
ar
X

iv
:0

90
5.

29
60

v1
  [

as
tr

o-
ph

.G
A

] 
 1

8 
M

ay
 2

00
9

Piecewise Parabolic Method on a Local Stencil for

Magnetized Supersonic Turbulence Simulation

Sergey D. Ustyugov, Mikhail V. Popov,

Keldysh Institute of Applied Mathematics, Miusskaya Sq. 4, 125047, Moscow, Russia

Alexei G. Kritsuk∗, and Michael L. Norman

University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0424, USA

Abstract

Stable, accurate, divergence-free simulation of magnetized supersonic turbulence is a se-
vere test of numerical MHD schemes and has been surprisingly difficult to achieve due to
the range of flow conditions present. Here we present a new, higher order-accurate, low
dissipation numerical method which requires no additional dissipation or local ”fixes”
for stable execution. We describe PPML, a local stencil variant of the popular PPM
algorithm for solving the equations of compressible ideal magnetohydrodynamics. The
principal difference between PPML and PPM is that cell interface states are evolved
rather that reconstructed at every timestep, resulting in a compact stencil. Interface
states are evolved using Riemann invariants containing all transverse derivative informa-
tion. The conservation laws are updated in an unsplit fashion, making the scheme fully
multidimensional. Divergence-free evolution of the magnetic field is maintained using the
higher order-accurate constrained transport technique of Gardiner and Stone. The accu-
racy and stability of the scheme is documented against a bank of standard test problems
drawn from the literature. The method is applied to numerical simulation of supersonic
MHD turbulence, which is important for many problems in astrophysics, including star
formation in dark molecular clouds. PPML accurately reproduces in three-dimensions
a transition to turbulence in highly compressible isothermal gas in a molecular cloud
model. The low dissipation and wide spectral bandwidth of this method make it an ideal
candidate for direct turbulence simulations.

Key words: gas dynamics, magnetohydrodynamics, MHD turbulence, numerical
methods, PPM, compact stencil
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1. Introduction

Piecewise Parabolic Method on a Local Stencil (PPML) [1, 2] is a new numerical
scheme developed for solving multidimensional compressible Euler (HD) and ideal mag-
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netohydrodynamic (MHD) equations. The method is based on a piecewise parabolic
approximation of variables inside individual grid cells. It is third order-accurate in space
and it implies second order temporal accuracy. This method is an improvement over
the popular PPM introduced by Colella and Woodward [3, 4] for nonmagnetized flows
with strong shocks and extended by Dai and Woodward to compressible ideal magne-
tohydrodynamics [5]. PPM has been widely used in computational practice ever since,
and versions of the PPM gas dynamics scheme have been incorporated into a number of
codes for astrophysical applications [6].

The main new feature of PPML is the procedure for calculating interface values be-
tween adjacent cells. Instead of an interpolation procedure used in the original PPM
formulation, which employs a four-point stencil, PPML relies on the information pre-
served from a previous time step. The required values are obtained via Riemann invari-
ants transferred along the characteristic curves of the equations to cell boundaries using
an approximate parabolic solution within a cell [7, 8, 9, 10, 11]. To preserve the order
of the scheme at local extrema, a monotonicity constraint is applied to these interface
values [12, 13, 14, 15]. In a multidimensional case a monotonicity preserving method
from [16] is additionally applied. The scheme is multidimensional as it keeps terms con-
taining derivatives with respect to the tangential directions in the equations for wave
amplitudes. This approach provides the left and right states for the Riemann problem
based on multidimensional reconstruction. For the ideal MHD case in three dimensions,
a zero-divergence constraint on the magnetic field is enforced by the use of the Stokes the-
orem (the so-called constrained transport approach [17]). An updated component of the
electric field at a cell boundary is calculated by averaging the quantities obtained from
given components of flux-vectors, taking into account a value of the electric field gradient
and the information about the sign of the tangential velocity at that boundary [18].

PPML has been tested on a number HD and MHD problems that demonstrated the
ability of the method to resolve discontinuous solutions without adding excessive dissi-
pation. PPML provides a very accurate treatment of strong discontinuities, minimizes
numerical dissipation of the kinetic and magnetic energy, and substantially improves the
spectral bandwidth for compressible turbulence models compared to its predecessors [19].

In this paper we present a comprehensive description of the numerical method for 3D
MHD simulations as well as results of numerical tests. The method has been substantially
improved and remastered compared to its previous version presented in [1, 2]. The
new PPML features in this paper include: (i) an improved approach to maintaining
zero divergence for the magnetic field following [18], see Section 5; (ii) a monotonicity
constraint proposed by Rider et al. [14], as described in Section 6; (iii) an extended
suite of test problems that includes a comparison with the FLASH3 MHD solver, see
Section 8; Finally, in Section 9 we illustrate the performance of PPML on a three-
dimensional problem of highly compressible weakly magnetized forced turbulence with a
sonic Mach number of 10. The problem of supersonic, super-Alfvénic turbulence with an
isothermal equation of state proved to be a challenging regime for numerical modeling due
to the presence of strong rarefactions and very high density contrasts in the flow. PPML
scheme is perfectly stable numerically on problems of this sort. We also briefly discuss
the effects of the weak magnetic field on the spectral properties of MHD turbulence and
obtain good correspondence between our numerical results and observed characteristics
of supersonic turbulence in star forming molecular clouds.
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2. PPML description

Let us consider a homogeneous one-dimensional grid with the spacing h and a function
q(x, t0) ≡ q0(x) defined on this grid at t = t0. It is assumed that the function q0(x) can
be approximated by a parabola inside every grid cell (Fig. 1):

Figure 1: Approximation of q(x) inside a cell.

q0(x) = qLi + ξ
(

∆qi + q
(6)
i (1 − ξ)

)

, (1)

where
ξ =

(

x− xi−1/2

)

h−1, ∆qi = qRi − qLi ,

q
(6)
i = 6

(

qi − 1/2
(

qLi + qRi
))

.

Function qi satisfies a condition

qi = h−1

xi+1/2
∫

xi−1/2

q0(x) dx.

Let us consider a linear advection equation

∂q(x, t)

∂t
+

∂F (x, t)

∂x
= 0, (2)

where F (x, t) = a q(x, t) and find its solution for the moment t = t0 + τ . On a discrete
grid we have a number of local Riemann problems which lead to some average states
q∗(xi+1/2, t) on every interface xi+1/2 between the adjacent cells. The equation (2) has
only one characteristic defined by dx/dt = a. To find a value qi+1/2, for example, on the
right boundary of a cell number i at the time step t = t0 + τ , we suggest to move along
the characteristic line from the point xi+1/2 back to the moment t = t0 and use a value
from some point on a previous parabola (Fig. 2).

