind method presented below works in general for the MHD
system for non-zero values of B0; and for gas dynamics by setting B0 = 0.
We use a finite volume approach in which the one-dimensional domain [xl, xr]
is divided into finite volumes of size ∆x each, indexed by i, and bound
by faces at i + 1

2
and i − 1

2
. The solution vectors U0 and Û) are centered

at the centroid of the finite volume. As discussed above, the divergence
free condition implies that that one dimensional base state variable B0

x is
constant. Thus, the number of equations for the base state actually decrease
by one. We define another set of solution vectors Ū0 and Ũ which are defined
as Ū0 and Û but without the x-component of the magnetic field in each. The
evolution of the x-component of the perturbed magnetic field, B̂x, is treated
separately.

We also define a flux vector F̄ (U) which is the same as F (U) but with-
out the flux of the x-component of the base state which is zero. The flux
derivative for the base state are numerically evaluated as:

∂F̄ (U0)

∂x

∣∣∣∣
i

=
F̄ (U0)i+ 1

2

− F̄ (U0)i− 1

2

∆x
, (9)

where the flux F̄ (U0)i+ 1

2

≡ F̄ (Ū0, B0
x) ≡ F̄ (Ū0

L,i+ 1

2

, Ū0
R,i+ 1

2

, B0
x), is obtained

by

F̄ (U0)i+ 1

2

=
1

2

(
F̄ (Ū0

L,i+ 1

2

, B0
x) + F̄ (Ū0

R,i+ 1

2

, B0
x)

)
−

1

2

7∑

k=1

αkrk, (10)

where αk = lk · (Ū
0
R,i+ 1

2

− Ū0
L,i+ 1

2

). lk and rk are left and right eigenvectors

of matrix Ā which is the same as A(U0) excluding the row and column
corresponding to B0

x. Ū0
R,i+ 1

2

and Ū0
L,i+ 1

2

are left and right states obtained at

the faces of the finite volumes by fitting linear profiles and van-Leer slope
limiting.
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The perturbed quantities, denoted as Û above, are computed using the
same method of lines approach. The right hand side for evolving Ũ consists
of three terms:

∂Ũ

∂t
= R(Ũ) = −

∂Ā(U0)Ũ

∂x
− ikS̄(U0)Ũ + C(U0, B̂x), (11)

where S̄ is S without the row/column corresponding to B0
x, and C is a

correction term described below. B̂x is evolved using

∂B̂x

∂t
= ik

(
(v0B0

x − u0B0
y)

ρ0
ρ̂ +

B0
y

ρ0
ρ̂u −

B0
x

ρ0
ρ̂v + v0B̂x − u0B̂y

)
. (12)

We compute the flux A(U0)Û |i+ 1

2

by a seven-wave method for which we

replace the matrix A(U0) with Ā. The seven-waves correspond to the seven
eigenvalues of Ā which are: {u0, u0 ± cf , u

0 ± ca, u
0 ± cs where the u0 is the

advection speed, and cf , ca, cs correspond to the fast magneto-sonic, Alfvén,
and slow magnetosonic speeds respectively. In our unified approach, when
computing the gas dynamics cases (i.e., B0

x = 0), the fast and slow magne-
tosonic speeds smoothly reduce to the usual acoustic wave speed, and the
Alfvén speed goes to zero. The flux term ĀŨ is computed using a flux-vector
splitting approach, in which Ā = Ā++Ā−, where Ā+ (resp. Ā−) is computing
using the positive (resp. negative)eigenvalues of Ā.

