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Abstract

The effects of several nonlinear regularization techniques are discussed in the framework of 3D
seismic tomography. Traditional, linear, ℓ2 penalties are compared to so-called sparsity promoting
ℓ1 and ℓ0 penalties, and a total variation penalty. Which of these algorithms is judged optimal
depends on the specific requirements of the scientific experiment. If the correct reproduction of
model amplitudes is important, classical damping towards a smooth model using an ℓ2 norm works
almost as well as minimizing the total variation but is much more efficient. If gradients (edges of
anomalies) should be resolved with a minimum of distortion, we prefer ℓ1 damping of Daubechies-4
wavelet coefficients. It has the additional advantage of yielding a noiseless reconstruction, contrary
to simple ℓ2 minimization (‘Tikhonov regularization’) which should be avoided. In some of our
examples, the ℓ0 method produced notable artifacts. In addition we show how nonlinear ℓ1 methods
for finding sparse models can be competitive in speed with the widely used ℓ2 methods, certainly
under noisy conditions, so that there is no need to shun ℓ1 penalizations.

1 Introduction

Since geophysical inverse problems are almost always underdetermined, regularization techniques are
essential to obtain a meaningful solution. Two major classes of techniques exist. The first one, named
‘mollifying’ in the mathematical literature, or ‘optimally localized averaging’ (OLA) in helioseismology,
can be traced back to the groundbreaking work of Backus and Gilbert [1, 2] in geophysics. In this
approach one searches for the size of an averaging volume that can produce a local average of the
model parameter with an acceptable variance. Since this method is computationally very expensive,
it has found little application in large-scale geophysical inversions such as seismic tomography. To
limit the computational effort, seismic tomographers instead search for a biased (‘damped’) solution.
This has the disadvantage of introducing a systematic error – the bias – in lieu of the random error
caused by the propagation of data errors. It can be turned into an advantage if the bias actually
reflects a justified disposition of the scientist to prefer certain models over others, as long as the data
are fit within their error bars.

Simple ℓ2-norm damping, which biases model perturbations towards zero in the absence of in-
formation based on the data, is generally a bad choice to regularize the inverse problem for seismic
tomography as it tends to introduce structures reflecting ray coverage into the images. For that reason,
most tomographers prefer to bias the model towards ‘smooth’ anomalies, in effect trying to forge a
compromise between Backus-Gilbert theory and the efficiency of damped inversions. The smoothness
of the images has the advantage that large structures become easily visible. Sharp discontinuities,
however, are blurred, and smaller structures, even when resolved, may be diluted beyond recognition.
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Recently, [3] — hereafter referred to as Paper I — introduced a third option for the bias in geophysical
inversions: to minimize the ℓ1-norm of the wavelet decomposition. This also biases the model towards
zero, but it turns out that such reconstructions always have many (or most) wavelet coefficients exactly
equal to zero (i.e. they are sparse). In a synthetic 2D experiment using surface wave data, we showed
how structurally coherent features (in a geophysical sense), were more faithfully reproduced using this
technique than with a simple ℓ2-norm damping. In addition, as a result of their inherent sparsity, ℓ1
reconstructions exhibit much less noise than their ℓ2 counterparts.

Though Paper I clearly showed the feasibility of wavelet-based ℓ1 regularization it left a number of
questions unanswered, in particular which wavelet families work best, how they would perform against
more sophisticated ℓ2 norms (e.g. smoothness damping) and whether the computational feasibility as
well as the positive conclusions for wavelet regularization do scale up to large, 3D models.

In this paper we therefore aim to refine the original conclusions of Paper I and to enlarge the scope
of the investigation. We extend tests to 3D inversions of body wave travel times and investigate the
use of different families of wavelets (Haar, D4, dual tree). We include a comparison with smoothness
damping, and with a fourth option named ‘total variation’ damping. Unlike Paper I, we also discuss
so-called ℓ0 constrained recovery. In contrast to the ℓ1 norm technique which relies on iterative soft-
thresholding, the ℓ0 recovery method uses iterative hard-thresholding of wavelet coefficients [4, 5].

The (salt dome) model that we try to reconstruct here is more realistic than the model in Paper I
and includes a wide range of length scales. The problem described in Paper I was also of a very limited
size: there were only about 104 degrees of freedom in the reconstructed models. Here we perform 3D
reconstructions, and increase the number of degrees of freedom by an order of magnitude to about
∼ 105. The number of data also increases accordingly to 24000. Our approach is complementary
to that of [6] who expand the Fréchet kernels into wavelets to obtain a significant reduction in the
memory requirements to store the kernel.

One disadvantage of the ℓ1-norm, ℓ0 and total variation penalties is that they lack the convenient
linearity of the more conventional ℓ2-norm minimizations. Making use of recent algorithmic improve-
ments, we do demonstrate that finding a (nonlinear) sparse model reconstruction is not necessarily
more expensive, computation-wise, than ℓ2 based (linear) reconstructions.

The use of ℓ1 norms in seismic tomography was to the best of our knowledge first proposed in [7]
in the form of an iteratively reweighted least squares method (IRLS, see also [8]), but has never found
much favor, possibly because the convergence of IRLS was not guaranteed. Besides its use in seismic
tomography ℓ1 norms have found application in other geophysical contexts such as deconvolution and
interpolation [9, 10, 11, 12]. The use of ℓ1 norms in combination with a carefully chosen basis (such
as wavelets) is, however, more recent and is largely inspired by the recent development of compressed
sensing [13, 14, 15], that shows that under certain conditions an exact reconstruction can be obtained
by solving an ℓ1 regularized inverse problem, provided there is an underlying basis in which the desired
model is sparse. This emphasizes the importance of studying different “dictionaries” as we do here.
Recently [16] has successfully applied the compressed sensing idea to wavefield reconstruction, albeit on
small-scale problems only. The success and promise of compressed sensing has therefore also increased
interest in the speed-up of such ℓ1 problems to be able to handle practical geophysical applications
(e.g. [17, 18]).

