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Abstract

Conservative methods for the numerical solution of the Vlasov equation are developed in the
context of the one-dimensional splitting. In the case of constant advection, these methods and
the traditional semi-Lagrangian ones are proven to be equivalent, but the conservative methods
offer the possibility to add adequate filters in order to ensure the positivity. In the non constant
advection case, they present an alternative to the traditional semi-Lagrangian schemes which
can suffer from bad mass conservation, in this time splitting setting.
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1 Introduction

To describe the dynamics of charged particles in a plasma or in a propagating beam, the Vlasov
equation can be used to calculate the plasma response to the electromagnetic fields. The unknown
f(t, x, v) which depends on the time t, the space x and the velocity v represents the distribution
function of the studied particles. The coupling with the self-consistent electromagnetic fields is
taken into account through the Maxwell or Poisson equation.

Due to its nonlinear structure, analytical solutions are available only in few academic cases,
and numerical simulations have to be performed to study realistic physical phenomena. Nowadays,
mostly two classes of methods are used to investigate the behaviour of the numerical solution to the
Vlasov equation. On the one hand, Particle In Cell (PIC) methods, which are the most widely used,
approach the plasma by macro-particles, the trajectories of which follow the characteristic curves of
the Vlasov equation whereas the electromagnetic fields are computed by gathering the charge and
current densities particles on a grid of the physical space (see [2]). On the other hand, Eulerian
methods consist in discretizing the Vlasov equation on a grid of the phase space using classical
numerical schemes such as finite volumes or finite elements methods for example (see [5, 11, 26]).

Although PIC methods can theoretically and potentially resolve the whole 6 dimensional prob-
lem, it is well known that the inherent numerical noise makes difficult a precise description of low
density regions, despite significant recent improvements. Hence, Eulerian methods offer a good
alternative to overcome this lack of precision, even if problems of memory can arise when one
deals with high dimensions. In particular, Vlasov codes seem to be appropriate to study nonlinear
processes.

This last decade, gridded Vlasov solvers have been developed for 2D, 4D and even 5D phase
space problems. Among them, the semi-Lagrangian method using a cubic spline interpolation
(SPL) [26] and the Positive Flux Conservative (PFC) method [11] have been implemented to deal
with physical applications [14, 13, 29].

Recently, a parabolic spline method (PSM) has been introduced for transport equations arising
in meteorology applications [32, 33]. This method benefits from the best approximation property
of the SPL method and from the conservation of mass and positivity (by applying a suitable filter)
of the PFC method.

The aim of the present work is to study such a conservative method in the context of the Vlasov
equation. Conservative methods present a lot of advantages. In addition to the inherent conser-
vative property, slope limiters can be introduced in the reconstruction to ensure some specifical
properties (positivity, monotonicity); moreover, since they solve the conservative form of the equa-
tion, multi-dimensional problems can be solved by a splitting procedure so that the solution of the
full problem is reduced to a succession of solution to only one-dimensional problems. Obviously,
this property is of great interest from an implementation and algorithmic point of view.

We will focus here essentially on PSM, which has never been applied to our knowledge to
Vlasov simulations. This method is compared to other reconstructions like those used in PFC or
PPM approaches. We will also introduce a new method based on a cubic splines approximation
of the unknown; the characteristics curves are followed forwardly as in [27, 9], but the unknown is
reconstructed in a conservative way using its values on the transported non-uniform mesh.

In our numerical experiments, we first consider the special case of directional splitting with
constant advection (like the Vlasov-Poisson system). In that case, when no filter is applied, we
prove that the advective scheme (e.g. SPL) and the conservative one (e.g. PSM) are equivalent.
Note that in this setting, a mathematical proof of the convergence has been performed in [1]. We
also propose a unified reconstruction which enables to recover different methods available in the
literature. These approaches can be coupled with filters which can be applied to preserve the
positivity or monotonicity. Different filters are discussed and compared: non-oscillatoring filter or
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maxima preserving filters. Various numerical results are given to emphasize the differences of the
methods and of the filters for transport problems and for classical plasma test cases: the strong
Landau damping, the bump-on-tail instability and the two stream instability.

We then focus on the case where we do not have a constant advection, as is the case for the guid-
ing center model. In [26], a 2D interpolation was proposed to approximate this model to overcome
the poor density conservation of the advective splitting procedure (see [17]). The time splitting in
the conservative form has been successfully tested for the PFC scheme [3], which appears to be too
diffusive. Different works have also been devoted to the study of the CIP (Constrained Interpolation
Profile) method in its conservative form (see [21, 22, 28] and references therein). The time splitting
in the advective form is often discarded since it can lead to bad mass conservation, especially for
long time simulations ([17, 21]). We see here that with the conservative spline formulation (PSM),
we can perform simulations with directional splitting not as diffusive as PFC, while maintaining
the mass conservation. The time step is nevertheless limited by a condition which imposes that the
characteristic curves are enough accurately computed. In particular, they should not cross. In the
constant advection case, this never occurs so that there is no condition on the time step; in non
constant advection case, the condition is generally less restrictive than the CFL standard condition
(see [25]), and this has been checked in our simulations.

The paper is organized as follows: first, semi-Lagrangian conservative methods are recalled
and also introduced for one-dimensional general problems. Then, the constant advection case is
investigated, and it is proved that, in this case, a conservative method and its advective counterparts
are equivalent when no filter are considered; numerical results applied to the Vlasov-Poisson model
are then discussed. Finally, we focus on the more interesting non-constant advection case for which
numerical results illustrate the good behaviour of the new approaches.

2 Conservative methods

We are interested in the approximation of multi-dimensional transport equations of the form

∂g

∂t
+ ∇x · (ag) = 0, x ∈ Ω ⊂ IRn, (2.1)

where the unknown g depends on time and on the multi-dimensional spatial direction x and a is a
divergence free vector field ∇x · a = 0 which can depend on time. The so-called conservative form
(2.1) is then equivalent to the advective form

∂g

∂t
+ a · ∇xg = 0, x ∈ Ω ⊂ IRn. (2.2)

In Vlasov type equations which enter in the class of equation of the form (2.1), Ω is a subset of the
phase space which has up to 6 dimensions.

Splitting the components of x into x1 and x2, equation (2.1) can be written in the form

∂g

∂t
+ ∇x1

· (a1g) + ∇x2
· (a2g) = 0,

where a1 and a2 denote the component of the field a corresponding to x1 and x2. It is well known
(see [5]) that a splitting procedure involves a successive solution of

∂g

∂t
+ ∇x1

· (a1g) = 0,
∂g

∂t
+ ∇x2

· (a2g) = 0, (2.3)

keeping high order accuracy in time for the whole equation (2.1). However, the traditional semi-
Lagrangian methods described in [26] for example do not resolve the conservative form but the
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non-conservative form of the equations (2.2). Then, by solving only the advective form of (2.3), the
corrective terms g∇x1

· a1 and g∇x2
· a2 are omitted and can lead to an important lack of accuracy

in long time simulations (see [17, 21]). An alternative way would be to solve the conservative form
so that the solution of (2.1) can be performed by solving a succession of one-dimensional problems.
Hence in the sequel, we propose different conservative methods to solve one-dimensional problems;
the methods are first presented in a general context but practical examples will be detailed in the
next sections.

2.1 Conservative backward semi-Lagrangian methods for one-dimensional prob-

lems

The conservative methods enable to solve the conservative terms separately so that we restrict
ourselves to the following one-dimensional problem

∂g

∂t
+

∂(ag)

∂x
= 0, x ∈ I ⊂ IR, (2.4)

For N ∈ N
∗, we define the grid points

xi = xmin + i∆x, i ∈ 1

2
Z, with ∆x = (xmax − xmin)/N and I = [xmin, xmax].

We consider the average quantity for a given time s

ḡi(s) =
1

∆x

∫ xi+1/2

xi−1/2

g(s, x)dx, i = 0, . . . , N − 1. (2.5)

Now for another time t, thanks to the conservation of the volume, we can write the following
equality

∫ xi+1/2

xi−1/2

g(t, x)dx =

∫ xi+1/2(s)

xi−1/2(s)
g(s, x)dx, (2.6)

where xi−1/2 and xi−1/2(s) belong to the same characteristic curve defined by

dX(τ)

dτ
= a(τ,X(τ)), X(t) = xi−1/2, X(s) = xi−1/2(s), i = 0, .., N. (2.7)

Assuming that the values ḡi(s), i = 0, . . . , N − 1 are known, we can reconstruct the primitive
function G(s, x) = 1

∆x

∫ x
x−1/2

g(s, y)dy on the grid points as a cumulative function

G(s, xi−1/2) =

i−1
∑

k=0

ḡk(s), i = 1, . . . , N, G(s, x−1/2) = 0. (2.8)

Using (2.6), we then have

ḡi(t) =
1

∆x

∫ xi+1/2

xi−1/2

g(t, x)dx =
1

∆x

∫ xi+1/2(s)

xi−1/2(s)
g(s, x)dx = G(s, xi+1/2(s)) − G(s, xi−1/2(s)). (2.9)

Thanks to this equality, for going from time s to time t, we need to

• compute at least numerically the values xi−1/2(s), i = 0, . . . , N ,

• reconstruct numerically a primitive function (satisfying the interpolation constraints (2.8))
on xi−1/2(s), i = 0, . . . , N .

