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Abstract. We present a highly robust second order accurate scheme for the Euler equations

and the ideal MHD equations. The scheme is of predictor-corrector type, with a MUSCL scheme
following as a special case. The crucial ingredients are an entropy stable approximate Riemann

solver and a new spatial reconstruction that ensures positivity of mass density and pressure.

For multidimensional MHD, a new discrete form of the Powell source terms is vital to ensure
the stability properties. The numerical examples show that the scheme has superior stability

compared to standard schemes, while maintaining accuracy. In particular, the method can

handle very low values of pressure (i.e. low plasma β or high Mach numbers) and low mass
densities.

1. Introduction

This paper is concerned with the nonlinear stability of numerical schemes for the equations of
ideal magnetohydrodynamics (MHD). Ideal MHD is a fluid model of a plasma with no resistivity
and no net charge. As a model it has been very succesful in describing astrophysical plasmas and
space physics. The governing equations are a system of conservation laws for the densities of mass
ρ, linear momentum ρu, energy E and magnetic field B. They can be written as (letting I3 denote
the 3× 3 identity matrix)

(1.1)

ρt +∇ · (ρu) = 0,
(ρu)t +∇ · (ρu⊗ u + (p+ 1

2 |B|
2) I3 −B⊗B) = 0,

Et +∇ · [(E + p+ 1
2 |B|

2)u− (B · u)B] = 0,
Bt +∇ · (B⊗ u− u⊗B) = 0,
∇ ·B = 0,

with an internal energy e given by E = ρe+ 1
2ρu

2 + 1
2B2, and the pressure given by the equation

of state p = p(ρ, e). The system fits the generic form of a conservation law Ut + ∇ · F(U) = 0,
except for the restriction on ∇·B. However, if this restriction is satisfied at the initial time t = 0,
it automatically holds at later times t > 0 for the exact solution. Since solutions generally have
shocks and contact discontininuities, one should look for weak solutions, and augment the system
with the entropy inequality

(1.2) (ρφ(s))t +∇ · (ρuφ(s)) ≤ 0,

where φ is any smooth convex and nonincreasing function, and the entropy s is defined by

(1.3) de+ p d(
1
ρ

) = Tds

for some temperature T (ρ, e) > 0. The entropy inequality means that we apply the second law of
thermodynamics to exclude unphysical shock waves.

The ideal MHD system is hyperbolic provided

(1.4) p′ ≡
(
∂p

∂ρ

)
s

> 0,

where the subscript s means that the partial derivative is taken with s constant. We also assume
that p(ρ, e) > 0 as long as ρ > 0 and e > 0. Hence, a natural stability criterion for a numerical
scheme is that ρ, p and e should remain positive numbers, if they are initially. Violations of this
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basically lead to the breakdown of the simulation. It is sufficient to have ρ > 0 and ρe > 0, or
equivalently

(1.5) ρ > 0, E − 1
2
ρu2 − 1

2
B2 > 0.

These inequalities define a convex set in the space of conserved variables U = (ρ, ρu, E,B).
Stronger criteria than positive internal energy are given by imposing discrete versions of the
entropy inequality (1.2), or at least a sharp lower bound on s. A third important criterion is to
avoid spurious oscillations near sharp gradients.

Consider a system of conservation laws in one spatial dimension (we consider the x-dimension)
Ut + F (U)x = 0. The numerical schemes we will consider are of the finite volume type

(1.6) S∆tUi = Ui −
∆t
h

(
Fi+ 1

2
−Fi− 1

2

)
,

where Ui are averages over intervals (or ’cells’) of length h indexed by i at some time t, and the
operator S∆t updates the cell averages to time t+∆t. The numerical fluxes F are evaluated at the
cell interfaces, hence U is conserved and we say the scheme is conservative. First order accurate
schemes can be given by

(1.7) Fi+ 1
2

= F(Ui, Ui+1).

For MHD several such fluxes are in use, and they are typically given by an approximate Riemann
solver (see [7], [26], [19]). We will use the 3-wave approximate Riemann solver of [8]-[9], denoted
HLL3R. This numerical flux guarantees a priori that the scheme preserves the positivity of ρ and
e, and that a discrete version of the entropy inequality holds. Other fluxes with similar properties
are given in [18], [23], [17], [20], [21] among others. The mathematical results of this paper are
valid for any numerical flux F ensuring the positivity of (1.6)-(1.7).

These numerical fluxes are building blocks in higher order accurate schemes. The other basic
building blocks are typically the spatial reconstruction of states based on the cell averages, and a
time integration scheme. The stability properties of the first order schemes are not automatically
inherited by the higher order schemes. For one thing, some restriction on the reconstructed states
must be imposed to control spurious oscillations. This is the basis of TVD schemes and WENO
schemes (see [26], [19]). It is technically complicated to prove a discrete entropy inequality for
the higher order schemes ([5],[13]), and in practice it seems sufficient to have this property for
the first order scheme. In any case, TVD and WENO type schemes will revert more or less to
the first order scheme near a shock. Finally, even with these considerations made, the positivity
property may fail to hold, but, as demonstrated in [24], [3] and [4], positivity can be retained
by further restricting the reconstructed states. This idea is carried out here for a second order
accurate scheme for ideal MHD. The case of the Euler equations follows by setting B = 0.

The extension to more than one space dimension will be performed in a straightforward manner
here, by employing uniform Cartesian grids. Stability results from one dimension tend to carry
over fairly easily, except that smaller timesteps may be required. For ideal MHD however, there
is an obstacle in generalising results from one dimension. The restriction ∇ ·B = 0 implies that
the longitudinal component of B, Bn, must be constant for one-dimensional data. When one-
dimensional schemes are employed in a multidimensional setting, violations of this constraint have
to be somehow dealt with. We will use the following approach of [25], consisting of modifying the
evolution equation for B to

(1.8)
Bt +∇ · (B⊗ u− u⊗B)− u∇ ·B = 0.