2 Forward problem formulation

We plan to test the regularization methods on a synthetic data set generated for a salt dome model.
Since the main goal of this paper is to evaluate and compare a number of algorithms, numerical
efficiency is more important than the wish to have a tomographic problem at hand that is fully
realistic. We have thus taken a few shortcuts to be able to run inversions quickly in Matlab on a single
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processor. However, we took pains to ensure that we would invert for a model that has a large range
of length scales, and that the ray coverage would encompass both dense and sparse regions.

In dimensionless variables, the expression for a finite frequency sensitivity kernel corresponding to
a constant background and a Gaussian power spectrum is given by the formula:

K(x, y, z) =
e−u2

H5(u)

24λdsdr
, (1)

where u = π(ds + dr − dsr)/λ. Here dsr is the distance between source (earthquake) and receiver
(station), and ds, dr are the distances to source and to receiver, measured from the point (x, y, z). λ is
the dominant wavelength and H5(u) = 120u− 160u3 + 32u5 denotes the Hermite polynomial of order
5. Equation (1) can be derived from the expressions for the Fréchet kernel in a homogeneous medium
using an analytical expression for the spectral integration (see [19]).

The constant background model that we use here is not at all realistic from a physical point of
view for the salt dome input model that we will use in section 4: in case of of large velocity contrasts
kernels are bent rather than straight as in expression (1). However, as we will use the same constant
background kernels (1) for generating synthetic data as well as for reconstructing models from these
data, we believe it is possible to accurately evaluate the effects of the regularization technique on the
inversions. Obviously, reconstructing a model from actual measurements requires kernels of a more
complicated shape than (1) but their resolving power is not fundamentally different from those used
in our simple application.

For each source-receiver pair and each dominant wavelength, the travel time differential and the
model perturbation m are connected by the linear integral relation [20]1

δT =

∫

V
KmdV . (2)

Given sufficiently many data, the aim of seismic tomography is to reconstruct the model m from a
noisy version of the data vector d containing many travel time differentials corresponding to many
source-receiver pairs.

In section 4 we will perform a number of seismic reconstructions. The domain on which we will do
this is the cube V = [−1, 1]3. For discretization, this domain is subdivided in 643 voxels, a convenient
choice for the digital reconstruction of a model m, leading to 262144 degrees of freedom in m. In
order to be able to produce meaningful reconstructions, we expect to need at least 104 data (about
1 datum for 10 degrees of freedom). Hence we will choose 4800 sources-receiver pairs and 5 different
dominant wavelengths so as to yield 24000 data. This represents an overparametrization by a factor
of more than 10. Thus regularization will be an essential requirement for any data inversion.

A very efficient set-up of our numerical experiment was obtained as follows: we first choose 100
source-receiver pairs in random positions on the surface of the cube, while making sure source and
receiver are never on the same face (the kernels (1) are not curved and would not be able to cross
the model domain very much if source and receiver were on the same face). From these initial 100
pairs, we construct the full set of 4800 pairs by using the 48 symmetry transformations of the cube.
These 48 operations are constructed from the 3! permutations of the coordinates (x, y, z), and by
the 23 reflections (±x,±y,±z), as listed in Table 1. In other words, starting from one initial kernel
K(x, y, z) we easily obtain 47 other kernels: K(z, x, y), K(y, x,−z), . . . , corresponding to differently
positioned source-receiver pairs. The random nature of the positions of the original 100 source-receiver
pairs (i.e. no coordinate is exactly zero or exactly equal to plus or minus another coordinate) ensures
us that none of the 4800 source-receiver pairs are identical. The initial 100 source-receiver pairs and
the final 4800 pairs are shown in Figure 1.

3



Permutations

S
ig
n
ch
an

ge
s

(x, y, z) (x, z, y) (y, x, z) (y, z, x) (z, x, y) (z, y, x)
(x, y,−z) (x, z,−y) (y, x,−z) (y, z,−x) (z, x,−y) (z, y,−x)
(x,−y, z) (x,−z, y) (y,−x, z) (y,−z, x) (z,−x, y) (z,−y, x)
(x,−y,−z) (x,−z,−y) (y,−x,−z) (y,−z,−x) (z,−x,−y) (z,−y,−x)
(−x, y, z) (−x, z, y) (−y, x, z) (−y, z, x) (−z, x, y) (−z, y, x)
(−x, y,−z) (−x, z,−y) (−y, x,−z) (−y, z,−x) (−z, x,−y) (−z, y,−x)
(−x,−y, z) (−x,−z, y) (−y,−x, z) (−y,−z, x) (−z,−x, y) (−z,−y, x)
(−x,−y,−z) (−x,−z,−y) (−y,−x,−z) (−y,−z,−x) (−z,−x,−y) (−z,−y,−x)

Table 1: Left: A list of rotations and reflections that map the unit cube [−1, 1]3 onto itself. They are
constructed by combining the six permutations of (x, y, z) and eight sign changes of the components
(x, y, z).

Figure 1: Left: The cube [−1, 1]3 with the initial 100 source-receiver pairs (black=source,
red=receiver). Center: The 4800 source-receiver pairs one obtains by applying the 48 symmetry
transformations of Table 1 on the initial 100 pairs. Right: A single source-receiver pair joined by a
straight line and its 48 transformations. Plotting all 4800 rays obtained in this way would fill the
whole cube.
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Figure 2: Cross sections (perpendicular to the midpoint of the central ray) of five finite sensitivity
kernels corresponding to λ ∈ {0.5, 0.2, 0.08, 0.04, 0.025}. Larger wavelength kernels are wider but have
smaller amplitude.

For each of the 4800 source-receiver pairs we will construct five finite frequency sensitivity kernels
of type (1) corresponding to five different dominant wavelengths λ = {0.5, 0.2, 0.08, 0.04, 0.025}. Thus,
in total there will be 24000 kernels at our disposal. Because of the symmetry transformations used
and the random choice of the initial 100 source-receiver pairs, the coverage of the domain by these
24000 kernels is quite uniform. A picture that illustrates this property is too large to include here,
but it is available in the online supplementary material in Figure A.1.

