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Abstract

One of the more promising recent approaches to turbulence modelling is the Varia-
tional Multiscale Large Eddy Simulation (VMS LES) method proposed by Hughes
et al. [Comp. Visual. Sci., vol. 3, pp. 47-59, 2000]. This method avoids several con-
ceptual issues of traditional filter-based LES by employing a priori scale partitioning
in the discretization of the Navier-Stokes equations.

Most applications of VMS LES reported to date have been based on hierarchical
bases, in particular global spectral methods, in which scale partitioning is straight-
forward. In the present work we describe the implementation of the methodology
in a three-dimensional high-order spectral element method with a nodal basis. We
report results from coarse grid simulations of turbulent channel flow at different
Reynolds numbers to assess the performance of the model.
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1 Introduction

Large-eddy simulations (LES) provides a physically more appealing framework
for turbulent flow prediction than the more traditional Reynolds-averaged

∗ Corresponding author.
Email addresses: Thor.Gjesdal@ffi.no (Thor Gjesdal),

Carl-Erik.Wasberg@ffi.no (Carl Erik Wasberg), Bjorn.Reif@ffi.no (Bjørn
Anders Pettersson Reif), Oyvind.Andreassen@ffi.no (Øyvind Andreassen).

Preprint submitted to Journal of Computational Physics 25 May 2006

http://arxiv.org/abs/physics/0606181v1


models (RANS). In the latter the full impact of the ensemble averaged effect
of turbulent advection on the mean flow field has to be modeled. The essence
of the LES approach on the other hand is to directly solve (with a complete
time and space resolution) the three-dimensional and time-dependent motion
of the largest turbulent scales. These scales are in general associated with the
most energetic motion of the turbulence field and it is (ideally) only the least
energetic motion that need to be modeled. The concept as such is therefore
well suited to confront the scale complexity and transient behavior inherent to
turbulent flows and offers a more complete representation than RANS models
per se.

In traditional LES, large- and small-scale motion are separated by applying a
spatial filtering operation to the Navier-Stokes equations. This results in a set
of equations for the large-scale motion. The residual motion, i.e. turbulent mo-
tions on scales that are smaller than the filter width, appear in these equations
as a residual stress term that must be modeled. There are several conceptual
issues in filter-based LES that have to be addressed. For instance, filtering
and spatial differentiation do not in general commute on bounded domains or
for non-uniform grids, and it is not obvious how to prescribe correct bound-
ary conditions for the filtered velocity at solid walls. Another unwarranted
character of filter-based LES models is that the residual stress model has a
tendency to affect the entire range of the spectrum and not only represent the
filtered effect of the unresolved scales near the spectral cut-off. These issues
have been the subject of a considerable amount of research, and the lesson
learned, in general, is that LES works well in cases where the rate-controlling
processes occur at the largest (resolved) scales of motion, or equivalently in
flows where the unresolved scales, and consequently the model, only plays a
secondary dynamical role.

In this paper we consider a different approach to LES, the variational multi-
scale (VMS) LES method originally proposed by Hughes et al. [1]. The VMS
LES method employs an a priori scale partitioning in the discretization of
the Navier-Stokes equations, instead of filtering to separate the large- and
small-scale motion. The scale partitioning appears to overcome some of the
disadvantages of filter-based LES. First, since there is no filtering, all issues
concerning commutation errors and boundary conditions at solid walls are ad-
dressed. Second, since the scale partitioning is performed during discretization,
we develop different equations representing different ranges of the spectrum.
Different modelling assumptions can then be applied to each range of the spec-
trum, improving our ability to apply the model terms where they are needed,
and only there.

We implement the VMS LES formulation in a high order spectral element
method for the solution of the Navier-Stokes equations. Spectral element meth-
ods offer an attractive combination of the accuracy of spectral methods and
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the flexibility of finite element methods. This provides us with an attractive
framework for model development in which the numerical errors can be con-
trolled, such that the true performance of the model can be assessed. The first
implementations of the variational multiscale LES method [2,3,4] used global
spectral methods. These methods naturally employ an orthogonal modal basis,
such that the scale partitioning becomes straightforward. Recently, the method
has also been implemented in the context of other numerical schemes, such
as finite element methods [5,6] and finite volume methods [7]. Our spectral
element code uses an element-wise discretization with nodal basis functions
that contain information on all the scales. One of the challenges of the present
work is therefore to devise a way to separate the large and the small scales,
and to implement the VMS terms. We show that this can be achieved by an
element-by-element transformation into the Legendre modal basis functions.

In the following sections we will discuss the variational multiscale method as a
turbulence modelling tool, and describe the implementation of the method in a
spectral element solver for the incompressible Navier-Stokes equations. Finally
we will present computed results, from both a high-resolution DNS and coarse
grid VMS LES for the turbulent flow in a plane channel at different Reynolds
numbers. The computed results show that, even with simple modelling applied
to the small-scale equations, the performance of the methodology is promising.

2 The variational multiscale method

In this section we will discuss the variational multiscale method as a tool for
turbulence modelling. The variational multiscale LES method was introduced
by Hughes et al. [1] and later elaborated by Collis [8]. We will outline the
method following Collis, to shed light on the modelling assumptions employed
in the derivation of the model.

The Navier-Stokes equations describing the dynamics of a viscous, incompress-
ible fluid are

∇ · u = 0, (1a)

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u+ f , (1b)

where the independent variables are the velocity, u = (u, v, w), and the pres-
sure, p. The kinematic viscosity is denoted by ν, and f is a body force term.
The non-dimensional parameter that characterizes the flow is the Reynolds
number Re = |u|L/ν.

