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Abstract
Fast algorithms for simulating mathematical models of coupled blood-tissue transport and
metabolism are critical for the analysis of data on transport and reaction in tissues. Here, by combining
the method of characteristics with the standard grid discretization technique, a novel algorithm is
introduced for solving a general blood-tissue transport and metabolism model governed by a large
system of one-dimensional semilinear first order partial differential equations. The key part of the
algorithm is to approximate the model as a group of independent ordinary differential equation (ODE)
systems such that each ODE system has the same size as the model and can be integrated
independently. Thus the method can be easily implemented in parallel on a large scale multiprocessor
computer. The accuracy of the algorithm is demonstrated for solving a simple blood-tissue exchange
model introduced by Sangren and Sheppard (Bull. Math. Biophys. 15:387–394, 1953), which has an
analytical solution. Numerical experiments made on a distributed-memory parallel computer (an HP
Linux cluster) and a shared-memory parallel computer (a SGI Origin 2000) demonstrate the parallel
efficiency of the algorithm.
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1. Introduction
Oxidative energy metabolism in cells, including ATP synthesis from carbohydrate and fatty
acid substrates, is coupled to the delivery of oxygen by the microcirculation. Since oxygen is
highly extracted from the blood and is consumed rapidly in many tissues, oxygen tension in
cells varies spatially—from approximately 100 mmHg near the inflow into capillaries to as
low as 10–20 mmHg near the outflow in metabolically active tissues such as the myocardium
[3,24]. Therefore, the transport of oxygen, and other key solutes, to tissue is an inherently
spatially distributed process, captured by partial differential transport equations. Simulation of
blood-tissue solute exchange finds applications in analyzing experimental data on cell and
tissue/organ function during changing physiological conditions such as ischemia (low blood
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flow), hypoxia (low oxygen supply), and exercise (high energy demand) [4,6,5,7,10]. Such
modeling is also useful in the analysis of experimental data from tracer studies involving tracer-
labeled 15O-and 17O-oxygen and other substrates. Understanding the transport of tracer 15O
oxygen, and its metabolic byproduct tracer 15O water, is important in interpreting results from
positron emission tomography imaging used to discover functional information relating to local
perfusion and metabolism in the heart [11,20]. Similarly, understanding the effects of changing
blood flow on local bulk oxygen concentration is important in interpreting the physiological
significance of blood-oxygen-level-dependent contrast magnetic resonance imaging [17]
and 17O nuclear magnetic resonance imaging [23] of the working brain.

The classical Krogh cylinder model [18] (a single cylindrical tissue supplied by a single
cylindrical capillary) has been the basis for most of the theoretical studies on microcirculatory
oxygen transport [7,10,11,20,24] in which the transport of oxygen is governed by a system of
one-dimensional nonlinear partial differential equations (PDEs). The governing PDEs can be
parabolic or hyperbolic depending on whether molecular diffusion in the direction of blood
flow is or is not considered. Furthermore, when oxygen transport is coupled with the cellular
metabolic processes, the governing PDEs can be highly nonlinear and the number of governing
PDEs can increase to the order of tens or even hundreds depending on the number of chemical
species modeled, resulting in a computationally expensive model [4,10,31,32,33]. Therefore,
fast efficient numerical solutions of the governing PDEs are important for the analysis of
experimental data, which requires repeated computation of solutions of the governing PDEs
and comparison of the experimental data to the corresponding model outputs.

Currently, the most useful numerical procedure for solving the one-dimensional
microcirculatory advection-diffusion-reaction models is the Lagrangian sliding fluid element
algorithm (also known as the blood-tissue exchange or BTEX algorithm) of Bassingthwaighte
et al. [2]. This algorithm works well for small-scale systems involving only few chemical
species, as in the models of Bassingthwaighte and co-workers [7,10,11,20]. However, this
algorithm works considerably slowly for large-scale systems such as for the Beard model of
coupled blood-tissue transport and metabolism [4], and is difficult to parallelize. Consequently,
the algorithm is computationally expensive for the analysis of experimental data with complex
transport-metabolism models. The present work was motivated in part to improve and
generalize this BTEX algorithm such that the resulting generalized BTEX algorithm can be
easily implemented in parallel on a large scale multiprocessor computer, making it suitable for
rapid numerical solutions of large-scale one-dimensional microcirculatory advection-
diffusion-reaction models. Specifically, rapid numerical solutions of the recently developed
coupled blood-tissue transport-metabolism model of Beard [4] are sought, which simulates
advective oxygen transport and oxidative energy metabolism by a system of 30 semilinear first
order PDEs. This model does not account for the axial diffusion of chemical species, has the
constant coefficient of the spatial derivative term (i.e., a constant axial blood velocity) and the
nonlinear reaction terms that arise from the contribution of cellular metabolic processes (the
source or sink terms in the PDEs), and does not produce any singularity problem that may
occur in a system of semi-linear PDE of first order [21].