In order to give the reader an idea of the size of the Fresnel zones of these finite frequency kernels,
we include in Figure 2 and in one of the panels of Figures 6 and 7 a cross-sectional view of five kernels.
Each of these kernels corresponds to one of the five wavelengths (λ ∈ {0.5, 0.2, 0.08, 0.04, 0.025}) and
source-receiver distance dsr = 2. The width of the Fresnel zone is proportional to

√
λdsr [21]. The

cross sections in Fig. 2 illustrates not only the typical widths of the kernels, but also their relative
amplitudes.

Additionally we construct a second operator containing only 20000 out of the 24000 kernels. We
choose to remove the 4000 kernels for which the line connecting source and receiver (i.e. the central
ray) comes closest to the point (0.24,−0.7,−0.23). In this way, we end up with an operator that has a
‘hole’ in its coverage of the cube (see Figure A.1, right). Using this operator we will be able to study
the effect of non-uniform coverage on reconstructions.

To discretize the model into voxels we calculate the integral of the sensitivity kernels over each
voxel (using a Riemann sum with 43 terms/voxel) for each source-receiver pair and for each of the five
dominant wavelengths we consider. The resulting values make up the operator A we want to invert:
Because there are 24000 kernels and 643 = 262144 voxels, the matrix A will have 24000 rows and
262144 columns.

The use of the 48 symmetry transformations of the cube allows us to save a factor of 48 in memory
requirements for our calculations, i.e. we need to compute and store only 500 kernels corresponding
to the initial 100 source-receiver pairs and 5 wavelengths. The remaining ones are easily (and quickly)
generated from these 500 kernels by the symmetry transformations of the cube (quick rearrangements
of the elements in a 3D array).

1For convenience, we denote the model perturbation by m instead of δm as is often done.
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An additional saving in memory requirements is obtained by exploiting the fact that most kernels
are well localized (i.e. they are thin), and thus that the Aij are practically zero for many voxels. In
other words, each row of the matrix A is relatively sparse.

Although this set-up is completely unrealistic from a physical perspective, this configuration of
rays provides for an easy way to compare dense and partial data coverage of the model. It also allows
us to focus on the relative merits of the inversion methods rather than on the difficulties a physically
faithful modeling would entail.

In reality, sensor coverage is limited to the surface and a few boreholes. High frequency data
with narrow Fresnel zones therefore leave significant areas at depth not illuminated by acoustic waves.
Low frequency data have wider Fresnel zones but suffer a reduced sensitivity to small length scales.
Illumination itself does not guarantee resolution as becomes clear when one regards the singular value
spectrum of A: though the spectrum depends strongly on the experimental set-up, it often has a
rapid drop-off and a significant fraction of eigenvalues is either zero or too small to be useful. In the
present synthetic experiment, we chose to have about 1 datum for every 10 degrees of freedom in the
model. The uniform random distribution of sources and receivers on the surface of the cube has a
favorable influence on the singular value spectrum of A (we were able to confirm this on a scaled-
downed version of the present operator A, but not on the full 24000× 262144 matrix), and will aid in
the reconstruction . This will allow us to focus on the characteristics of the different reconstruction
methods, rather than on the lack of data.

3 Reconstruction methods

Reconstructing the model m from the data d is done, in principle, by solving the linear system
Am = d, where A denotes, as before, the matrix containing the kernels discretized in the voxel
basis. This system may contain incompatible equations (due to noise), and at the same time be
underdetermined (not enough data to reconstruct all of m).

The problem of incompatible data can be solved by replacing the original problem with the mini-
mization of a data fidelity term:

m̄ = argmin
m

‖Am− d‖2 . (3)

Here and in the following ‖u‖ (without subscripts) always denotes the usual 2-norm of u: ‖u‖ =
√

∑

i u
2
i . Although a minimizer always exists (because of the quadratic nature of the functional), it

may not always be unique. In other words, the problem is still underdetermined and an iterative
numerical scheme for finding a minimizer of (3) may diverge. In fact, because of the existence of data
errors we are not even looking for the exact minimizer (3). We rather augment the functional in (3)
by a term that will penalize a whole category of models that is thought to be unphysical.

3.1 ℓ2 penalties

The prime example of this kind of method is Tikhonov regularization [22] whereby a penalty propor-
tional to the ℓ2-norm of the model is imposed:

m̄ = argmin
m

‖Am− d‖2 + µ‖m‖2 . (4)

This will effectively prevent the model from growing unboundedly due to noise in d and ill-conditioning
of the matrix A.

Another, closely related, possibility is to impose a penalty consisting of the ℓ2-norm of the (discrete)
Laplacian ∆m of m:

m̄ = argmin
m

‖Am− d‖2 + µ‖∆m‖2 . (5)
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As we will see in section 4, this will enforce a certain degree of smoothness on the reconstructed model.
The Laplacian used here is defined as the difference of the model with the local average over the six
nearest neighbors: (∆m)ijk = mijk − (mi−1jk +mi+1jk + . . . +mijk+1)/6.

The above two versions of the Tikhonov regularization method have the advantage of being solvable
by linear equations. The variational equations that determine the minimizers of (4) and (5) are:

A
T
Am+ µm = A

T
d , (6)

and
A

T
Am+ µ∆T∆m = A

T
d , (7)

respectively (with suitable treatment of boundary voxels, ∆T = ∆ in the latter case). For these
linear equations, we can use the conjugate gradient algorithm. With m

(0) =arbitrary and r
(n) =

A
T (d−Am

(n))− µDT
Dm

(n), we set

v
(n) =

{

r
(n) n = 0

r
(n) + ‖r(n)‖2

‖r(n−1)‖2
v
(n−1) n > 0

m
(n+1) = m

(n) +
‖v(n)‖2

‖Av(n)‖2 + µ‖Dv(n)‖2v
(n),

(8)

where D is either the unit matrix I (in case we seek to minimize functional (4)) or ∆ (in case we
use functional (5)). The model estimates m(n) converge to the minimizer (4) or (5), respectively as n
increases.