∂Ā(U0)Ũ

∂x

∣∣∣∣∣
i

=
Ā(U0)Ũ |i+ 1

2

− Ā(U0)Ũ |i− 1

2

∆x
, (13)

Ā(U0)Ũ |i+ 1

2

=
1

2

(
Āi+ 1

2

ŨL,i+ 1

2

) + Āi+ 1

2

ŨR,i+ 1

2

)

−
1

2
|Ā|i+ 1

2

(ŨR,i+ 1

2

− ŨL,i+ 1

2

), (14)

where |Ā| = Ā+ − Ā−. Because, we have used the seven wave formulation,
we still need to take into account the effect of B̂x on the other variables.
This is similar to the so-called “Stone correction” as it was suggested in
the context of multi-dimensional MHD by Gardiner and Stone [11] and also

used by Crockett et al. [12]. This correction term, denoted by C(U0, B̂x) in
equation (11), is

C(U0, B̂x) = {0, γB0
x, B

0
y , B

0
z , v

0, w0, (γB0
xu

0 + B0
yv

0 + B0
zw

0)}T ∂B̂x

∂x
.(15)
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In particular, for B0
y = B0

z = v0 = w0 = 0, as used in the numerical examples
later, the correction term is non-zero only for the x-momentum and the
energy equations. These terms are evaluated using standard second-order
central differences and added to the right hand side R(Ũ) in the time stepping
procedure. Finally, during each stage of the time integration procedure, the
y-component of the perturbed magnetic field is replaced by

B̂y = −ik
∂B̂x

∂x
, (16)

where the derivative on the right is evaluated using second-order central
differences. This step ensures that the solenoidal property of the magnetic
field is satisfied. If this step is omitted, the entire system of equations may be
augmented by a non-conservative source term suggested by Falle et al. [13]
and Powell et al. [14] for numerical stability. In our numerical examples
discussed next, it made little difference if we enforced equation (16) or not.
However, all results presented, the solenoidal constraint was strictly enforced.

4. Numerical Results

The main objective of the paper is to compute the linear response in the
context of Richtmyer-Meshkov (RM) flows in which a hydrodynamic shock
moves from a gas of one density into a gas of a different density. The inter-
face between the gases may be a sharp one (i.e., the classical RM case) or
one in which the density transition is done with a finite prescribed gradient.
The interface needs to be perturbed with a single mode perturbation of wave
number k. The numerical method described above also allows us to compute
the linear stability of more than one density interface (as in the Air-SF6
gas curtain experiments), and also when the transmitted shock is allowed to
reflect off an end wall and “reshock” the already shocked interface. Further-
more, the above numerical prescription also allows us to include a magnetic
field and compute the linear stability of shocked density interfaces in MHD.
For all cases considered in this section, the base state y- and z-components
of the magnetic field and momentum are zero. The boundary conditions for
the both the base state and the perturbed quantities are zero gradient in x
for all cases except the re-shock case in which the normal component of the
velocity is reflected at the right boundary.
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4.1. Single Density Interface

In this section, we consider the interaction of a hydrodynamic shock with
a single density interface for both the gas dynamic and MHD cases. For
results shown in this section, the domain is [xl, xr] = [−20 : 20], the shock is
initialized at x = −4 and moves from left to right, and the density interface
is centered at x = 0. The classical RM instability has a sharp interface which
implies that the density changes in x as a Heaviside function. Consequently,
the density perturbation ρ̂ is a delta-function. In our Eulerian approach, we
represent the Heaviside density function as:

ρ(x) =
ρb + ρa

2
+

ρb − ρa

π
arctan

(x

δ

)
, (17)

where ρa (ρb) is the unshocked density to the left (right) of the interface, and
δ is a measure of the smoothness applied to the sharp interface. The density
perturbation is then given as:

ρ̂(x) =
ρb − ρa

πδ

(
1 +

x2

δ2

)
−1

. (18)