Here, such coupled blood-tissue transport-metabolism models are formulated as a general
blood-tissue exchange (BTEX) model governed by a system of semilinear PDEs of first order,
along with the boundary and initial conditions. We then prove that this general BTEX model
has a unique solution under the assumptions that both the boundary and initial value functions
are continuous and bounded, and the nonlinear reaction terms are continuous and satisfy a Lip-
schitz condition in the solution. Based on this analysis, a novel numerical algorithm is
developed to numerically solve this general BTEX model using the characteristic-line and
standard mesh discretization techniques. The key part of this algorithm is to approximate the
model as a group of independent ordinary differential equation (ODE) systems at the

Xie et al. Page 2

J Comput Phys. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



discretized spatial mesh points such that each ODE system has the same size as the model and
can be solved independently by a standard ODE numerical integrator. Due to this, this
algorithm can be simply implemented on a parallel computer by a domain decomposition
strategy [30]. For clarity, this new algorithm will be called the generalized BTEX algorithm
since it is designed particularly for numerically solving large-scale general BTEX models
involving transport and metabolism, and is more efficient than the original BTEX algorithm
of Bassingthwaighte et al. [2].

Semilinear PDE problems of the sort that arise from coupled blood-tissue transport-metabolism
modeling can also be solved by the method of lines, a general procedure for solving time-
dependent one-dimensional PDEs [15,27,28]. In the method of lines, the model is approximated
as only one system of ODEs in which the size becomes nN, where N is the number of differential
equations in the BTEX model, and n is the number of spatial grid points required for spatial
approximation. The number n may need to be large to achieve sufficient accuracy in the spatial
approximation. Since most stiff ODE solvers are implicit, requiring solving large-scale
nonlinear algebraic systems at each time step, solving such large ODE system may become
computationally costly and challenging in parallel implementation. In contrast, the generalized
BTEX algorithm approximates the model as n independent small ODE systems with size N
(e.g., N = 30 in the Beard model [4]), it is a natural parallel algorithm, and each small ODE
system can be efficiently solved by using a high-order stiff ODE integrator such as an one-step
implicit Runge-Kutta method [13,14] or a multi-step BDF (backward differentiation formula)
method [9].

To study the accuracy of the generalized BTEX algorithm, a simple BTEX model introduced
by Sangren and Sheppard [26], which can be solved analytically to obtain the exact solution,
is analyzed here. Both the generalized BTEX algorithm and the method of lines were applied
to solve the Sangren-Sheppard model and the numerical solutions were compared to the
analytical solution. Results show that the numerical solutions from the generalized BTEX
algorithm match the analytical solution with a much higher accuracy than those obtained from
the method of lines.

Finally, a parallel program package was developed in Fortran 77 based on the Livermore ODE
Solver DL-SODES [16,25] and MPI (Message Passing Interface) library [1]. This package was
applied to Beard model simulating advective oxygen transport and oxidative energy
metabolism by a system of 30 one-dimensional semilinear first order PDE equations [4]. The
program package was tested on a distributed-memory parallel computer (an HP Linux cluster
at the Medical College of Wisconsin) and a shared-memory parallel computer (an SGI Origin
2000 at the University of Wisconsin-Milwaukee) with up to 16 processors. Numerical results
demonstrate good parallel performance on both computers.

The remainder of the paper is organized as follows. Section 2 introduces the general BTEX
model. Section 3 describes the generalized BTEX algorithm. Section 4 discusses its parallel
implementation. Section 5 studies the accuracy of the numerical solutions produced by the
method. Section 6 discusses the parallel performance of the algorithm. Finally, conclusions
are made in Section 7.

2. A General Blood-Tissue Exchange Model
In this section, we define a general blood-tissue exchange (BTEX) model involving transport
and metabolism based on the following basic assumptions: (1) concentrations of chemical
species vary primarily along the capillary length within the capillaries, interstitial fluid (ISF)
space, and parenchymal cells domain; (2) advective transport happens only in the capillary
region; and (3) transport between regions (capillaries, ISF, and parenchymal cells) and cellular
metabolism is governed by suitable nonlinear functions of species concentrations.
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Let  and  be the functions representing the concentrations of chemical
species in the capillary and tissue (ISF or parenchymal cells) regions, respectively. They are
defined on the domain D = {(x, t)|0 < x < L, 0 < t < T}, where L is the length of capillary, and
T is the length of time. Then the general blood-tissue exchange model is defined by

(1)

where a > 0 is the speed of blood transport in the capillary, u = (u1, u2, …, uN), fj is a nonlinear
function representing either a passive permeation between the domains or a flux through a
biochemical reaction in the cellular domain, or a combination of both, ϕk is a given initial
function, and gi is a given boundary function at x = 0. In small blood vessels and capillaries
(microcirculation), the blood is usually squeezed through the system, in which the flow can be
approximated as plug flow. Therefore, the speed of blood transport in such systems is usually
considered constant [2,3]. For example, in [4], the speed a of blood transport was estimated
by the formula , where F is the blood flow in the capillary expressed in the units of volume
per unit time per unit mass of the tissue, ρ is the tissue density in mass per unit volume, and
V1 is the volume of the capillary region.