Hence, as in the pointwise semi-Lagrangian method, the algorithm of conservative methods is
composed of two main steps: the computation of the characteristic curves, and the reconstruction
step.
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2.1.1 Computation of the characteristic curves

In the semi-Lagrangian method, we have to compute the characteristic curves between two consec-
utive time steps. In the case where a is constant, the integration of (2.7) is straightforward. Note
that in the general case no information on a is known at any given time. Typically a may depend
on g through a Poisson equation. To overcome this difficulty, we can use a two time step scheme
as in [26] which is second order accurate.
We consider a time discretization

tn = n∆t, n ∈ N, ∆t > 0,

and introduce ḡn
i ≈ ḡi(t

n) defined by (2.5). If we assume that ḡn−1
i and ḡn

i are known for i =
0, . . . , N − 1, we reconstruct the advection term an(x) ≈ a(tn, x), which generally depends on
ḡn
i , i = 0, . . . , N − 1. The value xi+1/2(t

n−1) is then approximated by Xn−1
i+1/2 ≈ X(tn−1) which is

given by
dX(t)

dt
= an(X(t)), X(tn+1) = xi+1/2, t ∈ [tn−1, tn+1] (2.10)

and ḡn+1
i can then be computed by formula (2.9), with t = tn+1 and s = tn−1:

ḡn+1
i = Gn−1(Xn−1

i+1/2) − Gn−1(Xn−1
i−1/2), (2.11)

with Gn−1 ≈ G(tn−1, ·) computed with the values ḡn−1
i , i = 0, . . . , N − 1.

To compute Xn−1
i+1/2, we can either compute directly the feet of the characteristic ending at the

interfaces xi+1/2 as suggested by (2.10). We can also solve the same equation with final condition

X(tn+1) = xi to get Xn−1
i and then interpolate to obtain Xn−1

i+1/2. Practically, we use the latter

approach with the approximation Xn−1
i+1/2 = (Xn−1

i +Xn−1
i+1 )/2, which remains second order accurate.

In the sequel, we will present some numerical ways to compute the approximated solution Xn−1
i .

Midpoint formula As in [26, 14], a midpoint formula can be employed :

xi − Xn−1
i = 2∆tan

(

xi + Xn−1
i

2

)

.

By writing Xn−1
i = xi − 2αi, the displacement αi can be computed at second order by solving the

following one-dimensional fixed-point

αi = ∆t an(xi − αi). (2.12)

In [26], a Newton algorithm is used but every iterative methods can be employed. We also mention
[14] in which a Taylor expansion of the right hand side of (2.12) is performed; this strategy is
equivalent to a Newton algorithm in which two iterations are imposed. However, the drawback of
these algorithms is that they require the evaluation of the Jacobian matrix of an. A fixed point
algorithm can then be implemented. But, if we assume linear reconstruction of the advection term
at points (xi −αi) (as it is supposed in [26, 14]), an explicit algorithm can be used. The main steps
of this new algorithm are detailed in the sequel.

Starting from (2.12) and denoting by [xj , xj+1] the cell in which (xi − αi) falls, the linear
reconstruction of an writes

αi = ∆t [(1 − β)an(xj) + βan(xj+1)] , (2.13)
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where β is such that

xi − αi = xj + β, xj = x0 + j∆x, xi = x0 + i∆x. (2.14)

Injecting the expression of αi into (2.13) leads to

β [∆x + ∆t (an(xj+1) − an(xj))] = (i − j)∆x − ∆t an(xj), (2.15)

from which an expression of β can be deduced

β = [(i − j)∆x − ∆t an(xj)] / [∆x + ∆t(an(xj+1) − an(xj))] . (2.16)

Now, it remains to determine the j index. To do that, it must be remarked that β given by (2.16)
lives in the interval [0, 1]. Hence, from (2.15), we can deduce an expression for xi = i∆x

i∆x = j∆x + ∆t an(xj) + β [∆x + ∆t(an(xj+1) − an(xj))] .

Using the fact that β ∈ [0, 1], and by remarking that [∆x + ∆t(an(xj+1) − an(xj))] > 0 provided
that ∆t is small enough, we deduce

i∆x ∈ [Mj ,Mj+1] , with Mj = xj + ∆t an(xj).

Under the assumption that ∆t is small enough, the non-decreasing sequence (Mj)j=0,.,N−1 forms
a non-uniform mesh from which the location of xi can be found easily. The algorithm is then the
following for each i = 0, .., N − 1:

• determination of j such that xi ∈ [Mj ,Mj+1]

• determination of β with (2.16)

• determination of αi with (2.14)

This algorithm has been proved to be faster than classical iterative based methods. Obviously, it
leads to the same displacement αi.

Runge-Kutta methods We can also employ classical techniques like Runge-Kutta (RK) schemes
for the integration of (2.10). Note that even if we use high order RK schemes, we can not achieve
more than second order accuracy in time by the fact that we solve (2.10) instead of (2.7). However,
we observe a better behaviour for a fourth order instead of a second order RK method. As an
example, a second order RK method can be defined as follows:

k1 = an(xi), k2 = an(xi − 2∆t k1),

which leads to the following approximation

Xn−1
i = xi − ∆t(k1 + k2).

In our experiments, cubic spline interpolation have been used to evaluate the advection field an

which is known on the grid points xi, i = 0, . . . , N − 1.
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2.1.2 Reconstruction step

Once the computation of the characteristics is done, we have to explain how to interpolate the
primitive function like in (2.11). We suppose known pointwise values of the primitive on the grid
Gi−1/2 ≈ G(s, xi−1/2), i = 0, . . . , N and we want to reconstruct G(s, x) (which we will denote
thereafter G(x) to simplify the notations) in order to be able to evaluate the primitive at the feet
of the characteristic.
We consider here a periodic framework, which imposes that

Gi−1/2 = Gr−1/2 + qGN−1/2, with i = r + qN, r ∈ {0, . . . , N − 1}, q ∈ Z.

Let us define for α ∈ R an interpolation operator:

Λα : R
Z → R,

which satisfies
Λk(fi) = fk, k ∈ Z.

We can write in a general way

G(x) = Λα+1/2(Gi−1/2), x = α∆x.

In this subsection, we present some reconstructions.

Lagrange reconstruction. Let d ∈ N. The centered Lagrange reconstruction of degree 2d + 1
is

Λα(fj) =

i+d+1
∑

j=i−d

fjℓj(α), i ≤ α < i + 1, (fj) ∈ R
Z, ℓj(α) =

j+d+1
∏

k=j−d,k 6=j

(α − k)/(j − k),

which leads to

G(x) =

i+d+1
∑

j=i−d

Gj−1/2Lj(x), ∀x ∈ [xi−1/2, xi+1/2], (2.17)

where

Lj(x) =

j+d+1
∏

k=j−d,k 6=j

(x − xk−1/2)/(xj−1/2 − xk−1/2).

For d = 1, this reconstruction corresponds to the PFC method introduced in [11] in which the slope
limiters step is not performed. This approach and similar ones have been also introduced in [18].
See [19] for a more complete bibliography.

Spline reconstruction. The B-spline function is classically recursively defined by

Bd(x) =

∫

R

Bd−1(t)B0(x − t)dt, B0(x) = 1[−1/2,1/2](x).

The interpolation operator then writes

Λα(fj) =
∑

i∈Z

ηi(fj)Bd(α − i),

which leads to

G(x) =
∑

i∈Z

ηiBd

(

x − xi−1/2

∆x

)

, (2.18)
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where the coefficients ηi are determined by the interpolating constraints

∑

i∈Z

ηiBd

(

xj−1/2 − xi−1/2

∆x

)

= Gj−1/2, j ∈ Z.

In the case where d = 3, we obtain a cubic spline reconstruction

6B3(x) =







(2 − |x|)3 if 1 ≤ |x| ≤ 2,
4 − 6x2 + 3|x|3 if 0 ≤ |x| ≤ 1,
0 otherwise,

(2.19)

and we obtain the following linear system

Aη =

























4 1 0 0 · · · 1

1 4 1 0
...

0 1 4 1
. . .

...
...

. . .
. . .

. . .
. . . 0

... 0 1 4 1
1 0 0 0 1 4













































η0

η1
...
...

ηN−2

ηN−1





















= 6





















G1/2 + 1
6GN−1/2

G3/2
...
...

GN−3/2
5
6GN−1/2





















.

The coefficients ηi, i 6∈ [0, N − 1] are deduced from the solutions of the previous linear system by

η−i = η−i+N − GN−1/2, ∀i ∈ [0, N − 1], ηi+N = ηi + GN−1/2, ∀i ∈ [0, N − 1].

This approach (for d = 3) has been introduced in [33] as the Parabolic Spline Method. Their
formulation refers to the reconstruction of the function g which is a C1 piecewise parabolic function.
The two formulations (by using primitive G or the function g) are completely equivalent, as already
explained in [33].

