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Abstract

A parallel dispersive finite-difference time-domain (FDTD) method for the
modeling of three-dimensional (3-D) electromagnetic cloaking structures is
presented in this paper. The permittivity and permeability of the cloak are
mapped to the Drude dispersion model and taken into account in FDTD sim-
ulations using an auxiliary differential equation (ADE) method. It is shown
that the correction of numerical material parameters and the slow switching-
on of source are necessary to ensure stable and convergent single-frequency
simulations. Numerical results from wideband simulations demonstrate that
waves passing through a three-dimensional cloak experience considerable de-
lay comparing with the free space propagations, as well as pulse broadening
and blue-shift effects.
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PACS: 78.20.Ci, 52.35.Hr, 02.70.Bf

1. Introduction

Recently, a great deal of attention has been paid to the analysis and de-
sign of electromagnetic cloaking structures, since first proposed by Pendry
et al. [1]. The specially designed cloak is able to guide waves to propa-
gate around its central region, rendering the objects placed inside invisible
to external electromagnetic radiations. The ideal cloak in [1] requires inho-
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mogeneous and anisotropic media, with both permittivity and permeability
independently controlled and radially dependent, making its practical real-
ization very difficult. Therefore it has been proposed to use simplified mate-
rial parameters for both transverse electric (TE) [2] and transverse magnetic
(TM) [3] cases. In order to reduce the scattering due to the impedance
mismatch introduced by the simplified cloaks, an improved linear cloak [4], a
high-order transformation based cloak [5], and a ‘square root’ transformation
based cloak [6] have also been proposed.

The coordinate transformation technique used in [1, 7] has also been
applied to the design of magnifying perfect and super lenses [8], electro-
magnetic field rotators [9], the reflectionless complex media for shifting and
splitting optical beams [10], and conformal antennas [11] etc. The experi-
mental demonstration of a simplified cloak consisting of split-ring resonators
(SRRs) has been reported at microwave frequencies [12]. For the optical fre-
quency range, the cloak can be constructed by embedding silver wires in a
dielectric medium [3], or using a gold-dielectric concentric layered structure
[13, 14].

The modeling of Pendry’s invisible cloak has been performed by using
both analytical and numerical methods. Besides the widely used coordi-
nate transformation technique [1, 7, 8, 9, 10, 11, 15], a cylindrical wave
expansion technique [16], and a method based on the full-wave Mie scat-
tering model [17, 18] have also been applied. In addition, the full-wave
finite element method (FEM) based commercial simulation software COM-
SOL MultiphysicsTM has been extensively used to model different cloaks and
validate theoretical predictions [2, 3, 5, 9, 19], due to its ability of dealing
with anisotropic and radial dependent material parameters. However similar
to other frequency domain techniques, the FEM may become inefficient when
wideband solutions are needed. So far, the time domain techniques that have
been developed to model the cloaking structures include the time-dependent
scattering theory [20], the transmission line method (TLM) [21] and the
finite-difference time domain (FDTD) method [22]. Due to its simplicity in
implementation and the ability of treating anisotropic, inhomogeneous and
nonlinear materials, the FDTD method has been extremely popular for the
analysis of electromagnetic structures. However due to the computational
complexity, so far the FDTD modeling of three-dimensional (3-D) cloaking
structures has not been attempted. In this paper, we extend our previously
proposed 2-D FDTD method [22] to the 3-D case and develop a parallel
dispersive FDTD method to model 3-D cloaking structures and reveal the
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extraordinary behavior that is different from its counterparts under 2-D as-
sumptions.

2. Parallel dispersive FDTD modeling of 3-D cloaks

A complete set of material parameters of the ideal cloak in spherical
coordinate is given by [1]

εr = µr =
R2

R2 − R1

(
r − R1

r

)2

,

εθ = µθ =
R2

R2 − R1

,

εφ = µφ =
R2

R2 −R1

, (1)

where R1 and R2 are the inner and outer radii of the cloak, respectively,
and r is the distance from a spatial point within the cloak to the center of
the cloak. Since the values of εr and µr are less than one (between 0 and
(R2 −R1) /R2), same as the case for left-handed materials (LHMs), the cloak
cannot be directly modeled using the conventional FDTD method. However,
one can map the material parameters using dispersive material models, for
example, the Drude model

εr(ω) = 1−
ω2
p

ω2 − jωγ
, (2)

where ωp and γ are the plasma and collision frequencies of the material,
respectively. By varying the plasma frequency, the radial dependent mate-
rial parameters in (1) can be achieved. For example, for the ideal lossless
case considered in this paper, i.e. the collision frequency in (2) is equal to
zero (γ = 0), the radial dependent plasma frequency can be calculated using
ωp = ω

√
1− εr with a given value of εr calculated from (1). Note that in

practice, the plasma frequency of the material depends on the periodicity
of the split ring resonators (SRRs) [12] or wires [3], which varies along the
radial direction. It should be noted that other dispersive material models
(e.g. Debye, Lorentz etc.) can be also considered for the modeling of elec-
tromagnetic cloaks. However, the Drude model has the simplest form when
implemented using the dispersive FDTD method and has been widely used
in the modeling of metamaterials. The Lorentz model can be also used in
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FDTD simulations with some additional modifications to the iterative equa-
tions. The Debye model may be less accurate to characterize the dispersion
behavior of metamaterials and rarely used in the community.