3.2 ℓ1 penalties

Another and much more recent method of regularization consists of imposing a carefully chosen ℓ1-
norm penalty [23]. It can be shown that this leads to a sparse model, i.e. a model with few nonzero
components [14, 15]. It would therefore not be a good idea to apply this technique to the model in the
voxel basis (there is no reason to assume the model would be sparse in that basis); we would rather
use this penalty on the coefficients of the model in a different basis in which we believe the model to
be sparse.

Harmonic functions would allow us to select resolvable scales, but the complete lack of localization
of these functions makes them even worse candidates than voxels. 3D wavelets offer a compromise
between the concentration of power in both scale and location, and are intuitively more suitable to
build geophysically reasonable models. In fact, our earlier experience (Paper I) showed the advantages
of using a wavelet basis, and constructing the model by finding the minimum of the functional

‖Am− d‖2 + 2µ‖w‖1, (9)

where w = Wm are the wavelet coefficients of m. This minimization problem can be rewritten as:

m̄ = W
−1

w̄ and w̄ = argmin
w

F (w) with F (w) = ‖AW−1
w − d‖2 + 2µ‖w‖1. (10)

W is the wavelet decomposition matrix and W
−1 the wavelet synthesis operator. This type of ℓ1-

norm penalty leads to a model that has a sparse wavelet representation, i.e. a model with (very) few
nonzero wavelet coefficients. The aim is thus to rely on the properties of the wavelet basis to be able
to represent the desired solution with few nonzero components. In geophysics wavelets are a good
choice for seismic reconstruction as they allow for sparse representations of overall smooth functions,
while still capable of taking into account the possibility of isolated sharp features [24, 3].
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Another advantage of the ℓ1 method is that they yield noise-free model reconstructions. This is a
consequence of the simple fact that noise in the model cannot be represented in a sparse way (in any
reasonable basis). This method is thus able to produce clean models without the need for additional
smoothing. It is important to note that the least squares functional (10) is convex. This implies that
a local minimum of (10) is always a global minimum as well.

In section 4, we shall consider a number of different choices of orthonormal wavelet bases. For
each of these choices, we have W

−1 = W
T , which we will implicitly assume hereafter.

In order to find the minimizer w̄ of the ℓ1 penalized functional (10), one may use the iterative
soft-thresholding algorithm [23]:

w
(n+1) = T (w(n)), (11)

with
T (w) = Sαµ

[

w + αWA
T (d−AW

T
w)

]

, (12)

and where w(0) may be chosen arbitrarily. The soft-thresholding Sτ (u) function operates component-
wise and is defined by

Sτ (u) =







u− τ u ≥ τ
0 |u| ≤ τ
u+ τ u ≤ −τ.

(13)

This algorithm was used in a 2D seismic tomography toy problem in Paper I, to which we also
refer for a brief but elementary derivation (section 2 of paper I). In effect, it is a simple gradient
descent algorithm (with fixed step length α) where the additional soft-thresholding operation Sαµ is
a mathematical consequence of the ℓ1-norm term present in functional (10).

The constant α should be chosen such that α‖AT
A‖ is smaller than or equal to 1 (‖AT

A‖ is
defined as the largest eigenvalue of AT

A)[23]. In our calculation we always choose α = 0.95/‖ATA‖.
The wavelet transformW and its inverse WT are fast transforms. This means that they cost only a

fraction of the computer time needed to perform one application of A or AT . In other words, working
in a wavelet basis does not significantly change the computational complexity of the reconstruction
algorithm.

As the iterative soft-thresholding algorithm (11) can be slow in practice, we have opted here for
using the so-called Fast Iterative Soft-Thresholding Algorithm (FISTA) [25] (see also earlier work of
Nesterov [26, 27]):

w
(n+1) = T

(

w
(n) +

tn − 1

tn+1

(

w
(n) −w

(n−1)
)

)

, (14)

with t0 = 1 and tn+1 = (1 +
√

1 + 4t2n)/2.
2 The FISTA algorithm has practically the same compu-

tational complexity as the iterative soft-thresholding algorithm (11). It only requires one additional
vector addition. With this algorithm the ℓ1 penalized cost function (10), evaluated at w = w

(n), is
bounded by O(1/n2) from its limiting value:

F (w(n))− F (w̄) ≤ 4
‖w(0) − w̄‖2
α (n+ 1)2

, (15)

as opposed to the O(1/n) decrease:

F (w(n))− F (w̄) ≤ ‖w(0) − w̄‖2
αn

, (16)

that can be proven for algorithm (11). These upper bounds are valid non-asymptotically, i.e. even for
small n [25, 28].

2In the journal published version of this manuscript this formula contains a typo.
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3.3 ℓ0 penalties

Recently, mathematical advances on direct ways of constraining the number of nonzero components
in a reconstructed model have appeared. In [4, 5] an iterative hard-thresholding algorithm is proposed
of the following form:

w
(n+1) = T̃ (w(n)), (17)

with
T̃ (w) = Hk

[

w + αWA
T (d−AW

T
w)

]

(18)

and where the hard-thresholding operation Hk(u) sets all but the largest (in absolute value) k com-
ponents of u to zero. This algorithm converges to a local minimum of

‖AW−1
w − d‖2 under the condition ‖w‖0 ≤ k. (19)

Here ‖w‖0 denotes the number of nonzero coefficients of w. Just as with the ℓ1 penalty method, we
shall apply this technique using a wavelet basis. The underlying reason is again the suitability of a
wavelet basis to represent a physically acceptable model with few nonzero wavelet coefficients. We
stress that the appearance of the hard-thresholding operation Hk is a mathematical consequence of
the constraint ‖w‖0 ≤ k, just as soft-thresholding in (12) is a mathematical consequence of the ℓ1
term in (10) [23, 3].

The algorithm (17) converges very slowly. We therefore propose the following FISTA/Nesterov-like
modification:

w
(n+1) = T̃

(

w
(n) +

tn − 1

tn+1

(

w
(n) −w

(n−1)
)

)

, (20)

with t0 = 1 and tn+1 = (1 +
√

1 + 4t2n)/2.
3 As far as the authors know, this is the first time this

algorithm is proposed. Although there is no proof of convergence yet, we found that it worked quite
well on the examples that we studied (see section 4). We used the same choice for the step-length
α as with the ℓ1 algorithm: α = 0.95/‖ATA‖. The choice of the number of nonzero model wavelet
coefficients k in method (19) is discussed in section 3.5.