For ease of presentation we assume homogeneous Dirichlet boundary condi-
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tions for the velocity, i.e.

u(x) = 0 x ∈ Γ.

We can then construct the weak, or variational, formulation by choosing test
and trial functions in the same function space V. Note however that in general
the test and trial spaces will differ at the boundary.

U = (u, p) ∈ V

W = (w, q) ∈ V

We take the inner product of W with Eq. (1) (written in the compact form
N (U) = F ) to obtain the weak Navier-Stokes operator:

(W,N (U)) ≡ L(W,U)−R(w,u) = (W,F ), (2)

comprising the linear Stokes operator

L(W,U) ≡ (w,
∂u

∂t
)− (∇ ·w, p) + (∇sw, 2ν∇su) + (r,∇ · u), (3)

and nonlinear advection represented by the Reynolds projection

R(w,u) = B(w,u,u), (4)

where B is the tri-linear term.

B(w,u, v) ≡ (∇w,uv). (5)

To take into account the multiscale representation, we write the solution space
V as a disjoint sum

V = V ⊕ Ṽ ⊕ V̂,

in which V and Ṽ comprise the large and small scales, respectively, whereas V̂
contains the unresolved scales that cannot be represented by the numerical dis-
cretization. The scale partitioning is sketched in Fig. 1. Now, by decomposing
the test and trial functions in these spaces

U = U + Ũ + Û ,

W = W + W̃ + Ŵ ,

we can develop exact variational equations governing different scales. Further-
more, by assuming that the scale partitioning is orthogonal, we obtain the
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Fig. 1. Schematic of the turbulent energy spectrum with scale partitioning

following equations governing the large, the small, and the unresolved scales:

L(W,U)−R(w,u)− (W,F )−R(w, ũ)− C(w,u, ũ)

= R(w, û) + C(w,u, û) + C(w, ũ, û),
(6a)

L(W̃ , Ũ)−R(ũ, ũ)− (W̃ , F )−R(ũ,u)− C(ũ,u, ũ)

= R(w̃, û) + C(ũ,u, û) + C(w̃, ũ, û),
(6b)

L(Ŵ , Û)−R(ŵ, û)− C(ŵ,u, û)− C(ŵ, ũ, û)

= R(ŵ,u) +R(ŵ, ũ) + C(ŵ,u, ũ) + (Ŵ , F ),
(6c)

where C(w,u,u′) = B(w,u,u′) + B(w,u′,u) is the cross stress term. We
have written these equations in a form such that all terms that depend on the
unresolved scales are collected in the right-hand sides. It is thus evident that
there is an effect of the unresolved scales on the computable, resolved scales,
and it goes without saying that this effect must be modeled. In the original
paper by Hughes et al. [1], the modelling assumptions were not stated, but
the issue was clarified by Collis [8], who showed that essentially the following
assumptions result in a method that is identical to the method proposed by
Hughes (which by then had produced excellent results [2,3])

• The separation between large and unresolved scales is sufficiently large so
that there is negligible direct dynamic influence from the unresolved scales
on the large scales.

• The dynamic impact of the unresolved scales on the small scales are on
average dissipative in nature.

The simple scalar Smagorinsky-type model is in an averaged sense fully consis-
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tent with the last assumption. In order to approximate the temporal behaviour
at the cut-off, a more refined modelling approach would be needed. This is
however outside the scope of the present study.

With these assumptions, the LES model is only applied to the small scale
equation, adding additional dissipation where it is mostly needed. Different
implementations of this method by the Hughes group [2,3], by Ramakrishnan
and Collis [4], and by Jeanmart and Winckelmans [9] have produced very good
results even for wall-bounded channel flows.

We remark here that both assumptions are, or at least should be, open to
scrutiny. Firstly, although it is plausible that the unresolved scales do not
influence the large scales, it is not necessarily obvious. In fact, a recent anal-
ysis by Oberai et al. [10] showed that the energy transfer from the large and
small scales, respectively, to the unresolved scales depends critically on the
discretization method and the function spaces that are used to perform the
scale partitioning. Furthermore, Reynolds number effects or other aspects of
the flow physics may mandate that a more sophisticated model for the large
scales must be taken into account. Secondly, the assumption of a one-way
cascade from the small to the unresolved scales require that flow is properly
resolved, such that the cut-off is far out in the inertial range. This is unfor-
tunately not always the case in LES computations. Such considerations are,
however, outside the scope of the present study. Our objective is to present an
implementation of the VMS LES formulation in the spectral element method.
For this purpose the assumptions employed to date [1,8] are acceptable. At
present, we merely note in passing that the VMS method presents an excellent
framework for improved modelling to address these issues.

Bearing the above in mind, we can formulate the variational modeled equa-
tions. The effect of the unresolved scales on the large scales, given by the
right-hand side of (6a), is neglected according to the first assumption, while
the effect of the unresolved scales on the small scales, given by the right-
hand side of (6b), is modeled by a Smagorinsky term. The equation for the
unresolved scales is naturally omitted. The resulting set of equations is

L(W,U)−R(w,u)−R(w, ũ)− C(w,u, ũ)− (W,F ) = 0, (7a)

L(W̃ , Ũ)−R(w̃,u)−R(w̃, ũ)− C(w̃,u, ũ)

− (W̃ , F ) = −(∇sw̃, 2νT∇
sũ).

(7b)

The terms that couple the different scales are evident in (7); the small-scale
equation has been supplemented with a dissipative term that accounts for the
interactions between the small and the unresolved scales, whereas large-scale
Reynolds and cross stress projection account for the large-scale influence on
the small scales. The large-scale equation contains a projection of the small-
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scale Reynolds stress onto the large-scale to account for interaction between
the small and the large scales (i.e. back-scatter).