This yields a version of the Powell system for MHD. In its original version, also the momentum
and energy equations were modified. The HLL3R solver of [8]-[9] has the useful property of being
consistent, positive, and to satisfy a discrete entropy inequality also for this more general system.
Generalisation of other interesting approximate Riemann solvers to allow Powell terms is possible
([16]). It should be noted that the nonconservative term may lead to errors of a few percent
when strong shocks are present, as demonstrated in [27]. An alternative to using (1.8) is the
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staggered mesh (or constrained transport) approach (reviewed in [27]), which in one dimension
essentially means evaluating Bn at the cell interface instead of as a cell average. It is not clear, as
far as we know, whether this leads to provably positive schemes. However, it has the advantage
of guaranteeing that ∇ · B = 0 to approximation order in smooth regions. We will not attempt
to dampen eventual spurious values of ∇ · B in our test runs, since the role of such methods
in numerical stability is unclear. We remark though, that our methods are compatible with the
projection method of [10], and the parabolic cleaning method of [22] and [14]. Equation (1.8)
implies that

(1.9) (∇ ·B)t +∇ · (u∇ ·B) = 0,

hence errors in ∇·B should be advected with the flow. This may be regarded as a form of cleaning
of errors in ∇ ·B.

This paper is organised in the following way: Next, we present the underlying MUSCL-Hancock
scheme. In Section 3 we derive modifications that will ensure that this scheme is positive in
one dimension (i.e. when Bn is constant). In Section 4 we extend the positivity result to the
multidimensional case (i.e. with variable Bn). Sections 3 and 4 both end with relevant numerical
examples. Section 5 contains the main conclusions.

2. The MUSCL-Hancock method

We now detail the conservative MUSCL-Hancock scheme, introduced in [28] (see also [26]),
which generalises a first order finite volume scheme (1.6) to second order accuracy. Later a
nonconservative version will be presented. Let W denote the primitive variables (ρ,u,B, p). For
smooth data, the equations can be rewritten as Wt + A(W )Wx = 0 for a matrix A(W ). The
MUSCL-Hancock schemes goes as follows.

(1) Evaluate discrete differences dWi. For oscillation control, we use the MC-limiter (mono-
tonised central limiter), so for each component of Wi we take

(2.1) dWi = σi min
(

2|Wi+1 −Wi|,
1
2
|Wi+1 −Wi−1|, 2|Wi −Wi−1|

)
with

(2.2) σi =


1, Wi+1 −Wi > 0, Wi −Wi−1 > 0
−1, Wi+1 −Wi < 0, Wi −Wi−1 < 0
0, otherwise.

(2) Limit dWi to ensure positivity as outlined below. This gives new differences DWi.
(3) Prediction step: Evaluate

(2.3) W c
i = Wi −

∆t
2h
A(Wi)DWi

(4) Evaluate the cell edge values

(2.4) W−i = W c
i −

1
2
DWi, W+

i = W c
i +

1
2
DWi.

(5) Use the cell edge values as input to the numerical flux in the conservative scheme.

(2.5) S∆tUi = Ui −
∆t
h

(
F
(
U+
i , U

−
i+1

)
−F

(
U+
i−1, U

−
i

))
.

The positivity result we derive next, does not depend on our specific choice (2.1) of gradient
limiter. The spatial reconstruction step (2.4) may be replaced with a conservative reconstruction
(i.e. such that 1

2 (U− + U+) = U c) as follows

ρ± = ρc ± 1
2
Dρ, u± = uc ± ρ∓

2ρc
Du, B± = Bc ± 1

2
DB(2.6)

p± = pc ± 1
2
Dp− (γ − 1)

(
ρ+ρ−

8ρ
Du2 − 1

8
DB2

)
,(2.7)
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assuming the ideal gas law p = (γ−1)ρe. We will refer to this as the U -reconstruction, and (2.4) as
the W -reconstruction. A convenient third option is what we will call the p-reconstruction, where
we take a conservative slope for the momentum, but set

(2.8) p± = pc ± 1
2
Dp.

In [4] the positivity of a MUSCL-Hancock scheme is analysed with the Euler equations as an
example. The prediction step (2.3) was in [4] replaced with

(2.9) U ci = Ui −
∆t
2h
(
F (U+

i )− F (U−i )
)
.

Using primitive variables as the basis for reconstructing the states was recommended for example
in [12]. It ensures that material contact discontinuities are reproduced exactly. Alternatively, one
can use that the primitive form Wt +A(W )Wx = 0 may be diagonalised as

(2.10) (Rji )t + λj(Rji )x = 0, j = 1, 2, . . . , d

with Wi = XiRi. The matrix Xi is given by the eigenvectors Xj
i of A(Wi). The reconstructed

gradients may then be evaluated using the relation DWi = XiDRi, given gradients DRi, and we
get

(2.11) W±i = XiR
±
i = Xi(Ri −

∆t
2h
λRi ±

1
2
DRi) = Wi −

∆t
2h
A(Wi)DWi ±

1
2
DWi,

where λ is the diagonal matrix having the eigenvalues λj as entries. The estimates we need to
ensure positivity are most conveniently stated for DW , but they are also valid for the characteristic
reconstruction (2.11). For ideal MHD the characteristic decomposition is costly and complicated
due to the nonstrict hyperbolicity, so we will evaluate dW directly from (2.1) in our examples.

3. Positivity analysis in one spatial dimension

We first derive a positive version of the conservative MUSCL-Hancock scheme (2.5). For con-
venience we restrict ourselves to the case that γ − 1 = p/(ρe) can be considered fixed, but this
restriction is easily relaxed. Our starting point is the following proposition, essentially due to [3].
We will say that a scheme S∆t preserves an invariant region Ω if

(3.1) Ui ∈ Ω ∀ i ⇒ S∆tUi ∈ Ω ∀ i.

This typically only holds under a CFL condition ∆t < τ(U)h where τ is a function of the sequence
of cell averages {Ui}i.

Proposition 3.1. The MUSCL-Hancock scheme (2.5) preserves the convex invariant region Ω if
i) The scheme (1.6)-(1.7) preserves Ω for all ∆t < τ(Ui)h, and
ii) For some α ∈ (0, 1

3 ]

(3.2) U+
i ∈ Ω, U−i ∈ Ω and U∗i =

1
1− 2α

(
U − α(U+

i + U−i )
)
∈ Ω,

and ∆t < ατ(Ũ)h, where Ũ is the sequence

{. . . , U−i−1, U
∗
i−1, U

+
i−1, U

−
i , U

∗
i , U

+
i , U

−
i+1, U

∗
i+1, U

+
i+1, . . .}.