Hermite reconstruction. We can consider a C1 reconstruction of G(x), using a Hermite inter-
polation operator:

Λα(fj) = fi + f ′
iα + (fi+1 − fi − f ′

i)α
2 + (f ′

i+1 + f ′
i − 2(fi+1 − fi))α

2(α − 1), i ≤ α < i + 1.

The derivative value f ′
j needs to be estimated. As in [12], we can use a fourth order accurate

formula :

f ′
j =

1

12∆x
(fj−2 − fj+2 + 8(fj+1 − fj−1)) . (2.20)

Note we can use a higher order formula, e. g. a sixth-order one :

f ′
j =

1

60∆x
(fj+3 − fj−3 + 9(fj−2 − fj+2) + 45(fj+1 − fj−1)) . (2.21)

This reconstruction with (2.20) (resp. (2.21)) corresponds to the PPM method ([6]) (resp. [7]), in
which the slope limiters step is not performed. We will denote it by PPM1, resp. PPM2. We
can also remark that the 4 points uncentered approximations

f ′
j+ =

1

6∆x
(−fj+2 + 6fj+1 − 3fj − 2fj−1) , f ′

j− =
1

6∆x
(fj−2 − 6fj−1 + 3fj + 2fj+1)

destroy the C1 property of the reconstruction, since the right (f ′
j+) and left derivative (f ′

j−) do not
coincide and we recover the Lagrange reconstruction of degree 3, which will be denoted by LAG.
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By considering the average quantity f ′
j = (f ′

j+ + f ′
j−)/2, we regain the C1 property and recover

formula (2.20).
We can even obtain the previous cubic spline reconstruction, with the following choice of f ′

j :

∆x

3

(

f ′
j+1 + 4f ′

j + f ′
j−1

)

= fj+1 − fj−1,

which corresponds to a Simpson approximation of
∫ xi+1

xi−1
f ′(x)dx.

2.1.3 Implementation issues

In order to summarize, at time s, we have values gold
0 , . . . , gold

N−1, and we have the feet of the char-
acteristics xi+1/2(s), i = 0, . . . , N computed by an algorithm of subsection 2.1.1. We can then

define the displacements αi+1/2 =
xi+1/2−xi+1/2(s)

∆x . The new values gnew
0 , . . . , gnew

N−1 at time t are
then computed by an algorithm of subsection 2.1.2.
In the case of a Hermite type reconstruction, which contains all the reconstructions that we will
consider in the numerical results, we describe here further some details of the numerical implemen-
tation.

Constant advection case We set α = αi+1/2, in the case of constant advection. We then
compute for i = 0, . . . , N − 1,

Gi = x(1 − x)2g′
j+

i
+ x2(x − 1)g′(ji+1)− + x2(3 − 2x)gold

ji
, with i + α = ji + x, 0 ≤ x < 1.

The new values are then given by

gnew
i = gold

ji
+ (Gi+1 − Gi).

For the Lagrange reconstruction of degree 3 (LAG), the derivatives are given by

g′j+ =
5

6
gold
j − 1

6
gold
j+1 +

1

3
gold
j−1, g′j+1− =

5

6
gold
j +

1

3
gold
j+1 −

1

6
gold
j−1. (2.22)

For PPM1, we have

g′j+ = g′j− =
7

12
(gold

j + gold
j−1) −

1

12
(gold

j−1 + gold
j−2). (2.23)

For PPM2, we have

g′j+ = g′j− =
1

60

(

gold
j+3 − gold

j−3 + 9(gold
j−2 − gold

j+2) + 45(gold
j+1 − gold

j−1)
)

. (2.24)

Finally, for PSM, we also have g′i+ = g′i− = g′i, and the derivative g′i is obtained by first computing
the solution of the almost tridiagonal system

g′i−1 + 4g′i + g′i+1 = 3(gold
i + gold

i+1). (2.25)

General case In the general case, we compute for i = 0, . . . , N − 1,

Gi = x(1 − x)2g′
j+

i
+ x2(x − 1)g′(ji+1)− + x2(3 − 2x)gold

ji
, with i + αi−1/2 = ji + x, 0 ≤ x < 1,

with the same definition of the derivatives, and the new values are given by

gnew
i =

ji+1−1
∑

k=ji

gold
k + (Gi+1 − Gi).
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2.1.4 Slope limiters

In this subsection, we focus on the description of different filters which can be adapted to the
previous reconstruction. It is well known that high order schemes can generate new extrema,
violate the monotonicity and develop numerical oscillations. In order to avoid or reduce these
problems, filters have been introduced. This point has been studied by many authors and remains
the subject of recent developments (see e. g. [11, 15, 33, 7, 30] and references therein).
One first physical requirement, which is our main objective is the preservation of the positivity.
Note that this property is global and well defined. A more general property is the preservation
of the maximum principle; we should here distinguish global and local extrema. The maximum
and minimum are well defined for the initial function (which is generally given by a formula) and
are good candidates for global extrema during all the simulation, as done in [11]. The use of local
bounds is more ambiguous. Indeed even for global bounds computed via the current solution, the
maximum value at current time can decrease during the simulation due to the numerical diffusion.
Thus, filters based on such values may enforce artificially the decrease of the maximum and therefore
accelerate the diffusion even more. In fact, we should try to keep already existing extrema, not
generate new ones numerically and take care that we do not damage the order of convergence of
the scheme in regions where the solution is smooth. In [30], a linear reconstruction in the nearest
cells enables to determine a local extremum. Other strategies consist in limiting the derivatives of
the reconstructed function (which can be high where the solution has not a smooth behaviour) as
in [7, 16].
We have tested several filters. Instead of presenting all of them, we will here only deal with a few
of them which seemed relevant to us. A filter will here have three ingredients; at first the extrema
definition, then the extrema limitation procedure which enforces that the reconstruction does not
violate the extrema definition, and finally an oscillation limitation procedure. We consider here a
reconstruction like in subsection 2.1.3, and we will modify the values g′j+, g′(j+1)−.

Extrema definition We have at first to define the bounds gmin, gmax in which we want to keep
our solution. For this, we will consider:

• positive extrema: gmin = 0, gmax = ∞,

• global extrema: gmin = min g0(x), gmax = max g0(x), where g0 is the initial function which
will be advected,

• Umeda extrema: local extrema are defined as in [30]:

gmax = min(max g0(x),max(gmax1, gmax2)), gmin = max(min g0(x),min(gmin1, gmin2)),

with

gmax 1 = max(max(gold
i−1, g

old
i ),min(2gold

i−1 − gold
i−2, 2g

old
i − gold

i+1))

gmax 2 = max(max(gold
i+1, g

old
i ),min(2gold

i+1 − gold
i+2, 2g

old
i − gold

i−1))

gmin 1 = min(min(gold
i−1, g

old
i ),max(2gold

i−1 − gold
i−2, 2g

old
i − gold

i+1))

gmin 2 = min(min(gold
i+1, g

old
i ),max(2gold

i+1 − gold
i+2, 2g

old
i − gold

i−1))

In the non constant case, the positive extrema can be defined. However, in the general case, the
possible contraction of the volume can lead to value gi outside the extrema bounds (see e.g. the
case of a constant initial condition). Hence, we propose to relax the definition of the extrema as
follows: we replace gmin by min(gold

i , gmin) and gmax by max(gold
i , gmax). Note that this procedure

has no effect in the constant advection case.
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Extrema limitation The Hyman filter is given by the following algorithm

g′ = max(g′,max(gmin,−2gmax + 3gold
ji

);

g′ = min(g′,min(gmax, 3g
old
ji

− 2gmin));

where g′ takes successively the value g′j+ and g′(j+1)+. This filter ensures that the functions x →
Gi(x) − xgmin and x → xgmax − Gi(x) are nondecreasing on [0, 1], if gmin ≤ gold

ji
≤ gmax. Thus,

the positive extrema are preserved and in the constant advection case, the global extrema are
also preserved. We could also use the PFC limiter (see [11]), which was intended for the LAG
reconstruction. Another possibility is to modify g′j+, g′(j+1)− at least possible so that the constraint

gmin ≤ G′
i(x) ≤ gmax, for all 0 ≤ x ≤ 1 is satisfied. As an example, we can solve the minimization

problem for |(g′j+)new − g′j+|+ |(g′(j+1)−)new − g′(j+1)−|. However, it may be not always a good idea
or not useful to remain the nearest possible to the first reconstructed derivative, which may be
sometimes a bad approximation.

Oscillation limitation We have seen that the derivative can be computed by the PSM or LAG
(supposed more diffusive) reconstruction. We can even use the lower order formula g′j,m = (gold

j +

gold
j−1)/2, which leads to an even more diffusive reconstruction. We have added the following filter

which tends to privilege the derivative of the most diffusive reconstruction if the error between the
two reconstructions is too large. The aim is to damp the spurious oscillations, which are detected
when the error is large. Such an approach has been performed in [7]: one first step consists in
looking for the closest reconstruction (among the left, right Lagrange derivatives (2.22) and the
PPM one given by (2.23) or (2.24)) to g′j,m. This strategy enables to add some accuracy to the low

order formula g′j,m = (gold
j + gold

j−1)/2. Our approach is similar, we compare the Lagrange derivative
g′j+ to the PSM reconstructed one (using (2.25) in order to correct in the best sense the lower order
formula g′j,m. In other words, if (g′j+,LAG − g′j,m)(g′j,PSM − g′j,m) < 0, g′j+ = g′j,m, else

g′j+ = g′j,m + s min(C|g′j+,LAG − g′j,m|, |g′j,PSM − g′j,m|), with s = sign(g′j,PSM − g′j,m), (2.26)

where C > 1. Similarly, we modify g′(j+1)− as follows. Let s = sign(g′j+1,PSM − g′j+1,m). If

(g′(j+1)−,LAG − g′j+1,m)(g′j+1,PSM − g′j+1,m) < 0, g′(j+1)− = g′j+1,m, else

g′(j+1)− = g′j+1,m + s min(C|g′(j+1)−,LAG − g′j+1,m|, |g′j+1,PSM − g′j+1,m|).