Then for a > 0 we have

qi+1/2(t0 + τ) ≡ qR
i (t0 + τ) = q L

i + ξ
(

∆qi + q
(6)
i (1− ξ)

)

, (3)

where
ξ =

(

x− xi−1/2

)

h−1 = (h− aτ) h−1 = 1− aτh−1. (4)
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Figure 2: A characteristic inside a grid cell (a > 0).

All the values in the rhs of (3) must be taken from a previous time step t = t0. For a < 0
a value qi+1/2 is defined by a parabola in the cell number i+ 1:

qi+1/2(t0 + τ) ≡ q L
i+1(t0 + τ) = q L

i+1 + ξ
(

∆qi+1 + q
(6)
i+1(1− ξ)

)

,

where ξ = −aτh−1.
In monotonic regions, where qi+1/2 ∈ [qi . . . qi+1], it is assumed that qR

i = q L
i+1 =

qi+1/2 and q L
i = qR

i−1 = qi−1/2. In non-monotonic regions we must redefine q L
i and qR

i .
If qi is a local maximum or minimum, the interpolation function (1) must be constant,
i.e. q L

i = qR
i = qi. If qi is too close to q L

i or qR
i , the parabola (1) can have an extremum

inside the grid cell (it happens when |∆qi| < |q(6)i |). In this case we must move this
extremum to the boundary of the cell. These conditions can be written as

q L
i = qi, qR

i = qi, if
(

q L
i − qi

) (

qi − qR
i

)

≤ 0 (5)

and
q L
i = 3qi − 2qR

i , if ∆qi · q(6)i > (∆qi)
2
,

qR
i = 3qi − 2qL

i , if ∆qi · q(6)i < − (∆qi)
2
.

(6)

If we know the function q(x), we can compute its average for the interval
[

xi+1/2 − y . . . xi+1/2

]

(for y > 0):

q L
i+1/2(y) = y−1

xi+1/2
∫

xi+1/2−y

q(x) dx = qR
i − 1/2 y h−1

[

∆qi −
(

1− 2/3 y h−1
)

q
(6)
i

]

. (7)

For a > 0, the solution of (2) at time t = t0 + τ can be found by averaging over the
interval

[

xi+1/2 − aτ . . . xi+1/2

]

, i.e. q∗(xi+1/2, t0 + τ) ≡ q L
i+1/2 = q L

i+1/2(aτ). For a < 0

the zone of influence is
[

xi+1/2 . . . xi+1/2 + aτ
]

. In this case q∗(xi+1/2, t0+ τ) ≡ qR
i+1/2 =

qR
i+1/2(−aτ), where

qR
i+1/2(y) = y−1

xi+1/2+y
∫

xi+1/2

q(x) dx

= q L
i+1 + 1/2 y h−1

[

∆qi+1 +
(

1− 2/3 y h−1
)

q
(6)
i+1

]

, y > 0. (8)
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The flux on the interface can be computed as

Fi+1/2 = a+q L
i+1/2 + a−qR

i+1/2, (9)

where a+ = max(a, 0) = (a+ |a|) /2, a− = min(a, 0) = (a− |a|) /2. We can use an
arbitrary value for q L

i+1/2 if a < 0, and for qR
i+1/2 if a > 0.

3. The governing equations

Let us consider the ideal MHD equations in 3D in the following form:

∂tU+ ∂xF+ ∂yG+ ∂zH = 0. (10)

Here U is a vector of eight conservative variables, F, G and H are the fluxes:

U = (ρ, ρ u, ρ v, ρw,Bx, By, Bz, E)
T
, (11)

F =
(

ρ u, ρ u2 + p−B2
x, ρuv −BxBy, ρuw − BxBz , 0,

uBy − vBx, uBz − wBx, u(E + p)−Bx(uBx + vBy + wBz)
)T

, (12)

G =
(

ρ v, ρuv −BxBy, ρ v
2 + p−B2

y , ρvw −ByBz, vBx − uBy,

0, vBz − wBy, v(E + p)−By(uBx + vBy + wBz)
)T

, (13)

H =
(

ρw, ρuw −BxBz , ρvw −ByBz, ρ w
2 + p−B2

z , wBx − uBz,

wBy − vBz , 0, w(E + p)−Bz(uBx + vBy + wBz)
)T

, (14)

where ρ is the density; u, v and w are the velocity components; Bx, By and Bz are the
magnetic field components; E is the total energy and p is the total pressure:

p = p+
BB

2
.

We have included the factor 1/
√
4π in the definition of B. An equation for the total

energy and an ideal gas equation of state are

E = ρ ε+
ρvv

2
+

BB

2
,

p = (γ − 1) ρ ε,

where γ - the adiabatic index, ε - the specific internal energy. If we denote

(bx, by, bz) =
1√
ρ
(Bx, By, Bz) , b2 = b2x + b2y + b2z,
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we can write the sound velocity c, Alfvén velocity ca, the fast and the slow magneto-
acoustic velocities cf, s as

c =

√

γp

ρ
,

ca = |bx|,

cf, s =

[

1

2

(

c 2 + b 2
)

± 1

2

√

(c 2 + b 2)
2 − 4c 2b 2

x

]1/2

.

We will also deal with a non-conservative form of the MHD equations:

∂tV +A∂xV +B ∂yV + C ∂yV = 0, (15)

where
V = (ρ, u, v, w,Bx, By, Bz, p )

T
. (16)

The matrices A, B and C can be computed using Jacobians of (10) and a transition
matrix

M =
∂U

∂V
.

For example, the Jacoby matrix A is

A = M−1 ∂F

∂U
M =

























u ρ 0 0 0 0 0 0
0 u 0 0 0 By/ρ Bz/ρ 1/ρ
0 0 u 0 0 −Bx/ρ 0 0
0 0 0 u 0 0 −Bx/ρ 0
0 0 0 0 u 0 0 0
0 By −Bx 0 0 u 0 0
0 Bz 0 −Bx 0 0 u 0
0 γp 0 0 0 0 0 u

























. (17)

The corresponding eigenvalues are

λ 1, 8
x = u± cf , λ 2, 7

x = u± ca, λ 3, 6
x = u± cs, λ 4, 5

x = u.