Since the conventional FDTD method [23, 24] deals with frequency-
independent materials, the frequency-dependent FDTD method is hence re-
ferred as the dispersive FDTD method [25, 26, 27]. There are also differ-
ent dispersive FDTD methods using different approaches to deal with the
frequency-dependent material parameters: the recursive convolution (RC)
method [25], the auxiliary differential equation (ADE) method [26] and the
Z-transform method [27]. Due to its simplicity, we have chosen the ADE
method to model 3-D cloaks in this paper.

The ADE dispersive FDTD method is based on the Faraday’s and Am-
pere’s Laws

∇×E = −∂B

∂t
, (3)

∇×H =
∂D

∂t
, (4)

as well as the constitutive relations D = εE and B = µH where ε and µ
are expressed by (1). Equations (3) and (4) can be discretized following a
standard procedure [23, 24], which leads to the conventional FDTD updating
equations

Bn+1 = Bn −∆t · ∇̃ ×En+ 1

2 , (5)

Dn+1 = Dn +∆t · ∇̃ ×Hn+ 1

2 , (6)

where ∇̃ is the discrete curl operator, ∆t is the discrete FDTD time step and
n is the number of the time steps.

In addition, auxiliary differential equations need to be taken into account
and they can be discretized through the following steps. For the conventional
Cartesian FDTD mesh, since the material parameters given in (1) are in
spherical coordinates, the following coordinate transformation is used [28]



εxx εxy εxz
εyx εyy εyz
εzx εzy εzz


 =




sin θ cosφ cos θ cosφ − sinφ
sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0






εr 0 0
0 εθ 0
0 0 εφ




·




sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0


 . (7)
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The tensor form of the constitutive relation is given by

ε0




εxx εxy εxz
εyx εyy εyz
εzx εzy εzz






Ex

Ey

Ez


 =




Dx

Dy

Dz




⇔ ε0




Ex

Ey

Ez


 =




εxx εxy εxz
εyx εyy εyz
εzx εzy εzz




−1 


Dx

Dy

Dz


 , (8)

where 


εxx εxy εxz
εyx εyy εyz
εzx εzy εzz



−1

=




ε′xx ε′xy ε′xz
ε′yx ε′yy ε′yz
ε′zx ε′zy ε′zz


 , (9)

and

ε′xx =
1

εr
sin2 θ cos2 φ+

1

εθ
cos2 θ cos2 φ+

1

εφ
sin2 φ,

ε′xy =
1

εr
sin2 θ sinφ cosφ+

1

εθ
cos2 θ sin φ cosφ− 1

εφ
sinφ cosφ,

ε′xz =
1

εr
sin θ cos θ cosφ− 1

εθ
sin θ cos θ cos φ,

ε′yx =
1

εr
sin2 θ sinφ cosφ+

1

εθ
cos2 θ sin φ cosφ− 1

εφ
sinφ cosφ,

ε′yy =
1

εr
sin2 θ sin2 φ+

1

εθ
cos2 θ sin2 φ+

1

εφ
cos2 φ,

ε′yz =
1

εr
sin θ cos θ sin φ− 1

εθ
sin θ cos θ sin φ,

ε′zx =
1

εr
sin θ cos θ cosφ− 1

εθ
sin θ cos θ cos φ,

ε′zy =
1

εr
sin θ cos θ sin φ− 1

εθ
sin θ cos θ sin φ,

ε′zz =
1

εr
cos2 θ +

1

εθ
sin2 θ. (10)

Note that the inverse of the permittivity tensor matrix (9) exists only when
εr 6= 0, εθ 6= 0 and εφ 6= 0. However the inner boundary of the cloak does not
satisfy the condition of εr 6= 0. Therefore in our FDTD simulations, we place
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a perfect electric conductor (PEC) sphere with radius equal to R1 inside the
cloak to guarantee the validity of (9).

Substituting (9) into (8) gives

ε0Ex =

(
1

εr
sin2 θ cos2 φ+

1

εθ
cos2 θ cos2 φ+

1

εφ
sin2 φ

)
Dx

+

(
1

εr
sin2 θ sinφ cosφ+

1

εθ
cos2 θ sin φ cosφ− 1

εφ
sinφ cosφ

)
Dy

+

(
1

εr
sin θ cos θ cos φ− 1

εθ
sin θ cos θ cos φ

)
Dz, (11)

ε0Ey =

(
1

εr
sin2 θ sin φ cosφ+

1

εθ
cos2 θ sinφ cosφ− 1

εφ
sin φ cosφ

)
Dx

+

(
1

εr
sin2 θ sin2 φ+

1

εθ
cos2 θ sin2 φ+

1

εφ
cos2 φ

)
Dy

+

(
1

εr
sin θ cos θ sin φ− 1

εθ
sin θ cos θ sinφ

)
Dz (12)

ε0Ez =

(
1

εr
sin θ cos θ cosφ− 1

εθ
sin θ cos θ cosφ

)
Dx

+

(
1

εr
sin θ cos θ sin φ− 1

εθ
sin θ cos θ sinφ

)
Dy

+

(
1

εr
cos2 θ +

1

εθ
sin2 θ

)
Dz. (13)

Since the above equations have a similar form, in the following, the derivation
of the updating equation is only given for the Ex component. The updating
equations for the Ey and Ez components can be derived following the same
procedure.