The optimal CFL condition is given by α = 1
3 . This means we need to take about three times

smaller time steps compared to the first order scheme. Also, the CFL condition is implicitly
defined. In practice we find that our schemes work well at much higher CFL numbers than
theoretically accounted for. The practical significance of the result is to provide bounds on the
reconstructed values U± rather than on ∆t.



A POSITIVE MUSCL-HANCOCK SCHEME FOR IDEAL MAGNETOHYDRODYNAMICS 5

Proof. The method can be written as a convex combination of first order schemes. Let F− =
F(U+

i−1, U
−
i ) and F+ = F(U+

i , U
−
i+1), which allows us to drop the index i for readability. Using

the definition of U∗, we get

S∆tU = U − ∆t
h

(F+ − F−) = αU− − ∆t
h

(F(U−, U+)− F−)

+(1− 2α)U∗ − ∆t
h

(F(U∗, U+)−F(U−, U+))

+αU+ − ∆t
h

(F+ −F(U∗, U+)).

We rewrite this as

S∆tU =α
(
U− − ∆t

hα
(F(U−, U+)− F−)

)
+(1− 2α)

(
U∗ − ∆t

h(1− 2α)
(F(U∗, U+)−F(U−, U+))

)
+α

(
U+ − ∆t

hα
(F+ −F(U∗, U+))

)
.

Each line is a first order update of a cell average with time step sizes ∆t/α and ∆t/(1− 2α). This
means that, provided ∆t is chosen as prescribed, S∆tU is a convex combination of states in Ω.
The result then follows by the convexity of Ω. �

Remark: This Proposition is only valid for conservative schemes. In the case of multidimensional
MHD, the Powell terms result in a nonconservative flux in place of F . We will generalise to the
Powell system in the next section.

3.1. Implementation: Positive mass density. We now demonstrate how Proposition 3.1 can
be used. The index i is dropped throughout this section for readability. Hence ρ, U etc. is to be
understood as generic cell averages ρi , Ui etc. We choose the optimal α = 1/3. First we consider
positivity of mass density. The prediction step for ρ is

(3.3) ρc = ρ− ∆t
2h

(uDρ+ ρDu)

According to Proposition 3.1, it is enough to have:

(3.4) min(ρ−, ρ+) = ρ− ∆t
2h

(uDρ+ ρDu)− 1
2
|Dρ| > 0,

and

(3.5) ρ∗ = ρ+ 2
∆t
2h

(uDρ+ ρDu) > 0.

This yields the sufficient condition that

(3.6) ρ− ∆t
h

(|u||Dρ|+ ρ|Du|)− 1
2
|Dρ| > 0.

Set |Dρ| < lρ and |Du| < l h∆t , for some l to be determined. Assuming the reasonable CFL
condition |u| ≤ h

∆t , we end up with l = 1
2 , so |Dρ| < ρ

2 and |Du| < h
2∆t .

3.2. Implementation: Positive pressure. Ensuring that pressure also stays positive is more
involved. Define ∆W = ∆t

2hA(W )DW , so that

(3.7) W c = W −∆W.
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Hence ∆W is given as

∆ρ =
∆t
2h

(uDρ+ ρDu)(3.8)

∆u =
∆t
2h

(
uDu+

Dp+B⊥ ·DB⊥
ρ

)
(3.9)

∆u⊥ =
∆t
2h

(
uDu⊥ −

BnDB⊥
ρ

)
(3.10)

∆Bn = 0(3.11)

∆B⊥ =
∆t
2h

(uDB⊥ +DuB⊥ −BnDu⊥)(3.12)

∆p =
∆t
2h

(uDp+ γpDu) .(3.13)

To separate between longitudinal and transversal components, we introduced here the notation
u = (u, u⊥) and B = (Bn, B⊥). Hence u⊥ and B⊥ are vectors in the y-z plane. Since we are in
one dimension we assumed Bn to be constant. Proposition 3.1 motivates the following estimates:

Proposition 3.2. The W -reconstruction satisfies the conditions of Proposition 3.1 with α = 1
3 if

(3.14) |Dρ| < 1
2
ρ, |Du| < ∆x

(1 + γ)∆t
, |Dp| < p

1 + γ

and

3
ρcρ

ρ∗
(∆u)2 + 3(∆B)2 +

1
4

((
ρc +

Dρ2

2ρ∗

)
Du2 +DB2

)
+

1
2
Dρu ·∆u−

(
ρc

ρ∗
+ 1
)
DρDu ·∆u <

p+ 2∆p
γ − 1

.(3.15)

The p-reconstruction satisfies the conditions of Proposition 3.1 with α = 1
3 if (3.14) holds and

(3.16) 3
ρcρ

ρ∗
(∆u)2 + 3(∆B)2 +

1
4

(ρcDu2 +DB2) <
p+ 2∆p
γ − 1

.

For the U-reconstruction, the conditions of Proposition 3.1 with α = 1
3 are satisfied if

(3.17) |Dρ| < 1
2
ρ, |Du| < ∆x

2∆t
,

1
8

(ρcDu2 +DB2) <
pc − 1

2 |Dp|
γ − 1

and

(3.18) 3
ρcρ

ρ∗
(∆u)2 + 3(∆B)2 <

p+ 2∆p
γ − 1

.

Proof. Consider the W-reconstruction. The conditions (3.14) imply that ρ± > 0, p± > 0 and
ρ∗ > 0 by arguments like those given in Section 3.1. Note that they also ensure that p+ 2∆p > 0,
and that ρc > 0.

It remains to check that (ρe)∗ > 0, or in terms of conserved quantities, that

(3.19) 3E − (E+ + E−)− 1
2

((ρu)∗)2

ρ∗
− 1

2
(B∗)2 > 0.

Note that

(3.20) (ρu)∗ = 3ρu−
(

2ρcuc +
1
2
DρDu

)
= ρ∗u + 2ρc∆u− 1

2
DρDu.
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Hence we get

1
2

((ρu)∗)2

ρ∗
=

1
2
ρ∗u2 + 2

(ρc)2

ρ∗
(∆u)2 + 2ρcu ·∆u

+
Dρ2

8ρ∗
Du2 − 1

2
Dρu ·Du− ρcDρ

ρ∗
∆uDu.(3.21)

For the calculation of E+ + E−, we need

1
2
ρ+(u+)2 +

1
2
ρ−(u−)2 = ρc

(
(uc)2 +

1
4

(Du)2

)
+Dρuc ·Du

= ρc
(

u2 + (∆u)2 − 2u ·∆u +
1
4

(Du)2

)
+Dρ(u−∆u) ·Du.(3.22)

Also,

(3.23)
1
2

(B∗)2 =
1
2
B2 + 2(∆B)2 + 2B ·∆B,

and

(3.24)
1
2

(B+)2 +
1
2

(B−)2 = (Bc)2 +
1
4

(DB)2 = B2 + ∆B2 − 2B ·∆B +
1
4
DB2.