λ 1, 8
x represent a pair of fast magneto-acoustic waves, λ 2, 7

x – a pair of Alfvén waves, λ 3, 6
x –

a pair of slow magneto-acoustic waves, λ 4
x – an entropy wave, λ 5

x – a magnetic-flux wave.
The eigenvectors of the Jacobians could have singularities at the points of degeneracy
of the eigenvalues since the MHD equations are nonstrictly hyperbolic. To avoid those,
Brio and Wu [20] suggested a scaled version of the eigenvectors that comes from defining

(βy, βz) =























(By, Bz)
√

B 2
y +B 2

z

if B 2
y +B 2

z 6= 0,

(

1√
2
,
1√
2

)

otherwise,

(αf , αs) =



























(√

c 2 − c 2
s ,

√

c 2
f − c 2

)

√

c 2
f − c 2

s

if B 2
y + B 2

z 6= 0 or γp 6= B 2
x ,

(

1√
2
,
1√
2

)

otherwise.
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Thus the left and the right eigenvectors are

l 1, 8x =

(

0,±αf cf
2c 2

,∓ αs

2c 2
cs βy sgnBx,∓

αs

2c 2
cs βz sgnBx,

0,
αs

2
√
ρ c

βy,
αs

2
√
ρ c

βz ,
αf

2ρ c 2

)

,

r 1, 8
x =

(

ραf ,±αf cf ,∓αs cs βy sgnBx,∓αs cs βz sgnBx,

0, αs
√
ρ c βy, αs

√
ρ c βz, αfγ p

)T

,

l 2, 7x =

(

0, 0,− βz√
2
sgnBx,

βy√
2
sgnBx, 0,±

βz√
2ρ

,∓ βy√
2ρ

, 0

)

,

r 2, 7
x =

(

0, 0,− βz√
2
sgnBx,

βy√
2
sgnBx, 0,±

√

ρ

2
βz,∓

√

ρ

2
βy, 0

)T

,

l 3, 6x =

(

0,±αs cs
2c 2

,± αf

2c 2
cf βy sgnBx,±

αf

2c 2
cf βz sgnBx,

0,− αf

2
√
ρ c

βy,−
αf

2
√
ρ c

βz ,
αs

2ρ c 2

)

,

r 3, 6
x =

(

ραs,±αs cs,±αf cf βy sgnBx,±αf cf βz sgnBx,

0,−αf
√
ρ c βy,−αf

√
ρ c βz, αsγ p

)T

,

l 4x =

(

1, 0, 0, 0, 0, 0, 0,− 1

c,2

)

,

r 4
x = (1, 0, 0, 0, 0, 0, 0, 0)

T
,

l 5x = (0, 0, 0, 0, 1, 0, 0, 0) ,

r 5
x = (0, 0, 0, 0, 1, 0, 0, 0)

T
.

4. A numerical scheme

To solve (10) we apply a conservative difference scheme:

Un+1
i,j,k = Un

i,j,k − τ

∆x

(

F
n+1/2
i+1/2, j, k − F

n+1/2
i−1/2, j, k

)

−
τ

∆y

(

G
n+1/2
i, j+1/2, k −G

n+1/2
i, j−1/2, k

)

− τ

∆z

(

H
n+1/2
i, j, k+1/2 −H

n+1/2
i, j, k−1/2

)

. (18)
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Half-integer indices such as i+ 1/2 denote the boundaries of grid cells, half-integer time
index n+ 1/2 means that we use the averaged values of the fluxes over a time step τ in
order to get a second-order temporal accuracy.

The solution inside every grid cell is approximated by a parabola along any Cartesian
grid axis. The boundary values for each parabola are determined from a conservation
property of Riemann invariants that remain constant along the characteristics of the ini-
tial linearized system of equations. Parabolae must be built using the primitive variables
(16), so we need to consider a non-conservative form of the MHD equations (15).

We can expand A, B and C in (15) into their eigenvectors. For example, for the
x-direction:

A = Rx Λ x L x, (19)

where Rx is a matrix with columns filled by the right eigenvectors r p
x (p = 1, . . . , 8),

Lx = R−1
x is an inverse matrix, with rows filled by the left eigenvectors l px. Λ x is a

diagonal matrix of the eigenvalues: (Λ x)ij = 0 for i 6= j, (Λ x)ij = λ p for i = j = p .
To construct piecewise parabolae for every time step, one needs to define the states

on the cell edges and the states at their centers. For simplicity, let us further consider a
1D case:

∂tV(x, t) +A∂xV(x, t) = 0. (20)

Inserting (19) into (20) and multiplying by the L matrix from the left, we arrive at

L∂ tV + ΛL∂xV = 0. (21)

Let us expand a vector V(x, t) into the local basis of the right eigenvectors r p, which are
fixed in every cell:

V(x, t) =
∑

p

α p(x, t) r p. (22)

Inserting (22) into (21), we arrive at

∂ t α
p + λ p ∂x α

p = 0, p = 1, . . . , 8. (23)

The equations (23) mean that the coefficients α p (x, t) in the expansion (22) (the wave
amplitudes) must be constant along the characteristics x p (t):

d x p

d t
= λ p,

i.e. α p (x, t) are Riemann invariants. A value of Riemann invariant on the boundary of a
cell (x = xi+1/2) at the moment t+ τ could be computed using its value at the moment
t as

α p (xi+1/2, t+ τ) = α p (xi+1/2 − λ p τ, t). (24)

Fig. 3 shows two adjacent cells i and i+1. The characteristics in the cell i have index
p 1, in the cell i + 1 – index p 2. One of the characteristics x p 1 (t) with the eigenvalue
λp 1 > 0 is shown in the cell i, another one x p 2 (t) with the eigenvalue λp 2 < 0 is shown
in the cell i+1. According to (24) the amplitude of a wave at point 3, which propagates
inside the cell i along the characteristic x p 1 (t) with the eigenvalue λp 1 , is equal to its

8



Figure 3: The characteristics in the adjacent cells for λp 1 > 0 and λp 2 < 0.

value at point 1. In the same way the amplitude of a wave at point 3, which propagates
inside the cell i+ 1 along the characteristic x p 2 (t), is equal to its value at point 2.

The state at point 3, which is computed according to (22) by summation with respect
to all the eigenvectors, fixed in cell i, with λp 1 > 0 will be on the left side of the interface.
Let VL denote this value. Similarly, let VR denote the state at point 3 on the right side
of the interface which is computed by summation with respect to all the eigenvectors
fixed in cell i+ 1, with λp 2 < 0.