Express εr in the Drude form of (1), Eq. (11) can be written as

ε0
(
ω2 − jωγ − ω2

p

)
Ex =

[ (
ω2 − jωγ

)
sin2 θ cos2 φ

+
(
ω2 − jωγ − ω2

p

)(cos2 θ cos2 φ

εθ
+

sin2 φ

εφ

)]
Dx

+

[(
ω2 − jωγ

)
sin2 θ sinφ cosφ+

(
ω2 − jωγ − ω2

p

) cos2 θ sinφ cosφ

εθ

−
(
ω2 − jωγ − ω2

p

) sinφ cosφ

εφ

]
Dy +

[ (
ω2 − jωγ

)
sin θ cos θ cos φ

6



−
(
ω2 − jωγ − ω2

p

) sin θ cos θ cosφ
εθ

]
Dz. (14)

Note that εθ and εφ remain in (14) because their values are always greater
than one and can be directly used in the conventional FDTD updating equa-
tions [23, 24]. Applying the inverse Fourier transform and the following rules:

jω → ∂

∂t
, ω2 → − ∂2

∂t2
, (15)

Eq. (14) can be rewritten in the time domain as

ε0

(
∂2

∂t2
+ γ

∂

∂t
+ ω2

p

)
Ex =

[(
∂2

∂t2
+ γ

∂

∂t

)
sin2 θ cos2 φ

+

(
∂2

∂t2
+ γ

∂

∂t
+ ω2

p

)
cos2 θ cos2 φ

εθ
+

(
∂2

∂t2
+ γ

∂

∂t
+ ω2

p

)
sin2 φ

εφ

]
Dx

+

[(
∂2

∂t2
+ γ

∂

∂t

)
sin2 θ sinφ cosφ+

(
∂2

∂t2
+ γ

∂

∂t
+ ω2

p

)
cos2 θ sinφ cosφ

εθ

−
(

∂2

∂t2
+ γ

∂

∂t
+ ω2

p

)
sin φ cosφ

εφ

]
Dy +

[(
∂2

∂t2
+ γ

∂

∂t

)
sin θ cos θ cos φ

−
(

∂2

∂t2
+ γ

∂

∂t
+ ω2

p

)
sin θ cos θ cos φ

εθ

]
Dz. (16)

The FDTD simulation domain is represented by an equally spaced 3-D
grid with the periods ∆x, ∆y and ∆z along the x-, y- and z-directions,
respectively. For the discretization of Eq. (16), we use the central finite
difference operators in time (δt and δ2t ) and the central average operator
with respect to time (µt and µ2

t ):

∂2

∂t2
→ δ2t

(∆t)2
,

∂

∂t
→ δt

∆t
µt, 1 → µ2

t ,

where the operators δt, δ
2
t , µt and µ2

t are defined as in [29]:

δtF|nmx,my,mz
≡ F|n+

1

2

mx,my,mz
− F|n−

1

2

mx,my,mz
,

δ2tF|nmx,my,mz
≡ F|n+1

mx,my,mz
− 2F|nmx,my ,mz

+ F|n−1
mx,my ,mz

,

µtF|nmx,my,mz
≡ F|n+

1

2

mx,my,mz
+ F|n−

1

2

mx,my,mz

2
,

µ2
tF|nmx,my,mz

≡
F|n+1

mx,my,mz
+ 2F|nmx,my,mz

+ F|n−1
mx,my,mz

4
, (17)
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where F represents field components and mx, my, mz are the indices corre-
sponding to a certain discretization point in the FDTD domain. The dis-
cretized Eq. (16) reads

ε0

[
δ2t

(∆t)2
+ γ

δt
∆t

µt + ω2
pµ

2
t

]
Ex =

{[
δ2t

(∆t)2
+ γ

δt
∆t

µt

]
sin2 θ cos2 φ

+

[
δ2t

(∆t)2
+ γ

δt
∆t

µt + ω2
pµ

2
t

](
cos2 θ cos2 φ

εθ
+

sin2 φ

εφ

)}
Dx

+

{[
δ2t

(∆t)2
+ γ

δt
∆t

µt

]
sin2 θ sinφ cosφ

+

[
δ2t

(∆t)2
+ γ

δt
∆t

µt + ω2
pµ

2
t

](
cos2 θ sin φ cosφ

εθ
− sinφ cosφ

εφ

)}
Dy

+

{[
δ2t

(∆t)2
+ γ

δt
∆t

µt

]
sin θ cos θ cos φ

−
[

δ2t
(∆t)2

+ γ
δt
∆t

µt + ω2
pµ

2
t

]
sin θ cos θ cosφ

εθ

}
Dz. (18)

Note that in (18), the discretization of the term ω2
p of (16) is performed using

the central average operator µ2
t in order to guarantee the improved stability;

the central average operator µt is used for the term containing γ to preserve
the second-order feature of the equation. Equation (18) can be written as

ε0

[
En+1

x − 2En
x + En−1

x

(∆t)2
+ γ

En+1
x − En−1

x

2∆t
+ ω2

p

En+1
x + 2En

x + En−1
x

4

]

= sin2 θ cos2 φ

[
Dn+1

x − 2Dn
x +Dn−1

x

(∆t)2
+ γ

Dn+1
x −Dn−1

x

2∆t

]