On a side note, it would also be possible to calculate a local minimizer of the (non-convex) func-
tional

‖AW−1
w − d‖2 + µ‖w‖0 (21)

using component-wise hard-thresholding (with a fixed threshold
√
µ) [4]. However, [5] seems to prefer

the formulation (19) that imposes a fixed number of nonzeros in each step of the iteration, rather than
a fixed lower bound

√
µ for the absolute values of the wavelet coefficients.

Although no proof of convergence of algorithm (20) is given, we shall refer to it by the name ‘ℓ0
method’ (instead of calling it ‘hard-thresholded Nesterov accelerated gradient descent algorithm’).

3.4 Total variation penalty

A final penalty term we will consider is the so-called ‘total variation’ (TV) penalty:

m̄ = argmin
m

‖Am− d‖2 + 2µ
∑

ijk

√

(∆xm)2 + (∆ym)2 + (∆zm)2, (22)

with ∆xm = mijk − mi−1jk and similarly for ∆y and ∆z. This penalization will favor piece-
wise constant models in the voxel basis. Unfortunately, the equations that determine the mini-
mizer (22) are again nonlinear. We will use a reweighed conjugate gradient method [29] to de-
termine the minimum of the TV functional (22). More specifically, defining the weights u

(n) =

3In the journal published version of this manuscript this formula contains a typo.
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(

∆xm
(n) +∆ym

(n) +∆zm
(n)

)−1/2
, we shall use algorithm (8) where we choose D

T
D = ∆T

xu
(n)∆x +

∆T
y u

(n)∆y +∆T
z u

(n)∆z (which depends on the iteration n) and use that ‖Dv
(n)‖ = 〈DT

Dv
(n),v(n)〉.

Because of the non-quadratic nature of functional (22), the conjugate gradient algorithm no longer
preserves conjugacy between successive search directions v(n) as n grows. For this reason, the iteration
is also reset every so often (in accordance with [29]).

An algorithm similar to (11) and (14) may also be used to find the minimizer of the TV penalized
functional (22) [30, 31]. In fact, in [30] it is shown how the ℓ1 norm penalty and the TV penalty can
be combined in a single functional.

3.5 Choice of the penalty parameter

As such, the minimizers defined by (4), (5), (10) and (22) still depend on the penalty parameter µ, or
in case of the hard-thresholding algorithm (20) on the parameter k. In the reconstructions below, we
select this parameter by requiring in each instance that the reconstructed model m̄ fits the data d as
well as possible, but not any better than the noise level:

‖Am̄− d‖ ≈ ‖n‖, (23)

with n representing the noise vector. In other words, the discrepancy principle tells us to choose the
penalty parameter µ (or k) such that

‖Am̄− d‖2/σ2 ≈ number of data, (24)

where σ is the noise variance (if different data have different variance, it is simplest to divide from the
outset each row as well as the right hand side by the standard deviation of its datum, and set σ = 1
in (24)). In practice, this means that we will have to perform the minimization several times, until a
suitable value of µ or k is determined for each reconstruction.

4 Reconstructions

In this section we present some sample reconstructions using the algorithms mentioned in section 3,
applied to the finite frequency tomography problem described in section 2. First we will consider a
simple checkerboard input model that we will try to reconstruct from incomplete and noisy data. We
will also look at a more complicated salt dome model which we obtained from BP America, Inc.

In each case, our procedure will be the following. We start from a known input model minput from
which we construct synthetic noisy data d:

d = Am
input + n. (25)

The noise n is taken from a Gaussian distribution, with zero mean and variance σ chosen in such a
way that ‖n‖/‖Aminput‖ = 0.1; in other words, we add 10% noise to the noiseless data. The goal is
then to try to reconstruct minput as well as possible from d and A. For this we will use methods (4),
(5), (10), (19) and (22), and compare the results. Since we know the noise variance σ, we can use the
criterion (24) to choose the penalty parameter µ or k. This parameter will be different for the various
synthetic data and for the various penalties that we impose.

For the wavelet based methods (10) and (19), we also need to choose a specific wavelet family.
There are many wavelet bases, with varying degrees of smoothness and approximation properties [24].
This gives us the opportunity to adapt our choice of wavelet basis to the model: we will choose the
basis in which we suspect the model to be sparse. In particular, for the checkerboard reconstruction
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we will use Haar wavelets because we know that the true solution is very sparse in that basis. We thus
expect a very accurate reconstruction in that case. For the salt dome input model, we will compare
the effects of different choices of wavelets bases on the reconstruction. Our choice will include Haar
wavelets, D4 wavelets and also directional dual tree wavelets. Haar wavelets are the least smooth, and
directional wavelets are the most smooth of these three.

4.1 Checkerboard

The first example consists of a checkerboard pattern; in other words the input modelminput is piecewise
constant (±1) on small cubes of 8 by 8 by 8 voxels. It mainly serves as a proof of principle for the ℓ1
wavelet method (10) because we know that this input model is sparse in the Haar wavelet basis [32].
The Haar wavelets are piecewise constant. In fact, the model only has 99 nonzero coefficients in that
basis (out of 262144). Hence, we may expect that the ℓ1 method will work very well with this model
and this basis.

A single horizontal slice of the checkerboard input model and its four reconstructions are shown in
Figure 3. These four reconstructions use all 24000 kernels so that no particular region in the model is
favored or disadvantaged. The ℓ1 reconstruction (10) with Haar wavelets is visually the most faithful
to the original, closely followed by the ℓ0-Haar reconstruction. The ℓ2-reconstructions (4,5) and the
TV reconstruction (22) display smooth transitions between +1 and −1. The reconstruction result of
the simple ℓ2 method (4) is quite noisy, which is not the case for the other methods. For completeness
and viewing convenience, the online supplementary material includes a picture (Figure A.2) of all the
horizontal slices of the input model and its various reconstructions.