Plugging this into (3.19), the positivity of (ρe)∗ follows. We used the relation

(3.25) ρc + 2
(ρc)2

ρ∗
= 3

ρcρ

ρ∗
.

The results for the p- and U - reconstructions follow similarily. For these two cases we have

(ρu)∗ = 3ρu− 2ρcuc = ρ∗u + 2ρc∆u,(3.26)

1
2

((ρu)∗)2

ρ∗
=

1
2
ρ∗u2 + 2

(ρc)2

ρ∗
(∆u)2 + 2ρcu ·∆u,(3.27)

1
2
ρ+(u+)2 +

1
2
ρ−(u−)2 = ρc(uc)2 +

ρ−ρ+

4ρc
(Du)2.(3.28)

�

Remark 1: Taking α = 1
4 replaces (3.15) with the slightly simpler

(3.29)
ρcρ

ρ∗
(∆u)2 + (∆B)2 +

1
8

((
ρc +

Dρ2

4ρ∗

)
Du2 +DB2

)
+
Dρ∆ρ
ρ∗

Du∆u <
p+ ∆p
γ − 1

.

Remark 2: The proof does not rely on any explicit formula for ∆W . By setting ∆W = 0, a
positive semi-discrete MUSCL scheme follows as a special case. An appropriate Runge-Kutta type
time discretisation, such as Heun’s method, will yield a positive scheme that is second order in
time and space.

Taking DW = 0, which means that we are back to the first order scheme, satisfies the condition.
Noting that, the next step is to find a sharper choice of DW . Let us first consider the W -
reconstruction. The algorithm’s outline is as follows: i)Ensure that (3.14) holds, then ii)Ensure
that (3.15) holds. Point ii) requires some further estimation.

Define

L(dW ) = 3
ρ̃cρ

ρ̃∗
(∆u)2 + 3(∆B)2 +

1
4

((
ρ̃c +

Dρ2

2ρ̃∗

)
Du2 +DB2

)
+

1
2

(Dρu ·∆u)+ −
(
ρ̃c

ρ̃∗
+ 1
)

(DρDu ·∆u)−(3.30)

with

(3.31) ρ̃c = ρ− ∆t
2h

(ρ(Du)− + (uDρ)−) ≥ ρc, ρ̃∗ = 3ρ− 2ρ̃c ≤ ρ∗.
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W -rec. p-rec. U -rec. First order
Basic scheme MHW MHp MHU
Positive cell edge values MHW± MHp± MHU±

Positive scheme MHWP MHpP MHUP G1
Table 1. Summary of the schemes considered in one-dimensional tests.

Also, define

(3.32) ρe(dW ) =
p+ 2∆t

2h ((udp)− + γp(du)−)
γ − 1

.

Then it is sufficient for (3.15) to have L(DW ) < ρe(DW ). Using this, we end up with the following
algorithm for the reconstruction:

(1) Compute dW with a standard limiting procedure such as (2.1).
(2) Limit dW to ensure (3.14)
(3) Compute L(dW ), ρe(dW ), and

(3.33) f(dW ) =

√
ρe(dW )

max
(
L(dW ), ρe(dW )

)
(4) Set DW = f(dW )dW , and ∆W = f(dW )A(W )dW
(5) Compute W c and W±.

The validity of this algorithm is most easily seen as follows: The right hand side ρe is nonincreasing
in the absolute value of each component of dW . For the left hand side we have L(ξdW ) ≤ ξ2L(dW )
for all ξ ∈ [0, 1]. This implies

(3.34) L(DW ) ≤ f(dW )2L(dW ) ≤ ρe(dW ) ≤ ρep(DW ).

For the U - and p-reconstructions the algorithm is essentially the same.
For comparison purposes we also set up a scheme such that U± are positive, but with no

guarantees for U∗. This scheme is not provably positive, but is based on a natural and common
design principle. For the W - and p-reconstructions it is sufficient to have

(3.35) |Dρ| < 2
3
ρ, |Du| < 2∆x

(2 + γ)∆t
, |Dp| < 2p

2 + γ
.

For the U -reconstruction, we also need

(3.36)
1
8

(ρcDu2 +DB2) <
pc − 1

2 |Dp|
γ − 1

.

3.3. Numerical tests in one spatial dimension. We now have schemes ready to be tested
on hydrodynamics and one-dimensional MHD. Let us denote the basic MUSCL-Hancock schemes
with W , p and U reconstructions MHW, MHp and MHU respectively. The positive versions will be
denoted MHWP, MHpP and MHUP. We also consider a first order scheme G1 (with DW = 0), and
schemes which guarantee the positivity of the cell edge values U±, but not positivity in general.
The different schemes are summarised in Table 1. The tests focus on specific issues of the new
positive schemes, and we refer to [26] for more basic tests of the MUSCL-Hancock scheme. First,
we fix some parameters. The time step is chosen according to the following formula

(3.37) ∆t = Ccfl
h

max
(

supi
(
ui + |Bi|√

ρi

)
,Λ
) ,

where Λ denotes the maximum over all cell interfaces of the Riemann solver signal velocities of the
previous time step (For the first time step, the previous time step is defined as one with ∆t = 0).
We set Ccfl = 0.9, which is of more practical interest than the smaller theoretical value. For
each of the limiting inequalities (3.14)-(3.18), we multiply the right hand sides with 0.9 to avoid
marginality. The gas is assumed to be ideal in all examples, so the equation of state is (γ−1)ρe = p
for a fixed γ ∈ (1, 2].
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MHW MHWP MHp MHpP MHU MHUP
Acrit 15.5 10.1 3.6
100verr 3.07 4.32 3.02 3.31 2.89 2.93

MHW± MHWP MHp± MHpP MHU± MHUP
Acrit 23.4 11.2 50∗

100verr 4.80 6.14 3.14 3.49 11.1 11.8
Table 2. The nonpositive schemes were tested at the values of A = Acrit that
they were marginally stable, and the error in v compared to their positive coun-
terparts at the same Acrit. ∗For MHU± we could not find an Acrit, so A = 50
was chosen as a convenient value.