We are however chiefly concerned with the complete resolved solution Ũ =
U + Ũ , not with the large and small scales per se, and adding the large- and
small-scale equations we obtain

(
W̃ ,N (Ũ)

)
+ (∇sw̃, 2νT∇

sũ) = (W̃ , F ). (8)

We note that in this equation, all the interaction terms between the large
and the small scales are accounted for in the advection operator R, which is
part of the first term on the left-hand side in (8). The projected cross and
Reynolds stress terms that appear in the large- and small-scale equations (7)
are therefore mainly important for analysis and turbulence modelling, but need
not necessarily impact on the implementation of the method. The variational
formulation is hence primarily an analysis tool and a vehicle for developing the
VMS methodology. The essential feature of the method is that the turbulence
modelling should be confined to the small scales. As long as a suitable scale
partitioning can be performed on the solution space, the methodology can in
principle be applied to any discretization, as indicated by Hughes et al. [2].

3 Implementation in the spectral element method

In this section we describe the implementation of a VMS LES model in a high-
order spectral element method for the solution of the incompressible Navier-
Stokes equations.

We will start with a brief discussion of Legendre polynomials and the spectral
element basis functions. These concepts are important, both for the descrip-
tion of the basic numerical method as well as for the implementation of the
variational multiscale framework that follows. More details about the topics
covered in Sections 3.1 and 3.2 can be found in [11].

3.1 Legendre spectral elements

The Legendre polynomials are orthogonal with respect to the unweighted inner
product in the function space L2(−1, 1). The Legendre polynomials are given
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by the recurrence relation

L0(x) = 1,

L1(x) = x,

Lk+1(x) =
2k + 1

k + 1
xLk(x)−

k

k + 1
Lk−1(x), k ≥ 1,

(9)

where LN(x) is the Legendre polynomial of degree N .

The Gauss-Lobatto-Legendre (GLL) points {ξj}
N

j=0
on Λ = [−1, 1] are defined

as the extrema of the Nth order Legendre polynomial LN (x), in addition to
the endpoints of Λ:

ξ0 = −1, ξN = 1, L′

N(ξj) = 0, j = 1, . . . , N − 1, ξ0 < ξ1 < . . . < ξN . (10)

Furthermore, the Gauss-Legendre (GL) points {ηj}
N−1

j=1
on Λ, that are used to

represent the pressure in the spectral element method, are defined implicitly
by LN−1(ηj) = 0, i.e. as the zeros of the Legendre polynomials of order (N −
1) [12]. Note that the GL points do not include the endpoints of Λ.

The spectral element nodal Gauss-Lobatto-Legendre basis is defined by choos-
ing trial and test functions to be the corresponding Lagrangian interpolants
at the Gauss-Lobatto-Legendre (GLL) grid points, constructed as Nth order
polynomials such that each function has the property

hj(ξi) = δij, i = 0, . . . , N. (11)

A function w(x) defined on Λ can then be represented by the interpolating
polynomial:

wh(x) =
N∑

i=0

wihi(x), x ∈ Λ, (12)

where wi = w(ξi) are the function values at the GLL points. Higher-dimen-
sional trial and test functions are constructed as tensor products of these one-
dimensional functions. Each velocity component is represented this way on
each element, and the global representation is the sum of the representations
on all elements.

A Gauss-Legendre nodal basis for the pressure is constructed in an analogous
way, only taking into account that we use lower-order polynomials in the basis
for the pressure to avoid spurious pressure modes in the solution [13].

3.2 Spectral element Navier-Stokes solver

To solve the Navier-Stokes equations (1) we employ an implicit-explicit time
splitting in which we integrate the advective term explicitly, while we treat
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the diffusive term, the pressure term, and the divergence equation implicitly.
After discretization in time we can write (1) in the form

(αI − ν∇2)un+1 = ∇p+ g(f ,un,un−1, . . . ), (13a)

∇ · un+1 = 0, (13b)

in which the explicit treatment of the advection term is included in the source
term g. In the actual implementation we use the BDF2 formula for the tran-
sient term,

∂u

∂t
=

3un+1 − 4un + un−1

2∆t
+O(∆t2),

which gives α = 3/2∆t in (13), while we compute the advective contributions
according to the operator-integration-factor (OIF) method [14].

The spatial discretization is based on a spectral element method [13,15]; the
computational domain is sub-divided into non-overlapping hexahedral cells or
elements. Within each element, a weak representation of (13) is discretized by
a Galerkin method in which we choose the test and trial functions from bases
of polynomial spaces

uh
i ∈ PN(x)⊗ PN (y)⊗ PN(z), (14a)

ph ∈ PN−2(x)⊗ PN−2(y)⊗ PN−2(z). (14b)

The velocity component variables are defined in the Gauss-Legendre-Lobatto
basis described above, and they are C0-continuous across element boundaries.
The pressure variable is represented in the Gauss-Legendre basis, and is dis-
continuous across element boundaries. As we noted above, the unknowns, or
dependent variables, in the discrete formulation are the function values of the
velocities in the GLL points, and of the pressure in the GL points.