The model proposed in [4] is a special case of Equation (1) with N1 = 1 and N = 30, considering
only oxygen transport in the capillary region. In that model, three equations describe oxygen
transport within three-regions of the cardiac tissue — the capillary, the ISF region, and the
cellular (myocyte) region, while the other 27 equations describe cellular energy metabolism.
In this model, the transport of other species (such as glucose, fatty acids, and amino acids) was
not considered within the capillary blood region. Additional species in the advecting (blood)
region can be studied with models with N1 > 1.

The independent variables x and t usually do not appear explicitly in the functions fj, and fj
may be an implicit function of some unknown functions ui. For example, in [4], the nonlinear
term f1 is given by

(2)

where c1 and c2 are two given constants, and P is a function of u1 defined implicitly by the
nonlinear equation

(3)

where α is the oxygen solubility coefficient in blood, β is the product of the hematocrit with
the concentration of oxygen binding sites in red blood cells (hemoglobin), γ is the partial
pressure of oxygen for half saturation of hemoglobin, and σ is the Hill exponent. Here P
indicates the oxygen partial pressure in the capillary. In [4], the constants were set as α = 1.3
× 10−6 M mmHg−1, γ = 30.0 mmHg, β = 0.45 × 0.0213 M, and σ = 2.5.

To solve Equation (3) for P, we rewrite it in the standard form
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(4)

and then solve it by the Newton-Raphson iterative method:

where P(0) is an initial guess (e.g., P(0) = 0), ψ(P) is a function of P defined by the left-hand
side of Equation (4), and ψ′(P) denotes its derivative. The kth iterate P(k) is selected as a value
of P for calculating f1 in Equation (2) provided that it satisfies the termination rule

where εr and εa are the relative and absolute error tolerances, respectively (e.g., εa = εr =
10−6).

The general BTEX model actually consists of N1 semilinear hyperbolic equations and N −
N1 semilinear first order PDEs containing only the derivatives with respect to time t. Its solution
existence and uniqueness can be proved similarly as the case of semilinear first order hyperbolic
systems [21] under the following assumptions: gk(t) and ϕk(x) are continuous and bounded on
[0, T ] and [0, L], respectively, and fk is continuous on the domain D = {(x, t, u)|0 ≤ t ≤ T, 0 ≤
x ≤ L, u ∈ RN} and satisfies the following Lipschitz condition

(5)

where ℒ is Lipschitz constant, u = u(x, t), v = v(x, t), and || · || is a fixed norm on RN. The key
step of the proof is to use the method of characteristics to reduce the boundary initial value
problem (1) to integral equations and then use the Picard method to define sequences of
functions that converge to the solutions. The details of the proof is beyond the scope of the
present paper and will be reported in a subsequent paper.

3. Generalized BTEX Algorithm for Solving the General BTEX Model
This section describes the generalized BTEX algorithm for solving the general BTEX model
of Equation (1). As described in Section 2, the blood speed a is considered as a constant and
the source functions fj are expressed as fj(u).

The generalized BTEX numerical algorithm is defined on a special grid mesh of the domain
D with the spatial and time step sizes h and τ satisfying τ = h/a. By using h = L/n, the grid points
(x j, ti) of this grid mesh are defined by xj = jh and ti = iτ such that

(6)

where n is a given positive integer, and m is the integer closest to the real number (aTn)/L. See
Figure 1 for an illustration of the grid mesh with n = 4 and m = 6.
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Clearly, for 0 ≤ t ≤ t1, a characteristic line that starts at x = xk can be expressed by a linear
function of t in the form x = at + xk for k = 0, 1, 2, …, n − 1. When the functions ui(x, t) for i
= 1, 2, …, N1 are restricted to these characteristic lines, we have that

Thus, the first N1 equations of (1) are converted to the ODEs without any errors:

(7)

where i = 1, 2, …, N1 and 0 ≤ t ≤ t1. Here we have taken an advantage of the characteristic line
approach for solving one-dimensional hyperbolic PDEs [29].

The other equations of (1) do not involve any partial derivatives with respect to the spatial
variable x. They can be converted to ODEs along the vertical mesh lines x = xk:

(8)

for 0 ≤ t ≤ t1, where j = N1 + 1, N1 + 2, …, N.

Next, we can obtain the following fact: If uj(x, t) is Lipschitz-continuous in the sense that there
exists a constant ℒ > 0 such that |uj(x, t) − uj(y, t)| ≤ ℒ|x − y| for all x, y ∈ (0, L), then for any
t ∈ [ti, ti+1],

where j = 1, 2, …, N, and τ = h/a has been used.