0 0.1 0.2 0.3 0.4 0.5
0
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4

6

8

10

12

14

16
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Exact
MHW
MHWP
G1

Figure 3.1. Shear test for MHW with A = 15.5 at t = 0.02. The results are
similar for 0.5 < x < 1. At higher A, MHW failed.

3.3.1. High Mach shear flow. Our first test, consisting of an advected shear flow, was set up to
investigate the accuracy of the positive schemes compared to the basic schemes. Take ρ = 1,
p = 1/γ, B = 0, γ = 5/3 and

(3.38) u = (50, A(sin 2πx+ 0.15 sin 20πx), 0), A > 0.

The strategy was to increase the free parameter A until the nonpositive schemes are marginally
stable. We first increased A until MHW was not able to advect the flow for one period (time
t = 0.02). The resolution was fixed to h = 0.01, and boundary conditions were periodic. MHW
produced a solution at A = 15.5, while it terminated due to negative pressure values at A = 15.6
and larger values we tested. Figure 3.1 compares MHW and MHWP at A = 15.5. The G1 result is
also plotted to show how especially the smaller scale is more smeared out. The error with respect
to the exact solution in shear velocity vexact is conveniently measured as the normalised L1-error
verr = Σi|vi − v(0, xi)|h/A. For MHWP the error was 0.0432, while for MHW it was 0.0307. It is
not surprising that MHWP gave a larger error in this critical case, but it was still much less than
the error of G1, which was 0.0913.

We performed the same test with the scheme given by (3.35), denoted MHW±. This scheme
produced negative pressures at A = 23.5 and higher, hence having positive cell edge states only
increased the marginal A with about 50%. At A = 23.4 MHWP produced verr = 0.0614, while
MHW± produced verr = 0.0480

The same type of testing was performed on the other schemes. First, a critical amplitude
A = Acrit was found, and then the positive scheme was compared to its nonpositive counterpart.
the results are summarised in Table 2. We observe the same tendencies with all schemes, except
that MHU±, given by (3.35)-(3.36), appeared very stable on this case. The scheme MHp±, given
by (3.35), had only about 10% better stability range than MHp.
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Figure 3.2. Shear test with A = 25 at t = 0.02 with h = 0.005. The results are
similar for 0.5 < x < 1. All the basic schemes MHU, MHp and MHW failed at
this A-value.

h MHWP, A=1 MHW A=15.5 MHWP, A=15.5
0.02 7.32 7.82 8.51
0.01 2.44 3.07 4.32
0.05 0.64 1.09 1.27
0.025 0.19 0.39 0.48
Table 3. Shear test: Errors given as 100verr at t = 0.02.

h MHUP MHpP MHWP
0.02 10.2 9.30 8.91
0.01 9.79 6.31 5.82
0.05 5.27 2.99 2.33
0.025 1.84 1.18 0.98

Table 4. Shear test: Errors given as 100verr at A = 25 for different schemes at
t = 0.02. All the basic schemes MHU, MHp and MHW failed at this A.

Tables 3-4 show errors from refinements studies with varying A. At A = 1 we noted little
difference between the schemes, so only the results from MHWP are shown. At A = 15.5 MHW
and MHWP still converge at about the same rate with the errors of MHWP slightly larger.
Convergence was slower than at A = 1. The next step is to compare the positive schemes MH·P.
Table 4 compares the errors of these schemes at A = 25, revealing that MHUP is somewhat less
accurate. In Figure 3.2, showing the output of different schemes for a fixed resolution, MHWP
may be seen to best reproduce the shape of the shear wave, especially compared to MHUP. Since
MHUP is also fairly complicated to calculate, we focus on MHWP and MHpP from here onwards.

The main conclusions from this test are that the limiting prescribed by Proposition 3.2 sig-
nificantly improves the stability of the basic MUSCL-Hancock schemes, while maintaining the
accuracy of the original schemes. We also demonstrated that simply having the cell edges U±

positive is an insufficient stability criterion, at least for the W - and p-reconstructions.

3.3.2. Brio-Wu shock tube. It is also important to demonstrate that the new schemes can resolve
shocks and contact discontinuities well. We consider shock tube initial data from [11] that has
become a standard test case. The initial data are given by U = Ul for x < 0.5, and U = Ur for
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Figure 3.3. Brio-Wu shock tube test as computed by G1 and MHWP. The
resolution was h = 0.005, and ρ and By are plotted at t = 0.2. The reference
solution results from a computation with h = 10−4 using the first order scheme
G1.

x > 0.5, with γ = 2 and

ρl = 1,ul = 0,Bl = (0.75, 1, 0), pl = 1

ρr = 0.125,ur = 0,Br = (0.75,−1, 0), pr = 0.1.

All the second order schemes produced very similar results on this case. Since the TVD-type
reconstruction used as basis for the second order schemes already limits the gradients strongly
near discontinuities, it is not surprising that the extra limiting applied in the positive schemes has
little influence in this problem. Data from MHWP and G1 are shown in Figure 3.3. Note the
strong improvement to the first order scheme G1.

3.3.3. Vacuum shock tube test. This test is from [9] (see also [6] and [7] for hydrodynamics), where
the ability of the flux HLL3R to handle vacuum data was demonstrated. We show here that our
approach extends this ability to higher order schemes. The initial data are given by U = Ul for
x < 0.5, and U = Ur for x > 0.5, with γ = 2 and

ρl = 0,ul = 0,Bl = 0, pl = 0

ρr = 1,ur = 0,Br = (0, 1, 0), pr = 0.5.

Positivity is critical for this problem. We specify that in vacuum cells DW was set to zero. Figure
3.4 shows results by MHWP and G1. A similar undershoot at the rarefaction tail was also reported
in [7] for a MUSCL scheme. The density profile from MHpP is not plotted as it is indiscernible
from that of MHWP. The base scheme MHp failed here due to a negative pressure value. The
MHW run stagnated due to a very high sound speed at the interface with the vacuum.