The smoothing effect of the reconstructions can quantitatively be seen from the histogram of the
reconstructed model amplitudes (see Figure 4). The ℓ2 reconstruction takes on mostly values around
zero, whereas the input model only has amplitudes +1 and −1 (vertical blue lines). In this case,
the ℓ1 Haar reconstruction does a very good job at recovering the ±1 amplitude distribution, as it
is naturally well suited for the particular checkerboard model used. The ℓ0 method does second best
and the TV method (22) does third best from this point of view. It is surprising that the ℓ1 method
outperforms the ℓ0 method in this case.

The checkerboard model shows that good reconstructions are possible if one has very good prior
knowledge on the model. When using the ℓ0 and ℓ1 methods this requires a basis in which the desired
model is very sparse. The checkerboard model that was used here aligns optimally with the chosen
Haar basis. The results of ℓ1 and ℓ0 reconstructions deteriorate when the checkerboard pattern is
shifted w.r.t the Haar basis or when the size of the fields are changed (the Haar basis decomposition
of such a checkerboard would seize to be sparse). As such, the checkerboard model we choose is very
particular. For realistic reconstruction scenarios one should not expect such excellent results.

A discussion of the mean square error of the various reconstructions is given in section 4.3, where
other computational aspects are also discussed.

4.2 A 3D salt dome model

In this section we try to reconstruct a complex 3D model of a realistic salt body in the subsurface. The
complex salt dome model was obtained from a prestack depth-migration of field seismic data in the
deep-water part of the Gulf of Mexico, and was kindly provided to us by BP America, Inc. To better
accommodate the straight-ray tomography used in this paper, the sediment velocities surrounding
the salt dome model that were present in the original model provided to us, were replaced with
a constant velocity. This model was superimposed on a background model with long-wavelength
variations (smoothed Gaussian). The model has a rather sharp contrast between the velocity in
the salt and in the surrounding background model, providing for sharp edges. A single horizontal
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Figure 3: A single horizontal slice (number 25 (from top) out of 64) of the checkerboard model and its
reconstructions using all 24000 data. The whitish transitions in several of the reconstructions are the
result of smoothing between +1 and −1 of the input model. As the input checkerboard has fields of
size 8× 8× 8 with constant model value ±1, the smoothing occurs with period 8 as well. In addition,
the ℓ2 reconstruction has a distinctive noisy appearance. The ℓ1 reconstruction using Haar wavelets
is visually indistinguishable from the input model. The ℓ0 method does almost as well.
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−1 0 1

10000

−1 0 1

10000

−1 0 1

10000

TV ℓ2 ℓ2-∆

−1 0 1

10000

−1 0 1

10000

−1 0 1

10000

Figure 4: Histograms of the amplitude distribution of the five checkerboard reconstructions. The
input model takes on values +1 and −1 only. The ℓ1 reconstruction in the Haar basis, and to a lesser
extent the ℓ0-Haar reconstruction, result in almost perfect reconstruction of the amplitude distribution
whereas the amplitudes are shifted towards zero by the other reconstruction methods.
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m = 0.9 m = 1.0 m = 1.1

Figure 5: Three contour plots, i.e. surfaces of constant model value, of the salt dome model (m =
0.9, 1.0, 1.1).

slice through the resulting salt dome model is pictured in Figures 6 and 7. For completeness, all 64
horizontal slices are shown in Figure A.3 (right) of the online supplementary material (as well as the
smoothed Gaussian that was added in; Figure A.3, center). Three contour plots of this model are
shown in Figure 5, corresponding to the model values m = 0.9, m = 1 and m = 1.1. The model
contains 64 × 64 × 64 = 262144 voxels as in the checkerboard examples.

We perform the same type of experiment as before: we construct synthetic data and add 10%
Gaussian noise to it. From this noisy data, we try to reconstruct the input model. There are two
differences with the checkerboard reconstructions. Firstly, we will compare several different wavelet
families for the ℓ1 and ℓ0 reconstructions (in this case, there is no obvious reason to prefer Haar
wavelets over other wavelet bases). Secondly, we will repeat the reconstruction experiment for an
operator that has only 20000 kernels instead of 24000, to simulate imperfect coverage of the model
domain by the kernels. In other words, with the 20000 kernel reconstruction, a region of the model is
ill resolved.

The wavelet families used are, in order of increasing smoothness: Haar [32], D4 [33, 34] and so-
called directional dual tree (DT) wavelets [35, 36]. The Haar and D4 wavelet transform on the cube
are direct products of the corresponding wavelet transforms in 1D. The DT wavelet transform is not
and it has, by construction, better directional sensitivity. The D4 wavelets that we will use do not
suffer from edge effects as they do not use periodic boundary conditions, but follow the interval scheme
proposed in [33, 34]. Other model parameterizations that could be used are shearlets or curvelets (they
are particularly suited to sparsely represent models with singularities along curves or surfaces), but
we did not include them in our study [37, 38, 39].

Judging the success of an algorithm to reconstitute the input model invariably involves a degree
of subjectiveness, even if one designs a numerical measure for goodness of model fit. Such measure
might also depend on the goal of the scientific experiment conducted. For example, if one deducts
temperatures from velocity variations, it is more important that the amplitudes are correct and less
important that sharp edges of an anomaly are preserved, but a structural geologist may be more
interested in the edges and may wish to involve the misfit of the gradient, for example.