+

(
cos2 θ cos2 φ

εθ
+

sin2 φ

εφ

)[
Dn+1

x − 2Dn
x +Dn−1

x

(∆t)2
+ γ

Dn+1
x −Dn−1

x

2∆t

+ω2
p

Dn+1
x + 2Dn

x +Dn−1
x

4

]
+ sin2 θ sinφ cosφ

[
Dn+1

y − 2Dn
y +Dn−1

y

(∆t)2

+γ
Dn+1

y −Dn−1
y

2∆t

]
+

(
cos2 θ sin φ cosφ

εθ
− sinφ cosφ

εφ

)

·
[
Dn+1

y − 2Dn
y +Dn−1

y

(∆t)2
+ γ

Dn+1
y −Dn−1

y

2∆t
+ ω2

p

Dn+1
y + 2Dn

y +Dn−1
y

4

]

+ sin θ cos θ cos φ

[
Dn+1

z − 2Dn
z +Dn−1

z

(∆t)2
+ γ

Dn+1
z −Dn−1

z

2∆t

]

8



−sin θ cos θ cos φ

εθ

[
Dn+1

z − 2Dn
z +Dn−1

z

(∆t)2
+ γ

Dn+1
z −Dn−1

z

2∆t

+ω2
p

Dn+1
z + 2Dn

z +Dn−1
z

4

]
. (19)

After simple manipulations, the updating equation for Ex can be obtained
as

En+1
x =

[
b0xxD

n+1
x + b1xxD

n
x + b2xxD

n−1
x + b0xyDy

n+1
+ b1xyDy

n
+ b2xyDy

n−1

+b0xzDz

n+1
+ b1xzDz

n
+ b2xzDz

n−1 −
(
a1xE

n
x + a2xE

n−1
x

) ]
/a0x, (20)

where the coefficients are given by

a0x = ε0

[
1

(∆t)2
+

γ

2∆t
+

ω2

p

4

]
, a1x = ε0

[
− 2

(∆t)2
+

ω2

p

2

]
,

a2x = ε0

[
1

(∆t)2
− γ

2∆t
+

ω2

p

4

]
,

b0xx = sin2 θ cos2 φ

[
1

(∆t)2
+

γ

2∆t

]
+

(
cos2 θ cos2 φ

εθ
+

sin2 φ

εφ

)[
1

(∆t)2
+

γ

2∆t
+

ω2

p

4

]
,

b1xx = − sin2 θ cos2 φ
2

(∆t)2
+

(
cos2 θ cos2 φ

εθ
+

sin2 φ

εφ

)[
− 2

(∆t)2
+

ω2

p

2

]
,

b2xx = sin2 θ cos2 φ

[
1

(∆t)2
− γ

2∆t

]
+

(
cos2 θ cos2 φ

εθ
+

sin2 φ

εφ

)[
1

(∆t)2
− γ

2∆t
+

ω2

p

4

]
,

b0xy = sin2 θ sinφ cosφ

[
1

(∆t)2
+

γ

2∆t

]
+

(
cos2 θ sinφ cosφ

εθ
− sinφ cosφ

εφ

)

·
[

1

(∆t)2
+

γ

2∆t
+

ω2

p

4

]
,

b1xy = − sin2 θ sinφ cosφ
2

(∆t)2
+

(
cos2 θ sinφ cosφ

εθ
− sinφ cosφ

εφ

)[
− 2

(∆t)2
+

ω2

p

2

]
,

b2xy = sin2 θ sinφ cosφ

[
1

(∆t)2
− γ

2∆t

]
+

(
cos2 θ sinφ cosφ

εθ
− sinφ cosφ

εφ

)

·
[

1

(∆t)2
− γ

2∆t
+

ω2

p

4

]
,

b0xz = sin θ cos θ cosφ

[
1

(∆t)2
+

γ

2∆t

]
− sin θ cos θ cosφ

εθ

[
1

(∆t)2
+

γ

2∆t
+

ω2

p

4

]
,

9



b1xz = − sin θ cos θ cosφ
2

(∆t)2
− sin θ cos θ cosφ

εθ

[
− 2

(∆t)2
+

ω2

p

2

]
,

b2xz = sin θ cos θ cosφ

[
1

(∆t)2
− γ

2∆t

]
− sin θ cos θ cosφ

εθ

[
1

(∆t)2
− γ

2∆t
+

ω2

p

4

]
.

Following the same procedure, the updating equation for Ey is

En+1
y =

[
b0yxDx

n+1
+ b1yxDx

n
+ b2yxDx

n−1
+ b0yyD

n+1
y + b1yyD

n
y + b2yyD

n−1
y

+b0yzDz

n+1
+ b1yzDz

n
+ b2yzDz

n−1 −
(
a1yE

n
y + a2yE

n−1
y

) ]
/a0y, (21)

with the coefficients given by

a0y = ε0

[
1

(∆t)2
+

γ

2∆t
+

ω2

p

4

]
, a1y = ε0

[
− 2

(∆t)2
+

ω2

p

2

]
,

a2y = ε0

[
1

(∆t)2
− γ

2∆t
+

ω2

p

4

]
,

b0yx = sin2 θ sinφ cosφ

[
1

(∆t)2
+

γ

2∆t

]
+

(
cos2 θ sinφ cosφ

εθ
− sinφ cosφ

εφ

)