In the results discussed here, the Mach number of the incident shock is varied
M = 1.05, 1.25, 2.0 which spans the shock strength from weak to moderate
to strong shocks. The densities are chosen to be ρa = 1 and ρb = 3, i.e.
an Atwood ratio of half. While we note that the Euler and ideal MHD
equations are scale-free, in our computations, we fix the wave number of the
perturbations as k = 2π which imply a perturbation wavelength of unity.
The interface smoothing parameter δ is chosen to be 0.05− 0.1. For the gas
dynamic case, B0

x = 0 while for the MHD cases, the magnetic field is fixed
such that the plasma beta β = 2p/B2

x = 16.
The base state in this example is such that the incident shock under-

goes refraction at the density interface, resulting in a transmitted shock and
a reflected shock. The subsequent evolution is self-similar in which all the
waves (RS=reflected shock, TS=transmitted shock, CD=contact discontinu-
ity) move with their own constant speed. The initial condition, and the base
state after refraction is shown in Figure 1(a). As the incident shock traverses
the interface, ideally it provides an impulse whereas in our smoothed inter-
face we observe a large spike in the perturbed velocity. This spike is because
of the finite interaction time between the incident shock and the density in-
terface and is of no real physical consequence. In Figures 1(b) and 1(c), we
plot the growth rate of the perturbed interface for the gas dynamic and the
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MHD case. In these figures, t = 0 is the time when the incident shock has
completely traversed the interface. The growth rate plots in the gas dynamics
cases are predictable, with the usual fast initial growth followed by gradual
decaying oscillations about an asymptotic value. The oscillations physically
correspond to the reverberations of secondary waves which eventually decay.
This behavior is consistent with the results of Richtmyer and Yang. The
growth rate in the MHD cases are similar with those of gas dynamics but
only in the very early stages. The growth rate quickly decays and oscillates
about zero. The amplitude of the oscillations are larger for stronger incident
shocks as expected. In Figure 1(d) the amplitude of the density interface
for each shock strength are plotted and for comparison the saturation am-
plitudes predicted by the incompressible theory of Wheatley et al. [6] are
shown as horizontal lines. Predictably, the numerical simulations agree well
with the incompressible theory at low Mach numbers, with the differences
growing with increasing Mach number.

4.1.1. Solution Details

In this section, we examine the spatial variation of the perturbed quan-
tities for the M = 1.25 case for both the gas dynamic and MHD cases. For
the gas dynamic case, in Figures 2(a), 2(b), we plot the x-component of the
perturbed velocity, the y-component of the perturbed momentum at time
t = 18. The density interface is centered at x = 5 where the peak û is ob-
served. The signature of the vorticity is seen in the sharp gradient of ρ̂v at
the interface (denoted as ‘VS’ in Fig. 2(b)) which is the driving mechanism
of the RM instability. There are oscillations behind the reflected and trans-
mitted shocks which decay away as time progresses – a somewhat obvious
behavior because hydrodynamic shocks are stable.

For the MHD case, we plot the x-component of the perturbed velocity,
the y-component of the perturbed momentum, and the y- and x-components
of the perturbed magnetic field at time t = 18 in Figures 2(c), 2(d), 2(e)

and 2(f). The perturbed field B̂y shows evidence of Alfvén shocks which are
also sites of the vortex sheets (denoted as ‘VS’ in Fig. 2(d)). This bifurcation
of the vortex sheet in going from the gas to the MHD case was observed
by Samtaney [5]. This bifurcation is due to the fact that for MHD jump
conditions at contact discontinuities preclude shear whereas shocks in MHD
support shear. Because the vorticity is transported away from the density
interface, we expect that the interface, devoid of the driving mechanism,
shows a decaying growth rate.
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4.2. Reshocked Single Density Interface

A subject of recent interest has been the reshocking of the density in-
terface by reflecting the transmitted shock from the right boundary [15].
Physically it may be of interest to predict the amplification of the linear
growth rate after reshocking. For this case, the incident shock Mach number
is M = 1.25 and the domain is [xl, xr] = [−20 : 10] with reflecting bound-
ary conditions at xr. All other parameters are the same as in the previous
sub-section. The growth rate is plotted in Figure 3. In this case, we plot the
entire time history, not just after the incident shock has traversed the den-
sity interface. Hence, we see the short-lived spike in the growth rate which
was discussed in the previous subsection, and which we believe to be of no
physical consequence. It is interesting to note that in this case, after reshock,
the shock moves from a region of higher density to one with a lower density.
The reflected wave during the reshocking phase is now a rarefaction fan. The
vorticity generated in during the reshocking phase is of opposite sign and the
amplitude reverses phase. The growth rate changes sign after reshocking and
saturates at a value about ten times larger than the first interaction.

