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Abstract

The wave equation for vectors and symmetric tensors in gg@iaroordinates is studied under
the divergence-free constraint. We describe a numeric#fhade based on the spectral decom-
position of vectoftensor components onto spherical harmonics, that allowgh& evolution of
only those scalar fields which correspond to the divergdéremdegrees of freedom of the vec-
tor/tensor. The full vectgtensor field is recovered at each time-step from these twih@wvector
case), or three (symmetric tensor case) scalar fields,ghrtie solution of a first-order system of
ordinary dtferential equations (ODE) for each spherical harmonic. Tdreespondence with the
poloidal-toroidal decomposition is shown for the vectaseaNumerical tests are presented using
an explicit Chebyshev-tau method for the radial coordinate
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1. Introduction

Evolution partial diferential equations (PDE) for vector fields under the divecgefree con-
straint appear in many physical models. Similar problenestarbe solved with second-rank
tensor fields. In most of these equations, if the initial datd boundary conditions satisfy the
divergence-free condition, then the solution on a giveretinterval is divergence-free too. But
from the numerical point of view, things can be more compédaand round-@ errors can create
undesired solutions, which may then trigger growing unptatsnodes. Therefore, in the case of
vector fields, several methods for the numerical solutiosuath PDEs have been devised, such
as the constraint transport method [12] or the toroidabiglall decomposition [11, 20]. The aim
of this paper is to present a new method for the case of syrotietrsor fields, which appear in
general relativity within the so-called-3 approach [1], keeping in mind the vector case for which
the method can be closely related to the toroidal-poloigpt@ach. We first give motivations for
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the numerical study of divergence-free vectors and terinddgcs. 1.1 and 1.2; we briefly intro-
duce our notations and conventions for spherical coordgand grid in Sec. 1.3. The case of
the vector divergence-free evolution is studied in Sec.nd, the link with the poloidal-toroidal
decomposition is detailed in Sec. 2.3. We then turn to thensginc tensor case in Sec. 3 with the
particular traceless condition in Sec. 3.3. A discussiotineftreatment of boundary conditions is
given in Sec. 4, with the particular point of inner boundamyditions (Sec. 4.3). Finally, some
numerical experiments are reported in Sec. 5 to supportigoritnms and concluding remarks
are given in Sec. 6.

1.1. Divergence-free vector fields in relativistic magrbyarodynamics

In classical electrodynamics, the magnetic field is knowheadivergence-free since Max-
well’s equations. This result can be extended to generativedtic electrodynamics as well. In
classical hydrodynamics, the continuity equation can lpgessed agdpo + V - (ou) = 0, whereo
is the mass density of the fluid, andts velocity. Various approximations give rise to divergen
free vectors. Incompressible fluids have constant dentygaflow lines and therefore verify
that their velocity fieldu is divergence-free. Water is probably the most common elaoifpan
incompressible fluid. In an astrophysical context, the mpeessible approximation can lead to
a pretty good approximation of the behavior of compresdihid provided that the flow's Mach
number is much smaller than unity. Another useful hydrodyicaapproximation is the anelastic
approximation, which essentially consists in filtering the sound waves, whose extremely short
time scale would otherwise force the use of an impracticsihall time step for numerical pur-
poses. In general-relativistic magneto-hydrodynamies ainelastic approximation takes the form
V- (oI'u) = 0, whereu is the coordinate fluid velocity;, the Lorentz factor of the fluid, andits
rest-mass density.

Divergence-free vectors have given rise to a large liteeain numerical simulations. For
example, while using an induction equation to numericallglee a magnetic field, there is no
guarantee that the divergence of the updated magnetic $ieldmerically conserved. The most
common methods to conserve divergences in hyperbolicregséee constrained transport meth-
ods, projection methods or hyperbolic divergence cleamethods (see [25] for a review).

1.2. Divergence-free symmetric tensors in general relgtiv

The basic formalism of general relativity uses four-dimenal objects and, in particular, sym-
metric four-tensors as the metric or the stress-energpteAschoice of the gauge, which comes
naturally to describe the propagation of gravitational @sis theharmonic gaugée.g. [8]), for
which the divergence of the four-metric is zero. ThelJFormalism (see [1] for a review) is an
approach to general relativity introducing a slicing of tbar-dimensional spacetime by three-
dimensional spacelike surfaces, which have a Riemannéarced three-metric. With this formal-
ism, the four-dimensional tensors of general relativity projected onto these three-surfaces as
three-dimensional tensors. Consequently, the choiceeoféluge on the three-surface is a major
issue for the computation of the solutions of Einstein’sadouns.

The divergence-free condition on the conformal three-imétas already been put forward
by Dirac [9] in Cartesian coordinates, and generalized tptgpe of coordinates in [4]. This

conformal three-metric obeys an evolution equation whalze cast into a wave-like propagation
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eqguation. Far from any strong source of gravitational figfl, evolution equation tends to a tensor
wave equation, under the gauge constraint. With the chditleeogeneralized Dirac gauge this
translates into the system we study in Sec. 3, with the anfditf one extra constraint: the fact that
the determinant of the conformal metric must be one (Eq.X©6[4]).

The choice of spherical coordinates and components conesftawith the study of isolated
spheroidal objects as relativistic stars or black holestddeer, boundary conditions for the metric
or for the hydrodynamics equations can be better expresseédngplemented using tensor or
vector components in the spherical basis. The numericallations of astrophysically relevant
objects in general relativity must therefore be able to da#i the evolution of divergence-free
symmetric tensors, in spherical coordinates and compsnénparticular care must be given to
the fulfilment of the divergence-free condition, sincestlidditional constraint sets the spatial
gauge on the spacetime.