Obviously, the scheme is dependent from the choice of C, but we find that the best compromise
is C = 2.5 in our numerical tests. By increasing C, the minimum in (2.26) will be g′j,PSM so that
the filter will have no effect. By decreasing C, the method will have a more diffusive behaviour.

2.2 Conservative forward semi-Lagrangian methods for one-dimensional prob-

lems

Another strategy to update in a conservative way the unknowns consists in advancing in time the
mesh points. We take the notations of subsection 2.1, we suppose here to know the solution at time
t (that is ḡi(t), i = 0, . . . , N −1) and want to compute it at time s (that is ḡi(s), i = 0, . . . , N −1).
We reconstruct here the primitive function G(s, x) = 1

∆x

∫ x
x−1/2(s) g(s, y)dy. Note that we change

the integration constant of the primitive in comparison to the backward case, in order to simplify
the computations. Using (2.6), the primitive function G has to satisfy

G(s, xi−1/2(s)) =
i−1
∑

k=0

1

∆x

∫ xi+1/2(s)

xi−1/2(s)
g(s, x)dx =

i−1
∑

k=0

ḡk(t), i = 1, . . . , N, G(s, x−1/2(s)) = 0.

(2.27)
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We then have to interpolate the primitive function on the grid points to update the unknowns:

ḡi(s) = G(s, xi+1/2) − G(s, xi−1/2). (2.28)

To summarize, for going from time t to s, we need to

• compute at least numerically the values xi−1/2(s), i = 0, . . . , N ,

• reconstruct numerically a primitive function (satisfying the interpolation constraints (2.27))
on xi−1/2, i = 0, . . . , N .

In the rest of the section, the two steps of the method are detailed.

2.2.1 Computation of the characteristics curves

The same strategy used in the previous method are employed here. In the case where a is constant,
the integration is straightforward and, as mentionned in subsection 2.1.1, when a depends of the
unknown, a two time step algorithm is used. We introduce ḡn

i ≈ gi(t
n), assume that ḡn−1

i and ḡn
i

are known and that the advection term a(tn,X(tn)) can be computed with ḡn
i , i = 0, . . . , N − 1.

The value xi+1/2(t
n+1) is then approximated by Xn+1

i+1/2 ≈ X(tn+1) thanks to

dX(t)

dt
= an(X(t)), X(tn−1) = xi+1/2, t ∈ [tn−1, tn+1], (2.29)

and ḡn+1
i can be computed by formula (2.28) with s = tn+1 :

ḡn+1
i = Gn+1(xi+1/2) − Gn+1(xi−1/2),

where Gn+1(·) ≈ G(tn+1, ·) is the primitive which is reconstructed from the values ḡn−1
i , i =

0, . . . , N − 1, using the interpolation conditions (2.27), with t = tn−1 and s = tn+1 :

Gn+1(Xn+1
i−1/2) =

i−1
∑

k=0

ḡn−1
k , i = 1, . . . , N, Gn+1(Xn+1

−1/2) = 0.

To compute Xn+1
i+1/2, we can use the same methods as for the backward case, in which we make the

changes
Xn−1

i → Xn+1
i , ∆t → −∆t.

2.2.2 Reconstruction step on a non-uniform mesh

We suppose known pointwise values of the primitive on the uniform mesh Gi−1/2 ≈ G(s,Xn+1
i−1/2)), i =

0, . . . , N and we want to reconstruct G(s, x) (which we will denote thereafter G(x) to simplify the
notations) in order to be able to evaluate the primitive at the uniform grid.
We consider here a periodic framework, which imposes that

Xn+1
i−1/2 = Xn+1

r−1/2 + q
(

Xn+1
N−1/2 − Xn+1

−1/2

)

, with i = r + qN, r ∈ {0, . . . , N − 1}, q ∈ Z,

and we also have
Gi−1/2 = Gr−1/2 + qGN−1/2.

Let us define for a mesh Y = (yj)j∈Z (yj is an increasing sequence) and x ∈ R an interpolation
operator:

ΛY
x : R

Z → R,
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which satisfies
ΛY

yk
(gi) = gk, k ∈ Z.

We can write in a general way

G(x) = ΛX
x (Gi−1/2), X = (Xn+1

j−1/2)j∈Z.

In this subsection, we present some reconstructions ΛY
x .

Lagrange reconstruction. Let d ∈ N. The centered Lagrange reconstruction of degree 2d + 1
is

ΛY
x (fj) =

i+d+1
∑

j=i−d

fjℓ
Y
j (x), yi ≤ x < yi+1, (fj) ∈ R

Z, ℓY
j (x) =

j+d+1
∏

k=j−d,k 6=j

(x − yk)/(yj − yk).

Spline reconstruction. The B-spline function is classically recursively defined by

BY
j,d(x) =

x − yj

yj+d − yj
BY

j,d−1(x) +
yj+d+1 − x

yj+d+1 − yj+1
BY

j+1,d−1(x), BY
j,0(x) = 1[yj ,yj+1](x).

The interpolation operator then writes ΛY
x (fj) =

∑

i∈Z
ηi(fj)B

Y
i,d(x), where the coefficients ηi are

determined by the interpolating constraints
∑

i∈Z

ηiB
Y
i,d(yj) = fj, j ∈ Z.

In the case where d = 3, the primitive writes G(x) =
∑

i∈Z
ηiB

X
i,3(x), with

∑

i∈Z

ηiB
X
i,3(X

n+1
j−1/2) = Gj−1/2, j ∈ Z.

Using (2.19), the coefficients ηi are solution to the following linear system

Aη =

























D0 C0 0 0 · · · A0

A1 D1 C1 0
...

0 A2 D2 C2
. . .

...
...

. . .
. . .

. . .
. . . 0

... 0 AN−2 DN−2 CN−2

CN−1 0 0 0 AN−1 DN−1













































η0

η1
...
...

ηN−2

ηN−1





















=





















G1/2 + A0GN−1/2

G3/2
...
...

GN−3/2

(1 − CN−1)GN−1/2





















where the components of the matrix are defined for i = 0, .., N − 1, by

Ai = BX
i−1,3(X

n+1
i−1/2), Ci = BX

i+1,3(X
n+1
i−1/2),Di = BX

i,3(X
n+1
i−1/2),

which leads to the explicit formulae

Ai =
(yi+1 − yi)

2

(yi+1 − yi−1)(yi+1 − yi−2)
, Ci =

(yi − yi−1)
2

(yi+1 − yi−1)(yi+2 − yi−1)
, Di = 1 − Ai − Ci,

with yi = Xn+1
i−1/2. Let us mention that a good behaviour of the present method requires a good

approximation of the characteristics curves Xn+1
i+1/2 at time tn+1. Indeed, this strong dependence

can be explained by the fact that they refer to the conditions of interpolation.
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3 The constant advection case

In this section, we are concerned with a constant advection field, so (2.4) can be rewritten equiva-
lently in a conservative form

∂g

∂t
+

∂(ag)

∂x
= 0, x ∈ I ⊂ IR,

or in an advective form
∂g

∂t
+ a

∂g

∂x
= 0, x ∈ I ⊂ IR.

3.1 Equivalence between conservative and advective approach

We will make here the link between the conservative and advective approaches. We first recall the
advective approach and give a condition on the interpolation for which we will prove that both
approaches are algebraically equivalent. As a particular case, we will notice that Lagrange or splines
constructions previously introduced realize this condition. We underline that this equivalence only
holds for uniform meshes in a constant advection case and with periodic boundary conditions.

Advective approach We consider here pointwise values gi(s) = g(s, xi), which are updated this
time through

gi(t) = g(s, xi − a(t − s)), s, t ∈ R.

For getting the function at time t, we thus need a reconstruction g(x) of the function at time s in
order to be able to evaluate the function at the feet of the characteristics xi − a(t − s). We then
write with the same interpolation operator defined for the conservative approach

g(x) = Λα(gi), x = α∆x.

Equivalence conditions The conservative and advective approach are then equivalent iff

G(xi+1/2 + α∆x) − G(xi−1/2 + α∆x) = g(xi + α∆x),

that is
Λα+1(Gi−1/2) − Λα(Gi−1/2) = Λα(gi). (3.1)

We identify here the pointwize value gi with the average one ḡi, so that we have Gi+1/2−Gi−1/2 = gi.
This corresponds to a midpoint approximation of ḡi at initial time.
The property (3.1) is true under the following conditions:

• Λα is a linear operator

• Λα+1(fi) = Λα(fi+1) (shift invariance property).