4.3. Double Density Interface

In this section, we present results where instead of a single density inter-
face we have two interfaces. The first density interface is located at x = 0
while the second one is located at x = xi = 4. The density profile in x is
given by:

ρ(x) = ρa +
ρb − ρa

π
arctan

(x

δ

)
−

ρb − ρa

π
arctan

(
x − xi

δ

)
, (19)

with the corresponding density perturbation given by

ρ̂(x) =
ρb − ρa

πδ

(
1 +

x2

δ2

)
−1

±
ρb − ρa

πδ

(
1 +

(x − xi)
2

δ2

)
−1

, (20)

where the ± indicates that the second density interface can be in-phase or
out of phase with the first one. We show results for only the in-phase density
interface. The base state at t = 0 and t = 15 is shown in Fig. 4(a). The
growth rate for each density interface for the gas dynamic case is shown in
Fig. 4(b). In this in-phase density perturbation the vorticity generated at
the second interface is of opposite sign resulting in the phase reversal of the
second interface. Before the transmitted shock exits the second interface, the
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growth of the first interface proceeds as if the second interface did not exist
due to the hyperbolic nature of the equations. Soon after the interaction with
the second interface, a reflected rarefaction reaches the first one and amplifies
the growth. Subsequently, there are internal reverberations inside the gas
layer which modify the growth rate. In the MHD case, the first interaction
is also as predicted with the growth rate decaying to zero, followed by an
increase when the reflected rarefaction from the second interface reaches the
first interface. Eventually the growth rate of both interfaces oscillates about
zero.

4.4. Convergence Test

4.4.1. Smooth Density Interface

To verify that the solution converges with second order accuracy, we
conduct a test of an impulsively started smooth density interface. The density
profile is given by

ρ(x) =
ρb + ρa

2
+

ρb − ρa

2
tanh

(x

δ

)
, (21)

and δ was chosen to be 0.5 and 1.0 for the gas dynamic and MHD cases,
respectively. The impulse is provided at t = 0 by setting u0 = 0.5 (corre-
sponding to the impulse provided by a M = 1.41 shock). The base state in
this case is simply a translating smooth density interface with no shocks. The
domain of investigation is [xl, xr] = [−20, 20] discretized with a grid of sizes:
3200, 1600, 800, and 400. The solution corresponding to the 3200 mesh size is
considered as an “exact” solution in this convergence analysis. Solutions at
other resolutions are compared with this exact solution. Figure 5(a) shows
the growth rate for the gas dynamic and the MHD case for mesh sizes of
3200 and 400. These are different initially because the interface is spread by
different amounts in each case. The normalized amplitude of the interface is
plotted for the MHD case in Fig. 5(b). The convergence plots show that the
growth rate and amplitude are virtually indistinguishable for both the finest
and the coarsest mesh considered here. The convergence analysis was done
at time t = 10 by computing norms of the difference of the solution at the
given resolution with the “exact” solution. The L∞, L1 and L2 norms for
each case are shown in Table 1 along with convergence rates in parenthesis.
For this smooth case, the convergence rates exceed two for all the variables
examined as we approach the finest mesh resolution.
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Variable Mesh L∞ (Rate) L1 (Rate) L2 (Rate)