3.3.4. Low plasma β shock tube test. This is another test from [9]. It consists of rarefactions into
a region of low plasma β (defined as β = 2p

B2 ). The initial data are given by U = Ul for x < 0.5,
and U = Ur for x > 0.5, with γ = 5/3 and

ρl = 1,ul = (−û, 0, 0),Bl = (1, 0.5, 0), pl = 0.45

ρr = 1,ur = (û, 0, 0),Br = (1, 0.5, 0), pr = 0.45.

We first fixed the the velocity at û = 3.1. There was little difference between the second order
schemes here. MHWP and MHpP are observed to converge towards the reference solution in
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Figure 3.4. Vacuum test as computed by G1 and MHWP. The resolution was
h = 0.005, and ρ is plotted at t = 0.1. The right hand plot zooms in on the
rarefaction tail.
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Figure 3.6. Comparison of CFL-numbers on low β test. Plasma β = 2p
B2 is

plotted. Left: MHWP, right: MHpP. The resolution was h = 0.005.

Figure 3.5. The two schemes do equally well. The reference solution was computed using the first
order scheme G1 at high resolution.

Although using a CFL-number of 0.9 worked well in all the test cases, it is interesting to see
whether it makes a difference to follow the theoretical suggestion of using one third of the optimal
value. From Figure 3.6 it seems that taking 0.3 as the CFL-number gives a slight improvement,
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Figure 3.7. Comparison of positive and nonpositive schemes on low β test.
Plasma β = 2p

B2 is plotted. Left: û = 10.4, right: û = 14.2.

but the difference is too marginal to justify the increased computational time.
Finally, we considered the limits of the stability ranges of the nonpositive schemes MHW and

MHp with respect to the velocity û. We computed until the time t = 1
2 (û + 1.41)−1 (where 1.41

approximates the fast wave speed) at h = 0.01. MHW failed for û > 10.4 while MHp ran until
û > 14.2. The results are shown in Figure 3.7, where some differences in the low β regions are
visible. Somewhat surprisingly, the positive schemes reach the lowest β values, but MHW does
slightly better than MHWP in some other parts of the solution.

4. Extension to multi-dimensions

To do multidimensional calculations, we need to be able to handle a varying Bn. A positive
Riemann solver for this setting is given in [9], where the following modified equation for B is solved

(4.1) Bt + (uB−Bnu)x − u(Bn)x = 0.

The resulting scheme is not conservative, hence the proof of Proposition 3.1 is not valid. We can
write the scheme as

(4.2) S∆tUi = Ui −
∆t
∆x

(Fl(Ui, Ui+1)−Fr(Ui−1, Ui)) .

Incorporating this nonconservative numerical flux blindly into the MUSCL-Hancock scheme is not
consistent with (4.1), as the source contribution is of vanishing size for smooth data. Also, this
approach turns out to not be very stable. We will instead consider schemes of the form

(4.3) S∆tUi = Ui −
∆t
∆x

(
Fl(U+

i , U
−
i+1)−Fr(U+

i−1, U
−
i )
)
−∆tSi.

Extending nonconservative schemes to higher order in this manner is carried out in [1] and [7]
for shallow water equations. For systems with a full energy equation, ensuring that positivity
properties of first order schemes carry over requires more care. In order for the proof of 3.1 to
hold, we need to take (dropping the index i) S = S1 given by

S1 = −
(
Fr(U∗, U+) + Fl(U∗, U+)−Fr(U−, U∗) + Fl(U−, U∗)

) 1
h
.(4.4)

This gives a positive and consistent discretisation, but the source term is not necessarily second
order accurate. The source S1 may be computed as follows using the HLL3R solver. Note that
we only get a source contribution for the magnetic field B, so we write S = (0, 0, 0, 0, 0,SB).

(1) Find U−, U∗ and U+.
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(2) Calculate a signal velocity σ for the interior problems by taking the maximum values
allowed by the CFL condition:

(4.5) σ = Ccfl
∆x
∆t

.

(3) Calculate intermediate values of u at interior Riemann problems, denoted u±S , given by

u−S =
ρ−(u− + σ)u− + ρ∗(σ − u∗)u∗ + Π− −Π∗

ρ−(u− + σ) + ρ∗(σ − u∗)
,

u+
S =

ρ∗(u∗ + σ)u∗ + ρ+(σ − u+)u+ + Π∗ −Π+

ρ∗(u∗ + σ) + ρ+(σ − u+)
,(4.6)

with

Π =
(
p+

1
2
B2 − (Bn)2,−BnB⊥

)
.

(4.7)

(4) Finally,

(4.8) SB
1 = u−S

B∗n −B−n
h

+ u+
S

B+
n −B∗n
h

.

The algorithm is more efficient than a full evaluation of the Riemann problems due to the simplicity
of (4.5) and that we only need to know u±S . The consistency of SB

1 with the source term u(Bn)x
may seen from setting u±S = uc +O(h), yielding

(4.9) SB
1 = uc

DBn
h

+O(h).

In most cases, we expect that the source term

(4.10) S2 =
(

0, 0, 0, 0, 0,uc
DBn
h

)
.

may be used instead of S1 to ensure efficiency and second order accuracy. The second order
accuracy may be seen from rewriting the scheme so that the source is given by the more standard
form

1
h

uci (B
+
n,i −B

+
n,i−1)uc

n>0 +
1
h

uci (B
−
n,i+1 −B

−
n,i)uc

n<0

up to second order. The source discretisations S1 and S2 can be hybridised to also ensure positivity
as follows.

(1) Pick some small energy value ρe
i
, such as

(4.11) ρe
i

= µmin((ρe)i−1, (ρe)i, (ρe)i+1), µ ∈ (0, 1].

(2) Calculate the candidate Ũ using the source term S2;

(4.12) Ũi = Ui −
∆t
∆x

(
Fl(U+

i , U
−
i+1)−Fr(U+

i−1, U
−
i )
)
−∆tS2,i.

(3) Calculate

(4.13) ξi =

(
1−

( ˜(ρe)i)+

ρe
i

)
+

(4) Set

(4.14) S∆tUi = Ũi + ξi∆t(S1,i − S2,i).



A POSITIVE MUSCL-HANCOCK SCHEME FOR IDEAL MAGNETOHYDRODYNAMICS 15

We use µ = 1
2 .