Indeed, we have from (3.1)

Λα+1(Gi−1/2) − Λα(Gi−1/2) = Λα(Gi+1/2) − Λα(Gi−1/2) = Λα(Gi+1/2 − Gi−1/2) = Λα(gi).
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Examples In the case of Lagrange reconstruction, we have

ℓj(α + 1) =

j+d+1
∏

k=j−d,k 6=j

(α + 1 − k)/(j − 1 − k + 1) =

j+d
∏

k=j−1−d,k 6=j−1

(α − k)/(j − 1 − k) = ℓj−1(α),

and thus for i ≤ α < i + 1,

Λα+1(fj) =
i+d+2
∑

j=i+1−d

fjℓj(α + 1) =
i+d+2
∑

j=i+1−d

fjℓj−1(α) =
i+d+1
∑

j=i−d

fj+1ℓj(α) = Λα(fj+1),

and the conditions are then fullfilled.
In the case of the spline reconstruction, we have

Λα+1(fj) =
∑

i∈Z

ηi(fj)Bd(α − (i − 1)) =
∑

i∈Z

ηi+1(fj)Bd(α − i).

We have the interpolation conditions

Λk+1(fj) = fk+1 =
∑

i∈Z

ηi+1(fj)Bd(k − i), k ∈ Z. (3.2)

We have also

Λα(fj+1) =
∑

i∈Z

ηi(fj+1)Bd(α − i), with
∑

i∈Z

ηi(fj+1)Bd(k − i) = fk+1, k ∈ Z. (3.3)

Thus, from (3.2) and (3.3), we deduce that ηi+1(fj) = ηi(fj+1), by unicity of the solution (see [10])
which leads to

Λα+1(fj) =
∑

i∈Z

ηi(fj+1)Bd(α − i) = Λα(fj+1).

In the case of the Hermite reconstruction, we also check that the conditions are fullfilled.

Counterexample We consider the following quadratic Lagrange reconstruction

Λ2i+α(fj) = f2i + (f2i+1 − f2i)α +
f2i+2 − 2f2i+1 + f2i

2
α(α − 1), 0 ≤ α < 2.

We then have for 0 ≤ α < 1,

Λ2i+α(Gj−1/2) = G2i−1/2 + (G2i+1/2 − G2i−1/2)α +
G2i+3/2 − 2G2i+1/2 + G2i−1/2

2
α(α − 1),

and thus
Λ2i+α+1(Gj−1/2) − Λ2i+α(Gj−1/2) = g2i + (g2i+1 − g2i)α 6= Λ2i+α(gj).

Note that advective method is here not conservative, since we have for 0 ≤ α < 1,

N−1
∑

i=0

Λα+i(gj) =

N/2−1
∑

i=0

Λα+2i(gj)+

N/2−1
∑

i=0

Λα+2i+1(gj) = (1−2α+2α2)

N/2−1
∑

i=0

g2i+(1+2α−2α2)

N/2−1
∑

i=0

g2i+1,

so that this quantity can depend on α which is not the case for a conservative approach.
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3.2 Numerical results

We present the numerical results for the different numerical schemes we proposed. We first study
1D linear advection before the Vlasov-Poisson case.

Let us define for α ∈ R and N ∈ N
∗ a transport operator Tα,N : R

N → R
N . If (f0, . . . , fN−1)

is a discretization of a function f , then Tα,N(f0, . . . , fN−1) should be a discretization of the shifted
function x → f(x + α). We also denote by T x

α : R
Nx → R

Nx (resp. T v
α : R

Nv → R
Nv) a

transport operator which shifts along the x (resp. v) direction. The transport operator Tα,N denotes
one of the different reconstructions of the section 2.1.2. Indeed, we compare the three different
reconstructions: Lagrange (LAG), PPM1 and splines (PSM). For these three reconstructions, we
apply filters presented in 2.1.4: the extrema limitation uses the Hyman approach and we compare
the influence of the global extrema to the Umeda ones [30]. The extensions UM and GL are added
to the three reconstructions LAG, PPM and PSM. Let us note that the PPM2 reconstruction gives
slightly better results than PPM1 one. However, we chose to show only results associated to PPM1
in the sequel. We also implemented classical methods of the literature: the PFC method of [11],
the UMEDA method of [30] (they are both based on a Lagrange reconstruction but the first one
uses global filter whereas the latter one uses the Umeda filter), and the SPL method (standard
advective cubic splines reconstruction without filter). Note that in the present constant advection
case, SPL and PSM are the same methods. We have added a last method PSM2, which consists
in applying the procedure of the paragraph ”oscillation limitation” of subsection 2.1.4 (i.e. PSM
reconstruction with oscillation limitation by (2.26)) and then the Hyman approach with the global
extrema definition. Note that the Forward Update method introduced in section 2.2 is not shown
in the present case; indeed the displacements are constant so that only uniform mesh are generated
by the characteristics and the method is completely equivalent to the SPL or the PSM methods.

3.2.1 Application to the linear advection

We proposed to first apply the new methods by solving the 1D linear advection equation

∂f

∂t
+ v

∂f

∂x
= 0, x ∈ [0, L]

with a constant velocity v = 1. We intend to test the different methods proposed above by using
rectangular and sinusoidal initial profiles, as in [30]. We impose periodic boundary conditions and
the numerical parameters are chosen as follows: ∆t = 0.1,∆x = 1, L = 80 so that Nx = 80 (the
courant number is equal to 0.1). The numerical solution is compared to the analytical one after
8000 iterations. We also implement a third case from [33], the numerical parameters of which are:
∆t = 1/71,∆x = 1/50, L = 1 so that Nx = 50 (the courant number is equal to 50/71 ≈ 0.7). The
numerical solution is transported during 71 time steps. This test enables to test local filters.

The numerical results are shown in Figures 1 in which the analytical solution is plotted for
comparison.

The first remarks note that Lagrange based methods are the most diffusive since the amplitude
of the sinusoidal waves are strongly damped, whereas it is well preserved for the other methods
(PPM and PSM based methods). For rectangular wave (left column), the action of the limiters is
more clear. The SPL method creates artificial extrema whereas other methods are bounded between
0 and 1. We can also notice the fact that Lagrange based methods are more diffusive around the
discontinuities. For PPM and PSM reconstructions, even if the local filter avoids oscillations, the
numerical results are not very good. The new filter which leads to PSM2 leads to more accurate
results, since it does not present oscillation and discontinuities are not too diffused. For the third
test (which does not contain discontinuity, only strong gradients), the influence of local filters can be
emphasized. As noticed in [30], the Umeda filter leads to non-oscillatoring results; the application
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of this local filter (together with the Hyman limitation) to LAG, PSM or PPM then ensures that
local maxima are preserved so that no artificial ones are created. Let us remark the difference
between LAG-UM and UMEDA which shows the influence of the Hyman limitation. The new filter
applied to PSM2 is not non-oscillatoring since small oscillations remain around local extrema, but
as noticed before PSM2 remains positive and respect the maximum principles.

3.2.2 Application to the Vlasov-Poisson model

As another application of the constant advection case, we are concerned with the Vlasov-Poisson
model, the unknown of which f = f(t, x, v) is the electron distribution function. It depends on
the spatial variable x ∈ [0, L] where L > 0 is the size of the domain, the velocity v ∈ IR and the
time t ≥ 0. The time evolution of this distribution function is given by the following phase space
transport equation, the Vlasov equation

∂f

∂t
+ v∂xf + E(t, x)∂vf = 0, (3.4)

with the initial condition
f(0, x, v) = f0(x, v).

The electric field E(t, x) is given by the coupling with the distribution function f through the
Poisson equation

∂xE(t, x) = ρ(t, x) − ρi,

∫ L

0
E(t, x)dx = 0, (3.5)

where the electron charge density ρ is given by ρ(t, x) =
∫

IR f(t, x, v)dv and ρi denotes the ion
density. In this work, we restrict ourselves to a uniform background of ions which leads to ρi = 1
after a suitable choice of dimensionless parameters.

In view of finite volumes formulation, it will be convenient to re-write the Vlasov equation into
a conservative form

∂f

∂t
+ ∂x(vf) + ∂v(E(t, x)f) = 0. (3.6)

The Vlasov-Poisson model preserves some physical quantities with time which will be anal-
ysed and compared for the different numerical methods. First of all, the Vlasov-Poisson equation
preserves the Lp norms for p ≥ 0

d

dt
‖f(t)‖Lp = 0. (3.7)

The total energy is also constant in time

d

dt
E(t) =

d

dt
Ek(t) +

d

dt
Ee(t) =

d

dt

∫ L

0

∫

IR
f(t, x, v)

|v|2
2

dxdv +
1

2

d

dt

∫ L

0

∫

IR
|E(t, x)|2dxdy, (3.8)

where Ee and Ek denote the electric and kinetic energy respectively. From a numerical point of view,
the good conservation of these different quantities is an important feature for Vlasov simulations.

The general algorithm We first review the main steps of a semi-Lagrangian method in the
case of directional splitting with constant advection, which is applied for the discretization of the
Vlasov-Poisson model.