The amplitudes of waves α p (xp, t) at the point xp = xi+1/2 − λ p τ in (24), which
influence the right boundary of cell i (λ p > 0), can be computed by multiplying the
expansion (22) by the left eigenvectors, fixed in cell i:

α p (xp, t) = l p V(xp, t), λ p > 0, (25)

where

V(xp) ≡ 1

xi+1/2 − xp

∫ xi+1/2

xp

V(x)dx. (26)

We can use arbitrary values for the wave amplitudes for λ p < 0 because these waves
have no effect on the right boundary of the cell and will be omitted in the sum (22). For
convenience let them be

α p (xp, t) = l p V(xi, t), λ p < 0. (27)

With the help of Θ-function we can rearrange (25)-(27) as

α p (xp, t) = Θ(λ p)
(

l p V(xp, t)
)

+ (1−Θ(λ p))
(

l p V(xi, t)
)

. (28)

Multiplying (28) by r p and summing over all p such as λ p > 0 according to (22), after
some simple manipulations we obtain the boundary value at time t+ τ :

VL(xi+1/2, t+ τ) = V(xi, t) +
∑

p (λ p>0)

r p
[

l p
(

V(xp, t)−V(xi, t)
)]

. (29)

If we consider cell i + 1 and waves with λ p < 0 we will obtain a similar expression
for the value VR on the right side of the interface at time t+ τ :

VR(xi+1/2, t+ τ) = V(xi+1, t) +
∑

p (λ p<0)

r p
[

l p
(

V(xp, t)−V(xi+1, t)
)]

. (30)

9



The left and the right eigenvectors in (29)-(30) are fixed in every cell. To compute
them we can use a state from any point x inside the cell - it has been shown by numerical
experiments that this choice has no influence on the solution. We suggest using the values
of states in the centres of the cells, i.e. l p = l p(V(xi, t)).

Figure 4: Approximation of V(x) in the adjacent cells.

A possible approximation of the component V (x) of the vector-function V(x, t) inside
grid cells i and i+1 at some time step is shown in Fig. 4. The arrows point to the values
on the left and the right sides of the interface, note that V L 6= V R. The dotted lines are
the average values of V (x):

Vi =
1

∆x

xi+1/2
∫

xi−1/2

V (x) d x.

In order to solve the 3D problem we split the initial set (15) by the space variables and
solve the 1D equations separately for the x-, y- and z-directions. However, in this case
we have an additional change in the quantities because of the fluxes in the orthogonal
directions. For example, a flux in the y-direction will affect the quantities at point 1

Figure 5: A 2D mesh.

between cells (i, j) and (i + 1, j) (see Fig. 5). To obtain the correct result, we can solve
equation (15) in the x-direction considering the terms B ∂yV and C ∂zV as sources.

10



Then instead of (23) we arrive at

∂ t α
p + λ p ∂x α

p = −D p, p = 1, . . . , 8, (31)

where D p are the components of the vector

D = Lx (B ∂ yV) + Lx (C ∂ zV) . (32)

The components of the partial derivatives in (32) can be calculated as

∂ yV
p =

V p
i, j+1/2, k − V p

i, j−1/2, k

∆y
. (33)

The solution of (31) can be obtained from a Taylor series expansion of α p (x, t) near the
boundary x = xi+1/2. It is similar to (24) but has the additional term

α p (xi+1/2, t+ τ) = α p (xi+1/2 − λ p τ, t)−D p(t)
τ

2
. (34)

Then instead of (29)-(30) we arrive at

VL(xi+1/2, t+ τ) = V(xi, t) +
∑

p (λ p>0)

r p
[

l p
(

V(xp, t)−V(xi, t)−D p(t)
τ

2

)]

, (35)

VR(xi+1/2, t+ τ) = V(xi+1, t) +
∑

p (λ p<0)

r p
[

l p
(

V(xp, t)−V(xi+1, t)−D p(t)
τ

2

)]

.

(36)
In (34)-(36) we have omitted indices j and k. The state at point 2 on Fig. 5 is computed
in a similar way considering the x-derivative as a source.

To obtain states Vi+1/2 in PPML, we solve the Riemann problem for the VL and
VR states on every interface using, e.g., the Roe solver [21] or the HLLD solver [22]:

Vi+1/2 = R
(

VL,VR
)

, (37)

where R is the Riemann solver. Note, that in the original PPM, the states Vi+1/2

are obtained through monotonic interpolation [7]. We then apply a monotonicity- and
extrema-preserving procedure proposed by Rider et al. [14] to the values of Vi+1/2, as
described in Section 6. Finally, we modify the resulting interface states with the standard
PPM monotonicity procedure (5)-(6).

So far we have obtained the boundary values of piecewise parabolae at time t+ τ in
each grid cell. Now we need to define the fluxes to compute the new central states. Again
we can use the Roe solver [21] or the HLLD solver [22] with VL and VR from (35)-(36)
but in this case the numerical scheme will have the first order of temporal accuracy. To
design a second order scheme, we must average the amplitudes α p (x, t) over the zones
of influence.

Fig. 6 shows a set of characteristics corresponding to waves with λ p > 0. The
characteristic x 1 (t) has the maximum eigenvalue λ 1. Point 1 is the point of intersection
between this characteristic and the piecewise parabola at time t. Obviously, only the
zone between the interface x = xi+1/2 and point 1 affects the left boundary state at
point 2.
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Figure 6: Characteristics inside a grid cell.

If we consider a wave which propagates along the characteristic with λ p > 0 inside
cell i, its averaged amplitude on the interface x = xi+1/2 at time t+ τ can be calculated
as

α
p

i+1/2 =
1

λ p τ

xi+1/2
∫

xi+1/2−λ p τ

α p (x) d x, λ p > 0. (38)

Multiplying the expansion (22) by the left eigenvectors, fixed in cell i, will yield

α p (x) = l p V(x), λ p > 0. (39)

Inserting (39) into (38) and removing the factor l p from the integral, we arrive at

α
p

i+1/2 = l p V
L, p

i+1/2 ,

V
L, p

i+1/2 =
1

λ p τ

xi+1/2
∫

xi+1/2−λ p τ

V(x) d x, λ p > 0. (40)

After that we can arrive at

V
L
= V

L, 1

i+1/2 +
∑

p (λ p>0)

r p

[

l p
(

V
L, p

i+1/2 −V
L, 1

i+1/2 −D p τ

2

)

]

(41)

which is similar to (35). Here V
L, 1

i+1/2 is the averaged by formula (40) solution V(x) at
time t over the zone of influence of the wave in cell i, corresponding to the maximum
eigenvalue (λ 1 > 0).

For cell i+ 1 and the negative eigenvalues we arrive at

V
R
= V

R, 1

i+1/2 +
∑

p (λ p<0)

r p

[

l p
(

V
R, p

i+1/2 −V
R, 1

i+1/2 −D p τ

2

)

]

, (42)

V
R, p

i+1/2 =
1

|λ p| τ

xi+1/2−λ p τ
∫

xi+1/2

V(x) d x, λ p < 0. (43)
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Figure 7: Computation of the component Ez at a node.

To get the second order of accuracy for time we must compute fluxes on every interface

solving the Riemann problem with V
L
and V

R
from (41)-(42). Note that the values of

components of the integrals (40) and (43) can be computed as (7) and (8), respectively.
The time step τ in (18) is obtained from the Courant condition

τ = σmin
i,j,k

{

∆x

|ui,j,k|+ cx
f i,j,k

,
∆y

|vi,j,k|+ c y
f i,j,k

,
∆z

|wi,j,k|+ c z
f i,j,k

}

, (44)

where σ is the Courant number and cxf , c
y
f , and czf are the fast magneto-acoustic velocities

along the coordinate directions.