1.3. Spherical components and coordinates
In the following, unless specified, all the vector and terigdds shall be functions of the four
spacetime coordinates(t, r, 0, ¢) andh(t,r, 8, ¢), where ¢, 9, ¢) are the polar spherical coordi-

nates. The associated spherieahonormalbasis is defined as:
0 10 1 9

=4 = -7 = —". 1

& ar’ & rog’ & r sind dy (1)

The vector and symmetric tensor fields shall be describedhby tontravariant components
{Vr, Ve, V*"} and{h”, h'?, he, ht hoe, hW}, using this spherical basis:

V=) Vie, h=>" 3 Higae ()

i=r.6,¢ i=r.0,¢ j=r.0.0
The scalar Laplace operator acting on a fig{d 6, ¢) is written:

0’ 20 1
A =G i Tt ©)
whereAy, is the angular part of the Laplace operator, containing delyvatives with respect
or ¢:
0°p  cosh g 1 0%
Ao = — + —— —. 4
“ =52 " sing a0 Sir? 0 02 @)
We now introduce scalar spherical harmonics, defined onpghers as (see Sec. 18.11 of [2]
for more details)

V£>0,Vm 0<m<¢, YN0, p) = €™Pl(cosh), (5)
whereP} is the associated Legendre function. For negativepherical harmonics are defined
vym —£<m<0, YM#,¢)=(-1)"e™P"(cosh). (6)

Their two main properties used in this study are that theynfarcomplete basis for the devel-
opment of regular scalar functions on the sphere, and tegtdlre eigenfunctions of the angular
Laplace operator:
V(€ m), Ag, Y™ = —£(C + 1)Y™. 7)
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2. Vector case

We look for the solution of the following initial-boundaryakluie problem of unknown vector
V, inside a sphere of (constant) radRgthusY (9, ¢):

v
Yt>0, Vr — = AV 8
>0, Vr<R  —3 ; (8)
Yt>0, Vr <R V-V=0, (9)
Vr<R  V(0,r,0,¢) = Vvo(r, 6, ¢),
oV
vr < Ra Tar = WO(r9 95 Qp)a
ot li-o
VYt >0, V(t,R 6,p) =bo(t, 0, ¢). (10)

Vo, Wo andbg are given regular functions for initial data and boundamyditons, respectivelyA
is the vector Laplace operator, which in spherical coortgimand in the contravariant representa-
tion (2) using the orthonormal basis (1) reads:

oA VARY ¥ \VAR VAR | 2

(AV)r = or2 + F or + 2 + ﬁAgtpvr - F@, (11)
oAVl 20V0 1 oV' A cosd dV¥
AV)’ = + -+ = AV + 22— - — ,
AV =57 * T ar r2( i 90 sirfo sirfo d¢ )
o°Ve  20ve 1 2 oV’ cosd oV¢ V¢
AV)? = +-——+ = + = + - ,
(AV) a2 r oor r2( i sind dp  sirfg dy sinze)
with the divergenc®
ov' 2vt 1(ov® V¢ 1 oV¥
®=V.V= - - . 12
ar +r(89+tan9+sm98¢) (12)
One can remark that a necessary condition for this systera teeli-posed is that
V-vg=V-wg=0. (13)

In addition, the boundary settingat R is actually overdetermined: the three conditions are not
independent because of the divergence constraint. Thesaspthe problem will be developed in
more details in Sec. 4.1.

In the rest of this Section, we devise a method to verify bathagions (8) and (9). This
technique is similar to that presented in [3] with théfelience that we motivate it by the use
of vector spherical harmonics, and can easily be relateieé@bloidal-toroidal decomposition
method, as discussed in Sec. 2.3.

2.1. Decomposition on vector spherical harmonics

The first step is to decompose the angular dependence ofdte fieldV onto a basis opure
spin vector harmonicésee [24] for a review):

V(Lr,6,0) = > (EMENYE,+BME Y E + R NYE), (14)
,m
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defined from the scalar spherical harmonics as

Ve>0,V—-t<m<¢e Yo =1 VY, (15)
Ve>0,V-t<m<¢t Yo =exYg, (16)
Ve>0,V-t<m<¢t YR =Ye; (17)

whereV is the gradient in the orthonormal basis (1). Note that itfihandY 2 are purely trans-
verse, whereag¥ is purely radial. From this decomposition, we definefthee spincomponents

m

of V by summing all the multipoles witkcalarspherical harmonics (5):

Vit T, 0,0) = > E™Y, (18)
&,m

Ve T, 6.9) = ) BT (19)
&m

the last one being the usuatomponent
Z RMY™ = V', (20)
&m

The advantages of these pure spin components are firstticanistruction they can be expanded
onto the scalar spherical harmonic basis, and second, tigaiaa derivatives appearing in all
equations considered transform into the angular Laplaeeadqr (7).

To be more explicit,Y”, V#) can be related to the vector spherical components by (se¢4):

\/7 1 oVvH
00  sing oy
1 oVvT oV
Y — _ + ’
sinf oy 00
and inversely
ovel Ve 1 oV¥
Ag V" = . , 22
i 56 " tand ' sing dg (22)
ove V¢ 1 oVv°
Ao VH = - — . 23
% 56 " tano  sing Op (23)

Let us here point out that the angular Laplace operajprs diagonal with respect to the functional
basis of spherical harmonics and, therefore, the aboveaetacan directly be used to obtaii
andV*,

Thus, if the fields are defined on the whole sphere [0, 7], ¢ € [0, 2x), it is possible to
transform the usual componer(tss@,vﬂ") to the pure spin one@/”, V#) by this one-to-one trans-
formation, up to a constant (= 0 part) forV” andV¥. Since this constant is not relevant, it
shall be set to zero and disregarded in the following. Tloeegfa vector field shall be represented
equivalently by its usual spherical componergs oWy V', VH).



2.2. Divergence-free degrees of freedom
From the vector spherical harmonic decomposition, we nomprde two scalar fields that
represent the divergence-free degrees of freedom of arveébsk start from the divergence of a
general vectoW, expressed in terms of pure spin components:
ow W 1
= —— +2— + = Ay, W', 24
© or T Tyttt (24)
whereW" has been computed for the vectrfrom Eq. (22). This shows that the divergence of
W does not depend on the pure spin compoN&htOn the other hand, it is well-known that any
sufficiently smooth and rapidly decaying vector fisltican be (uniquely ofR®) decomposed as a
sum of a gradient and a divergence-free part (HelmholtZerm)

W = V¢ + Do, (25)

with V - Dg = 0. From the formula (23), one can check that the compow&nbnly depends on
Do. Next, taking the curl oW and, in particular, combining the ande- components of this curl,
one has thad,W" + WT" - WT has the same property of being invariant under the additiany
gradient field to/V, thus depends only diy. Therefore, we define the potential

oW W W'

A= —4+ — — —. 26
or * r r (26)

As a consequence, we have that
Dp=0 < W=0andA=0. (27)

We have thus identified two scalar degrees of freedom for ergieénce-free vector field, which
can be easily related to the well-known poloidal-toroidatamposition (Sec. 2.3), but have the
advantage of being generalizable to the symmetric tenser. ca