û 1600 1.64 ×10−3 (2.17) 2.42 ×10−3 (2.14) 2.42 ×10−4 (2.64)
800 7.41 ×10−3 (1.25) 1.07 ×10−2 (1.29) 1.40 ×10−3 (1.73)
400 1.77 ×10−2 (—) 2.61 ×10−2 (—) 4.63 ×10−3 (—)

cBx 1600 5.07 ×10−4 (2.20) 7.65 ×10−4 (2.31) 6.46 ×10−5 (2.74)
800 2.32 ×10−3 (1.51) 3.80 ×10−3 (1.81) 4.33 ×10−4 (2.18)
400 6.64 ×10−3 (—) 1.34 ×10−2 (—) 1.97 ×10−3 (—)

cBy 1600 5.78 ×10−4 (2.18) 8.19 ×10−4 (2.17) 7.35 ×10−5 (2.66)
800 2.62 ×10−3 (1.31) 3.67 ×10−3 (1.43) 4.65 ×10−4 (1.85)
400 6.49 ×10−3 (—) 9.92 ×10−3 (—) 1.67 ×10−3 (—)

û(G) 1600 3.76 ×10−4 (2.34) 5.63 ×10−4 (2.35) 5.41 ×10−5 (2.85)
800 1.90 ×10−3 (1.81) 2.87 ×10−3 (1.90) 3.89 ×10−4 (2.32)
400 6.64 ×10−3 (—) 1.07 ×10−2 (—) 1.95 ×10−3 (—)

cρv(G) 1600 2.04 ×10−3 (2.35) 3.05 ×10−3 (2.36) 2.87 ×10−4 (2.85)
800 1.04 ×10−2 (1.84) 1.56 ×10−2 (1.92) 2.07 ×10−3 (2.36)
400 3.74 ×10−2 (—) 5.93 ×10−2 (—) 1.06 ×10−2 (—)

ê(G) 1600 2.57 ×10−3 (2.35) 3.60 ×10−3 (2.36) 3.63 ×10−4 (2.85)
800 1.30 ×10−2 (1.83) 1.85 ×10−2 (1.91) 2.61 ×10−3 (2.35)
400 4.65 ×10−2 (—) 6.95 ×10−2 (—) 1.33 ×10−2 (—)

Table 1: Convergence test for the impulsively started smooth density interface. Variables
suffixed with (G) are for the gas dynamic case while other variables are for the MHD case.

4.4.2. Shocked Single Density Interface

In this section, we present results from convergence tests for a M = 1.25
incident shock on a single density interface. The mesh sizes used in this study
are: 6400, 3200, 1600, and 800 points with the finest mesh solution considered
as the “exact” solution. The growth rate at different mesh resolutions are
plotted for both the MHD and gas dynamic cases in Figure 6. Except for the
coarsest mesh considered here, the growth rates show very little difference.
A convergence analysis was performed at time t = 18. The results of the
convergence test are presented in Table 2. Due to the presence of discontinu-
ities, it is not surprising that the convergence rate for the L1 and L2 norms
are between first and second order.

5. Conclusion

In this paper, we presented an algorithm for solving the linear stability
of shock-accelerated density interface such as those encountered in RM in-
stability simulations. The approach is Eulerian, uses a somewhat traditional
upwind approach and is relatively simple. Convergence studies indicate that
the method is spatially second order accurate for smooth flows, and between
first and second order accurate for flows with shocks. We presented exam-
ples from gas dynamics as well as MHD for a variety of scenarios: single and
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Variable Mesh L∞ L1 L2

û 3200 0.0434 (1.22) 0.0198 (1.69) 0.00167 (2.05)
1600 0.1009 (0.86) 0.0641 (1.28) 0.00693 (1.59)
800 0.1833 (—) 0.1560 (—) 0.02082 (—)

cBx 3200 0.2161 (0.75) 0.0471 (1.34) 0.00645 (1.55)
1600 0.3644 (0.56) 0.1194 (0.94) 0.01899 (1.07)
800 0.5397 (—) 0.2296 (—) 0.03990 (—)

cBy 3200 0.03950 (0.74) 0.06121 (1.43) 0.00348 (1.61)
1600 0.0658 (0.48) 0.1646 (0.86) 0.01061 (1.00)
800 0.0914 (—) 0.2978 (—) 0.02123 (—)