5. Zero divergence constraint for the magnetic field

Our numerical method must provide numerical solutions that satisfy a condition

divB = 0. (45)

There are several approaches to this problem in the literature [18, 23, 24, 25, 17, 26].
In our numerical scheme we used an unsplit Godunov method for ideal MHD with a
constrained transport developed in [18] that is based on the Stokes theorem

∂B

∂ t
= −∇×E. (46)

Calculated from (46) the magnetic field obviously satisfies condition (45). To apply the
Stokes theorem in 3D case, we define the magnetic field components on the cell faces
and the electric field components on the cell edges. The algorithm exploits the fact that
some components of the fluxes F, G and H are actually the components of the electric
field.
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For simplicity let us consider a 2D case. Thus the sixth component of the flux F is the
z-component of the electric field reversed in sign, which correspond to the left and right
boundaries of a cell. The fifth component of the flux G is the z-component of electric
field, which correspond to the top and bottom boundaries of a cell. Computing Taylor
series for these components near the nodes of the mesh and averaging them, we obtain
the components of the electric field at the nodes (Fig. 7).

Ez i+1/2,j+1/2 =
1

4

(

Eleft
z i+1/2,j+1/2 + Eright

z i+1/2,j+1/2

+Etop
z i+1/2,j+1/2 + Ebottom

z i+1/2,j+1/2

)

,

where for example

Eleft
z i+1/2,j+1/2 = Ez i,j+1/2 +

∂Ez

∂x

∣

∣

∣

∣

i,j+1/2

∆x

2
,

∂Ez

∂x

∣

∣

∣

∣

i,j+1/2

=











































(

∂Ez

∂x

)

i,j

, vi,j+1/2 > 0,

(

∂Ez

∂x

)

i,j+1

, vi,j+1/2 < 0,

1

2

[

(

∂Ez

∂x

)

i,j

+

(

∂Ez

∂x

)

i,j+1

]

, vi,j+1/2 = 0.

These values of Ez i+1/2,j+1/2 are used in a discrete version of (46):

Bn+1
x i+1/2,j = Bn

x i+1/2,j −
τ

∆y

(

Ez i+1/2,j+1/2 − Ez i+1/2,j−1/2

)

,

Bn+1
y i,j+1/2 = Bn

y i,j+1/2 +
τ

∆x

(

Ez i+1/2,j+1/2 − Ez i−1/2,j+1/2

)

.

Updated components of magnetic field at the center of (i, j)-cell are computed by
averaging:

Bn+1
x i,j =

1

2

(

Bn+1
x i−1/2,j +Bn+1

x i+1/2,j

)

,

Bn+1
y i,j =

1

2

(

Bn+1
y i,j−1/2 +Bn+1

y i,j+1/2

)

.

The magnetic field computed this way will automatically satisfy (45). To make sure
that this is indeed the case, divB should be approximated by the following expression

(divB)i+1/2,j+1/2 =
1

2∆x

(

Bx i+1,j +Bx i+1,j+1 −Bx i,j −Bx i,j+1

)

+
1

2∆y

(

By i,j+1 +By i+1,j+1 −By i,j −By i+1,j

)

.
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6. Monotonicity constraints

A standard PPM monotonicity preserving procedure (5)-(6) is insufficient for the
ideal MHD case. We need to use additional procedures to suppress spurious oscillations.

Procedure 1. To keep a solution monotonic without reducing the order of the scheme
and to preserve all the local extrema in MHD simulations we can follow a number of ap-
proaches described in the literature [12, 13, 14, 15]. In our method we rely on a Piecewise
Parabolic Accurate Monotonicity- and Extrema-Preserving procedure described in [14].

We compute the wave amplitudes αp
i for the central states Vi and αp

i±1/2 for the

interface statesVi±1/2. We then calculate new values for wave amplitudes of the interface
states:

αp, ∗
i±1/2 = median

(

αp
i , α

p
i±1/2, α

p
i±1

)

and
αp, ∗∗
i±1/2 = median

(

αp
i , α

p, ∗
i±1/2, 3α

p
i − 2αp, ∗

i∓1/2

)

,

where the median function is defined in a usual way

median (a, b, c) = a+minmod (b− a, c− a)

through the minmod function

minmod (a, b) =
1

2
(sign(a) + sign(b))min (|a|, |b|) .

If αp, ∗∗
i±1/2 = αp

i±1/2 for all p, the procedure is completed. Otherwise, we compute a set of

fifth-order WENO interface values αp
i±1/2,∗, using Algorithm 2.2.4 from [14], and check

for a local extremum. If αp, ∗∗
i±1/2 = αp

i for all p, we apply Algorithm 2.1.2, 4(b), otherwise

the region is monotonic but too steep to be approximated with the values obtained from
the Riemann solver (37) and we apply Algorithm 2.1.2, 4(c).

Procedure 2. To keep a solution monotonic in a multidimensional case, we employ
a method proposed in [16].

Let us consider a 2D case for simplicity. A parabola that approximates a solution
along the x-axis for every component V (x) of a state V(x, t) at some point in time can
be defined as

V (x) = V i,j + φ(V )

[

s i,j (x− xi) +
σ i,j

2

(

(x− xi)
2 − ∆x2

12

)]

,

where

s i,j =
Vi+1/2,j − Vi−1/2,j

∆x
, σ i,j = 6

Vi+1/2,j − 2Vi,j + Vi−1/2,j

∆x2
.

As a limiting function φ(V ) we can use that described in [16]:

φ(V ) = min

(

1,
|Vi,j −max(Vl,m)|

|Vi,j −max(Vi−1/2,j , Vi+1/2,j , Vi,j−1/2, Vi,j+1/2)|
,

|Vi,j −min(Vl,m)|
|Vi,j −min(Vi−1/2,j , Vi+1/2,j , Vi,j−1/2, Vi,j+1/2)|

)

, (47)

where l = i− 2, i− 1, i, i+ 1, i+ 2, m = j − 2, j − 1, j, j + 1, j + 2 except (l,m) = (i, j).
In a 3D case, the limiting function (47) must include all the neighbors of the cell (i, j).
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7. A FORTRAN implementation

The algorithm for computing the left and the right boundary values VL and VR

(35)-(36) could be implemented in FORTRAN this way:

integer n, n2

real dt, dx

real VL(8), VC(8), VR(8), Vm(8), V(8), D(8), dVy(8)

real Lambda(8), sumL(8), VLnew(8), VLinterface(8)

real B(8,8), L(8,8), R(8,8)

call Eigenvalues(VC,Lambda) ! compute the eigenvalues at the center of the
! cell i (VC - a state in the center)

if (Lambda(1).gt.0.) then ! if λ1 > 0 then compute a new state VLnew

! on the left side of the interface between the
! cells i and i+ 1

VLnew=0.