The GLL grid corresponding to the Legendre polynomial of degree N has
(N + 1) points. Gauss-Lobatto-Legendre quadrature at the (N + 1) GLL
points is exact for polynomials of degree up to (2N − 1). Hence, the com-
putation of the inner products corresponding to the diffusive terms in (1) are
calculated exactly, whereas the evaluation of the non-linear advective terms
incurs quadrature (aliasing) errors. These errors can be detrimental to the sta-
bility of the method and must be controlled. The most fundamental approach
to de-aliasing is to perform over-integration [16,17] – that is, to over-sample
by a factor 3/2 and calculate the quadrature at this refined grid for the inner
products containing non-linear terms. The overhead involved depends on the
amount of the total computational time that is originally spent on the advec-
tion part, but for the channel flow calculations presented here, over-integration
typically leads to an increase of around 20% of computational time.

An alternative, and computationally more efficient approach, is to use polyno-
mial filtering of the solutions as proposed by Fischer and Mullen [18], where
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a simple filter operator with negligible computational cost is applied to the
solution at every time-step. The effect in the spectral space on each element
is to transfer a certain fraction (the filter strength) of the energy on the high-
est order basis polynomial in each element over to the third-highest order
polynomial [19]. By this operation, the pile-up of energy on the highest order
polynomial is reduced, while the values at the element boundaries are un-
changed. Filter strengths as small as 1–5% can have positive effects on the
solution.

For the solution of the discrete system of equations we now introduce the
discrete Helmholtz operator,

H =
3

2∆t
B + νA,

where A and B are the global three-dimensional stiffness- and mass matrices;
the discrete divergence operator,D; and the discrete gradient operator, G. Ap-
propriate boundary conditions should be included in these discrete operators.
This gives the discrete equations

Hun+1 −Gpn+1 = Bf , (15a)

−Dun+1 = 0, (15b)

where the change of sign in the pressure gradient term is caused by an inte-
gration by parts in the construction of the weak form of the problem. This
discrete system is solved efficiently by a second order accurate pressure cor-
rection method. If we let Q denote an approximate inverse to the Helmholtz
operator, given by a scaled inverse of the diagonal mass matrix, the pressure
correction method can be written

Hu∗ = Bf +Gpn, (16a)

DQG(pn+1 − pn) = −Du∗ (16b)

un+1 = u∗ + QG(pn+1 − pn), (16c)

where u∗ is an auxiliary velocity field that does not satisfy the continuity
equation, i.e. Du∗ 6= 0.

The discrete Helmholtz operator is symmetric and diagonally dominant, since
the mass matrix of the Legendre discretization is diagonal, and can be ef-
ficiently solved by the conjugate gradient method with a diagonal (Jacobi)
preconditioner. Whereas the pressure operator DQG is easily computed; it is
ill-conditioned. The pressure system is solved by the preconditioned conjugate
gradient method, with a multilevel overlapping Schwarz preconditioner based
on linear finite elements [20].
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3.3 Incorporation of VMS LES in the SEM

The implementations of the variational multiscale LES method reported in [2,3,4]
used global spectral methods. These methods naturally employ an orthogo-
nal modal basis, such that the scale partitioning becomes straightforward. Our
spectral element code uses on an element-wise discretization based on the Leg-
endre polynomials. The Legendre polynomials offer an orthogonal hierarchical
basis. Like the majority of the spectral element community, we do however
use a nodal basis constructed from the Lagrangian interpolant functions. In
this case all the basis functions contains information on all the scales and the
scale partitioning is no longer straightforward.

3.3.1 Nodal and modal bases

We have demonstrated above that in the nodal Gauss-Lobatto-Legendre basis
a function w(x) defined on −1 ≤ x ≤ 1 can be represented by a combination
of the interpolating polynomials, as given by (12). The coefficients in the sum
are the function values at the grid points.

An alternative, modal, representation is to use an expansion directly in the
Legendre polynomials

w(ξ) =
N∑

j=0

cj

√
2j + 1

2
Lj(ξ), (17)

where the unknowns now are the spectral coefficients cj . The factor
√

2j+1

2

is used to normalize the basis. The scaled Legendre polynomials represents a
natural orthonormal basis, in which it is straightforward to perform the scale
partitioning. In this setting, it is natural to associate the low order polynomials
with the large scales and the higher order polynomials with the smaller scales.

The nodal and modal bases are related through the linear transformation

Kc = w, (18)

where the entries of the matrix K are given by

(K)ij =

√
2j + 1

2
Lj(ξi),

and c and w are the vectors of spectral coefficients and GLL nodal function
values, respectively.

Let N = N + Ñ , such that N is the dimension of the polynomial basis for the
large scales and Ñ is the dimension of the small-scale space. The large-scale
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Fig. 2. Large- and small-scale partitions in the 2-dimensional polynomial wavenum-
ber space. The chosen partition operators are shown to the right.

part of a nodal function w can then be written as

w̃ = KTK−1w, (19)

where T = diag(I
Ñ
, 0N) is the operator that annihilates the small-scale compo-

nents in the modal basis. For notational convenience, we define the large-scale
extraction operator

L = KTK−1,

while the corresponding small-scale extraction operator is

S = I − L.

When tensor products of these operators are formed in higher dimensions, the
resulting operators extract the components with large-scale, or small-scale,
respectively, components in all dimensions. The sum of these two operators
does not add up to the identity, so we choose to define the three-dimensional
small-scale extraction operator to be

S = I − (Lz ⊗ Ly ⊗ Lx). (20)

This is illustrated in two dimensions in figure 2. The resulting small-scale
extraction operator returns functions with small-scale structure in at least

one dimension.