Based on the above fact, we claim that uj(a(t − ti) + xk, t) can be well approximated by uj(xk,
t) for ti ≤ t ≤ ti+1 if h is sufficiently small. Hence, for i = 0, t0 = 0, and uj(at + xk, t) can be
approximated as uj(xk, t) for j = N1 + 1, N1 + 2, …, N; thus, Equation (7) is modified as

(9)

for 0 ≤ t ≤ t1. Naturally, the functions ui(at + xk, t) for i = 1, 2, …, N1 defined in Equation (9)
can be employed to modify Equation (8) as

(10)

Consequently, a combination of Equations (9) and (10) with the initial conditions uj(xk, 0) =
ϕ (xk) gives the n initial value problems that provide a numerical approximation to the general
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model of Equation (1) on 0 ≤ t ≤ t1 and 0 ≤ x ≤ L. These n initial value problems can be expressed
in the vector form: For k = 0, 1, 2, …, n − 1,

(11)

where ϕ (x) = (ϕ1(x), ϕ2(x), …, ϕN (x)), ûk(t) = (u1(at + xk, t), …, uN1 (at +xk, t), uN1+1(xk, t),
…, uN (xk, t)), and f (ûk) = (f1(ûk), f2(ûk), …, fN (ûk)). From the construction process of Equation
(11) it is easy to see that these n initial value problems are independent of each other. Hence,
they can be solved independently by a numerical ODE algorithm, yielding an approximation
of ûk(t) at t = t1. This completes the description of the first time step of the generalized BTEX
method.

To illustrate the independence of these ODE systems, we display an example of (11) with N =
2, N1 = 1, and the grid mesh with h = L/4 (i.e., n = 4) as shown in Figure 1. The general BTEX
model problem is now approximated as the following four ODE systems: For k = 0, 1, 2, 3,

where xk = kh for k = 0, 1, 2, 3. Clearly, these four ODE systems are defined on four different
sets of line segments with each set containing two different line segments. For example, in the
ODE system with k = 0, the first equation is defined on the line segment x = at for 0 ≤ t ≤ t1
while the second one on the vertical line segment x = 0 for 0 ≤ t ≤ t1, solving them gives
numerical solutions u1(x1, t1) and u2(0, t1). For the ODE system with k = 1, the first equation
is defined on the line segment x = at + x1 for 0 ≤ t ≤ t1 while the second one on the vertical line
segment x = x1 for 0 ≤ t ≤ t1. Clearly, they are completely independent from the equations of
the first ODE system. Similarly, we can see that they are independent from other two ODE
systems too. Hence, they can be solved independently to get numerical solutions u1(x2, t1) and
u2(x1, t1).

In the i-th time step of the generalized BTEX method for i = 1, 2, …, m − 1, the general BTEX
model of Equation (1) is solved approximately on ti ≤ t ≤ ti+1 and 0 ≤ x ≤ L as n independent

ODE initial value problems. Let  denote a numerical value of uj(xk, ti), which has been
computed in the previous time step over ti−1 ≤ t ≤ ti with i ≥ 1, and the vector function ûk(t) be
defined by

(12)

Using  and the boundary conditions at x =0 of (1), we can construct the initial conditions
at t = ti as below:
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where  are determined by the general formula:

(13)

Similar to the construction of Equation (11), we then can obtain the n independent ODE initial
value problems in vector form as follows: For k = 0, 1, 2, …, n − 1,

(14)

where i = 0, 1, 2, …, m −1, and the initial values  are defined in (13).

Since a(ti+1 − ti) + xk = aτ + xk = h + xk = xk+1, the value of the vector function ûk(t) defined in
Equation (12) at t = ti+1 becomes

Thus, solving Equation (14) produces the following numerical values:

(15)

In other words, the first N1 numerical values have been slid one step forward from xk to xk+1
while the time is changed from ti to ti+1. This phenomenon was used in [2] and referred to as
the lagrangian sliding fluid element.

4. Parallel Implementation of Generalized BTEX Algorithm
Computer implementation of the generalized BTEX algorithm is straightforward. On a
sequential computer, we assume that one global two dimensional array, U[1: N, 0: n − 1], is
used to store both input and output numerical values in solving the ODE initial value problems
of Equation (14) at each time step i = 0, 1, 2, …, m − 1. Most ODE solvers are designed in this

way. In the input step at t = ti−1, we set  for j = 1, 2, …, N and k = 0, 1, 2, …, n −
1. Here the symbol “:=” denotes the assignment operation in the computer program. Because
of Equation (15), in the output step at t = ti, U will hold the following numerical values for k
= 0, 1, 2, …, n − 1:

(16)

Hence, an adjustment of the array U has to be done to get the initial values  as given in
Equation (13) for solving Equation (14) from ti to ti+1. As the result of (16), in the input step
at t = ti, only need the first N1 rows of array U be updated:
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(17)

The generalized BTEX method can be easily implemented in parallel based on either a shared-
memory programming model in OpenMP [8] or a distributed-memory programming model in
MPI [1,12]. With OpenMP, a sequential program of the generalized BTEX method can be
easily parallelized by only adding a compiler directive before the “parallelizable” spatial step
loop of k for k = 0, 1, 2, …, n−1, which involves the numerical solutions of n independent ODE
initial value problems. To efficiently implement the generalized BTEX method in MPI on a
distributed-memory parallel computer (including a cluster of PCs), we need to explore its data-
distribution and data-communication explicitly as shown below. Such a MPI program works
well on a shared-memory parallel computer too.