We now write the wave equation (8) in terms\gf and A (computed fromv" andV?). It is
first interesting to examine the pure spin components of &atov Laplace operator (11):

r

(AV)" = AV" + 2\r/—2, (28)
(AVY* = AV (29)

one sees that the equation ¥t decouples from the system, therefore Eq. (8) implies that

= AV¥, (30)

Forming then from (11) and (28) an equation for the potemjalvhich is a consequence of the
original wave equation (8), we obtain

0°A

— = AA 31
We are left with two scalar wave equations, (30) and (31),tther divergence-free part of the
vector fieldV. The recovery of the full vector field shall be discussed io. 2e4; the treatment of

boundary conditions shall be presented in Sec. 4.1.
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2.3. Link with poloidal-toroidal decomposition

According to the classical poloidal-toroidal decompasitia divergence-free vector fiekd
can be considered to be generated by two scalar potedtiatsl V', via

F=Vx(¥k)+V x V x (k) (32)

Here,k is a unit vector, called the pilot vector, which is chosenoadng to the geometry of the
problem considered. In [6, 74,is chosen to be, in cylindrical coordinates. One can also find the
decompositiofr = Vx (A(r, 6)e,)+B(r, 6)e, when considering axisymmetric solenoidal fields (see
for example [17]). The latter representation makesppear clearly as a poloidal component, and
B as a toroidal component. In order to link the general poleidieidal formalism to our previous
potentials, we chode = € in spherical coordinates (sometimes called the Mie decaitipo, see
[10] ). Then, one can show that

1 1( 1 1 1
F = _EA&'D(D er + F (W&p‘l’ + (99(%@) eg + F (—89‘1’ + Wﬁwarq)) e‘p (33)
Hence, we can identify the former pure spin componé&titandF* through

1

Fr = -2y
r

Therefore, the potenti& is linked to the potentiab via
1, 1 )
A = Fﬁr(l) + EA(M(D = A(?) (34)
which gives us a compatibility condition
Ag,A = —A(TF") (35)
The latter equation expresses thgr?0) = 0 for the original vector. Since our vector is a regular

function of coordinates, it expresses tlat O.
One can also show the following relations

1
6V xF = AR

1
Q'VXVXF:FAQ"DA

2.4. Integration scheme

We defer to Sec. 5.1 the numerical details about the integratocedure, and we sketch here
the various steps. From the result of Sec. 2.2, the problgrn®}8can be transformed into two
initial-value boundary problems, for the compon&Ht(30) and the potentiah (31) respectively.
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Initial data can be deduced from andwg, so thatV#(t = 0) andgV*/ot(t = 0) are theu-
components of, respectivelyy andwy. The same is true for th& potential. The determination of
boundary conditions from the knowledgelmf shall be discussed in Sec. 4. We therefore assume
here that we have computed the componéhaind the potentiah, inside the sphere of radil
for a given interval [0T], and we show how to recover the whole vector

The pure spin component¥', V") of the vectorV are obtained by solving the system of
PDEs composed by the definition of the poten#igR6), together with the divergence-free condi-
tion (24). From their definitions (18)-(20), it is clear thihe angular parts of botf" andV” can
be decomposed onto the basis of scalar spherical harmandshereforé as well:

ALT.0,0) = Y AL NY(0,¢). (36)
t,m

We are left with the following set of systems of ordinaryfeiential equations in thecoordinate:

OR™ R (e+1)

——E™=0
or r r
Y¢>0,Ym —-£<m<¢, gEM  Em Rm . (37)
ot AT

The potentialA being given, the pure spin componektsandV” are obtained from this system,
with the boundary conditions discussed in Sec. 4.1. fHeemponent is already known too, so
it is possible to compute the spherical component¥ oft € [0, T], from Egs. (21). Note that
all angular derivatives present in this system (37) are amlghe form of the angular Laplace
operatorAy, (4). It must also be emphasized that the divergence-frediton is not enforced
in terms of spherical components (Eqg. (12)), but in termsuespin components. Thus, if the
value of the divergence is numerically checked, it shalligéér than machine precision, because
of the numerical derivatives one must compute to pass frora ppin to spherical components
(Egs. (22)).

The properties of the system (37) are easy to study. SutasjtR™ in the first line by its
expression as a function &™ andA’™ (obtained from the second line), one gets a simple Poisson
equation:

A(rE™) = asl 2AM 38
(r ) =r r + . (38)
The discussion about boundary conditions, homogeneous@m and regularity for = 0 and
r — oo are immediately deduced from those of the Poisson equatemd.g. [13]).

In the case where a sourges present on the right-hand side of the problem (8), the ottt
imposingV-V = 0 can be generalized by adding sources to Egs. (30)-(31¢/veine deduced from
S. Indeed, it is easy to show that the source for the equatiodas the pure spim-component
of S and the source for the equation fars the equivalent potential computed frdrpure spin
components, using formula (26). Note that an integrabddgdition for this problem is that the
source be divergence-free too. Therefore, for a well-pgsetllem, any gradient term present in
Scan be considered as spurious and is naturally removed $ytihod, since the-component

and theA potential are both insensitive to the gradient parts.
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3. Symmetric tensor case

Similarly to the vector case studied in Sec. 2, we look herettie solution of an initial-
boundary value problem of unknown symmetric terfsanside a sphere of radid& As explained
in Sec. 1.3, the symmetric tendoshall be represented by its contravariant comporigtts h'),
where the indices run from d)to 3(¢); moreover, we suppose that all componenth decay to
zero at least as fast agrl asr — o. We shall also use the Einstein summation convention over
repeated indices.

Thus the problem is writtery,(6, ¢):

92hil .
VE2 0 Vr <R —o = AR (39)
Yt>0, Vr <R vh' =0, (40)
vr<R  hiO,r,6,¢) =ai(r,6,¢),
)
vr <R 66—htj - Y9(r.6.9),
vt>0, hi(t,R6,¢)=BI(L6,). (41)

The tensorsy,,y, andg; are given regular functions for initial data and boundarpditions,
respectively. The full expression of the tensor Laplaceatoe in spherical coordinates and in the
orthonormal spherical basis (1) is given by Egs. (123)-[1284] and shall not be recalled here.
We point out again that the boundary setting at R is overdetermined: this is discussed in more
detail in Sec. 4.2.