In Table 2, we list the amplitude misfit (‖m−m
input‖/‖minput‖) and judge the fit to other features

visually. A single horizontal slice (number 25) of the different reconstructions is pictured in Figure
6 and all 64 horizontal slices are shown in Figure A.4 in the online supplementary material. For the
reconstructions using all 24000 kernels, the TV method works best based on the final resulting error, as
well as visual inspection. It is closely followed by the ℓ1 method using dual tree wavelets (ℓ1-DT) and
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Figure 6: Horizontal slice number 25 of the salt dome model and its various reconstructions using
all 24000 kernels. The TV, ℓ2-∆, ℓ1-DT and ℓ0-DT methods introduce the most smoothing. The ℓ1
and ℓ0 Haar reconstructions have the least smoothing but are very blocky. A good compromise, in
this respect, may be found in the ℓ1-D4 reconstruction. The ℓ0-D4 reconstruction is less appealing.
The bottom right figure shows five representative kernel cross sections for different frequencies. These
cross sections are taken perpendicular to and in the middle of the central rays , and give the reader
an idea of the size of the kernels relative to the structure in the model and of the relative Fresnel zone
widths of the different kernels. 15
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Figure 7: Horizontal slice number 25 of the salt dome model and its reconstructions using only 20000
kernels and thus non-uniform coverage. The area of the input model that lies in the region that is not
covered by any kernel in this slice (indicated by a dashed circle), is not well reconstructed. Different
methods compensate for the missing information in different ways. The ℓ0-D4 reconstruction shows a
distinctive artifact. As in Fig. 6, the bottom right pane shows five representative kernel cross sections.
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by the ℓ2 method with Laplacian smoothing (ℓ2-∆). The ℓ1 method with D4 wavelets does better than
with Haar wavelets, that has a relative reconstruction error almost as bad as obtained using the simple
ℓ2 penalized method. However, the “top three” methods (TV, ℓ1-DT, ℓ2-∆) produce much smoother
models than the input model. In case the correct sharpness of features is a desirable characteristic
of the solution, the ℓ1 reconstructions with Haar or D4 wavelets are more faithful to the input data.
In this case one may well prefer D4 over Haar to avoid the rather blocky nature of the shapes. The
qualitative differences with the noisy ℓ2 reconstruction are obvious. The ℓ0 reconstructions that were
obtained using iterative hard-thresholding, are less appealing. Numerically the ℓ0-Haar and ℓ0-D4
perform worst of all reconstructions, whereas ℓ0-DT comes in fifth.

The reconstructions with only 20000 kernels are shown in Figure 7 (a single horizontal slice) and
Figure A.5 in the supplementary material (all horizontal slices). The most interesting comparisons are
again done visually. The lack of data coverage affects most strongly the areas around voxel (10, 40)
in slice 25 (Figure 7) and the lower left corner of slices 13–44 (third and fourth row in Fig. A.5
especially). Not surprisingly, none of the algorithms is able to ‘recreate’ the model where there are
no data at all. But close inspection of the model near the edge of the region affected by the data gap
shows that the Haar and D4 wavelets produce the model that is least contaminated by smoothing
effects beyond the gap, with D4 occasionally trying to correctly ‘fill in’. The ℓ0-D4 reconstruction
creates a distinctive artifact in this area. We speculate that this is caused by the non-convex nature
of the ℓ0 problem (19).

4.3 Computational aspects

Apart from the aspect of the visual reconstruction quality it is also important to compare reconstruc-
tion times. The four numerical algorithms that were used —conjugate gradient, fast iterative soft and
hard thresholding, and reweighed conjugate gradient— all need one application of A and one applica-
tion of AT per iteration step. These dominate the other, but much faster, operations such as addition
of vectors, vector norms etc that are also present in each iteration step. The forward and inverse
wavelet transforms that are used in some of the methods (via the Fast Wavelet Transform algorithm)
also take a negligible time compared to an application of A and A

T . It follows that it is sufficient to
compare the number of iterations when we evaluate the efficiency of different reconstructions.

The number of iterations and corresponding relative reconstruction errors ‖m−m
input‖/‖minput‖

are given in Table 2. In all cases, the iterative reconstruction algorithms were started from w
(0) = 0

or m(0) = 0.
For the checkerboard model the data in Table 2 show that the ℓ1 and ℓ0 methods do extraordinarily

well, with a mean square error far below what could be expected based on the data noise level of 10%.
In the same sense, the total variation minimization and the Laplacian penalization perform somewhat
better than the simple ℓ2 method; a large number of simulations with different noise realizations would
be necessary to verify whether this is a statistically significant difference. In case of the checkerboard
reconstructions, only 100 iterations were performed for each method. This shows that the ℓ1 and ℓ0
methods can be very successful if the sought after model is very sparse in the basis used, even with a
limited number of iterations.
We have also verified that the functionals (4), (5), (10), (19) and (22) remain almost constant after
this number of iterations, as did the relative distance to the input model.

In case of the salt dome reconstructions, the ℓ0-Haar, ℓ0-D4 and the simple ℓ2 method do worst
(in terms of reconstruction error) closely followed by the ℓ1-Haar method. The latter is due to the
inappropriateness of the Haar basis to represent the salt dome model in a sparse fashion. The other
three methods (ℓ1-D4, ℓ1-DT and TV) do about equally as the ℓ2 − ∆ method for the salt dome
reconstruction with 24000 data.
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Checkerboard Saltdome w. 24000 data Saltdome w. 20000 data
Iterations Error (%) Iterations Error (%) Iterations Error (%)

ℓ2 100 68.8 100 48.8 100 56.9
ℓ2-∆ 100 61.6 100 40.1 100 46.4

ℓ1-Haar 100 1.8 1000 48.1 100 55.1
ℓ1-D4 – – 1000 42.8 100 50.0
ℓ1-DT – – 1000 39.5 100 46.8

ℓ0-Haar 100 4.4 1000 61.5 100 67.9
ℓ0-D4 – – 1000 52.6 100 63.2
ℓ0-DT – – 1000 44.1 100 49.4

TV 100 64.0 1000 39.0 100 49.7

Table 2: The number of iterations and the resulting reconstruction error for the various models and
methods.

To gauge wether there is a significant difference in reconstruction error between the TV, ℓ1-DT
and ℓ1 −∆ methods (and possibly the ℓ0-DT technique), one would also need to repeat the numerical
experiment with many noise realizations.