Let p be the number of processors to be used in the parallel implementation. In each time step
of i for i = 0, 1, 2, …, m − 1, the n independent ODE problems of the k-loop can be partitioned
into p independent groups such that each group contains almost the same number of ODE
problems based on a simple domain decomposition strategy. That is, the (n + 1) spatial grid
points  of the spatial domain [0, L] are partitioned into p equally-sized subsets, Ωk =
{xj| j = nk−1 + 1, nk−1 + 2, …, nk} for k = 1, 2, …, p, such that the ODE initial value problems
related to Ωk are assigned to processor k for calculation. Here nk = k(n + 1)/p − 1 is assumed
to be a positive integer. To reduce the memory cost, the global array U[1: N, 0: n] is also split
into p sub-arrays such that processor k contains only sub-array U[1: N, nk−1 + 1: nk] for storing
the local numerical values. Furthermore, the array updating job of Equation (17) is also split
into p parts as given below:

Part 1: do U[ j, 0]:= g j(ti) and U [ j, 1: n1]:= U[ j, 0: n1 − 1] for j = 1, 2, …, N1.

Part k: do U[1: N1, nk−1 + 1: nk]:= U[1: N1, nk−1: nk − 1] for k = 2, 3, …, p.

However, the updating job of Part k on processor k involves the entries U[1: N1, nk−1] that are
located on processor k − 1 for k = 2, 3, …, p since processor k contains only the local array U
[1: N, nk−1 + 1: nk]. The update cannot be completed until the entries U[1: N1, nk−1] are
calculated and sent out by processor k − 1 and received by processor k. This is the only place
that requires interprocessor data communication operations in the parallel implementation of
the generalized BTEX method. Hence, the total amount of data required for interprocessor
communications is small. But, since the work required to solve the different ODE initial value
problems may be different, different processors may produce different CPU times to finish the
job even though they are assigned the same number of ODE initial value problems. This
potentially unbalanced work load problem may affect the parallel performance of the
generalized BTEX method. One possible solution is to solve each ODE system by a high order
one-step stiff ODE solver, such as the Radau IIA method [13,14], in a fixed number of steps.

For clarity, a piece of pseudo code in MPI is given in Algorithm 1 to illustrate the parallel
implementation of the generalized BTEX algorithm. It is written in the SPMD (single-program,
multiple-date) style. That is, the same program code is implemented on all available processors
while each processor has different data and thread of controls. The SPMD style is widely used
in practice for shared or distributed memory. In Algorithm 1, we mention the names of MPI
functions that we used in our MPI program but ignore the details since the details of their usages
can be found in [1,12] or on the MPI forum web at http://www.mpi-forum.org.
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Algorithm 1 (Parallel BTEX Pseudo-program in MPI)
Let the p processors be labeled from 0 to p − 1, n be selected to make the ratio Nb = (n + 1)/p
a positive integer, and ODEsolver(Y, tin, tout) denote an ODE solver program routine. Here Y
= Y[1: N] is a real array with N entries, which holds the initial solution ûk(tin) in the input and
the final solution ûk(tout) in the output of the ODE solver program routine.

1. Create a new communicator for the p processors with the one-dimensional Cartesian
topology by MPI function MPI_CART_CREATE, get the rank Ma of calling
processor in the new communicator by MPI_COMM_RANK, and define the left and
right neighboring processors of calling processor by MPI_CART_SHIFT.

2. Set i = 0, define the k-loop for k = Ns to Ne, and input the initial values by U [1: N,
k]:= ϕ(xk) for k = Ns to Ne, where Ns = 1 + Me Nb, Ne = (Me + 1)Nb, and Ne = n if
Me = p − 1.

3. Do the following k-loop to solve the Nb ODE initial value problems of (14) on time
interval [ti, ti+1]:

for k = Ns to Ne,

Set tin:= ti, tout:= ti+1, and Y [1: N]:= U[1: N, k];

Call ODEsolver(Y, tin, tout) to get solution Y at t = tout;

Save the solution by U[1: N, k]:= Y[1: N].

end for (k)

4. Adjust the value of U[1: N, Ns: Ne] according to Parts 1 and 2 by doing the following
steps:

a. Send U[1: N1, Ne] to the right neighboring processor by MPI_SEND;

b. Receive U[1: N1, Ne] from the left neighboring processor and save it to a
buffer array B(1: N1) by MPI_RECV;

c. Adjust the value of U (i.e., sliding one entry) by U[1: N1, Ns + 1: Ne]:= U
[1: N1, Ns: Ne − 1];

d. Redefine the value of U[1: N1, Ns] by setting U [j, 1]:= gj(tout) for j = 1 to
N1 if Me = 0, and U[1: N1, Ns]:= B[1: N1] if Me ≥ 1.