·
[

1

(∆t)2
+

γ

2∆t
+

ω2

p

4

]
,

b1yx = − sin2 θ sinφ cosφ
2

(∆t)2
+

(
cos2 θ sinφ cosφ

εθ
− sinφ cosφ

εφ

)[
− 2

(∆t)2
+

ω2

p

2

]
,

b2yx = sin2 θ sinφ cosφ

[
1

(∆t)2
− γ

2∆t

]
+

(
cos2 θ sinφ cosφ

εθ
− sinφ cosφ

εφ

)

·
[

1

(∆t)2
− γ

2∆t
+

ω2

p

4

]
,

b0yy = sin2 θ sin2 φ

[
1

(∆t)2
+

γ

2∆t

]
+

(
cos2 θ sin2 φ

εθ
+

cos2 φ

εφ

)[
1

(∆t)2
+

γ

2∆t
+

ω2

p

4

]
,

b1yy = − sin2 θ sin2 φ
2

(∆t)2
+

(
cos2 θ sin2 φ

εθ
+

cos2 φ

εφ

)[
− 2

(∆t)2
+

ω2

p

2

]
,

b2yy = sin2 θ sin2 φ

[
1

(∆t)2
− γ

2∆t

]
+

(
cos2 θ sin2 φ

εθ
+

cos2 φ

εφ

)[
1

(∆t)2
− γ

2∆t
+

ω2

p

4

]
,

b0yz = sin θ cos θ sinφ

[
1

(∆t)2
+

γ

2∆t

]
− sin θ cos θ sinφ

εθ

[
1

(∆t)2
+

γ

2∆t
+

ω2

p

4

]
,

b1yz = − sin θ cos θ sinφ
2

(∆t)2
− sin θ cos θ sinφ

εθ

[
− 2

(∆t)2
+

ω2

p

2

]
,
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b2yz = sin θ cos θ sinφ

[
1

(∆t)2
− γ

2∆t

]
− sin θ cos θ sinφ

εθ

[
1

(∆t)2
− γ

2∆t
+

ω2

p

4

]
.

And the updating equations for Ez is

En+1
z =

[
b0zxDx

n+1
+ b1zxDx

n
+ b2zxDx

n−1
+ b0zyDy

n+1
+ b1zyDy

n

+b2zyDy

n−1
+ b0zzD

n+1
z + b1zzD

n
z + b2zzD

n−1
z

−
(
a1zE

n
z + a2zE

n−1
z

) ]
/a0z, (22)

with the coefficients given by

a0z = ε0

[
1

(∆t)2
+

γ

2∆t
+

ω2

p

4

]
, a1z = ε0

[
− 2

(∆t)2
+

ω2

p

2

]
,

a2z = ε0

[
1

(∆t)2
− γ

2∆t
+

ω2

p

4

]
,

b0zx = sin θ cos θ cosφ

[
1

(∆t)2
+

γ

2∆t

]
− sin θ cos θ cosφ

εθ

[
1

(∆t)2
+

γ

2∆t
+

ω2

p

4

]
,

b1zx = − sin θ cos θ cosφ
2

(∆t)2
− sin θ cos θ cosφ

εθ

[
− 2

(∆t)2
+

ω2

p

2

]
,

b2zx = sin θ cos θ cosφ

[
1

(∆t)2
− γ

2∆t

]
− sin θ cos θ cosφ

εθ

[
1

(∆t)2
− γ

2∆t
+

ω2

p

4

]
,

b0zy = sin θ cos θ sinφ

[
1

(∆t)2
+

γ

2∆t

]
− sin θ cos θ sinφ

εθ

[
1

(∆t)2
+

γ

2∆t
+

ω2

p

4

]
,

b1zy = − sin θ cos θ sinφ
2

(∆t)2
− sin θ cos θ sinφ

εθ

[
− 2

(∆t)2
+

ω2

p

2

]
,

b2zy = sin θ cos θ sinφ

[
1

(∆t)2
− γ

2∆t

]
− sin θ cos θ sinφ

εθ

[
1

(∆t)2
− γ

2∆t
+

ω2

p

4

]
,

b0zz = cos2 θ

[
1

(∆t)2
+

γ

2∆t

]
+

sin2 θ

εθ

[
1

(∆t)2
+

γ

2∆t
+

ω2

p

4

]
,

b1zz = − cos2 θ
2

(∆t)2
+

sin2 θ

εθ

[
− 2

(∆t)2
+

ω2

p

2

]
,

b2zz = cos2 θ

[
1

(∆t)2
− γ

2∆t

]
+

sin2 θ

εθ

[
1

(∆t)2
− γ

2∆t
+

ω2

p

4

]
.
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Note that the field quantities Dx, Dy and Dz in (20)-(22) are locally aver-
aged values of Dx, Dy and Dz, respectively since the x-, y- and z-components
of the electric fields are in different locations in the FDTD domain [30]. How-
ever, the averaging needs to be applied along different directions depending
on the updating equations. Specifically in (20), the averaged Dy and Dz can
be calculated using

Dy(i, j, k) =
Dy(i, j, k)+Dy(i+ 1, j, k)+Dy(i, j − 1, k)+Dy(i+ 1, j − 1, k)

4
,

Dz(i, j, k) =
Dz(i, j, k)+Dz(i+ 1, j, k)+Dz(i, j, k − 1)+Dz(i+ 1, j, k − 1)

4
,

where (i, j, k) is the coordinate of the field component. In (21), the averaged
Dx and Dz can be calculated using

Dx(i, j, k) =
Dx(i, j, k)+Dx(i, j + 1, k)+Dx(i− 1, j, k)+Dx(i− 1, j + 1, k)

4
,

Dz(i, j, k) =
Dz(i, j, k)+Dz(i, j + 1, k)+Dz(i, j, k − 1)+Dz(i, j + 1, k − 1)

4
.