3.3.2 Properties of the large-small partition

The large-scale extraction operator corresponds to a sharp cut-off in the Leg-
endre modal space. To illustrate the effect in Fourier space of this large-small
partitioning, we represent the function

f(x) =
12∑

k=0

cos(kx) (21)

12
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Fig. 3. Fourier representation of a sharp cut-off in Legendre modal space.

on a spectral element grid on [0, 2π] with 6 elements and 7 grid points in
each element. Higher wave-numbers can not be represented accurately on this
particular grid. We extract the large- and small-scale partitions using N = 4 of
the 7 modes (57%) on each element as the large-scale space. The two resulting
functions are sampled on a 54-point regular grid, and their Fourier spectra are
plotted in figure 3.

The main point illustrated by figure 3 is that although the scale partitioning
in the Legendre space is done as a sharp cut-off, the Fourier spectra of the
two partitions are much smoother. The reason for this is that each the original
cosine terms is represented by a combination of local Legendre modes on each
element. We also note that the gradual growth in the small-scale spectrum
starts around the cut-off percentage, so the impact of the small-scale extraction
is weaker than for a straightforward Fourier representation.

In a more general case with variable element size and/or polynomial order, it
may be possible to vary the cut-off point in the local Legendre space to keep
the corresponding “average wavelength” approximately constant throughout
the whole domain.

3.3.3 Implementation of the model term

We now turn our attention to the implementation of the variational multiscale
model term (∇sw̃, 2νT∇sũ) from (8). Note that the turbulent eddy viscosity
νT is not a material property of the fluid, but a property of the flow field and
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as such varies through the flow domain.

It is instructive to first consider the one-dimensional case with a constant
eddy viscosity. Furthermore, for ease of exposition, we only consider a single
element. In this case, the weak form of the model term above is

νT

∫
∂w̃

∂x

∂ũ

∂x
. (22)

Using the small-scale extraction operator defined above, we have

ũ(x) =
N∑

m=0

N∑

q=0

Smqu
qhm(x), (23)

and for a given test function on Lagrange form (wi(x) = hi(x))

w̃i(x) =
N∑

p=0

Spihp(x). (24)

Inserting these representations and using Gauss-Lobatto quadrature, we ob-
tain

(∇w̃,∇ũ) =
N∑

r=0

N∑

p=0

N∑

m=0

N∑

q=0

Spih
′

p(ξr)Smqu
qh′

m(ξr)ρr

=
N∑

p=0

Spi

N∑

m=0

N∑

q=0

Smqu
q

N∑

r=0

h′

p(ξr)h
′

m(ξr)ρr

=
N∑

p=0

Spi

N∑

m=0

N∑

q=0

Smqu
qApm

=
N∑

q=0

(STAS)iqu
q = STASu

= (I − L)TAũ,

(25)

where the final line is in the form we generalize to higher dimensions. It is easily
seen from the second-to-last line that (25) represents a symmetric operator
acting on u.

The corresponding term in three dimensions is

(∇w̃,∇ũi) =
(
(Bz ⊗ By ⊗Ax)− (LzT ⊗ LyT ⊗ LxT )(Bz ⊗ By ⊗Ax)

)
ũi

+
(
(Bz ⊗ Ay ⊗Bx)− (LzT ⊗ LyT ⊗ LxT )(Bz ⊗ Ay ⊗ Bx)

)
ũi

+
(
(Az ⊗ By ⊗Bx)− (LzT ⊗ LyT ⊗ LxT )(Az ⊗ By ⊗ Bx)

)
ũi

(26)

for each component ui.
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Taking into account that the eddy viscosity, νT (x, y), is not constant but rather
a function that varies in space, will distort the tensor product structure of (26).
Following the procedure for discretization of terms with variable coefficients
described in [11], we can write

(∇w̃, 2νT (x, y, z)∇ũi) = 2
(
Iz ⊗ Iy ⊗DxT

)
V (Iz ⊗ Iy ⊗Dx) ũi

− 2
(
LzT ⊗ LyT ⊗ (DxLx)T

)
V (Iz ⊗ Iy ⊗Dx) ũi

+ 2
(
Iz ⊗DyT ⊗ Ix

)
V (Iz ⊗Dy ⊗ Ix) ũi

− 2
(
LzT ⊗ (DyLy)T ⊗ LxT

)
V (Iz ⊗Dy ⊗ Ix) ũi

+ 2
(
DzT ⊗ Iy ⊗ Ix

)
V (Dz ⊗ Iy ⊗ Ix) ũi

− 2
(
(DzLz)T ⊗ LyT ⊗ LxT

)
V (Dz ⊗ Iy ⊗ Ix) ũi.

(27)

In this equation, D denotes the GLL derivation matrix in each direction. Fur-
thermore, the values of the eddy viscosity are lumped with the GLL integration
weights in the diagonal matrix V with the entries νrst

T ρxrρ
y
sρ

z
t , in which rst are

the grid point indices and V is ordered to be consistent with the ordering of
the element grid points.

We are now finally ready to consider the model term in the form given in (8).
Since the product of a symmetric and an anti-symmetric tensor is zero, we
find that we only need to to compute the inner product

(∇w̃, 2νT∇
sũ) =

(
∂w̃

∂xj

, νT
∂ũi

∂xj

)
+

(
∂w̃

∂xj

, νT
∂ũj

∂xi

)
. (28)

In tensor product form, the VMS small-scale dissipation term for the compo-
nent of the momentum equation becomes

(∇w̃, 2νT (x, y, z)∇ũ1)