5. Increase i by 1 and go to Step 3 if i ≤ m − 1; otherwise, exit the i-loop of time.

In summary, the generalized BTEX method is a general procedure for solving the general
BTEX model of Equation (1). It is defined on a particular grid mesh of (6), and solves the
BTEX model of Equation (1) in m time steps. At each time step of the generalized BTEX
method, n independent ODE initial value problems, as defined in Equation (14), are produced
as an approximation to the BTEX model. Here each ODE system has the same size as the
BTEX model and can be solved independently by a numerical ODE solver. Moreover, the
method can be easily and efficiently implemented in parallel on a multiprocessor computer.
Based on the spatial grid point partition, a good load balance can be simply achieved by
assigning the same number of ODEs to each processor, and the parallel implementation of the
generalized BTEX method only involves relatively little interprocessor communication. Since
the most computing costs come from solving the ODEs, the performance of the method is
strongly related to the effciency of the numerical ODE solver.
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5. Accuracy Testing of the Generalized BTEX Method
To verify the accuracy of the numerical solutions produced by the generalized BTEX method,
we made numerical experiments on the BTEX method for solving the Sangren-Sheppard model
[26], which is a special case of the general BTEX model of Equation (1) with N = 2 and N1 =
1. The Sangren-Sheppard model has the analytical solution in terms of the first-order modified
Bessel function of the first kind. A comparison of our numerical solutions with those obtained
from the method of lines was also made since the method of lines is a popular procedure for
solving time-dependent PDE problems [15,28,27].

The Sangren-Sheppard model can be described as follows:

(18)

where u1(x, t) and u2(x, t) are the concentrations in the capillary blood and interstitial fluid
(ISF) spaces, a is the blood velocity in the capillary, Ps is the permeability-surface area product
for the exchange between the capillary and ISF, and V1 and V2 are the volumes of distribution
of the given solute in the blood and ISF.

With the initial conditions u1(x, 0) = 0, u2(x, 0) = 0 and the boundary condition
, the analytical solution of Equation (18) can be found as below:

and

where 0 ≤ x ≤ L, 0 ≤ t ≤ T, I0 and I1 are the zeroth-order and first-order modified Bessel functions
of the first kind [22], qo is the finite mass injected into the capillary, F = aV1/L, δ(t) is the Dirac

delta function, and . Here F is the blood flow to the tissue, and the boundary
condition at x = 0, and the initial and boundary conditions simulate that a spike of finite mass
qo is injected into the capillary at position x = 0 at time t = 0.

If flow F and volumes V1 and V2 are expressed relative to total mass of tissue (for example, in
units of ml·min−1·g−1 and ml·g−1, respectively), then the injected mass qo is expressed in units
of moles per mass of tissue. The finite mass injected at x = 0 results in an infinitely high
concentration in an infinitely small volume. In the numerical tests reported in Figures 2 and 3,
we set L = 1, T = 1.5, a = 0.33, F = 1/60, V1 = 0.05, V2 = 0.2, Ps = 0.1, q0 = 1.0, and h = L/n
for n = 10, 50, 100, 150, 200 and 250.

Figure 2 displays the relative errors of the generalized BTEX method for solving the Sangren-
Sheppard model as an increasing function of the spatial step length h. The accuracy of the
method is second-order with respect to the step length h (or τ since τ = h/a). The relative errors
displayed in the figure were computed by using the formulas
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where Ui,h(j) denotes the approximate value of ui(x j, t), h = L/n, xj = jh, and t = 1.5.

Figure 3 compares the numerical solutions produced by the generalized BTEX method with
the analytical solutions and the numerical solutions produced by the method of lines. Here h
= L/50. From the figures we can see that the numerical solutions by the generalized BTEX
method match the analytical solutions, and that the generalized BTEX method has higher
accuracy in approximating the Sangren-Sheppard model than the method of lines. In fact, at
t = 1.5, both u1(x, t) and u2(x, t) have a jump discontinuous point and u1(x, t) has a impulse at
x = 0.5. The generalized BTEX method resolves the impulse as a single point with total mass
corresponding to the impulse part of u1(x, t). The impulse is not shown in the figure for the
axis scale used. In the method of lines, numerical diffusion spreads the impulse and the method
does a poor job in approximating the jump discontinuity.