And in (22), the averaged Dx and Dy can be calculated using

Dx(i, j, k) =
Dx(i, j, k)+Dx(i, j, k + 1)+Dx(i− 1, j, k)+Dx(i− 1, j, k + 1)

4
,

Dy(i, j, k) =
Dy(i, j, k)+Dy(i, j, k + 1)+Dy(i, j − 1, k)+Dy(i, j − 1, k + 1)

4
.

The updating equations for the magnetic fields Hx, Hy and Hz are in
the same form as (20)-(22) with the same coefficients, and can be obtained
by replacing E with H and D with B. The averaged field components can
be calculated in a similar manner. Equations (5), (6), (20)-(22) and the
updating equations for H from B (not given) form the updating equation set
for the modeling of 3-D cloaks using the well-known leap-frog scheme [23]. If
the plasma frequency in (2) is equal to zero i.e. ωp = 0, and εθ = µθ = εφ =
µφ = 1, the above updating equation set reduces to the updating equation
set for the free space.

Since the FDTD method is inherently a numerical technique, the spatial
as well as time discretization has important effects on the accuracy of simu-
lation results. Also because the permittivity and permeability are frequency
dependent, one can expect a slight difference between the analytical and
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numerical material parameters due to the discrete time step in the FDTD
method. From our previous analysis [31] that for the modeling of metamate-
rials especially the LHMs, the numerical errors due to the time discretization
will cause spurious resonances, hence a requirement of ∆x < λ/80 is neces-
sary. Following the same approach as in [22], one can find that the numerical
permittivity ε̃r for the ideal 3-D cloak takes the following form:

ε̃r = ε0

[
1−

ω2
p(∆t)2 cos2 ω∆t

2

2 sin ω∆t
2

(
2 sin ω∆t

2
− jγ∆t cos ω∆t

2

)
]
. (23)

Note that Eq. (23) simplifies to the analytical Drude dispersion model (2)
when ∆t → 0. With the expression of the numerical permittivity (23) avail-
able, one can correct the errors introduced by the discrepancy between the
numerical and analytical material parameters. For example, if the required
permittivity is εr = ε′r + jε′′r , after simple derivations, the corrected plasma
and collision frequencies can be calculated as

ω̃p
2 =

2 sin ω∆t
2

[
−2(ε′r − 1) sin ω∆t

2
− ε′′rγ∆t cos ω∆t

2

]

(∆t)2 cos2 ω∆t
2

,

γ̃ =
2ε′′r sin

ω∆t
2

(ε′r − 1)∆t cos ω∆t
2

. (24)

The above averaging of field components and the correction of numerical
material parameters ensure stable and accurate FDTD simulations of the 3-D
cloak. However if the averaging is not applied, the field distribution becomes
unsymmetrical and hence incorrect; if the numerical material parameters
are not corrected, the FDTD simulations become unstable before reaching
the steady-state. Therefore in our simulations of the 3-D cloaks, the field
averaging and corrected material parameters (24) are always used.

The FDTD method is a versatile numerical technique. However, similar
to other numerical methods, it is computationally intensive. For large elec-
tromagnetic problems such as the modeling of 3-D cloaks, the requirement
for system resources is beyond the capability of a single personal computer
(PC). One way to resolve this problem is to divide the whole computational
domain into many smaller sub-domains, and each sub-domain can be handled
by a PC. By linking the PCs together with an appropriate synchronization
procedure, the original large problem can be decomposed and solved effi-
ciently.

13



One of the most attractive features of the FDTD method is that it can
be easily parallelized with very little modifications to the algorithm. Since
it solves Maxwell equations in the time-space domain, the parallel FDTD
algorithm is based on the space decomposition technique [33, 34]. The data
transfer functionality between processors (PCs) is provided by the message
passing interface (MPI) library. Data exchange is required only for the ad-
jacent cells at the interface between different sub-domains and is performed
at each time step, hence the parallel FDTD algorithm is a self-synchronized
process. Figure 1 shows the arrangement of the field components in different
sub-domains in parallel FDTD simulations. The red arrows are the trans-

Ey

Hx

Hy

Ex

Ez

Hz

Ey

Hx

Hy

Ex

Ez

Hz

Sub-domain I Sub-domain II

Figure 1: The arrangement of field components in different sub-domains in parallel FDTD
simulations. The red arrows indicate the field components which are transferred from the
neighboring domain during the data communication process and used to update the field
components on the boundary of the current sub-domain.

ferred field components from the neighboring sub-domain during the data
communication process. At the end of parallel FDTD simulations, the re-
sults calculated at each processor need to be combined to obtain the final
simulation result. In comparison to conventional parallel FDTD method,
the parallelization of the dispersive FDTD method introduced in this pa-
per requires additional field components to be transferred between adjacent
sub-domains during the synchronization process, because of the applied field
averaging scheme. The complexity of algorithm further increases if the whole
computational domain is divided along more than one direction, although the
data communication load and the overall simulation time may be reduced.