û(G) 3200 0.0448 (0.92) 0.0286 (1.68) 0.00245 (1.87)
1600 0.0847 (0.86) 0.0914 (1.14) 0.00897 (1.43)
800 0.1531 (—) 0.2016 (—) 0.02430 (—)

Table 2: Convergence test for a shocked density interface. The base state has shocks.
Variables suffixed with (G) are for the gas dynamic case while other variables are for the
MHD case. The convergence analysis was performed at t = 18.

double density interface, and reshocked single density interfaces. The gas
dynamics growth rates are similar to those computed by earlier researchers.
In the MHD case, the growth rate of the instability decays and oscillates with
decreasing amplitude about zero. Furthermore, in MHD, the amplitude of
perturbation saturates in agreement with previously published incompress-
ible theory. The major appeal of the current approach is that it is quite simple
to implement with no special consideration is required about the form of the
solution of the underlying temporally evolving base state and is applicable
to both gas dynamics and MHD. The present approach is easily extensible to
flows with chemical reactions, with other time varying or constant accelera-
tions of the interface (e.g. Rayleigh- Taylor instability) and for computing
the linear stability of the interface in radially converging geometries (such as
those encountered in inertial fusion).
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Figure 1: (a): Base state initial condition and after refraction. ‘IS’ is the incident shock;
‘RS’ and ‘TS’ are the reflected and transmitted shocks, respectively, after the interaction
of ‘IS’ with the contact discontinuity ‘CD’. (b) Growth rate for M = 1.05, 1.25, 2.0 shocks
for the gas dynamic case. (c) Growth rate for M = 1.05, 1.25, 2.0 shocks for the MHD
case. (d) Amplitude plots for the MHD case. The horizontal lines are the asymptotic
amplitudes predicted by incompressible theory [6].
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Figure 2: (a): Perturbed x-component of the velocity for the gas case. (b) Perturbed
y-component of the momentum for the gas case. ‘VS’ indicates the vortex sheet (c)
Perturbed x-component of the velocity for the MHD case. (d) Perturbed y-component
of the momentum for the MHD case. The vortex sheets are indicated by ‘VS’ coincident
with the Alfv/’en shocks. (e) Perturbed y-component of the magnetic field. ‘AS’ indicate
the Alfv/’en shocks. (f) Perturbed x-component of the magnetic field.
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Figure 3: (a) The base state shown at t = 0 and t = 22.5 (after reshocking the interface.
’IS’ denotes the incident shock, ‘CD’ and ‘CDR’ denote the initial contact discontinuity and
after reshock, ‘RRR’ is the reflected rarefaction after reshock, and ‘TSR’ is the transmitted
shock after reshock. (b) The corresponding growth rate for this case.
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Figure 4: (a)Base solution shown at t = 0 and t = 15 for the density layer (two density
interfaces) case. ‘RS’ is the reflected shock from the refraction at the first interface; ‘RR’
is the reflected rarefaction which emerges due to the refraction at the second interface;
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the MHD case. (c) Growth rate for the gas dynamic case.
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Figure 5: (a)Growth rate for the impulsively started smooth density interface for the
gas dynamic and MHD cases. For each case the finest mesh (3200) and coarsest mesh
(400) solutions are plotted. (b) The normalized amplitude of perturbation for the MHD
case. The incompressible theoretical result [6] is shown by the dotted horizontal line for
reference. The coarsest and finest mesh solutions are virtually indistinguishable in these
plots.

20



-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

dA
/d

t

t

6400
3200
1600
800

(a)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

dA
/d

t

t

6400
3200
1600
800

(b)

Figure 6: (a)Growth rate for the shocked single density interface for the MHD cases.
(b)Growth rate for the shocked single density interface for the gas dynamic case. For each
case the solutions at mesh resolutions of 6400, 3200, 1600 and 800 are plotted.
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