We introduce the vectar, defined as the divergence f and given in the spherical con-
travariant components (2) by:

hrr 2hrr l hl’@ l hl't,a hl’@
Hr:‘9 +—+—(9 + = 9 —h"* —h* + ;
or r r\ 90  sind dyp tand
. o oh? 3n? 1/(oh% 1 oh% 1
H = Vihl — {H'= = h* - h# 42
j a T +r(89  Sing Ay +tan9( )) (42)
oh¢ 3hv 1(oh% 1 ohee  2h%
H¢ = + + = + — + =0
or r r\ 06 sing dp tand

We now detall, in the rest of this Section, a method to vergthbevolution equation (39) and
the divergence-free constraint (40).

3.1. Decomposition on tensor spherical harmonics
As in the vector case (Sec. 2.1), we start by decomposingiiielar dependence of the tensor
field h'' ontopure spin tensor harmonicgtroduced by [21] and [27] (we again use the notations
of [24]):
h(t.r.6,0) = > (LE™T5 + TE™T78 + ENMTRL + BI™Tos + ES"T2 + BY™T2),  (43)
,m
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where(Li™, T¢™, E™, BI™, EX, BY™) are all functions of onlyt(r). Complete definitions and prop-
erties of this set of tensor harmonics can be found in [24]teNlbat these harmonics have been
devised in order to describe gravitational radiation, fanf any source. In that respect, the most
relevant harmonics afE®2 andTPB2, since they are transverse and traceless. The pure spiroeomp
nents of the tensdr are defined as:

' (t,r, 6, ) = Z Lamym, (44)
£,m

h(t,r, 0, p) = Z TmY™, (45)
£,m

it r, 6, ¢) = Z EmYT, (46)
£,m

h(t,r, 6, ¢) = Z BIM Y™, (47)
£,m

hY(t,r,6,¢) = Z SEA (48)
,m

h(t,r, 8, p) = Z B Y™, (49)
£,m

Explicit relations between the last five components and swalspherical components (2) are
now given.
h” = h" + h# (50)

is transverse; and the total trace is simply given by
h=h"+h". (51)

In the following we shall use either the componknor the trace. The componertsandh have

similar formulas to those of the vector pure spin componetsﬂ%h”}i_123 can be seen as a vector:

ht = a_h” - i& (52)
09 sind oy’

o L o oh,
sing dp 00

the reverse formula being similar to Egs. (22) and (23), Hreynot recalled here. Finally, the last
two components are obtained by:

P

hoe — hee 21 W W 21 W X
( ) _ @Y 1 o 1 h 6(16h), 53

2 9602 tand 80  sirfg 09?2 90 \sing dp
ht 1 oh¥ 1 aZhX+ o 1 ohv
062  tanf 00  sinf g 0¢? 00 \sing dyp

he =
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and the inverse relations are given by:

0°P 3 0P 1 0°P 2 0 (oh%  h%
Moo (Ago +2)PW = — + —— - — —— 2P+ — — + , 54
O ( O ) 062  tanf 90  sin? 6 0p? sind dyp ( 00 tan@) (54)
0°h? 3 oh% 1 o*h* 2 9 (0P P
Ao (Mg, +2) 1Y = + — -2h% - — —[— + — . 95
99"( O ) 962 tand 00  sirt e 0¢? sinf oy (89 tan@) (55)

Here as for the vector case, theandh* components do not contain any relevédnt O term,
whereash™ andh” contain neithet = 0, nor¢ = 1 terms, as expected for transverse traceless
parts of the tenson. We shall use any set of components of the tefmsagither the usual ones
{h”}, using the spherical basis, or the pure spin c{héshf(or h), h7, e, ", hX}.

3.2. Divergence-free degrees of freedom

The vectorH defined as the divergence bfin Eq. (42) can be expanded in terms of vector
pure spin components, which are then written as functionisefensor pure spin components of
h (we use the track instead oth"):

CGhT 3hT 1
H = ar + r + F (Ag‘phn - h) N (56)
ot 3w 1 L h—h"
H" = Ag(p [W + T + F ((Ag(p + 2) h" + > )] , (57)
o 3w 1 .
H* = A(ﬂp [_6[’ + —r + F (Ag‘p + 2) h ] . (58)

A possible generalization of the Helmholtz theorem to th@mssetric tensor case is that, for any
sufficiently smooth and rapidly decaying symmetric tensor figléne can find a unique (dR®)
decomposition of the form )

T = VLI + VIL' + hy, (59)

with V;h) = 0. With these definitionsy; T = 0 < L' = 0 which means that, from the
six scalar degrees of freedom of the symmetric tefisarthe three longitudinal ones can be
represented by the three components of the vdctofherefore, the divergence-free symmetric
tensom'g has only three scalar degrees of freedom that we exhibiaftere

One can check that the three scalar potentials defined by

aTx T
A= 5_VW_ - (60)
T T (BT, (62)
satisfy the property
A=8B=C=0 > hy=0, (63)
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and represent the three divergence-free scalar degreesedbim of a symmetric tensor.
In order to write the wave equation (39) in terms of these s, we first express the pure
spin components of the tensor Laplace operator acting onerglesymmetric tensadr:

(Ah)™ = AR — 6rh - %A@,h’? + 3—2‘ (64)
28h 2h ont  3h M 1 3
n _ 7 = _= . - - rr
(Ah)" = AR + 2= + = ( ot +(Ag, +2) —+5-h-—h ) (65)
26h“ 2 2 (o 3 h
(Ah)‘u = AR + (9[' + — ) - (W T + (Ag‘p + 2) ) (66)
4 ul
(AW = AhY + :‘ + 2:; : (67)
X
(AhYX = ALY + Zrhz + 2r_r:1 (68)
trace ofAh = Ah. (69)

The term between parentheses in Eq. (66) is exactly zer@iodbe of a divergence-free tensor, as
it represents the-component of the vectdt (58). The similar term in Eq. (65) reducestb™ /r,
when usingH” = 0 with Eq. (57). We can now write evolution equations, imgliey the original
tensor wave equation (39):

0’ A

A 70
51:2 ‘?(’ ( )
0°B C

e Mo ()
&C 2C 8AwB

W =AC + F + 2 . (72)

The situation is therefore slightly more complicated thanhie vector case with Egs. (30)-
(31). Indeed, the two potentia$s andC are coupled, but it is possible to define new potentials
satisfying decoupled wave-like evolution equations. W& fivrite the scalar spherical harmonic
decomposition ofA, 8 andC:

A1, 0,¢) = D AT, ),
,m

BEr.0,9) = D BTENY6,¢),
£,m

Clt.r.0,¢) = > C™(E1)Y(0, ¢).
£,m
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Then, we define new potentigandC as:

~ Ci™(t,r)
_ ‘m > m
B(t,1,0,¢) = ;(23 N+ 37, 1))\@ ) (73)
Ctr.o.g)= ) (C(LD) - 4BT(ED) /(0. 9). (74)
&m
The Egs. (71)-(72) are transformed into:
PB <
— =A 7
ot? 5, (75)
PC A
i AC; (76)

with, for any scalar field (r, 6, ¢) = Y. F™(r)Y;(9, ¢), the operators defined as:

- 8f 20f 1 mym

Af_W+F§+r—2l§€m —0(¢ - 1)fmymy (77)
- 0cf 20f 1 fmym
Af_W+F5+r—2[§[m—(€+1)(€+2)f Y[]. (78)

These two operators are very similar to the usual Laplaceatme but in the angular par,,,
they contain a shift of, respectivelyl and+1 in the multipolar numbef, for A andA. We thus
have obtained three evolution wave-like equations (7®) &nd (76) for the three scalar degrees
of freedom of a divergence-free symmetric tensor.