6. Parallel Performance of the Generalized BTEX Method
We developed a parallel program package for the generalized BTEX method in FORTRAN
77 and MPI (Message Passing Interface) library [1], and tested it for solving the coupled blood-
tissue transport and metabolism model proposed in [4]. In this package, the Livermore ODE
Solver DLSODES [16,25] is called for solving each ODE system associated with each spatial
grid point. Since the source functions fj of the model are defined implicitly in several levels of
relation identities, it is difficult to obtain their explicit analytical expressions for partial
derivatives. Hence, we used the method flag MF = 222 in DLSODES, the BDF (backward
differentiation formula) method, which is also known as Gear’s method or a variable order and
multistep method [9] and a numerical Jacobian matrix estimated by finite difference formulas
for solving each ODE. In addition, the following optional values were set in DLSODES for
our numerical tests:

• Relative tolerance is set rtol = 10−8 and the absolute tolerance is set atol = 10−10 such
that the local error of uk is less than rtol|Uk| + atol, where Uk is a numerical solution
in the kth step.

• The time step size dt of the ODE numerical solver is set to satisfy 10−3 < dt <
10−10.

• The initial timestep is set to dt = 10−10 in the BDF.

Numerical experiments were made on a distributed-memory parallel computer (the HP Linux
Integrity Superdome Cluster at the Medical College of Wisconsin) and a shared-memory
parallel computer (the SGI Origin 2000 at the University of Wisconsin-Milwaukee). Each node
of the HP cluster is one HP R2600 Integrity server, which has two 1.3GHz Intel Itanium 2
processors, and 4Gbytes main memory. The cluster private interconnect is 1Gb Ethernet HP
Procurve 2824 J4903A switch. Each processor of SGI Origin 2000 is R12000 with 400 MHz.
The total main memory is 8Gbytes. Here we used the same boundary and initial value functions
and the same data as the ones from [4] to evaluate the functions fj. We set N1 = 1, N = 30, L =
550, T = 20, and a = 144.7875. The grid mesh was made by h = L/n with n = 2048 and τ = h/
a = 1.8548 × 10−3. This resulted in a total number of 10782 time steps (m = 10782) for the time
interval [0, 20]. Hence, the total number of the ODE initial value problems to be solved in the
generalized BTEX method was 22,081,536.
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The parallel performances of the generalized BTEX method on the SGI Origin 2000 and HP
Linux Cluster are shown in Figures 4 and 5, respectively. Total CPU time, total interprocessor
data communication time, and associated speedups are shown in the figures. From the figures
we see that the HP Cluster ran about 3 times faster than the Origin 2000, and had a better
parallel performance; it only took about 13 minutes for the BTEX method to solve the model
on 16 processors. It is interesting to note that the communication time is fluctuant on the HP
Cluster while decreasing on the SGI Origin 2000. Although the total number of ODEs assigned
to each processor was almost the same, the total CPU time and the total interprocessor
communication time required to solve them on each processor were different. In the figures,
the largest of them are reported. Also, we note that total communication time becomes a serious
factor affecting the parallel effciency when the number of processors is increased. Although
interprocessor communication involves only one real number to be sent and received at each
time step of generalized BTEX method, its cost becomes large after carrying out 10782 time
steps due to the overhead costs of the sending and receiving operations. Even so, a speedup of
11.15 on 16 processors represents a good parallel performance for the generalized BTEX
method. A larger speedup is possible by using a smaller value of h since more ODE systems
can be generated such that each processor has more jobs to do to reduce the overhead of
interprocessor communication.

A representative model simulation of steady-state oxygen profile is illustrated in Figure 6,
which compares the oxygen partial pressures P1 and P3 in the capillary and the cell region
calculated on a large grid (n = 2048) with that on a small grid (n = 32) as a function of the
scaled distance along the capillary length (in x/L). The model simulations were performed using
the parameter values representative of normal physiological conditions in the working
cardiomycytes at moderate work rate (see [4] for details). Specifically, for these simulations,
the total pool of exchangeable phosphate in the myocytes was set to TPP = 15 mM, blood flow
was set to F = 0.75 ml min−1 (g tissue)−1, and the rate of ATP consumption was set at JAtC =
0.45 mmol sec−1 (l cell)−1. The input arterial PO2 was assumed to be 100 mmHg. Other model
parameters values representing cellular energy metabolism are set as in Beard [4]. The steady-
state corresponds to T = 20 minutes.

These model solutions match well with the simulations of Beard [4] (see Figure 1B in [4]).
These solutions suggest that oxygen partial pressures decrease from the arterial (x = 0) to the
venous (x = L) end of the capillary, and decrease from the capillary region to the cellular region.
The rate of cellular oxygen consumption and oxygen extraction at the venous end
corresponding to these simulations were found to be 5.3 mol min−1 (g tissue)−1 and 76%,
respectively, values consistent with a moderate rate of cardiac work [4]. The model simulations
in Figure 6 show that the solutions with n = 2048 do not differ significantly from the solutions
with n = 32, suggesting that the solutions are accurate enough for mesh grids with n = 32. As
shown in Figures 4 and 5, a typical steady-state simulation of Beard model of coupled blood-
tissue transport and metabolism [4] using our generalized BTEX algorithm is significantly
faster than that obtained using the traditional BTEX algorithm [2] with comparable grid sizes
and accuracy criteria. Therefore, this new generalized BTEX algorithm will be critical for the
analysis of experimental data on blood-tissue transport and reactions, which requires repeated
computation of solutions of the governing PDEs and comparison of the experimental data to
the corresponding model outputs.