The nonlinear reconstructions with 24000 data were done with 1000 iterations. We used formula
(15) to derive a rough upper bound on the relative error remaining in the functional (10) w.r.t to the
minimum after this number of iterations:

F (w(n))− F (w̄)

F (w(n))
≤ 4‖w(0) − w̄‖2

α(n + 1)2F (w(n))
/ 10−3, (26)

where we used w
(0) = 0 and approximated ‖w̄‖ by ‖w(n)‖. In other words, the calculated value of

the minimum of the functional is accurate up to three decimal places (this bound is valid for the
three wavelet families). A simple plot of F (wn)) as a function of n also reveals that the functional
is virtually constant after 1000 iterations, a conclusion which also holds for the TV method, the ℓ0
method and for the ℓ2 methods (after 100 iterations).

The corresponding reconstructions with 20000 data were done with only 100 iterations. In this
way we demonstrate that a reasonable result can already be obtained without an excessively long
computation time. This is evident by comparing Figures 6 and 7 (or Figures A.4 and A.5 in the
supplementary material): apart from the unresolved region near (0.24,−0.7,−0.23) the reconstructions
are pairwise almost identical, despite the significant differences in number of iterations. In other words,
the ℓ1 and TV algorithms already succeed, after a small number of iterations, in producing qualitatively
quite characteristic reconstructions.
In case of the ℓ0 reconstructions the differences (far from the unresolved region) are somewhat larger,
we believe, because the ℓ0 method only finds a local minimum of (19).

As a result of the thresholding, the ℓ0 and ℓ1 algorithms provides sparse models at every iteration
step (not just in the limit n → ∞). In other words it is not necessary, or desirable, to run the
FISTA/Nesterov style algorithm for a very long time. Even after a small number of iteration, they
will provide a sparse model that fits the data to within its error bars.

5 Conclusions

In Paper I we showed how a large scale anomaly could be reconstituted even where it was ill resolved
because of the selective nature of the wavelet coefficients and the ℓ1 criterion: one wavelet coefficient
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reconstituting a large, circular, anomaly gave a better optimization than a couple of coefficients recon-
stituting only the resolved part. With the results of the much more complex salt dome model at hand,
we must now conclude that this probably represents more a (lucky) exception than a rule. There is
no magical solution for the absence of data.

For the checkerboard reconstructions, the ℓ1 method with Haar wavelets is able to do very well
—much better than could be expected based on the data themselves— because the Haar wavelets are
very efficient in representing this particular checkerboard pattern in a sparse way. The success of the
ℓ1 method thus depends heavily on the choice of a suitable basis. For realistic models it is much more
difficult to find a good —sparsifying— basis, and the reconstruction errors will be much larger. For
the 3D salt dome reconstruction, one could argue that the ℓ1-DT method does well because it has good
directional sensitivity and is therefore able to adapt to the “curvy” nature of the outline of the salt
body, as opposed to ℓ1-Haar and ℓ1-D4 methods. The ℓ2-∆ method does well because the Gaussian
background that is present in the model is smooth ‘noise’ and this is exactly the prior information put
into the minimization criterion. The TV method does well as the main part of the salt dome model
is roughly piecewise constant and TV favors that. The ℓ0 methods do not perform particularly well,
both from a quantitative as a qualitative side.

The wavelets, however, do have the distinctive quality of retaining sharp features even when
regularizing by penalizing highly oscillatory models. If the preservation of sharp boundaries is not as
important as the correct estimation of amplitudes, the smoothed solution, using the ℓ2-∆ method, is to
be preferred as it is fully linear and efficient to solve with conjugate gradients. Methods using wavelets
with small support, however, are able to retain sharp features, despite their regularization effect that
penalizes highly oscillatory models. These methods are thus preferable when edges are important; our
preference would go to the ℓ1-D4 algorithm which gives less blocky solutions than ℓ1-Haar. In no cases
should one use simple norm damping (ℓ2 method). Without imposing additional smoothing, i.e. while
still allowing for sharp transitions, the ℓ1 methods yield models which do not show signs of noise.

The ℓ0 methods, which use hard-thresholding of wavelet coefficients rather than soft-thresholding,
cannot outperform the ℓ1 methods. In some cases they appear to produce severe artifacts. Another
reason not to favor ℓ0 penalties is that they only produce a local minimum of the functional (19). This
may lead to larger variability in the reconstructions (depending on the starting point of the iteration).
There is currently no proven technique to tackle the minimization more efficiently that algorithm (17).
The (unproven) method (20) proposed in this paper is, as far as the authors can tell, new.

We conclude that using hard-thresholding is less appealing than using soft-thresholding of wavelet
coefficients: the mathematical theory is less developed, the hard-thresholded reconstruction may ex-
hibit significant artifacts and the reconstructions are not better than the ones obtained with soft-
thresholding (ℓ1 method).

Speed-wise the nonlinear methods cannot do better than the conjugate gradient algorithm for the
ℓ2 methods. Many applied mathematics groups [40, 31, 41, 42, 25, 43, 44] are currently working on
speeding up the iterative soft-thresholding algorithm (11), but it is still at least as time-consuming
to use the ℓ1 norm as it is to use the ℓ2 norm for penalization, especially for severely ill-conditioned
matrices and low noise conditions [45].

In case the data is heavily contaminated by noise, it follows from relation (24) that a large value of
the penalty parameter µ must be chosen. In [45] it was demonstrated that many competing algorithms
for minimizing an ℓ1 penalized functional converge quickly in such a case. We therefore expect that
such methods remain competitive with the traditional ℓ2 smoothing methods in case of travel time
seismic tomography where the data noise level may reach 50%.

Based on the results in this paper, we can conclude that the nonlinear methods offer a way to
invert data and denoise the resulting model in a single procedure without necessarily smoothing the
model too much. The two salt dome examples also show that a good reconstruction, clearly showing
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the characteristic effects of the penalizations used, is still possible with a very limited number of
iterations: This is a consequence of the FISTA algorithm producing sparse models at every iteration
step. Sparse models can therefore be constructed with few iterations and little computer time (see
[46] for a discussion of the number of iterations used as a regularization parameter).

As an alternative to D4 or complex DT wavelets one could consider using curvelets or shearlets, as
they are naturally designed to sparsely represent singularities along smooth curves, such as, e.g., the
sediment salt interface in our model. In this work we have not studied how the different regularization
methods behave in conjunction with these particular choices of dictionaries.
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