3.3. Traceless case

As presented in Sec. 1.2, some evolution problems of synrtetisors in general relativity
can have another constraint, in addition to the divergdreme-condition already studied (40).
This is the condition of determinant one for the conformatmaewnhich turns into an algebraic
condition (Eqg. (169) of [4]), and is enforced by iterativelglving a Poisson equation with the
trace of the tensor as a source, as described in Sec. V.D.offf@refore, in the following the
trace of the unknown tensabris assumed to be known.

The fact that the track (51) of a divergence-free symmetric tensor is fixed red@cpsgori
the number of scalar degrees of freedom to two. For instameehere show that if the trace is
given, the scalar potentia#s andC are linked. We take the partial derivative with respeat tf
the definition ofC (62) andB (61) to obtain:

BC 2C

0B 3B C) A
ar

oo, (2,38 C).

7
or r 4y (79)

Therefore, ifh and C are given, it is possible to integrate this relation withpes to ther-
coordinate to obtai8 (which we have assumed to converge to 0 a> ). Because of the

definitions (73)-(74)8 andC are also linked together if the trace is given.
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We shall assume in the following that this trace is zero. Ad equations presented hereafter
can easily be generalized to the non-zero (given) trace taldag the general form of the equa-
tions of Sec. 3.2. We shall therefore use only two scalampiatis, namelyA and$ to describe a
general traceless divergence-free symmetric tensor.

3.4. Integration scheme

Similarly to what has been done in the beginning of this sective consider the homogeneous
wave equation for a symmetric tensor (39), under the canssréhat the tensor be divergence-
free (40) and tracelesk £ 0). We have seen in Sec. 3.3 that it was necessary to solveleEast
the two wave-like evolution equations (70) and (75). We dbscnow how to obtain the whole
tensor, onceA(t, r, 0, ¢) andf;(t, r, 6, ) are known.

In order to obtain first the six pure spin components (acgutdeir spherical harmonic decom-
positions (44)-(49)) oh at any timet, we use the following six equations: the traceless conlitio
the three divergence-free conditions and the definitiond ahd$B. They represent two systems of
coupled diferential equations in thecoordinate, that we express in terms of the tensor spherica
harmonic components (43). The first one comes from the defndf A (60) and theH” = 0
condition (58); it couples thg- and theX-components offi:

6B§m Bim m
_ 1 _ 80
or r AT (80)
oBM  3BMm 2 _¢(¢ + 1)B™
arl + rl + ( - B> =0 (81)

This system has two unknown functioB§™ and B", whereasA‘™ is obtained from the time
evolution of A(t, r, 0, ¢).

The second one comes from the definitiorfof73) and the twdH" = H” = 0 conditions (56)-
(57); it couples ther -, n- and“W-components:

JEL™ EMO2EM 1 AL 44l

C+2)—2 + (L +2)2 - - - =" 82
(+)ar+(+)r r 2¢+1) or ¢+12r 55 (82)
oL 3Lt e+ DE" 63)
or r r ’

OEM  3EM LM 2—¢(€+ 1)EM

6r1 " rl _2_0rJr (r = =0 (84)

Here, the unknowns atg™, E{™ andES™ and 8™ is known from the evolution af3(t, r, 6, ¢).
When looking at a more general setting, the tra@ppears only in the second system. If we
combine Eq. (80) with Eq. (81), we obtain a Poisson equatiothie unknowrrh®, with A and its
radial derivative as a source. As for the vector case, thatesy can be solved using, for example,
the spectral scalar Poisson solver described in [13], apdbitains the pure spin componehts
andh?.
Such an argument cannot be used for the second system, barca & homogeneous solu-
tions gives that, for a givefy the simple powers af:
-2 1 1

’ r[+ijnd rf+1

r (85)



represent a basis of the kernel of the system (82)-(84). Withinformation, one can devise a
simple spectral method to solve this system (see Sec. 5dlyplatain the pure spin components
h™, b andh™. With the traceless condition, one can also recdveirom h'™, and finally use
Egs. (52)-(53) to get the spherical componentk.of

4. Boundary conditions

4.1. Vector system

We discuss here the spatial boundary conditions to be us#éugdour procedure, so that we
recover the unknown vector field at any time-step. The sooftee vector wave equation is put
to zero for the sake of clarity; but the reasoning would bectyxdhe same in the general case.

As pointed out in Sec. 2.4, the recovery of the vector fieldaahdime-step will require two
different operations: first, we use the two scalar wave equafB8ijsand (30) to recoveh and
V#, Two boundary conditions, set at the outer sphere (the bayraf our computation domain),
will then be needed for these quantities. The second stdpcuaisist of the inversion of the
differential system (37), to obtain the pure spin compongh@sndV”. This system is, in terms
of the structure of the space of homogeneous solutions,amettically equivalent to a Poisson
problem (see Eq. (38)); its inversion will then also reqaneadditional boundary condition.

From the setting of our problem presented at the beginnir@gof 2, we can impose Dirichlet
boundary conditions for the 3 pure spin components on therapghere. The condition oW
enables us to recover the value of the entire field on our ctetipnal domain, through the direct
resolution of (30). Once we obtain the value of the fidldn our domain, we can use a condition
on eitheV" or V" to invert the system (37), and retrieve the additional spimgonents.