The PC cluster used to simulate 3-D cloaks in Queen Mary, University of
London consists of one head node for monitoring purposes and fifteen com-
pute nodes for performing calculation tasks. Each node has Dual Intel Xeon
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E5405 (Quad Core 2.0 GHz) central processing units (CPUs) and there are
128 cores and 512 GB memory in total. The nodes are connected by a 24-
port gigabit switch. The GNU C compiler (GCC) and a free version of MPI,
MPI Chameleon (MPICH), developed by Argonne National Laboratory [32],
are used to compile the developed parallel dispersive FDTD code and han-
dle the inter-core data communications, respectively. The above developed
parallel dispersive FDTD method has been implemented to model the ideal
3-D cloaks, and the simulation results and discussions are presented in the
following section.

3. Numerical results and discussions

The 3-D FDTD simulation domain is shown in Fig. 2. The FDTD cell
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Figure 2: The 3-D parallel dispersive FDTD simulation domain for the case of plane-wave
incidence on the cloak. The red rectangle indicates the location of the source plane.

size in all simulations is ∆x = ∆y = λ/150 where λ is the wavelength at
the operating frequency f = 2.0 GHz. The time step is chosen according
to the Courant stability criterion [24] i.e. ∆t = ∆x/

√
3c. The radii of the

cloak are R1 = 0.1 m and R2 = 0.2 m. In the present paper, only the
ideal case (lossless) is considered i.e. the collision frequency in (2) is equal
to zero (γ = 0). The radial dependent plasma frequency can be calculated
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using (24) with a given value of εr calculated from (1). The computational
domain is truncated using Berenger’s perfectly matched layer (PML) [35]
in y-direction to absorb waves leaving the computational domain without
introducing reflections, and terminated with periodic boundary conditions
(PBCs) in x- and z-directions for the modeling of a plane-wave source. The
plane-wave source is implemented by specifying a complete plane of FDTD
cells using a certain wave function. The electric and magnetic fields of the
plane wave are along the z- and x-axis, respectively and the propagation
direction is along the y-axis, as indicated in Fig. 2. For simplicity, the whole
simulation domain is only divided along y-direction into 100 sub-domains
and in total 100 processors and 220 gigabyte (GB) memory were used to run
the parallel dispersive FDTD simulations. Each simulation lasts around 45
hours (13000 time steps) before reaching the steady-state.

Figures 3 and 4 show the normalized steady-state field distributions for
the Ez andHx components in y-z and x-y planes, respectively. It can be seen
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Figure 3: Normalized field distributions for the Ez component in (a)-(c) y-z plane and
(d)-(f) x-y plane in the steady-state of the parallel dispersive FDTD simulations. The
cutting planes are (see Fig. 2): (a) x = 2λ, (b) x = 4λ/3, (c) x = λ, (d) z = 2λ, (e)
z = 4λ/3, (f) z = λ. The wave propagation direction is from left to right.
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Figure 4: Normalized field distributions for the Hx component in (a)-(c) y-z plane and
(d)-(f) x-y plane in the steady-state of the parallel dispersive FDTD simulations. The
cutting planes are (see Fig. 2): (a) x = 2λ, (b) x = 4λ/3, (c) x = λ, (d) z = 2λ, (e)
z = 4λ/3, (f) z = λ. The wave propagation direction is from left to right.

that the plane wave is guided by the cloak to propagate around its central
region, and recomposed back after leaving the cloak. There is nearly no
reflection (except those tiny numerical ones due to the finite spatial resolution
in FDTD simulations), since the material parameters (1) vary continuously
in space while keeping the impedance the same as the free space one. It
is also interesting to notice that the Ez component in y-z and x-y planes
in Fig. 3 and the Hx component in x-y and y-z planes in Fig. 4 have the
same distributions (with different amplitude), which is due to the fact that
the ideal 3-D cloak is a rotationally symmetric structure with respect to the
electric and magnetic fields. The wave behavior near the 3-D cloak can be
better illustrated using the power flow diagram, as plotted in Fig. 5. It is
shown that the Poynting vectors are diverted around the central area enclosed
by the cloak. Therefore objects placed inside the cloak do not introduce any
scattering to external radiations and hence become ‘invisible’.

The above presented results validate the developed parallel dispersive
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Figure 5: Power flow diagram of a plane wave incidence on the ideal 3-D cloak calculated
from parallel dispersive FDTD simulations.

FDTDmethod and demonstrate the cloaking property of the structure. How-
ever, there are some numerical issues that need to be addressed in FDTD sim-
ulations. Besides the correction of numerical material parameters introduced
earlier, since the cloak is a sensitive structure, for single-frequency simula-
tions, the switching time of the sinusoidal source also has significant impact
on the convergence time. Normalized field distributions from the simulations
using different switching time are plotted at the time step t = 1320∆t and
shown in Fig. 6. It can be seen that if the source is switched to its maximum
amplitude within a short period of time, because of the multiple frequency
components excited, and the cloak is essentially a narrowband structure due
to its dispersive nature, the scattering from the cloak may occur, as shown in
Fig. 6(a). The scattered waves oscillate within the lossless cloak and hence
it requires a very long time for the simulations to reach the steady-state. It
is also demonstrated that if the switching time is greater than 10T0 where T0

is the period of the sinusoidal wave, the scattered waves can be significantly
reduced and a much shorter convergence time in simulations can be achieved.
Therefore in the previous simulations, the switching time of 30T0 was used.