In the astrophysical fluid dynamics code FLASH ([15])1, the Powell term is included in the
discrete form

(4.15) SF,i =
(

0, 0, 0, 0, 0,uci
[
(B+

n )i + (B−n )i+1 − (B−n )i − (B+
n )i−1

] 1
2h

)
,

and the terms Sl and Sr are ignored (In fact, including them would violate second order accuracy).
This scheme can also be made positive by using the hybridisation procedure described above.

Finally, for consistency ∆W should be modified to

∆ρ =
∆t
2h

(uDρ+ ρDu)(4.16)

∆u =
∆t
2h

(
uDu+

Dp+B⊥ ·DB⊥ +BnDBn
ρ

)
(4.17)

∆u⊥ =
∆t
2h

(
uDu⊥ −

BnDB⊥ +B⊥DBn
ρ

)
(4.18)

∆Bn =
∆t
2h
uDBn(4.19)

∆B⊥ =
∆t
2h

(uDB⊥ +DuB⊥ −BnDu⊥)(4.20)

∆p =
∆t
2h

(uDp+ γpDu) .(4.21)

Other than that, the limiting inequalities of Proposition 3.2 and its corresponding algorithm
remain unchanged.

4.1. Semidiscrete version. The semidiscrete case (∆W = 0) allows a simplification which is
worth stepping aside to point out. The W-reconstruction can be made positive in multi-dimensions
if the following source term is added to B

(4.22) S =
(

u +
BnDB +DBnB

cl + cr

)
DBn
h

with the relaxation speeds

(4.23) cl = ρ−
(
Ccfl

∆x
∆t

+ u−
)
, cr = ρ+

(
Ccfl

∆x
∆t
− u+

)
This result comes from modifying the proof of Proposition 3.1 by considering U∗+ and U∗− such
that

(4.24) 4U = U− + U∗− + U∗+ + U+

with B∗± = B±, ρ∗± = ρ∗, (ρu)∗± = (ρu)∗and

(4.25) E∗± = 2(
1
2
ρu2 + ρe)− 1

2

(
(
1
2
ρu2 + ρe)+ + (

1
2
ρu2 + ρe)−

)
+

1
2

(B±)2 − 1
8
DB2.

This modification of the argument reduces the number of Riemann problems with a source term
contribution from 2 to 1. The limiting inequalities that follow are

(4.26) ρ− 1
2
|Dρ| > 0, p− 1

2
|Dp| > 0,

and

(4.27)
1
8

(
ρ+

Dρ2

4ρ

)
Du2 +

1
8
DB2 <

p

γ − 1
.

1http://flash.uchicago.edu/website/home/
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h MHWP2 MHWP1
0.02 0.127 0.126
0.01 0.036 0.036
0.05 0.0071 0.0074
0.025 0.0012 0.0014

Table 5. One-dimensional test with variable Bn: Errors in internal energy at
A = 0.7 given as Σi|(ρe)i − (ρe)(0, xi)|h.

4.2. Positivity in multi-dimensions. Our scheme may be extended to a uniform Cartesian
multidimensional grid by applying it sequentially in each direction. This is known as the dimen-
sional splitting method. In order to maintain second order accuracy, the order of the directions
must be reversed between each time step (Strang splitting). Dimensional splitting obviously pre-
serves the positivity properties of the scheme. An alternative method is to add the numerical flux
contributions of each direction at once. Such a scheme may be written

(4.28) Un+1 = Un − ∆t
h

∑
d

∆F d,

where d traverses the spatial dimensions, and ∆F d are some flux differences. We rewrite this as

(4.29) Un+1 =
1
d

∑
d

(
Un − d∆t

h
∆F d

)
.

Hence, if this scheme is positive in one dimension at CFL number C1, it will be positive in d
dimensions at CFL-number C1/d.

4.3. Numerical tests for multi-dimensional case. We now have several schemes to test in
multidimensional settings. The time step is still chosen by (3.37). There are mainly two different
source term discretisations to consider: i) The simple source S2, yielding (4.12), denoted MHW2,
and MHWP2 etc. ii) The schemes using (4.14), resulting from the hybrid of S1 and S2, are denoted
MHWh and MHWPh etc. Setting DW = 0 gives back the first order scheme G1 of [9].

4.3.1. One-dimensional smooth wave. First, we set up one-dimensional initial data with varying
Bn. Although the data are unphysical, they provide a simple and adequate test for stability. A
travelling wave solution to our Powell type system is given by u, BnB⊥ and p+ 1

2B
2
⊥− 1

2B
2
n being

constant. It has wave speed u. We choose ρ = 1, u = (10, 0, 0), Bn = 1−A sin(2πx). The pressure
p is set so that its minimum is 0.001. The parameter A may be chosen freely between zero and
one. We try to compute one period (until t = 0.1) and use periodic boundary conditions.

First fix A = 0.7. MHWPh and MHWP2 did practically the same on this test. Table 5 shows
errors at varying h. We also consider a scheme MHWP1 which uses S = S1. Its performance
is close to that of MHWP2, showing second order convergence. Internal energy profiles given
by MHWPh are plotted in Figure 4.1. A valuable observation here was the necessity of the
source term S for positivity. Coupling S = 0 with MHWP yielded a scheme that did not preserve
positivity even at A = 0.01. This suggests that the failure of Proposition 3.1 when (Bn)x 6= 0 is
a genuine feature. The schemes MHWP2 and MHpP2 were very stable in this test despite the
lacking theoretical basis. We also tried out the source term (4.15). It had to be hybridised with
MHWP1 to avoid negative pressures, and we denote the resulting scheme MHWPF. As shown
in Figure 4.1, it produced strong spurious oscillations. One might suspect the oscillations were
caused by the hybridisation, but they were present also in cases where MHWP1 was not invoked.
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Figure 4.1. Left: One-dimensional test with variable Bn computed by MHWPh
at different resolutions. Right: The same test with MHWPF.

4.3.2. Rotor problem. This two-dimensional test problem, introduced in [2], involves low pressure
values. The initial data are (denoting u = (u, v, w) and B = (Bx, By, Bz)) as follows:

ρ =


10 if r ≤ 0.1,
1 + 9f̃(r) if r ∈ (0.1, 0.115),
1.0 if r ≥ 0.115,

u =


−10y + 5 if r ≤ 0.1,
(−10y + 5)f̃(r) if r ∈ (0.1, 0.115),
0.0 if r ≥ 0.115,

v =


10x− 5 if r ≤ 0.1,
(10x− 5)f̃(r) if r ∈ (0.1, 0.115),
0.0 if r ≥ 0.115,

w = 0,

Bx =
2.5√
4π
, By = 0, Bz = 0, p = 0.5

r =
√

(x− 0.5)2 + (y − 0.5)2, f̃(r) =
1
3

(23− 200r).