There remains the necessity of imposing a boundary comditioA to solve Eq. (31). This
cannot be done using condition @t= R in (10) and the definition (26), becau?,ﬁz must be
specified. To overcome thisficulty, we exhibit here algebraic relations that link thewsabf A
at the boundary and time derivatives of the pure spin compusnerhese will be compatibility
conditions, derived only from the structure of our probléke express radial derivatives of equa-
tions (24) and (26), respectively, to obtain, using relai¢ll) and (28), the following identities
(see also Eq. (35)):

1 V"

FAG"DA = —W, (86)
oA A 5PV
o tr e (57)

Those equations are derived using only the fact that ouovéetd satisfies the wave equation
and is divergence-free. From the knowledge of the vectad a¢lthe boundary, we can impose
either of these two relations as boundary conditiong¥dhe first being of Dirichlet type for each
spherical harmonic of, the second of Robin type. This way we are able to solve egu§sl),
and complete our resolution scheme.

Let us finally note that our boundary problem is, as one coultsg, actually overdetermined:
there is no need to know the value of the entire vector fielchenouter sphere. It can be easily

seen that, if one only has access to the boundary valugs andV', or V¥ andV", the boundary
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conditions for all equations can be provided. This also giveinsight about what would happen
if we set up a numerical problem in which spatial boundaryditions are not consistent with a
solution of Egs. (8, 9); this could occur for example becaiseimerical rounding errors or simply
a physical boundary prescription which is not compatibléhai divergence-free vector field. Our
method will then still provide a solution that is divergerfoee and which satisfies Egs. (8, 9);
however only the boundary conditions that are directly ssdd will be satisfied. For example,
if we choose in our scheme to enforce boundary condition¥*oand V", the outer boundary

conditions that are satisfied at each time-step are actoaliye form (we keep the notation of

(10)):

Vt>0, VAL R6O,¢) = b(t.6,¢),
VI(t, R 6,¢) = bi(t,0,¢),
oV'(t,R 0, 2 1
y.,_rvf(t,ag,(p) = —FAng(t,H,go). (88)

The last condition is directly derived from the vanishingtloé divergence (Eq. (24)) at the
boundary. Let us note that we do not even impose a Dirichletiton onV' as was originally
intended. We may then not satisfy all the boundary condstise wished to prescribe at first. This
may also depend on the boundary value we choose to use fonvirsion of the system (37).

We do not treat alternative cases for the boundary problemwhich the knowledge of the
vector field on the outer sphere could be substituted by Xamgple, the knowledge of its first ra-
dial derivative); but a similar approach would also prowaeressions for the boundary conditions
of all the equations tackled in our scheme.

4.2. Tensor system

The tensor problem presents itself in a similar way to theorexase, only with a few additional
difficulties. As seen in Sec. 3.4, we can separate the problentwotparts; the first consists in
retrieving the fieldA from Eq (70), and then get the spin componévitandh®. In a similar way,
we compute the value @8 from Eq. (75), so that we obtain the field$, h" andh? from the
inversion of the system (82, 83, 84) . The fiéldis deduced from the traceless hypothesis. The
tensor field is then entirely determined.

As in the vector case, the solution of wave equationsfoand B requires one boundary
condition for each equation. The elliptic system (80, 8 ls® quite similar to that for the vector
case, and its space of homogeneous solutions is also egptitakhat of a single Poisson equation.
One boundary condition is also required; it will be chosera &srichlet condition on eithel or
h* , according to the setting of our problem (41).

For the elliptic system (82, 83, 84), the homogeneous swiathave been characterized in
Sec. 3.4. The only basis vector of the kernel of solutionsiiv@gular in our computation domain
is, for any¢ > 2, the solutiorr=2. The other two vectors of the kernel basis are not regular at
the origin of spherical coordinates. This means, from adopsint of view, that one boundary
condition will be sificient at the outer sphere. It will be provided, again acagydo our problem
setting, as a Dirichlet condition on any of the fields h? or "V,
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The last boundary problem concerns the figfland8. They will be handled the same way as
in the vector case. We take the radial derivatives of the tampg(58) and (60), using the elliptic
equations (66) and (68), to obtain the following compaitipitonditions:

&2hy

(Bap +2)A = ——7, (89)
2] X

OAR A _dh (90)

—_— + = —.
or r ot?

These are again derived using only the divergence-freeepippf the vector field as well as
the verification of the main wave equation. Using the knowlieaf, respectivelyl andh® at
the outer boundary, we obtain either a Dirichlet boundamydaon for each spherical harmonic
from the first relation, or a Robin condition with the secom& 0Again those identities have been
obtained only from the equations of our problem and the dedims of the variables we use.

Taking the same path for the second part of the problem, weesgpadial derivatives of
Egs. (56), (57), (61) and (62) to obtain respectively, amaéh spherical harmonic, the follow-
ing relations:

LY 1 [(t+21)(+2) 4 ~
— = - m_ £+ 1)(¢ - 1)B™ 91
o @+ Ly 2 ¢ D=8 ] (92)
= 1 < L+ 24
= £+ 1)(¢ - 1)B™+ —=C™ 92
ot ey (T DE-DBT+ —=C ] (92)
FPEM 1 [(¢+1)aB™ 1aC™ (L+1)(¢+2)B™ £-3CM (©3)
a2 20+1| 2 a4 or 2 r 4 r
(L™ + T 1 [(£+1)(¢+2)aCm oB™ , B
T = 711 5 or —€(€+1)(€+2) or +€(€+l)(€—1)T
1 cm
+ §(€+ 1) [5(5—3)+€+4]T]. (94)

When expressing the vanishing of the trace, the last equesio be transformed into:
oELM _ 1
ot? 20(€+1)(20 + 1)

(e + 1) - 3)@].

actm ABM (£ +1)(¢ + 4)CM™
(f + 1)W + Zf(f + l) ar + 2 T

(95)

Although those equations involve both the fielleindC, one can easily see that combining
them can lead to conditions on the fiedtlonly. For example, the combination of (91) and (92)
provides, for each indek

Bm (96)

_ r ooLam H?E(M
6+ 1)(¢-1)| otz
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which is interpreted as a Dirichlet boundary condition for Robin boundary conditions can be
obtained from the combination of Egs. (93), (94), and ei{{®d) or (92). The tensor bound-
ary problem is then entirely solved; tests for some of thenblany conditions derived here are
presented in Sec. 5. Let us note again that this problem igletermined: concerning the first
system, the knowledge of a Dirichlet condition on eitherydm!, or only " suffices to provide
boundary conditions faf and the system (80, 81). For the part of the algorithm reltteg| we
easily see that Dirichlet conditions for any two of the spmponent$™, 7 andh™ are stficient

to solve the boundary problem. )

We finally point out that, in the same fashion as in the vectsec if the valu$3 imposed
as a Dirichlet condition for the tensor at the outer boundB&xy. (41)) is not consistent with the
system, the boundary conditions actually imposed on oweraehwill be slightly diferent: only
the Dirichlet conditions for the pure spin components thatexplicitly enforced will be satisfied.
Other boundary values will only express the coherence veisipect to the fact that the solution
is indeed divergence free. As done in Sec.4.1, it is possibéxpress other boundary conditions
enforced in practice by using the expression for the tensergenceH as a function of the pure
spin components.