Since the FDTD method is a time domain technique, it is convenient to
study the transient response of the 3-D cloak. The snapshots of the field
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Figure 6: Comparison of the influence of different switching time (ST) of the sinusoidal
source on the simulation results: (a) ST = T0, (b) ST = 10T0, (c) ST = 30T0, where T0

is the period of the sinusoidal wave. The wave propagation direction is from left to right
and the normalized field distributions are plotted in the x-y plane (z = 2λ, see Fig. 2) and
at the time step t = 1320∆t.

distributions for the Ez component at different time steps t = 3000∆t (5.77
ns), t = 5000∆t (9.62 ns), t = 8000∆t (15.40 ns) are taken and plotted in
Fig. 7. It is shown in Fig. 7(a) that outside the shadow region behind the
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Figure 7: Snapshots of the field distributions for the Ez component at different time steps
in the parallel dispersive FDTD simulations: (a) t = 3000∆t (5.77 ns), (b) t = 5000∆t
(9.62 ns), (c) t = 8000∆t (15.40 ns), plotted in the x-y plane (z = 2λ, see Fig. 2). The
wave propagation direction is from left to right.

cloak (y ∼ 3.5λ, x < 0.5λ and x > 3.5λ), waves propagate at the speed
of light and the wave front remains the same as the one before reaching
the cloak. However due to the fact that the waves that travel through the
cloak undergo a longer path compared to the free space one, and since the
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group velocity cannot exceed the speed of light, the wave front experiences a
considerable delay in forming back to the free space one in the shadow region
behind the cloak, as it is illustrated by the field distributions at different time
steps in FDTD simulations in Fig. 7. In fact, the convergence of simulations
is quite slow and the steady-state is reached in simulations at around 13000
time steps (25.02 ns).

Another advantage of the FDTD method is that a wideband frequency
response can be obtained with a single run of simulations. In comparison to
the previous single-frequency case, a wideband Gaussian pulse with the cen-
tral frequency of 2.0 GHz and covering the frequency range of 1.5 ∼ 2.5 GHz
is used instead. At 5 FDTD cells away at both the front and back of the cloak
along its central axis (x = z = 2λ, see Fig. 2), the amplitude of Ez is recorded
during the simulation and then transformed to the frequency domain. The
recorded time domain signals and their spectra are plotted in Fig. 8. It is
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Figure 8: (a) The recorded time domain signals at 5 FDTD cells away at both the front
and back of the cloak along its central axis (x = z = 2λ, see Fig. 2). (b) The spectra of
the recorded time domain signals.

found from Fig. 8(a) that the time delay between the directly received time
domain signal in front of the cloak (red solid line) and the received time
domain signal through the cloak (blue dashed line) is approximately 3.4 ns.
However the distance between the two recording points is 0.402 m and the
expected time delay for a plane wave propagating in the free space is 1.34
ns. This clearly demonstrates that the 3-D cloak introduces a time delay to
the waves propagating through it. It is also found from Fig. 8(a) that the
width of the pulse passing through the cloak has been broadened, which is
due to the dispersive nature of the cloaking material. It is interesting to note

20



that in Fig. 8(b), the spectrum of the directly received time domain signal is
centered at 2.0 GHz, however the central frequency of the signal that passes
through the cloak is considerably higher (∼ 2.1 GHz). This frequency shift
has been demonstrated theoretically in [36], which is explained as that the
frequency components higher than the working frequency of the cloak are
enhanced and the frequency components lower than the working frequency
of the cloak are weakened. The shift is found to be much more pronounced
from our analysis since the observation point is taken near the back surface
of the cloak in our simulations, and it was 30λ away from the cloak consid-
ered in [36]. The difference may be also due to the Lorentz dispersion model
considered for the permeability of the cloak in [36], while in our simulations,
both the permittivity and permeability are assumed to follow the same Drude
dispersion model.

4. Conclusion

In conclusion, a parallel dispersive FDTD method has been developed to
model the ideal 3-D cloak. The radial dependent permittivity and perme-
ability of the cloak are mapped to the Drude dispersion model and taken
into account in FDTD simulations using an ADE based method. Due to the
memory restraint of a single PC, a parallel FDTD method is developed to
handle the large amount of memory and simulation time required to model
the 3-D cloak. FDTD simulation results are validated by those obtained
using analytical methods. It is demonstrated that for single-frequency simu-
lations, the source excitation needs to be switched on slowly enough to avoid
the wave scattering from the cloak, due to the sensitivity of the cloaking ma-
terial. It is also shown from the transient FDTD analysis that waves passing
through the cloak experience a considerable time delay comparing with the
free space propagations, as well as a pulse broadening effect and a blue-shift
of the pulse’s central frequency.

The ideal 3-D spherical cloak is considered in this paper. The method
developed here can be also used to model cylindrical cloaks and compare
their properties with the spherical one, such as the direction dependency
issue. The ideal cloaks are lossless and the cloaking material properties vary
in space continuously, which make their practical realization very difficult.
The developed FDTD method can be also applied to study the effect of losses
in cloaks, evaluate the performance of simplified cloaks as well as assist the
design and realization of practical cloaks.
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