We considered the computational domain given by 0 ≤ t ≤ 0.27, and (x, y) ∈ [0, 1]2. We used
directional splitting, and at the spatial boundary we implemented Neumann conditions with ghost
cells. MHWh, MHWPh, MHWP2, MHpPh and MHpP2 were all found able to handle this case,
and produced very similar results. We plotted the internal energy ρe at time t = 0.27 in Figure
4.2 from MHpPh and MHWPh.

To make the test more challenging we lowered the initial pressure to p = 10−8. In this case,
MHWh could not get past the first time step. MHWPh, MHpPh, MHWP2 and MHpP2 were all
stable also in this low β case. They produced very similar results. In particular, the two types
of central source term S produced the same, hence we conclude that simply using S2 gives a very
stable scheme. We plotted the magnetic energy 1

2B2 at t = 0.27 from MHWP2 in Figure 4.3. This
was complemented with a plot of magnetic field lines integrated from evenly spaced points along
the y-axis. To compare the numerical dissipation of the schemes, we plotted the total internal
energy

∫
(0,1)2

ρe dxdy as a function of time, see Figure 4.4. In the first time step, the second order
schemes were very similar to G1, a consequence of the virtually zero pressure. Already in the
second time step, as the gas had been heated locally from dissipation, the second order schemes
did better than G1. It seemed that MHpP2 was slightly less dissipative than MHWP2 in the early
phases. An explanation for this could be that the limiting inequalities of Proposition 3.2 are less
restrictive (at least as we implemented them).
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Figure 4.2. Contour plots of pressure from the rotor problem test results.
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Figure 4.3. Results from low β rotor problem at t = 0.27. Left: Contour plot of
magnetic pressure 1

2B2 from MHWP2. Right: Magnetic field lines from MHWPh
drawn with an intrinsic Matlab routine.

Finally, we compare the internal energy profiles produced with the different schemes in Figure
4.5. The second order schemes produced a sharper structure than G1. Again, hybridisation with a
positive scheme was essential in MHWPF (using (4.15)). It reproduced the overall structure, but
introduced small scale disturbances which we attribute to the oscillatory behaviour demonstrated
in the previous test. This test demonstrated that we have increased the robustness range of the
original scheme by several orders of magnitude. For example, MHWh failed already at an initial
p = 10−2.

5. Conclusion

Presented in this paper is a method that, due to physically and mathematically relevant es-
timates, is significantly more robust than standard higher order methods. The basic ingredients
of the scheme in one dimension are a positive and entropy stable approximate Riemann solver,
and a new reconstruction procedure that preserves the good properties of the Riemann solver via
a positivity proof. When generalising the positive scheme to more than one space dimension, it
was crucial to make the one-dimensional method meaningful also when the restriction ∇ ·B = 0
was violated. We needed a novel upwind discretisation of Powell source terms to achieve this. We
point out here that some schemes do not work well near vanishing pressure or density, because
strict hyperbolicity is lost and characteristic decompositions become ill-posed. The approximate
Riemann solver and reconstruction techniques used in this paper are robust with respect to this
issue, which is an important reason for the overall stability of the scheme.
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Figure 4.4. Low β rotor problem: Time series of total internal energy relative
to total energy. The right hand plot zooms in on the early phase.
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Figure 4.5. Low β rotor problem: Pressure p at t = 0.27 and h = 0.005 with
different schemes. Left to right: MHWPh, MHpPh, G1, MHWPF.

In order to ensure positivity of higher order schemes, it is sometimes necessary to limit the
gradients more than in the standard TVD-type machinery. The gradient limitations approximately
take the form ρDu2 +DB2 < O(ρe). This inequality is satisfied as long as both the local relative
Mach number, |Du| over sound speed, stays small enough, and the local relative plasma β, defined
as 2p/DB2, stays large enough. These numbers depend on resolution, and for certain smooth flows
refinement should be a remedy. However, the internal energy ρe can decrease significantly when
resolution increases, due to reduced numerical dissipation. Our numerical examples demonstrated
that including the extra limiting of the gradients gave very robust schemes. The accuracy of the
original schemes was maintained in the cases where they worked. Among three different ways
of determining the gradient DW , the new p-reconstruction and the primitive variable based W -
reconstruction produced the best results. Among those two reconstructions there was no strong
evidence in favor of one over the other, but the p-reconstruction led to somewhat simpler formulas.
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In less robust schemes it is sometimes necessary to a priori impose lower threshold values on
the density and pressure. This violates conservation of mass and energy, and possibly consistency
with the equations. In spite of these anomalies, lower thresholds can prevent codes from crashing,
and give good results. We are not able to provide any general guidelines for using this technique,
however. The threshold values need to be chosen heuristically for each application. We are under
the impression that the use of lower thresholds and their values are not always reported in the
literature. The scheme presented in this work conserves mass and energy, and does not rely on
any application dependent small parameters.

For multidimensional MHD simulations, the inclusion of Powell type terms was crucial for the
stability. The discretisation of the source terms was taken care of by the approximate Riemann
solver HLL3R of [9], and a new second order discretisation method. Our approach to discretising
the Powell terms should also be useful for handling more general source terms. The new discrete
source combined with the new gradient limiting led to schemes that were stable in tests with very
low plasma β values and very high sonic Mach numbers. Summarising the tests of the source
terms more specifically, the simple source discretisation (4.10) was found to be accurate and
very stable. In contrast, a central discretisation of the source term (4.15) was found to produce
spurious oscillations and negative pressures. Furthermore, we tested a more complicated source
discretisation that we could prove ensured a positive scheme. It gave test results similar to those
due to (4.10).

To sum up the paper, we have presented and tested a highly robust second order accurate
numerical method for ideal MHD. In particular, the method can handle very low values of pressure
and mass density. The scheme consists of the Riemann solver of [8]-[9] used in a MUSCL-Hancock
framework, and two new numerical techniques: A reconstruction that ensures the positivity of
density and pressure, and an upwind scheme for source terms. We expect that our scheme will be
very useful in codes intended for a range of applications where low pressures or densities may be
a problem.
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