= 2
{(

Iz ⊗ Iy ⊗DxT
)
−
(
LzT ⊗ LyT ⊗ (DxLx)T

)}
V (Iz ⊗ Iy ⊗Dx) ũ1

+
{(

Iz ⊗DyT ⊗ Ix
)
−
(
LzT ⊗ (DyLy)T ⊗ LxT

)}
V (Iz ⊗Dy ⊗ Ix) ũ1

+
{(

DzT ⊗ Iy ⊗ Ix
)
−
(
(DzLz)T ⊗ LyT ⊗ LxT

)}
V (Dz ⊗ Iy ⊗ Ix) ũ1

+
{(

Iz ⊗DyT ⊗ Ix
)
−
(
LzT ⊗ (DyLy)T ⊗ LxT

)}
V (Iz ⊗ Iy ⊗Dx) ũ2

+
{(

DzT ⊗ Iy ⊗ Ix
)
−
(
(DzLz)T ⊗ LyT ⊗ LxT

)}
V (Iz ⊗ Iy ⊗Dx) ũ3,

(29)
and we obtain similar expressions for the other two components. The couplings
between the velocity components, introduced by the second term of (28), are
handled by including the cross terms in the explicit part of the time splitting,
leaving the Helmholtz problem for the velocity components uncoupled.
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As seen from (29), the calculation of the VMS LES model terms requires sev-
eral additional operations. The increase in total computational work will vary
with the size and complexity of the simulation, but for the cases considered
in this paper the increase is in the range 20–40%, with the smallest relative
increase for the largest simulations. To put these numbers into perspective, we
note that the total computational complexity of the spectral element method
is O(K3N4), so increasing the polynomial order (N − 1) from 6 to 7 gives a
70% increase in computational time, about the same as increasing the number
of elements in each dimension (K) from 5 to 6 would give.

3.3.4 Smagorinsky model

The eddy viscosity νT (x, t) is chosen in [1] as a Smagorinsky-type function:

νT = (C ′

S∆
′)2|∇sũ|, (30)

or alternatively

νT = (C ′

S∆
′)2|∇sū|. (31)

The former was labeled “small-small” in [2], while the latter was labeled “large-
small”.

As the purpose of the model term is to approximate the effect of the unresolved
scales on the small scales, it is argued in [1] that (30) is more consistent with
the physical basis of the method, whereas (31) appears to be a computationally
attractive alternative. The results in [2,3] show that good results are obtained
with both methods. However, in terms of the spectral element implementation,
the “large-small” form is not a computational simplification. A more attractive
form is instead the “full-small” term

νT = (C ′

S∆
′)2|∇su|, (32)

in which the scale extraction operators are avoided completely.

The sum |∇su| can be written out as

|∇su| =

√√√√√1

2

3∑

i=1

3∑

j=1

(
∂ui

∂xj

+
∂uj

∂xi

)2

. (33)

The constant C ′

S is set to 0.1, following [2,3], while ∆′ is calculated for each
element as the geometric average of the mean grid spacing in each direction.
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4 Computational results

4.1 Channel flow

The plane turbulent channel flow is one of the simplest cases of an inhomoge-
neous turbulence field, and this configuration has therefore been extensively
used to assess the performance of turbulence models. The fully developed, sta-
tistically stationary, plane channel flow is an equilibrium flow, because there
is a global balance between the rate of production of turbulent kinetic energy
and the rate of viscous dissipation.

The fluid domain is bounded by two infinitely large parallel solid walls, and
the flow is driven by a constant mean pressure gradient in the stream-wise di-
rection along the walls. The boundary conditions are no-slip at the solid walls,
and periodicity is imposed in the streamwise (x) and spanwise (z) directions,
respectively. The wall-normal direction is thus y, and the channel half-height
is denoted h.

The instantaneous flow field is three-dimensional and time dependent, the
ensemble (or time) averaged flow field is however unidirectional. If we let 〈·〉
denote the ensemble average, we therefore have U = 〈u〉 = [U(y), 0, 0].

The friction velocity, uτ , is defined by

u2

τ ≡ ν ·
dU

dy

∣∣∣∣∣
wall

, (34)

and this is used in the definition of the relevant Reynolds number for plane
channel flow: Reτ ≡ uτh/ν.

Integrating the ensemble averaged Navier-Stokes equations in the wall-normal
direction yields

0 = −

(
dP

dx

)
y + µ

dU

dy
− ρ〈u′v′〉, (35)

where the pressure gradient is a constant, related to the Reynolds number by

−

(
dP

dx

)
=

µ2

h3
Re2τ . (36)

Hence, the sum of the viscous (µdU/dy) and turbulent (−ρ〈u′v′〉) stresses must
vary linearly across the channel. The turbulent stress contribution dominates
across the channel except very close to the wall where viscous stress dominates.
This region is usually referred to as the viscous sub-layer and its thickness
decreases with increasing Reynolds numbers.
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Present Moser del Álamo del Álamo
DNS et al. & Jiménez et al.

Reτ nom. 180 180 550 950
Reτ act. 178.83 178.13 546.75 934
Lx 8 4π 8π 8π
Ly 2 2 2 2
Lz 4 4

3
π 4π 3π

Nx 112 128 1536 3072
Ny 113 129 257 385
Nz 112 128 1536 2304
∆x+ mean 12.9 17.7 9.0 8.9
∆y+ min 0.10 0.054 0.041 0.032
∆y+ max 8.6 4.4 6.7 7.8
∆z+ mean 6.4 5.9 4.5 4.5
Elements 163 - - -
Pol. order 7 - - -

Table 1
Grid parameters for the present DNS and the reference simulations by Moser et
al. [21] and by del Álamo et al. [22,23]. Grid spacing in wall units are calculated
from the nominal Reτ .