xi=1.- Lambda(1)*dt/dx ! ξ in (1) for λ1 (see (4))
call Vxi(xi,VL,VC,VR,Vm) ! formula (1); VL, VR - the left and the right

! boundary values of a parabola, Vm - the result
call MatrixB(VC,B) ! compute the matrix B
call Vectors(VC,L,R) ! compute the left (L) and right (R) eigenvectors
D=0.

do n=1,8

do n2=1,8

D(n)=D(n)+B(n,n2)*dVy(n2)/dy ! (B p ∂ yV
p) (see (32)-(33))

enddo

enddo

D=D*dt/2.

sumL=0.

do n=1,8

if (Lambda(n).gt.0.) then ! only these waves affect the interface
xi=1.- Lambda(n)*dt/dx ! ξ in (1) for λp

call Vxi(xi,VL,VC,VR,V) ! V - the result (a state at the point ξ)
do n2=1,8

sumL(n)=sumL(n)+L(n,n2)*(V(n2)-Vm(n2)-D(n2)) ! a part of (35)
enddo

do n2=1,8

VLnew(n2)=VLnew(n2)+R(n2,n)*sumL(n) ! a part of (35)
enddo

end if

enddo

VLnew=Vm+VLnew ! the result for (35)
else ! if the maximum eigenvalue λ1 < 0
VLnew= VLinterface ! we keep the old value on the left side of the interface

end if
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A FORTRAN code for computing V
L
and V

R
is similar. We only need to replace

the function call call Vxi(xi,...)with one that computes the integral (7) or (8), using
xi=Lambda(1)*dt/dx

or
xi=-Lambda(8)*dt/dx ,
respectively. Lambda(8) is the maximum absolute value of the negative eigenvalue.

To obtain a monotonic solution for a 3D MHD problem, we suggest using the following
algorithm:

1. Compute the average interface states V
L
and V

R
from (41)-(42).

2. Solve Riemann problem between V
L
and V

R
to determine the fluxes.

3. Use a conservative difference scheme (18) to compute new central states.

4. Modify the magnetic field at the centers accordingly, see section 5.

5. Compute the interface states VL and VR from (35)-(36).

6. Solve Riemann problem between VL and VR to determine the new interface states.

7. Apply procedure 1 in x-direction (section 6).

8. Apply procedure 1 in y-direction (section 6).

9. Apply procedure 1 in z-direction (section 6).

10. Apply procedure 2 (section 6).

11. Apply PPM procedure (5)-(6).

Note that only the interface states are modified by the monotonicity preserving pro-
cedures. The solution of the Riemann problem joins the interface values, but the mono-
tonicity procedures split them again into the left and right values.

8. Numerical tests

8.1. Riemann problem with multiple weak discontinuities

This is a 1D problem from [27]. An interval x ∈ [0 . . . 1] is divided in two by x = 0.5.
The left and the right states at the initial moment are defined as

(

ρL, uL, v L, wL, B L
y , B L

z , pL
)

= (1.08, 1.2, 0.01, 0.5, 3.6, 2, 0.95),

(

ρR, uR, vR, wR, B R
y , B R

z , pR
)

= (1, 0, 0, 0, 4, 2, 1),

Bx = 2, γ = 5/3, N = 512. The solution involves two fast shocks with Mach numbers
1.22 and 1.28, two slow shocks with Mach numbers 1.09 and 1.07, two rotational and
one contact discontinuities. The solution for the moment t = 0.2 is presented in Figs. 8-
10. The solid line represents the exact solution and points represent the numerical one.
PPML produces very sharp fronts resolved with only a few grid points.
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Figure 8: Riemann problem with multiple weak discontinuities. Density and pressure distributions.

Figure 9: Same as in Fig. 8 but for y- and z-components of the magnetic field.

Figure 10: Same as in Fig. 8 but for x- and y-components of the velocity.
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Figure 11: Decay of Alfvén waves. The maximum values of Bz and vz as a functions of time.

8.2. Numerical dissipation and decay of Alfvén waves

Numerical calculations on a discrete grid always lead to energy loss due to numerical
dissipation. In order to estimate the properties of numerical dissipation of the PPML
ideal MHD scheme, we used the test problem from [28] and followed a decay of two-
dimensional Alfvén wave. We used a standing wave propagating along the grid diagonal
with initial conditions

δvx = vamp ca sin(kxx+ kyy),

δρ = δp = δvx = δvy = δBx = δBy = δBz = 0

in a stationary background flow with ρ0 = 1, p0 = 1, Bx = 1, By = Bz = 0. This gives
the sound speed c = 1.291 and the Alfvén velocity ca = 0.7071. The computational
domain is a square box with size L = 1 divided into 64× 64 grid cells. The wavenumbers

kx = ky = 2π/L, the total wave number k =
√

k2x + k2y =
√
2(2π/L), the initial peak

amplitude vamp = 0.1, adiabatic exponent γ = 5/3. Computations were carried out with
a Courant number σ = 0.4. We used the periodic boundary conditions.

Figure 11 shows the envelope for the maxima of z-component of the magnetic field
and velocity obtained with PPML and PPM reconstruction procedures as a function of
time. While both schemes show very low dissipation, PPML dissipation is even smaller
than that of PPM.

8.3. Travelling circularly polarized Alfvén wave problem

This problem was suggested in [23] as a test for numerical accuracy of smooth flow
solutions. The circularly polarized Alfvén wave propagates at an angle of α = 30o with
respect to an axis x in the domain [0, 1/ cosα]× [0, 1/ sinα]. The initial conditions are

ρ = 1, v‖ = 0, v⊥ = 0.1 sin(2πξ), w = 0.1 cos(2πξ)

B‖ = 1, B⊥ = 0.1 sin(2πξ), Bz = 0.1 cos(2πξ), p = 0.1,

where ξ = x cosα + y sinα. For convenience the parallel and the orthogonal to the
direction of Alfvén wave propagation components of the velocity and the magnetic field
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Figure 12: The orthogonal component B⊥ in travelling Alfvén wave in computations on meshes with
N = 8, 16, 32 and 64.

are used instead the of the components u, v, Bx By. For example B‖ = Bx cosα +
By sinα, B⊥ = By cosα−Bx sinα. Alfvén wave travels to the point (x, y) = (0, 0) with
the velocity B‖/

√
ρ = 1. Note that the wave becomes standing if v‖ = 1.