7. Discussions and Conclusions
In this paper, we have presented an improved algorithm called the generalized BTEX (blood-
tissue exchange) algorithm for solving a general blood-tissue transport and metabolism model
governed by a system of one-dimensional semilinear first order partial differential equations
(PDEs). We have also discussed its parallel implementation and parallel performance on both
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distributed-memory and shared-memory computers. Our method is a general procedure to
convert the model problem approximately into many ODE initial value problems based on a
special grid mesh with the time and spatial step sizes τ and h satisfying τh = a, where a is a
speed of blood transport in the capillary. All these ODE problems have been shown to be
independent of each other and to retain the size of the original model problem. Hence, they
can be solved independently by an efficient ODE solver such as DLSODES. In this sense, the
generalized BTEX algorithm is naturally a parallel algorithm, which can be easily implemented
on a multiprocessor computer.

Note that most blood-tissue transport and metabolism models possess the stiffness spanning
over multiple time scales since different species interact with each other between different
blood-tissue regions. Hence, one favorable approach is to convert such a model to one or many
ODE initial value problems so that a proper stiff ODE solver can be used to treat the stiff
properties of the model problem. In fact, many stiff ODE algorithms and software packages
have been developed in the numerical ODE research field over the years [9,16,14,13,19,25].
Several such approaches have been available in the current literature (for solving the PDEs by
converting them into ODEs), and the most popular one is the method of lines [15,27,28]. Most
of these approaches approximate the model problem as only one large scale ODE initial value
problem, which may be difficult to solve since most stiff ODE algorithms are implicit, which
involve numerical solutions of nonlinear algebraic systems at each time step, may produce a
prohibited computing expenses, and may be very difficult to be implemented in parallel on a
parallel computer. In contrast, all the ODE systems produced from our generalized BTEX
method have the same size as that of the model problem, which is relatively very small (e.g.,
order of tens so far). Hence, our generalized BTEX method provides a better way to solve
large-scale coupled blood-tissue transport and metabolism models than the method of lines
[15,27,28] or even the traditional Lagrangian sliding fluid element algorithm [2]. The suggested
generalized BTEX algorithm is accurate and robust which is demonstrated by comparing the
analytical solutions of the Sangren and Sheppard model [26] with the numerical solutions
obtained from the generalized BTEX algorithm as well as from the method of lines, showing
the priority of the generalized BTEX algorithm over the method of lines.

The generalized BTEX algorithm is motivated by the Lagrangian sliding fluid element
algorithm of Bassingth-waighte et al. [2] which was proposed in 1992. Compared to the
Lagrangian sliding fluid element algorithm, our generalized BTEX algorithm is
mathematically formalized and has been demonstrated to be suitable for fast numerical
solutions of large-scale coupled blood-tissue transport and metabolism models, governed by
one-dimensional semilinear PDEs, which is important for physiological applications in the
analysis of experimental data (e.g., see [4,31,32,33]). As a computational algorithm, the
generalized BTEX algorithm needs to be further developed and analyzed on its error
estimations and convergence properties. This will be taken up in our subsequent papers.
Furthermore, the generalized BTEX algorithm will need to be extended to handle diffusive
terms which will be suitable for numerical solutions of large-scale one-dimensional
microcirculatory advection-diffusion-reaction models.
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Figure 1.
An example of the grid mesh (n = 4 and m = 6) used by the traditional BTEX method
(Lagrangian sliding fluid element algorithm of Bassingthwaighte et al. [2].
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Figure 2.
The relative error of the generalized BTEX method for solving the Sangren-Sheppard model
is a increasing function of the spatial step length h.
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Figure 3.
Comparison of the numerical solution of the generalized BTEX method (left figure) with that
of the method of lines (right figure) for solving the Sangren-Sheppard model, a special example
of (1) with N1 = 1 and N = 2. Here the spatial grid size h = 1/50, L = 1 and t = 1.5.
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Figure 4.
Parallel performance of the generalized BTEX algorithm on an SGI Origin-2000 machine.
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Figure 5.
Parallel performance of the generalized BTEX algorithm on an HP Linux Cluster.
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Figure 6.
Comparison of the partial pressures P1 and P3 of oxygen in the capillary and the cell region as
functions of the scaled distance along the capillary length. The generalized BTEX method is
to solve the Beard model of coupled blood-tissue oxygen transport and oxidative energy
metabolism [4]. The model parameters are as in [4].
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