The unknown quantities are then fn
k,ℓ which are approximations of f(tn, xk, vℓ). We suppose

periodic boundary conditions so that we only have to compute at each time tn

fn
k,ℓ, for k = 0, . . . , Nx − 1, ℓ = 0, . . . , Nv − 1.

The time splitting algorithm then reads (see [5])
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Figure 1: Numerical results for the linear advection. Left: rectangular wave; middle: sinusoidal
wave; right: double rectangular wave.
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Step 0. Initialization : fk,ℓ = f0(xk, vℓ), k = 0, . . . , Nx − 1, ℓ = 0, . . . , Nv − 1.
Step 1. Half time step shift along the x-axis:

For each ℓ = 0, . . . , Nv − 1, (fk,ℓ)
Nx−1
k=0 → T x

α ((fk,ℓ)
Nx−1
k=0 ) with α = −vℓ∆t/2.

Step 2. Computation of the charge density and the electric field by integrating (3.5).
Step 3. Shift along the v-axis:

For each k = 0, . . . , Nx − 1, (fk,ℓ)
Nv−1
ℓ=0 → T v

α ((fk,ℓ)
Nv−1
ℓ=0 ) with α = −Ek∆t.

Step 4.a Half time step shift along the x-axis:

For each ℓ = 0, . . . , Nv − 1, (fk,ℓ)
Nx−1
k=0 → T x

α ((fk,ℓ)
Nx−1
k=0 ) with α = −vℓ∆t/2.

Step 4.b We have fn
k,ℓ = fk,ℓ, for k = 0, . . . , Nx − 1, ℓ = 0, . . . , Nv − 1.

Step 4.c Half time step shift along the x-axis:

For each ℓ = 0, . . . , Nv − 1, (fk,ℓ)
Nx−1
k=0 → T x

α ((fk,ℓ)
Nx−1
k=0 ) with α = −vℓ∆t/2.

Step 5. n → n + 1 and loop to Step 2.

Note that if we make no diagnostic of the distribution function, we can simplify Step 4.a-c into

Step 4. Shift along the x-axis:

For each ℓ = 0, . . . , Nv − 1, (fk,ℓ)
Nx−1
k=0 → T x

α ((fk,ℓ)
Nx−1
k=0 ) with α = −vℓ∆t.

In the sequel, we present numerical results for the Vlasov-Poisson equation for which several
choices of transport operators Tα,N are performed.

Numerical results We are interested in testing our numerical schemes to the nonlinear Vlasov-
Poisson model. Three tests are used to that purpose: the strong Landau damping, the bump on
tail and the two stream instability test cases.
1. Strong Landau damping The initial condition associated to the Vlasov-Poisson model is

f(x, v, t = 0) =
1√
2π

exp(−v2/2)(1 + 0.5 cos(kx)), x ∈ [0, L], v ∈ [−vmax, vmax],

where k = 0.5, vmax = 6, L = 2π/k corresponds to the length of the domain in the x-direction.
The numerical parameters are Nx = Nv = 128,∆t = 0.1 (so that the Courant number is 6.1) and
the number of iterations is 1000.

This test case presents very fine structures which move in the phase space due to the free
transport term. Hence, after a first (linear) phase during which the amplitude of the electric energy
Ee(t) decreases, nonlinear effects then starts to play a role and the amplitude of Ee(t) increases. An
oscillatoring behaviour is then observed (see [11, 20]) for the amplitude of the electric energy.

We are then interested in the time history of the electric energy Ee(t), but also in the L2 norm
of f and the total energy E(t), the definition of which are given by (3.7) and (3.8). Let us note that
all the methods preserve the L1 norm except SPL (which does not include appropriated filter).

On Figures 2, the different numerical schemes are then compared with respect to these latter
quantities. First, we can observe that all the methods present a good behaviour regarding the
time evolution of the electric energy, compared to the numerical results available in the literature
(see [11, 20]). Some differences appear on the behaviour of the L2 norm and the total energy.
Indeed, the use of local filter (Umeda filter) introduces some additional diffusion which kills the
spurious oscillations and consequently makes the L2 norm decreasing. We can observe on the
middle column of Figures 2 that the Umeda filter makes the different methods (LAG, PPM or
PSM) decrease the L2 norm more rapidly than the global filter. The other influence is clear when
one looks at the time history of the total energy: the behaviour is nearly the same for most of the
methods in the linear phase (slight increase of E(t)), but when nonlinear effects become significant
(since t ≈ 30 ω−1

p ), the local filter acts more often than the global one, which leads to an increase
of the total energy. Similar remarks have been performed in [8]. From this point of view, PSM2
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has a correct behaviour since it preserves the total energy up to 0.5%. As expected, the behaviour
of its L2 norm is intermediate between PSM (or PPM) and Lagrange based methods.
Bump on tail test case. The numerical schemes are now validated on a test case introduced
in [23], and numerical results are available in [11, 12, 22]. In the present work, numerical results
obtained by the methods of section 2 are applied on the bump-on-tail instability test case for which
the initial condition writes

f0(x, v) = f̃(v)[1 + 0.04 cos(kx)], x ∈ [0, L], v ∈ [−vmax, vmax],

with k = 0.5, vmax = 9, L = 20π; moreover, we have

f̃(v) = np exp(−v2/2) + nb exp

(

−|v − u|2
2v2

t

)

whose parameters are

np =
9

10(2π)1/2
, nb =

2

10(2π)1/2
, u = 4.5, vt = 0.5.

The numerical parameters are Nx = 128, Nv = 128,∆t = 0.1 (so that the Courant number is 1.8)
and the number of iterations is 4000.

For this test case, we are interested in the time evolution of the total energy E together with the
electric energy Ee given by (3.8). We also look after the L2 norm of f (see (3.7)) which are conserved
with time. The same is true for the total energy whereas the electric energy is expected to present
an oscillatoring behaviour for large times (see [22]). In this test, three vortices are created in the
phase space which are moving along the velocity v = vt (BGK equilibrium, see [23]) and which can
merge. As a consequence, a loss of the oscillatoring behaviour of the electric energy is observed.
Our goal is to compare the different methods, as in the previous test.

Figures 3, left column shows the time evolution of the electric energy for the different methods.
The main features (see [23, 22]) of the expected behaviour are respected by all the methods: the
electric energy presents a maximum at t ≈ 20ω−1

p and then an slowing oscillatoring behaviour on
which is superimposed the oscillation of the system at ωp. Nevertheless, different classes can be
distinguished for larger times: Lagrange based methods strongly damp the slow oscillations whereas
PPM-UM and PSM-UM present a break due to the merging of two vortices in the phase space.
For the methods based on Lagrange interpolation (LAG, PFC, UMEDA), the oscillations of the
electric energy due to the particles trapping are damped and the amplitude is decreasing for large
time. It is less the case for the splines based methods (SPL, PSM-GL,PSM2) which keep the slow
oscillatoring behaviour around a constant amplitude up to the end of the simulation. This can be
explained by the fact that fine structures are developed in the vortices; they are quickly eliminated
by the methods based on Lagrange interpolation whereas splines methods follow these thin details
of the phase space solution for longer times.

These observations are emphasized by Figures 3, middle and right columns. The L2 norm of
Lagrange based methods has a strong decrease compared to other ones. We can observe a break in
the time evolution of the L2 norm for PPM-UM and PSM-UM which corresponds to the vortices
merging and to an associated dissipation of fine structures. This phenomenum appears later for
methods on which the global filter is applied or for the PSM2 approach. PSM2 approach is not so
diffusive and presents a good behaviour since the vortices merging occurs a larger times compared
to other local filter.

Finally, on Figures 3 (right column), the time evolution of the total energy is plotted for the
different methods. This quantity is quite difficult to preserve at the discrete level (see [8, 29, 4]). In
particular, it is very difficult to ensure both positivity of the solution and conservation of the total
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Figure 2: Numerical results for the strong Landau damping. Left: time history of the electric energy
(semi-log scale); middle: time history of the L2 norm; right: time history of the total energy.

21



energy for nonlinear tests. Let us recall that all the methods preserve the positivity except SPL. We
can observe the influence of the slope limiters on the results: indeed, the Lagrange based methods
(PFC, UMEDA and LAG) present roughly the same behaviour. This figure also emphasizes the
good behaviour of PSM2 since the conservation of the total energy is about 0.1%, which is similar
to the PSM-GL or PPM-GL methods on which global filter is applied.
Two stream instability test case. The initial condition associated to the Vlasov-Poisson model
is taken from [30]

f(x, v, t = 0) =
1

2vth

√
2π

[

exp(−(v − u)2/(2v2
th) + exp(−(v + u)2/(2v2

th)
]

(1 + 0.05 cos(kx)),

where x ∈ [0, 26π], v ∈ [−5, 5], vth = 0.3, u = 0.99, k = 0.5. The numerical parameters are
Nx = Nv = 128, and ∆t = 0.1 (so that the Courant number is 0.78). The simulations are stopped
at t = 1000 ω−1

p .
As in the previous cases, we look at the conservation of the preserved quantities: the L2 norm

of f and the total energy. We are also interested in the time history of the electric energy (in
semi-log scale) to distinguish the linear phase from the nonlinear one.