4.3. Working in a shell: inner boundary conditions

We say a few words here about the resolution of the tensawdll@m when our computation
domain is no longer an entire sphere, but is instead boundeleointerior at a finite coordinate
radiusr = R, > 0. We add in our setting the condition th&(g, ¢):

vt>0,  hi(t,Rn6,¢) = 4 (t.6,9).

Physical information is then also provided at the intermmalddary (this is, again, an overdeter-
mined set of boundary conditions). This new geometry wipiyrthe need for two inner boundary
conditions to be imposed for the wave equationsand in8B. These are easily found using the
results of the last section and the knowledge of Dirichlairmtary conditions on the inner and
outer sphere for all components. The system (80, 81) alsdsnae additional (inner) boundary
condition, imposed on eithdr or h*. There is, however, a slight subtlety concerning the triple
system (82, 83, 84). As seen in Sec. 3.4, the kernel of solsitio this system is of dimension 3,
and since our computational domain no longer includesO, all 3 basis vectors of this kernel
are regular in our domain. This means that 3 boundary camdithave to be imposed overall
for inverting this system (in contrast with the sphere ca#ggre we only imposed one). Those
three conditions are imposed here on eithigrh? or h¥ on each limit of the domain. We hage
priori the freedom to choose which boundary conditions we want pwga, and where to impose
them; numerical experimentation would be required to iatiavhether or not there are preferable
choices.

To conclude this section, we mention also the work of [26] rehe authors used the for-
malism presented in this paper to solve a tensor ellipti@Bgn that is part of a formulation of
the Einstein equations. The resolution was made on a 3-spatsed by a sphere of fixed co-
ordinate radius, where the tensor equation possessed asmephtarity property (see [15]). The
boundary condition problem was treated a little biteliently, as all boundary conditions imposed
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were either emanating from the very structure of the probl@mvere not needed at all. This is
a consequence of the particular behavior of that operatibreaboundary; on this setting for the
domain geometry, one boundary condition was imposed tatitive system i andh?¥, and two
for the system involvingt™, 7 andh™.

5. Numerical tests

5.1. Spectral methods in a sphere

The numerical schemes presented in previous sections leaveilmplemented using a multi-
domain spectral method in spherical coordinates (seeZ.16], for general presentations and [14]
for a more detailed description in the case of numericatixétg). We have used theorene nu-
merical library [19], with scalar fields decomposed onto aid@af Chebyshev polynomials, in
several domains, for thecoordinate, Fourier series for thecoordinate and either Fourier or
associated Legendre functions for #eoordinate P}'(cosd), see Sec. 1.3). This last option is
obviously needed by our algorithms, which strongly rely phexrical harmonics decompositions
and on the angular part of the Laplace operaigr The other basis of decomposition (Fourier)
is quite useful for computing angular derivative&9 and operators such ag ding, appearing
in e.g. (21) or (52). The coordinate singularity on thaxis @ = 0, r) is naturally handled by
the spherical harmonic decomposition basis. We cope wiledlordinate singularity at the origin
(r = 0), using an evenbdd radial decomposition basis (only exaid Chebyshev polynomials),
depending on the parity of the multipafdsee [5] and Sec. 3.2 of [14]). The complete regularity
requirement would be that, for each multipdléhe radial Taylor expansion of a regular function
should include only? with p > ¢. We have found however that the simpler parity prescription
described above is in practicefSaient for the study of the wave or Poisson equations perfdrme
here.

The wave equations (30)-(31) and (70)-(75) are integratedarmically by writing them as
first-order systems:

0p "
> _ ot "
o = A

After discretization in the angular coordinates using siglaéharmonics, we then use a third-order
Adams-Bashforth (explicit) time-stepping scheme with &dixime-stepdt and a Chebyshev-
tau technique in the radial coordinate. Thé&eliential systems for the computation of pure spin
components from the divergence-free degrees of freedorsysiem (37) in the vector case, or
systems (80)-(84) in the tensor case, are solved at eveprdiap in the Chebyshev deient
space. A tau method is used to match together the solutioassathe domains, and to impose the
boundary conditions at= R.

5.2. Vector wave equation

We consider here the numerical solution of the problem {8);(with vi(r, 6, ¢) given by its
Cartesian components by (with= r cosg)):

Vi = -V = cosg), (98)
0 Q
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Figure 1: Decay of the errors (terence with theoretical solution and divergence of the migaksolution) for the
vector wave equation, as a function of the number of radiabgkhev cofficientsN; used in each domain. Other
settings ar&k = 6,dt = 0,00032 Ny = 17, N, = 4.

the other component is zero. Thus, the veot'(p'rs clearly divergence-free. With appropriate
boundary conditions, the solution of the problem (8)-(BJtill in Cartesian components) simple
to express:

VX(t,r,0,¢) = =V(t,r1,0, ) = cost) cosf), (99)

the other component being zero. The vector wave equatiaivedthrough the two scalar wave
equations for the potentials and the component* as explained in Sec. 2.4. From Eq. (99),
we know the values dfi(t, 6, ¢) appearing in Eq. (10) as Dirichlet boundary conditions eed

can deduce its pure spin componefhg, by, b‘g) These are used to obtain Dirichlet boundary
conditions for the evolution equations f8randu, as described in Sec.4.1 using Eq. (86) Aor
Finally, the elliptic system (37) is solved with the appiiape Dirichlet boundary condition given
by the spin componetf) (see also Sec. 4.1).

We use the numerical techniques given in Sec. 5.1, with twoaidies, and numbers of points
in each direction given bQNr, N, N¢). We have integrated the vector wave equation over the time
intervalt € [0, 27] and looked at the maximum in time of two quantities to esterihe accuracy of
the solution. First, the éfierence between the numerical solution and the theoretiea(@0), ro-
tated to spherical basis (1), is computed. Then, the divesef the numerical solution, expressed
in the spherical basis is also monitored. Note that, evenghall the Cartesian components\of
do not depend on the azimuthal anglethe spherical components do dependgsoend we have
always used four points in thedirection.