Coarse-24 Coarse-36 Coarse-42 Coarse-60

Reτ nom. 180 180 550 950
Lx 8 8 8 8
Ly 2 2 2 2
Lz 4 4 4 4
Nx 24 36 42 60
Ny 25 37 43 61
Nz 24 36 42 60
∆x+ mean 40.0 60.0 104.8 126.7
∆y+ min 2.0 4.5 4.6 3.9
∆y+ max 21.1 29.8 57.4 68.8
∆z+ mean 20.0 30.0 52.4 63.3
Elements 43 63 73 103

Pol. order 6 6 6 6
Table 2
Grid parameters for the VMS LES runs. Grid spacing in wall units are calculated
from the nominal Reτ .

We consider three different Reynolds numbers: Reτ = 180, 550, 950, and the
VMS LES computations are compared with reference solutions obtained from
direct numerical simulations.
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y+

Reτ = 180: Moser et al, Chebyshev, N=129:

Reτ = 180: Present DNS, SEM, N=8, K=16, 113 pts:

Reτ = 180: Coarse-36, SEM, N=7, K=6, 24 pts:

Reτ = 180: Coarse-24, SEM, N=7, K=4, 24 pts:

Reτ = 550: del A’ lamo et al, Chebyshev, N=257:

Reτ = 550: Coarse-42, SEM, N=7, K=7, 42 pts:

Reτ = 950: del A’ lamo et al, Chebyshev, N=385:

Reτ = 950: Coarse-60, SEM, N=7, K=10, 60 pts:

Fig. 4. Details of the point and element distribution in the wall-normal direction
for the grids listed in Tables 1 and 2. The longer bars show element boundaries for
the spectral element grids.

4.2 Direct numerical simulations at Reτ = 180

As a first step towards our ultimate goal, to implement and evaluate the
variational multiscale LES method in a high order spectral element flow solver,
we performed a Direct Numerical Simulation to verify the code. To this end,
we considered fully developed channel flow at Reτ = 180, which corresponds
to the well-known benchmark simulations reported by Kim et al. [24]. We
performed the actual comparison of the results with the updated data set
reported by Moser et al. [21] who used a fully spectral Fourier/Chebyshev
method with 128× 129× 128 grid points.

The simulation was carried out on a computational domain that approxi-
mately corresponds to the one used by the reference solutions [21,24], see
Table 1 for details. Across the channel we used 16 non-uniformly distributed
elements with 8 nodal points in each element. In the streamwise and span-
wise directions we used 16 × 16 uniformly distributed elements with 8 × 8
nodal points per element. Thus, the total number of nodal points amounts
to 112 × 113 × 112 in the streamwise, wall-normal, and spanwise directions,
respectively. The solution was advanced in time with a time-step correspond-
ing to 0.18 viscous time-units (ν/u2

τ), and with 50% polynomial filtering [18]
on each time-step. The simulation was initiated by a flow field obtained from
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Fig. 5. Reτ = 180: Variation of the mean velocity across half the channel in viscous
units, compared with the reference solution of Moser et al. [21].

an existing plane channel flow solution obtained by a finite-volume code. The
flow then evolved approximately 54 flow-through times before a fully devel-
oped state was achieved. The results presented here was obtained by collecting
statistics over approx. 20 flow-through times. The flow statistics are averaged
over the homogeneous – streamwise and spanwise – directions. Homogeneity
in a specific direction implies that any correlation of a fluctuating quantities
remains invariant under translation in that direction.

4.2.1 Results

The actual computed Reynolds number is Re∗ = 178.83, i.e. within 0.7% of
the prescribed value and well within what can be expected. Moser et al. [21]
reported Re∗ = 178.13. The results presented in Figs. 5–8 compare in all
aspects very well with the benchmark data, thus establishing solid confidence
in the numerical method. The slight deviations reported herein is well within
what should be expected, and even closer correspondence could have been
obtained by simply collecting statistics for a longer period of time. This was,
however, not considered to be necessary.

As background for the VMS LES results presented below, we also include
results from a simulation on the grid “Coarse-36” (see Table 2 for grid prop-
erties). This simulation contains no turbulence modelling, but 2% polynomial
filtering [18] is employed. Except for the pressure correlations in Fig. 8, the re-
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root-mean-square velocity fluctuations across half the channel, compared with the
reference solution of Moser et al. [21].
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Fig. 8. Reτ = 180: Variation of the root-mean-square pressure fluctuations across
half the channel, compared with the reference solution of Moser et al. [21].

sults are so good that modelling is not expected to improve them. This shows
that the spectral element method gives high accuracy even for relatively coarse
grids, but it also indicates that plane channel flow is not the most challenging
test case. The availability of quality reference data makes it attractive as a
starting case, we must however keep in mind that the grids for the model tests
have to be sufficiently coarse and not turn into a “quasi-DNS” e.g. near the
walls.

4.3 VMS LES results

Lots of combinations of the scale partitioning parameter and the Smagorinsky
forms were tested for Reτ = 180, and the best choice was used for additional
simulations at Reτ = 550 and Reτ = 950.

The spectral element grid for Reτ = 180 was chosen as the “Coarse-24” grid
described in Table 2. The element interfaces in the wall-normal direction were
given by a coarse Gauss-Lobatto-Chebyshev grid, as recommended in [25].
The scale partitioning cut-off mode was kept constant for all elements, even
though the element size varied in the wall-normal direction.

In order to get a real test of the modelling, the grid had to be much coarser than
what would give reasonably good results without a model. Spectral element
grids for the higher Reynolds numbers were constructed such that the first
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Fig. 9. Reτ = 180: Variation of the mean velocity across half the channel in viscous
units, compared with the reference solution of Moser et al. [21].

element interface in the wall-normal direction is placed at approximately the
same value of y+ for all the cases, see the illustrations in Fig. 4. To reduce the
number of parameters, the polynomial degree was fixed for all the VMS LES
runs; only the number of elements was changed.