Since the initial datum is a perturbed unstable equilibrium, we expect an instability to start at
the beginning. Then, after saturation, trapped particles oscillate in the electric field until the end
of the simulation.

Numerical results are shown on Figures 4. The first remarks concern the good behaviour of
the local filter compared to the global one. Indeed, for all the reconstruction, it improves the total
energy conservation compared to the global one, without degenerating the L2 norm conservation.
We can notice for this latter quantity that it presents some small jumps which correspond to the
merging of vortices (the initial distribution function presents 13 modes initially so that up to 13
vortices are created). Hence, filters kill spurious oscillations and in some sense provide from the
merging of vortices which can also be accelerated by the oscillations. In this test, PSM2 also
presents a good behaviour, in particular regarding the total energy conservation even if the Umeda
filter also gives rise to good results when it is applied to PPM or PSM. We plot on Figures 5 and
6 the distribution function for the different methods at different times of the simulations. We first
remark that all the methods lead to 4 vortices at t = 200 ω−1

p (except PFC) and to 2 vortices at the
end of the simulation (t = 1000 ω−1

p ). Some differences can however be detected. For example, SPL
(Figure 6, third line) presents spurious oscillations at t = 200 ω−1

p and t = 1000 ω−1
p . Note that

SPL also creates negative values for the distribution function. We can also observe the numerical
diffusion on the final centered vortex; this corresponds to the decay of the L2 norm for Lagrange
based methods whereas a saturation is observed for the other methods.

We finally show on Table 7 the CPU time of the different methods for the present numerical
test. This CPU time is measured in seconds for 3 different machines: hpc (SUN X4600 Processor
Opteron Core Duo 2.8GHz and memory 64Go), MacBook (Processor 2.4GHz Intel Core 2 Duo
and memory 2GB 1067MHz DDR3) and G4 (processor 1.67GHz PowerPC G4 and memory 1GB
DDR2). In the simulations the 2D diagnostics are not included.

4 Non-constant case: the guiding-center model

In this work, we also deal with another type of Vlasov equation for which the advection term is
not constant. The so-called guiding-center model enters in this category (see [26]). This model,
which has been derived to describe highly magnetized plasma in the transverse plane of a tokamak,
considers the evolution of the particles density ρ(t, x, y)

∂tρ + E⊥ · ∇ρ = 0, (4.1)
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Figure 3: Numerical results for the bump on tail test case. Left: Time history of the electric energy;
middle: Time history of the L2 norm; right: Time history of the total energy.
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Figure 4: Numerical results for the two stream instability test case. Left: Time history of the
electric energy (semi-log scale); middle: Time history of the L2 norm; right: Time history of the
total energy.
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Figure 5: Distribution function for different times for the two stream instability test case. Left:
t = 70 ω−1

p ; middle: t = 200 ω−1
p ; right: t = 1000 ω−1

p . From top to bottom: LAG-GL,LAG-
UM,PPM-GL,PPM-UM,PFC.
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Figure 6: Distribution function for different times for the two stream instability test case. Left:
t = 70 ω−1

p ; middle: t = 200 ω−1
p ; right: t = 1000 ω−1

p . From top to bottom: PSM-GL,PSM-
UM,SPL,PSM2,UMEDA.
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hpc MacBook G4

UMEDA 59.1 27.2 104.4

PFC 33.7 16.6 61.2

SPL=PSM 31.2 21.3 48.2

PSM2 32.9 22.7 66.2

LAG-UM 42.1 26.9 88.6

hpc MacBook G4

LAG-GL 23.4 15.8 46.2

PPM-UM 44.7 27.1 45.2

PPM-GL 23.2 17.2 46.8

PSM-UM 47.6 30.6 95.9

PSM-GL 26.5 17.6 53.6

Figure 7: Comparison of computational cost for the two stream instability test case. Nx = Nv =
128, 1000 iterations.

where the electric field
E = E(x, y) = (Ex(x, y), Ey(x, y)),

satisfies a Poisson equation
−∆Φ = ρ, E = −∇Φ. (4.2)

We denote by E⊥ = (Ey,−Ex). The specificity of (4.1) lies on the fact that one-dimensional
splitting cannot (in principle) be applied (see [26, 17]) since the advection term E⊥ depends on
(x, y). Consequently, this model contains additional difficulties compared to the Vlasov-Poisson
model and seems to be a good candidate to test numerical methods.

To that purpose, we briefly recall the conservation properties of (4.1) which should be preserved
in the best manner by the numerical schemes. The guiding center model (4.1) preserves the total
mass, the L2 norm of the density (enstrophy) and the L2 norm of the electric field (energy)

d

dt

∫ ∫

ρ(t, x, y)dxdy =
d

dt
‖ρ(t)‖L2 =

d

dt
‖E(t)‖L2 = 0. (4.3)

4.1 The general algorithm

In this subsection, we review the main steps of a semi-Lagrangian method in the case of directional
splitting which is applied for the discretization of the guiding-center-Poisson model.
Grid notations. Let Nx, Ny ∈ N

∗, ymax > 0, a time step ∆t > 0.
We define then classically as notations

∆x = Lx/Nx, ∆y = Ly/Ny xk = kLx/Nx, yℓ = ℓLy/Ny

for k = 0, . . . , Nx, ℓ = 0, . . . , Ny and tn = n∆t, n ∈ N.
Discretization of the distribution function. The unknown quantities are then ρn

k,ℓ which are
approximations of ρ(tn, xk, yℓ). We suppose periodic boundary conditions so that we only have to
compute at each time tn

ρn
k,ℓ, for k = 0, . . . , Nx − 1, ℓ = 0, . . . , Ny − 1.

Transport operator. Let us define for (αk) ∈ R
Nx+1 a transport operator Tα : R

Nx → R
Nx. For

the conservative approaches we detailed in section 2.1, this operator writes

Tα(ρ̄0, ρ̄1, ..., ρ̄Nx−1) =

(

1

∆x

∫ xk+1/2−αk+1/2

xk−1/2−αk−1/2

ρ(x)dx

)

k=0,..,N−1

.

The sequence α is determined following one of the algorithms detailed in sections 2.1.1 and 2.2.1.
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Algorithm

Step 0. Initialization : ρk,ℓ = ρ0(xk, yℓ), k = 0, . . . , Nx − 1, ℓ = 0, . . . , Ny − 1.
Step 1. Compute of the electric field (E0

x, E0
y) by integrating (4.2).

Step 2. Compute ρ1
k,ℓ using ρ0:

Step 2.a. Half time step shift along the x-axis:
Compute the x-displacement for each ℓ αk = ∆t/4E0

y (xk − αk, yℓ)

For each ℓ = 0, . . . , Ny − 1, (ρk,ℓ)
Nx−1
k=0 → T x

α ((ρk,ℓ)
Nx−1
k=0 ).

Step 2.b. Shift along the y-axis:
Compute the y-displacement for each k αℓ = −∆t/2E0

x(xk, yℓ − αℓ)

For each k = 0, . . . , Nx − 1, (ρk,ℓ)
Ny−1
ℓ=0 → T y

α ((ρk,ℓ)
Ny−1
ℓ=0 ).

Step 2.c. Half time step shift along the x-axis:
Compute the x-displacement for each k αk = ∆t/4E0

y(xk − αk, yℓ)

For each ℓ = 0, . . . , Ny − 1, (ρk,ℓ)
Nx−1
k=0 → T x

α ((ρk,ℓ)
Nx−1
k=0 ).

Step 3. Compute the electric field (E1
x, E1

y) by integrating (4.2).

Step 4. Compute ρn+1
k,ℓ using ρn−1, ρn:

Step 4.a. Half time step shift along the x-axis:
Compute the x-displacement for each ℓ αk = ∆t/2En

y (xk − αk, yℓ)

For each ℓ = 0, . . . , Ny − 1, (ρk,ℓ)
Nx−1
k=0 → T x

α ((ρk,ℓ)
Nx−1
k=0 ).

Step 4.b. Shift along the y-axis:
Compute the y-displacement for each k αℓ = −∆tEn

x (xk, yℓ − αℓ)

For each k = 0, . . . , Nx − 1, (ρk,ℓ)
Ny−1
ℓ=0 → T y

α ((ρk,ℓ)
Ny−1
ℓ=0 ).

Step 4.c. Half time step shift along the x-axis:
Compute the x-displacement for each ℓ αk = ∆t/2En

y (xk − αk, yℓ)

For each ℓ = 0, . . . , Ny − 1, (ρk,ℓ)
Nx−1
k=0 → T x

α ((ρk,ℓ)
Nx−1
k=0 ).

Step 5. Compute the the electric field (En+1
x , En+1

y ) by integrating (4.2).

Step 6. n → n + 1 and loop to Step 4.

Different methods will be compared. We consider the new methods PSM (i.e. without filter),
PSM2, and the Forward Update Method (FUM) (detailed in subsection 2.2 with cubic spline
for the reconstruction step). We consider also the traditional advective semi-Lagrangian method
without splitting SPL2D with full two-dimensional cubic splines interpolation developed in [26]
and the splitting method using the one dimensional cubic splines advective approach SPL1D. The
characteristics are solved using the midpoint formula for backward methods and the RK4 algorithm
is used for FUM.