In Fig. 1, we observe as expected an exponential convergéihceh the discrepancy between
the theoretical and numerical solutions (maximum over all goints and all components) as
functions of the number of spectral ¢beients used in the radial directid, all other parameters
being fixed. The same behavior has been observed when ké¢irgd and varyind\y. Besides,
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Figure 2: Decay of the errors (terence with theoretical solution and divergence of the migaksolution) for the
vector wave equation, as a function of the time-stegOther settings arB = 6, N; = 17,Ng = 17,N, = 4.

we observe an exponential decay of the divergence of théi@oin the second (or outer) domain,
whereas the divergence of the solution in the first (centtafhain remains constant to the radial
precision. This is due to the matching across domains andsitipn of boundary conditions,
which can be seen as a modification of the solution of the By§8&) by the addition of a linear
combination of homogeneous solutions. These homogenetusss of the system (37) are, for
each multipolet, r=t and 1/r’*2. The latter being singular at= 0 is not relevant in the central
domain. The ‘! function is a polynomial and is well represented in the fimindin, whereas in
the second domain, we also need to resolié*4, which is poorly approximated for low values
of N;.

On the other hand, when varying the time-stipthe diference between the numerical and
exact solutions decreases@@lt®) (see Fig. 2), as expected for a third-order scheme. Andglaer
ture verified in Fig. 2 is the fact that the divergence of thieitson is (almost) independent of the
time-step, being thus only a function of the spatial resotutThe best accuracy observed in Fig. 1
is limited by angular resolution and the fact that the diesige is computed using spherical com-
ponents (Eq. 12), whereas the divergence-free constgintgosed using pure spin components
(Eq. 24). Therefore, the computation of derivatives in E8$) to obtain the spherical components
introduces additional numerical noise, depending on tlyeilan resolution.

5.3. Divergence-free and traceless tensor wave equation

~ Similarly to Sec. 5.2, we consider here the numerical smfutif the problem (39)-(41), with
oz'OJ (r, 8, ¢) given in the Cartesian basis by (with= r cosg)):

ay’ = —a’ = cos@), (100)
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Figure 3: Decay of the errors (tierence with theoretical solution and divergence of the migaksolution) for the
tensor wave equation, as a function of the number of radieb@shev coficientsN; used in each domain. Other
settings ardk = 6,dt = 0.00032 Ny = 17, N, = 4.

all the other components are zero. Thus the tea)éds clearly symmetric, divergence-free and
trace-free. Withyy = 0 and appropriate boundary conditions, the solution of tbblem (39)-(41)
is (still in Cartesian components) simple to express:

h(t,r, 6, ) = —hY(t,r, 0, p) = cost) cosf), (101)

all the other components being zero. The tensor wave equitisolved through the two scalar
wave-like equations for the potentiafband$ as explained in Sec. 3.4. From Eq. (101), we know
the values oB'g (t, 0, ) appearing in Eq. (41) as Dirichlet boundary conditions aectcan deduce
its pure spin componen( g,,Bg,,Bg). These are used to obtain Dirichlet boundary conditions for

the evolution equations foA and B, as described in Sec. 4.2 using Egs. (89) and (96), respec-
tively. Finally, the elliptic systems (80)-(84) are solvetth the appropriate Dirichlet boundary
conditions given by the spin components3gf namelys; andg,. We have integrated the tensor
wave equation following the same procedure as in Sec. 53ultseare displayed in Figs. 3 and

4, where we observe as expected an exponential convergémathothe discrepancy between
the theoretical and numerical solutions, and the divergefi¢he numerical, as functions bdE.

When varying the time-stegit, the diference between the numerical and exact solutions decreases
asO(dt®), as expected. Here again, the divergence of the solutiairisost) independent of the

time-step, being thus only a function of the spatial resoiytfrom the same reasons as in the
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Figure 4: Decay of the errors (terence with theoretical solution and divergence of the migaksolution) for the
tensor wave equation, as a function of the time-ste®ther settings arB = 6, N, = 17, Ny = 17, N, = 4.

vector case.

6. Concluding remarks

We have described a new numerical method for solving the wequation of a rank-two sym-
metric tensor on a spherical grid, ensuring the divergdremcondition on this tensor. In order
to describe this method, we have first addressed the vecter fta which we have reformulated
the poloidal-toroidal decomposition in spherical compuse This approach, which relies on a
decomposition onto vector spherical harmonics was theergéred to the case of a symmetric
tensor. Through numerical tests of the vector and tensoewawlution in a sphere using spectral
explicit time schemes, we have observed that this methoccaagergent and accurate. In partic-
ular, the level at which the divergence-free condition atied is determined only by the spatial
discretization and does not depend on the time-step, astxperhis method strongly relies on
the decomposition onto spherical harmonic spectral bdmeds not bound to spectral methods
for the representation of the radial coordinate.

The discussion in Sec. 4 gave us the compatibility condsti@®), (89) (96), which are nec-
essary to obtain boundary conditions for the additionalasdeeld equations, representing the
evolution of the divergence-free degrees of freedom of bijgats @, A, B). The numerical tests
performed in this study have dealt only with simple Dirichb®undary conditions. However, it
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would be rather straightforward to generalize them to moragex boundary conditions, which
are needed in realistic simulations of gravitational wg8&s 22, 23].

In this respect, an interesting issue would probably be @reeal well-posed nature of these
boundary conditions with respect to our scheme, and how tidifiroations for these conditions
with this method, sketched in Sec.4.1 and 4.2, would alterpthysical behavior of the solution.
One could for example think of a Robin-like boundary settinged to an outer wave-absorbing
condition (as in [22]), instead of the Dirichlet settingdited here; the fact that boundary condi-
tions may be only partially verified could have afeet on how this required feature at the bound-
ary would be described eventually in our scheme. The sanme dfguestions arise in a more
general case, where the source terms of the equations areanching: these sources would
also require well-posedness conditions (i.e. a vanishiveygence for the wave equation). If this
requirement is not satisfied (because of the iteration pha@eor numerical errors), although the
problem is then mathematically ill-posed, our scheme willl sonverge: it provides us with a so-
lution of the wave equation with a source that is basicaleydivergence-free part of the original
ill-posed source. The influence of this feature on the gerstability and physical relevance of
the procedure is an open issue.

Future studies include the simulations of perturbed blaik bpacetimes, with the extraction
of gravitational waves, and the solution of general-reistic magneto-hydrodynamics in the case
of a rotating neutron star.
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