The problem was solved on a set of rectangular N × 2N meshes with N = 8, 16, 32
and 64. The averaged relative numerical errors were estimated as

δN (U) =

N
∑

i=1

2N
∑

j=1

|UN
i,j − UE

i,j |

N
∑

i=1

2N
∑

j=1

|UE
i,j |

, for U = v⊥, w,B⊥, Bz, (48)

where the solution on the mesh N = 128 regarded as the exact one UE
i,j. The rate of

convergence was calculated as follows

RN = log2
(

δN/2/δN
)

, (49)

Table 1: Travelling Alfvén wave. The average relative errors and the rates of convergence at t = 0.5.

N δ̄N RN

8 2.2384 × 10−1 -
16 5.7258 × 10−2 1.967
32 1.7031 × 10−2 1.755
64 5.0365 × 10−3 1.771
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Figure 13: Rotor problem. The contours represent thirty levels of the density in the range from 1.3 to
13.5 and the pressure in the range from 0.12 to 2.1 at t = 0.15.

Figure 14: Rotor problem. The lines represent thirty levels of absolute value of the magnetic field in the
range from 0.32 to 2.288 and the Mach numbers in the range between 0.144 and 4.27 at t = 0.15.

where δN is an averaged value:

δN =
1

4

(

δN(v⊥) + δN (w) + δN (B⊥) + δN (Bz)
)

. (50)

The calculations were carried out up to t = 5 with a Courant number σ = 0.4 and γ =
5/3. We applied periodic boundary conditions. Figure 12 demonstrates the convergence
of the numerical solution. It shows the orthogonal component B⊥ in travelling Alfvén
wave for computations on meshes of different size N . Table 1 gives average relative
numerical errors and rates of convergence obtained for the PPML scheme.
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8.4. Rotor problem

The Rotor problem was suggested in [26] and has been widely used to test numerical
schemes [e.g., 23, 29, 30]. It turned out to be a hard nut to crack for many codes due to
the appearance of negative pressure values [23].

The computational domain in this case is a square [0, 1]×[0, 1] with a uniform pressure
p = 1 and magnetic field components Bx = 5/

√
4π, By = 0. There is a rotating disk

of dense fluid at the center with a radius r0 = 0.1. For r < r0 we specify ρ = 10,
u = −v0(y − 0.5)/r0, v = v0(x − 0.5)/r0, where r =

√

(x− 0.5)2 + (y − 0.5)2, v0 = 2.
For r > r1 = 0.115 the fluid is initially at rest (u = v = 0) with density ρ = 1. In the
intermediate zone r0 < r < r1 we use a linear interpolation of the variables: ρ = 1+ 9f ,
u = −fv0(y − 0.5)/r, v = fv0(x − 0.5)/r, f = (r1 − r)/(r1 − r0). In this setup, the
initial configuration is imbalanced due to centrifugal forces. The rotating fluid will tend
to equilibrate, while the magnetic field holds the oblate shape of the rotor.

The computations were carried out on a set of N ×N meshes with N = 50, 100, 200
and 400, with a Courant number σ = 0.4 and γ = 1.4 until t = 0.15. The boundary
conditions are obtained through zero-order interpolation. Figures 13 and 14 show the
flow fields for N = 400.

Table 2: The rotor problem. The average relative errors and the rates of convergence in the numerical
codes at t = 0.15.

N PPML Flash3 USM-MEC

δ̄N RN δ̄N RN

50 9.4274 × 10−2 - 1.1470× 10−1
−

100 4.5204 × 10−2 1.06 5.9800 × 10−2 0.94
200 1.9262 × 10−2 1.24 2.5000× 10−2 1.26

We compare numerical solutions obtained with PPML with those presented in [23, 29,
30]. In Table 2 the average relative numerical errors and the rates of convergence are given
for PPML and for Flash3 USM-MEC (unsplit staggered mesh algorithm with modified
electric field construction introduced in [30]). Both PPML and Flash3 USM-MEC codes
use a Roe solver [21] for this test. The relative numerical errors were computed using
eq. (48), where for UE

i,j we used the highest resolution result (N = 400). The average

error δ̄N (U) is defined as the average δN (U) for all non-zero variables U . The rate
of convergence is estimated as in (49). PPML results are more accurate and have a
comparable rate of (self-)convergence with those from the new Flash3 MHD solver.

8.5. Orszag-Tang vortex problem

This problem was suggested in [31] and since then has been used in many papers as
a standard test problem for numerical codes in 2D MHD. It involves formation and an
interaction of multiple shocks and a transition to supersonic turbulence.

In the computational domain [0, 1]× [0, 1], we set a uniform density ρ = 25/(36π) and
pressure p = 5/(12π) with γ = 5/3 (in this case the sound velocity c =

√

γp/ρ = 1). The
initial velocities and components of the magnetic field are set using harmonic functions:
u = − sin 2πy, v = sin 2πx, w = 0, Bx = −B0 sin 2πy, By = B0 sin 4πx, Bz = 0, where
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Figure 15: Orszag-Tang vortex problem. The contours represent thirty levels of pressure equally spaced
in the range from 0.02 to 0.5 at t = 0.5.
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Figure 16: Orszag-Tang vortex problem. The pressure along the lines y = 0.3125 and y = 0.4277 at
t = 0.5.

B0 = 1/
√
4π. Despite such smooth initial conditions the fluid motion becomes very

complex.
We carried out computations onN×N meshes with several values ofN using periodic

boundary conditions and a Courant number σ = 0.3. Figure 15 demonstrates the pressure
distribution at time t = 0.5 for N = 256. In Fig. 16 the pressure distributions along the
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lines y = 0.3125 (j = 83) and y = 0.4277 (j = 112) are shown to illustrate the accuracy
and sharpness of the main flow features.

Table 3 contains the average relative numerical errors and the rates of convergence
for PPML and Flash3 USM-MEC [30] solvers at t = 0.5. As an “exact” solution UE

i,j , we
used a solution obtained on the grid with N = 400. The corresponding PPML results
are more accurate and demonstrate better convergence.

Table 3: Orszag-Tang vortex problem. The averaged relative errors and the rates of convergence in the
numerical codes at t = 0.5.

N PPML Flash3 USM-MEC

δ̄N RN δ̄N RN

50 8.9095 × 10−2 - 1.0160 × 10−1
−

100 4.4249 × 10−2 1.013 5.2200× 10−2 0.964
200 1.8851 × 10−2 1.235 1.9900 × 10−2 1.390

9. A compressible turbulence simulation

Magnetized supersonic turbulence plays an important role in statistical star formation
theories [35]. This stimulated development of accurate numerical methods suitable for
modeling turbulent molecular clouds. One of the motivations behind the design of PPML
has been a need for an MHD scheme with low numerical dissipation comparable or better
than that of PPM. In this section we illustrate the performance of PPML on a challenging
problem of forced super-Alfvénic turbulence. Some numerical methods that successfully
pass the tests discussed above turn unstable on this application. Since adding more
dissipation where needed – the usual way to cure for “blow ups” caused by numerical
instabilities – would ultimately damage the derived statistics of turbulence [33], the issue
of inherent stability of numerical methods is crucial for both supersonic turbulence and
star formation simulations.