4.2 Numerical results: Kelvin-Helmholtz instability test case

We consider the Kelvin-Helmholtz instability in the periodic-periodic case (i.e. periodic boundary
conditions are considered in the x and y direction) for which the growth rate of the instability can
be computed a priori. This is of great importance to check quantitatively the accuracy of the code.

Following the computations of [24], the linearization (4.1)-(4.2) leads to the so-called stability
Rayleigh equation. Considering as initial condition a periodic perturbation of the equilibrium
solution to (4.1)-(4.2), it is possible to start a Kelvin-Helmholtz instability. The difference between
the Dirichlet-periodic case, i.e. periodic boundary conditions in the x direction and Dirichlet ones
in the y direction, (which has been solved in [26]) occurs in the neutrally stable solution which is
equal to 1 in our case (instead of sin(y/2) in the Dirichlet-periodic case). Then, we can deduce the
initial condition for (4.1)-(4.2),

ρ(x, y, t = 0) = sin(y) + ε cos(kx),
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where k = 2π/Lx is the wave number associated to the length Lx of the domain in the x-direction.
The size of the domain in the y-direction is Ly = 2π. Shoucri’s analysis predicts an instability when
k is chosen lower than 1. Otherwise, the initial perturbation remains unchanged, neither damped
(since (4.1)-(4.2) is only a fluid model, not a kinetic model), neither increased.

Various approaches can be employed to determine the instability growth rate of the chosen mode
k. A finite difference numerical scheme has been applied to approximate the stability Rayleigh
equation which leads to a eigenvalue problem. The results obtained by this way are very closed to
those obtained by numerically solving the linearized problem as performed in [24].

The numerical parameters are chosen as follows:

k = 0.5, Nx = Ny = 128, and ∆t = 0.1.

We have checked that the maximal displacement in the x direction is about 1 cell, whereas the
maximal displacement in the y direction increases during the linear phase up to 5 cells and remains
between 4 and 5 in the non linear phase. In particular, we remark that the time step is not
restricted by the classical CFL condition, which imposes that the maximal displacement is lower
than one cell. Let us recall that periodic conditions are considered here; even if the present test
bears similarities with the Dirichlet-periodic test presented in [26], the dynamics of the unknown
is quite different in the present periodic-periodic context.

For this test case, we are interested in the time evolution of the conserved quantities (4.3). We
also look carefully at the conservation of the total mass in order to verify the difference between
conservative and non-conservative methods. As a diagnostic, it is also interesting to look after the
2D unknown to realize the fine structures developed along the simulation.

In Fig. 8, the time histories of the total mass and the L2 norm of the density is plotted for the
different methods. First, as discussed in [17, 21, 28], SPL1D does not preserve exactly the total
mass whereas other methods do. This is expected since this approach solves the non-conservative
form of the equation which is not appropriate with the splitting procedure. Then, we observe
that the conservative methods present very similar behaviour compared to the method of reference
SPL2D: they are conservative and the decay of the L2 norm occurs at t ≈ 30ω−1

p . This decay
corresponds to the saturation of the instability. Very fine structures are created which can not be
captured by the numerical schemes since their size becomes smaller than the grid size.

In Fig. 9, the logarithm of the first Fourier mode of the electric field Ex is plotted as a function
of time. The linear theory predicts an exponential growing, the rate of which can be computed a
priori by solving an eigenvalue problem. This can be performed and the results can be compared to
the numerical results. The numerical growth rate corresponds to the slope of the straight line which
approximates the logarithm of the first Fourier mode of Ex in the linear phase (between t ≈ 5ω−1

p

and t ≈ 10ω−1
p ). Considering different values of the wave number k, it is possible to plot the

quantity ω/k (where ω is the growth rate of the first Fourier mode of Ex) as a function of (ks − k)
where ks = 1 in our case (ks =

√
3/2 in the Dirichlet-periodic case). This is performed in Fig. 10

(right); we can observe the very good agreement between the analytical and the numerical values.
This kind of validation is of great importance since a quantitative comparison can be performed,
at least in the linear phase.

On Fig. 10 (left), the L2 norm of the electric field is plotted as a function of time. This quantity
is preserved with time by the continuous model. The conservative and splitting procedure based
methods present a very good conservation of the energy whereas it is not the case of the non-
conservative method SPL1D. The method SPL2D does not preserve very well the energy compared
to FUM or PSM for example. We can observe that the influence of the filter is very weak since
the numerical results of PSM and PSM2 are very close (see figure 11). However, we can observe on
the distribution function that some oscillations are suppressed by the filter, without affecting too
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Figure 8: time evolution of the total mass and the enstrophy for SPL (with splitting (SPL1D) and
without splitting (SPL2D)), FUM, PSM and PSM2. Nx = Ny = 128,∆t = 0.1 for the Kelvin-
Helmholtz instability test.
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Figure 9: time evolution of the logarithm of the first Fourier mode for SPL (with splitting (SPL1D)
and without splitting (SPL2D)), FUM, PSM and PSM2. A zoom has been applied on the right
figure. Nx = Ny = 128,∆t = 0.1 for the Kelvin-Helmholtz instability test.

much the L2 norm. We have observed that the extrema are better conserved for PSM2 compared
to PSM, even if it is not strictly respected.

Finally, on Fig. 12 and Fig. 13 we plot the distribution function for the different methods at time
t = 30 and t = 60ω−1

p . We add here the numerical result associated to the conservative splitting
with LAG reconstruction (that is the PFC method without filter). These results confirm the
previous observations: first, the LAG method is more diffusive (the thin structures are smoothed)
and the SPL1D scheme leads to a bad behaviour since the main structures are not respected. In
contrast, the FUM and PSM present a good behaviour, very similar to SPL2D. Note that we have
some overshoots for the refined SPL2D solution (lower right subplot), which the difference of color
scales.

As a conclusion, the conservative methods present a very good behaviour on this strongly
nonlinear and large time case. The splitting procedure also enables to save memory since one-
dimensional structures are often used (instead of two-dimensional structures for the computation
of the cubic spline coefficients in SPL2D for example). On the other side, we remarked that SPL2D
seems to be able to support larger time steps, but we think that the implementation of high order
numerical scheme in time could stabilize PSM or FUM when large time steps are used. This
extension will be studied in a future work.
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Figure 10: Left figure: time evolution of the energy for SPL (with splitting (SPL1D) and without
splitting (SPL2D)), FUM PSM and PSM2. Right figure: normalized growth rate ω/k as a function
of 1 − k. Nx = Ny = 128,∆t = 0.1 for the Kelvin-Helmholtz instability test.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  50  100  150  200  250  300  350  400  450  500

PSM
PSM2

Time

‖ρ
(t

)‖
L

2

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0  50  100  150  200  250  300  350  400  450  500

PSM
PSM2

Time

‖E
(t

)‖
L

2

Figure 11: Kelvin-Helmholtz instability test: comparison of the PSM and PSM2 method; time
history of the L2 norm of the distribution function and the electric field and distribution functions
at time t = 60ω−1

p (left: PSM, right: PSM2). Nx = Ny = 128,∆t = 0.1.
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Figure 12: Distribution function for the Kelvin-Helmholtz instability test at time t = 30ω−1
p .

Respectively for top-left to bottom-right: PSM, FUM, SPL2D, LAG, SPL1D with Nx = Ny =
128,∆t = 0.1 and SPL2D with Nx = Ny = 512,∆t = 0.01.
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Figure 13: Distribution function for the Kelvin-Helmholtz instability test at time t = 60ω−1
p .

Respectively for top-left to bottom-right: PSM, FUM, SPL2D, PFC, SPL1D with Nx = Ny =
128,∆t = 0.1 and SPL2D with Nx = Ny = 512,∆t = 0.01.
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5 Conclusion

In this work, new conservative methods have been introduced and then compared to existing
methods for equations occuring in plasma physics. Several properties make them very competitive.
On the one side, their inherent conservation property enables the use of splitting procedures, which
make the implementation of multi-dimensional problems easier. On the other side, slope limiters
can be introduced to ensure the positivity or to control spurious oscillations of the unknown.

When they are compared to existing semi-Lagrangian methods, we first observed that for the
guiding-center problem, as expected, the advective approaches lead to inaccurate results when
splitting procedure is applied. This is not the case for conservative methods. Moreover, they
are at least as accurate as the reference methods (SPL2D). For simpler cases like the Vlasov-
Poisson model in which the advection term is constant, we proved that the advective methods
and their conservative counterparts are equivalent. Obviously, this does not remain true in the
non-constant advection case (like for the guiding-center model) which often occurs in particular
in gyrokinetic models. The extension of the PSM method to such multi-dimensional system is
currently investigated.

Moreover, the splitting procedure makes easier the use of high order numerical scheme in time
for backward and forward approaches. The use of high order time splittings (see [31]) is also under
investigations.
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CALVI Project, 7 rue René Descartes, 67084 Strasbourg cedex, France.
mehrenbe@math.u-strasbg.fr

E. Sonnendrücker : IRMA (Université de Strasbourg and CNRS) and INRIA-Nancy-Grand Est,
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