4.3.1 Simulations at Reτ = 180

The grid parameters for this case are given in the column “Coarse-24” in
Table 2.

Without a model, both over-integration and polynomial filtering (2%) was
necessary to keep the simulation stable at this resolution. With the VMS model
term, either method was sufficient. It was found that polynomial filtering did
reduce rather than improve the quality of the results. To obtain the presented
VMS results we therefore employed only over-integration in the simulations.

Beside using the different forms of the Smagorinsky term (30)–(32), the scale
partitioning was varied in the simulations. With a local grid of 7 grid points in
each direction on each element, we have used N = 4 and N = 5 for the large-
scale extraction described in Section 3.3.1. These values correspond to 57% and
71% of the one-dimensional spectrum, respectively. In three dimensions, the
resulting large-scale spaces consist of 19% and 35% of the modes, respectively.

Varying the scale partitioning had a strong influence on the results, and N = 5
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the reference solution of Moser et al. [21].

 0

 5

 10

 15

 20

 0.01  0.1  1  10  100

U
/u

τ

y
+

VMS full-small (Reτ = 188.48)
VMS small-small (Reτ = 188.48)

No model (Reτ = 186.50)
Moser et al (Reτ = 178.12)

Fig. 11. Reτ = 180: Variation of the mean velocity across half the channel in viscous
units, compared with the reference solution of Moser et al. [21].

was found to be the best choice, as seen from Figs. 9 and 10. The rest of the
results shown here are obtained with N = 5.
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Fig. 12. Reτ = 180: Variation of mean viscous shear and the turbulent shear stress
across half the channel, compared with the reference solution of Moser et al. [21].
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Fig. 13. Reτ = 180: Variation of streamwise (u′), spanwise (w′), and wall-normal
(v′) root-mean-square velocity fluctuations across half the channel, compared with
the reference solution of Moser et al. [21].

25



 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  20  40  60  80  100  120  140  160  180

<
p
p
>

1
/2

/ρ
u

τ2

y
+

VMS full-small
VMS small-small

No model
Moser et al

Fig. 14. Reτ = 180: Variation of the root-mean-square pressure fluctuations across
half the channel, compared with the reference solution of Moser et al. [21].

The different forms of the Smagorinsky term gave very similar results for Reτ =
180. The results are presented in Figs. 11–14. The results from “large-small”
form (31) were almost indistinguishable from the “full-small” (32) results, and
are not included in the figures.

As shown in Section 4.2.1, simulations on the “Coarse-36”-grid gave good re-
sults without modelling for this case. Results from simulations without mod-
elling on an intermediate grid with 303 grid points were comparable to the
VMS results from the 243-grid shown here, but at a 40% higher computa-
tional cost.

4.3.2 Simulations at Reτ = 550

The grid parameters for this case are given in the column “Coarse-42” in
Table 2.

The scale partitioning parameter of N = 5, which was found to be the best
choice for Reτ = 180, was also used for this case. Again, the “full-small” and
“large-small” Smagorinsky forms produced very similar results, so the latter
are not shown. The results are presented in Figs. 15–17.
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Fig. 16. Reτ = 550: Variation of mean viscous shear and the turbulent shear stress
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Jiménez [22].

27



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  100  200  300  400  500

<
u

i2
>

1
/2

/u
τ

y
+

u

w

v

VMS full-small
VMS small-small

No model
del Alamo & Jimenez
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(v′) root-mean-square velocity fluctuations across half the channel, compared with
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Fig. 18. Reτ = 950: Variation of the mean velocity across half the channel in viscous
units, compared with the reference solution of del Álamo et al. [23].
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Fig. 19. Reτ = 950: Variation of mean viscous shear and the turbulent shear stress
across half the channel, compared with the reference solution of del Álamo et al. [23].
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Fig. 20. Reτ = 950: Variation of streamwise (u′), spanwise (w′), and wall-normal
(v′) root-mean-square velocity fluctuations across half the channel, compared with
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4.3.3 Simulations at Reτ = 950

The grid parameters for this case are given in the column “Coarse-60” in
Table 2.

In this case we have only run the “full-small” Smagorinsky form, and the scale
partitioning parameter is still N = 5. The reference simulation is described
in [23], and the reference data are downloaded from the site given in [22]. Our
results are presented in Figs. 18–20.

4.4 Comments on the results

The VMS LES results show clear improvement from the results without a
model, in particular for the higher Reynolds numbers. The plane channel flow
at Reτ = 180 does not seem to provide sufficient challenges for the testing
of turbulence models, as it is too easy to resolve the main features without
any modelling at all. The VMS LES results are not compared with alterna-
tive turbulence models, as the intentions of this study was mainly to lay the
foundations for the incorporation of VMS LES in a spectral element method.
Therefore only the simplest Smagorinsky eddy viscosity was used in the model
terms in the small-scale equations.

5 Conclusions

The Variational Multiscale Large Eddy Simulation method has been imple-
mented within the framework of a spectral element method. The presented
scale partitioning method was shown to produce a gradual introduction of the
small-scale model terms. This is intuitively favourable to a sharp cut-off at a
given point in the spectral space. The computational overhead for the method
was 20–40% for the applications considered here. This must be considered
to be reasonably low, as even small increases in the spatial resolution of the
spectral element method are more computationally demanding. Good results
have been obtained for plane channel flows up to Reτ = 950, even for grid
densities as low as 0.06% of the reference simulation grid density, and using
the simplest possible small-scale dissipation model.
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