For illustrative purposes, we present here a simulation of weakly magnetized super-
sonic turbulence. In this experiment, turbulence in a periodic domain of linear dimension
L = 1 is driven by a large-scale solenoidal force for 8 flow-crossing times td ≡ L/2Ms.
At time t = 0, a uniform gas with density ρ ≡ 1 is permeated by a weak uniform mag-
netic field B0 ‖ xxx, such that β0 ≡ 2p/B2

0 = 20. We apply an initial large-scale velocity
field that corresponds to an rms sonic Mach number Ms ∼ 10 and assume an isothermal
equation of state (c ≡ 1) to mimic the average physical conditions in the dense parts of
molecular clouds (n = 103 cm−3, T = 10 K).

The evolution begins with the formation of strong shocks on “caustics” of the initial
velocity field. Shock interactions then cascade the initial kinetic energy of large-scale
motion of the gas down to smaller and smaller scales á la Kolmogorov-Richardson, see
Fig. 17. The magnetic field gets amplified by a factor of about 50 via the small-scale
dynamo action [34]. The large-scale solenoidal force (acceleration) keeps the rms sonic
Mach number roughly constant at Ms ≈ 10. The evolution of kinetic and magnetic
energies is shown in Fig. 18, left panel. Also shown is max(|∇·∇·∇·B|) as a function of
time during this simulation. The method keeps the absolute value of the divergence
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Figure 17: Supersonic turbulence simulation with PPML on a 5123 grid. Four snapshots show the
density field on a slice x ≡ 0 illustrating a transition to fully developed turbulence with Ms ≈ MA ≈ 10.
The transition includes formation of first strong shocks on the caustics of the initial solenoidal velocity
field (t = 0.5td, top-left), shock interactions and active development of first shear instabilities (t = 1td,
top-right), and a gradual transition to a statistical steady state (t = 2td and 4td, bottom row). The
standard logarithmic black-red-white color ramp shows high-density regions in light-red and rarefactions
in black.

of magnetic field below 10−12 at all times, even after 70,000 integration time steps (if
double precision is used). After about 4 crossing times of evolution, the system completes
a transition to a fully developed isotropic state with Ms ≈ 10 and MA ≈ 10. The right
panel of Fig. 18 illustrates spectral characteristics of this saturated state by showing the
time-average (over 25 flow snapshots taken between t = 4td and t = 8td) power spectra
for the density, velocity, and magnetic field strength.

The velocity spectrum has an extended scaling range with a slope of about −2, as in
the Burgers turbulence, similar to the corresponding scaling in non-magnetized flows at
high Mach numbers [32]. This is expected, as turbulence here is only weakly magnetized.
The density spectrum slope of about −0.7 is again consistent with our previous results
for non-magnetized flows obtained with PPM (−1.0 at Ms = 6) and with an anticipated
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Figure 18: Supersonic turbulence simulation with PPML on a 5123 grid. Time-evolution of kinetic and
magnetic energy and maximum absolute value of ∇·∇·∇·B (left panel) and turbulent power spectra for the
velocity, density and magnetic field (right panel).

trend towards a flat “white noise” spectrum at Ms = ∞. The magnetic energy spectrum
does not show a clear scaling range, as expected at this modest resolution, assuming the
effective magnetic Prandtl number of PPML is of order unity. We also looked at more
advanced spectral characteristics for compressible flows, such as the power spectrum of
ρ1/3v, and found a slope of −1.7. This power spectrum related to the energy transfer
rate in wavenumber space is insensitive to the turbulent Mach number and should have
a Kolmogorov −5/3 slope [32] in both incompressible and highly compressible regimes,
although a steeper scaling does occur due to intermittency [36]. This is true for both
non-magnetized and weakly magnetized flows.

We have also carried out two additional simulations of the same kind but with higher
degrees of magnetization, β0 = 2 and 0.2 [37]. While the saturated turbulent state
in the β0 = 2 variant is still super-Alfvénic with MA ≈ 3 and the magnetic energy is
about 3 times smaller than the kinetic energy, the trans-Alfvénic case, β0 = 0.2, reaches
an equipartition of kinetic and magnetic energies. In both cases, PPML proved to be
perfectly stable at a Courant number σ = 0.2, as in the super-Alfvénic case β0 = 20
discussed above.

Our approach to handle the stability issues in MHD turbulence simulations with
PPML is as follows: (i) we use locally multidimensional reconstruction that improves
the quality of Right and Left interface states and helps to avoid numerous well-known
pathologies, such as “carbuncles”, etc. [38]; (ii) we control the quality of these states
before moving forward with the flux calculation; (iii) if we find that the states are not
satisfactory, we reduce the order of reconstruction to linear or further skip the whole
reconstruction step; (iv) we use only nonlinear Riemann solver in all cases lacking the
reconstruction step.

Overall, the derived spectral properties of weakly magnetized highly compressible
turbulence demonstrate that low dissipation and wide spectral bandwidth of PPML
make it an ideal numerical scheme for large-scale simulations of magnetized supersonic
turbulence.
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10. Conclusions

In this paper we presented PPML, a new numerical method for compressible ideal
MHD that is based on the piecewise parabolic approximation. Interface values for the
interpolation parabolae in every grid cell are defined with the help of the Riemann in-
variants which remain constant along the characteristics. The monotonicity of the states
on the interfaces between adjacent cells is provided by the monotonicity- and extrema-
preserving procedure from [14]. The scheme is fully multidimensional as it includes the
terms corresponding to the tangential directions in the amplitude equations. This helps
to avoid numerous well-known pathologies, such as “carbuncles”, etc.

The states in the cell centers are defined by the conservative difference scheme (18).
To obtain the second-order temporal accuracy we must average the wave amplitudes
over the corresponding domains of influence. To define the fluxes we need to solve the
Riemann problem between the states at the cell interfaces computed with the averaged
amplitudes.

To preserve zero divergence of the magnetic field in three dimensions, we use an
unsplit Godunov method based on the constrained transport approach [18]. We use the
information about the magnetic field gradients to fulfill the constraint on the magnetic
field more accurately.

We tested the performance of PPML on several numerical problems which demon-
strated its high accuracy on both smooth and discontinuous solutions. Two-dimensional
flow fields generated by PPML are highly resolved without any wiggled contour lines. Our
pilot simulations of supersonic magnetized turbulence in three dimensions with PPML
show that low dissipation and wide spectral bandwidth of this method make it an ideal
candidate for direct turbulence simulations.
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