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Abstract

We assess the validity of a single step Godunov scheme for the solution of the magneto-hydrodynamics
equations in more than one dimension. The scheme is second-order accurate and the temporal discretization
is based on the dimensionally unsplit Corner Transport Upwind (CTU) method of Colella. The proposed
scheme employs a cell-centered representation of the primary fluid variables (including magnetic field) and
conserves mass, momentum, magnetic induction and energy. A variant of the scheme, which breaks momen-
tum and energy conservation, is also considered. Divergence errors are transported out of the domain and
damped using the mixed hyperbolic/parabolic divergence cleaning technique by Dedner et al. (J. Comput.
Phys., 175, 2002). The strength and accuracy of the scheme are verified by a direct comparison with the eight-
wave formulation (also employing a cell-centered representation) and with the popular constrained transport
method, where magnetic field components retain a staggered collocation inside the computational cell. Re-
sults obtained from two- and three-dimensional test problems indicate that the newly proposed scheme is
robust, accurate and competitive with recent implementations of the constrained transport method while
being considerably easier to implement in existing hydro codes.

Key words: Magnetohydrodynamics, Compressible Flow, Unsplit scheme, High-order Godunov method,
Cell-centered method

1. Introduction

A primary aspect in building stable and robust Godunov type schemes for the numerical solution of the
compressible magnetohydrodynamics (MHD) equations relies on an accurate way to control the solenoidal
property of the magnetic field while preserving the conservation properties of the underlying physical laws.
Failure to fulfill either requisite has been reported as a potential hassle leading to unphysical effects such
as plasma acceleration in the direction of the field, incorrect jump conditions, wrong propagation speed of
discontinuities and odd-even decoupling, see [26, 4]. A comprehensive body of literature has been dedicated
to this subject and several strategies to enforce the ∇ ·B = 0 condition in Godunov-type codes have been
proposed, see for example [28, 24, 25, 2, 26] and, more recently, [3, 18, 15, 23, 19]. The robustness of one
method over another can be established on a practical base by extensive numerical testing, see [26, 4].

In a first class of schemes, the magnetic field is discretized as a cell-centered quantity and the usual for-
malism already developed for the Euler equation can be extended in a natural way. Cell-centered methods
are appealing since the extensions to adaptive and/or unstructured grids are of straightforward implementa-
tion. Moreover, the same interpolation scheme and stencil used for the other hydrodynamic variables can be
easily adapted since all quantities are discretized at the same spatial location, thus facilitating the extension
to schemes possessing higher than second order accuracy. Unfortunately, numerical methods based on a
cell-centered discretization do not naturally preserve Gauss’s law of electromagnetism, even if ∇ · B = 0
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initially. In the approach suggested by Powell [21, 22], Gauss’s law for magnetism is discarded in the deriva-
tion of the MHD equations and the resulting system of hyperbolic laws is no longer conservative by the
appearance of a source term proportional to ∇ ·B. Although the source term should be physically zero at
the continuous level, Powell showed that its inclusion changes the character of the equations by introducing
an additional eighth wave corresponding to the propagation of jumps in the component of magnetic field
normal to a given interface. A different approach is followed in the projection scheme [6, 28, 24, 9], where a
Helmholtz-Hodge decomposition is applied to resolve B as the sum of an irrotational and a solenoidal part,
associated with scalar and vector potentials. A cleaning step allows to recover the divergence-free magnetic
field by subtracting the unphysical contribution coming from the irrotational component at the extra cost of
solving a Poisson equation. In the approach of Dedner et al. [12], the divergence-free constraint is enforced
by solving a modified system of conservation laws where the induction equation is coupled to a generalized
Lagrange multiplier. Dedner et al. showed that the choice of mixed hyperbolic/parabolic correction offers
both propagation and dissipation of divergence errors with the maximal admissible characteristic speed,
independently of the fluid velocity. This approach preserves the full conservation form of the original MHD
system at the minimal cost of introducing one additional variable in the system and will be our scheme of
choice. Finally, Torrilhon [27] (see also [1]) showed a general procedure to modify the inter-cell fluxes in the
framework of a flux distribution scheme that preserves the value of a certain discrete divergence operator in
each control volume.

A different strategy is followed in the constrained transport (CT) methods, originally devised by [13]
and later built into the framework of shock-capturing Godunov methods by a number of investigators, e.g.,
[2, 3, 18, 15, 16]. In this class of schemes, the magnetic field has a staggered representation whereby the
different components live on the face they are normal to. Hydrodynamic variables (density, velocity and
pressure) retains their usual collocation at the cell center. CT schemes preserve the divergence-free condition
to machine accuracy in an integral sense since the magnetic field is treated as a surface averaged quantity and
thus more naturally updated using Stokes’ theorem. This evolutionary step involves the construction of a
line-averaged electric field along the face edges, thereby requiring some sort of reconstruction or averaging of
the electromotive force from the face center (where different components are usually available as face centered
upwind Godunov fluxes) to the edges. A variety of different strategies have been suggested, including simple
arithmetic averaging [2, 25], solution of 2-D Riemann problems [18, 14] or other somewhat more empirical
approaches [15, 16, 17]. The staggered collocation of magnetic and electric field variables in CT schemes
makes their extension to adaptive grids rather arduous and costly. Besides, significant efforts have to be spent
in order to develop schemes with spatial accuracy of order higher than second. An alternative constrained
transport method, based on the direct solution of the magnetic potential equation (thus avoiding staggered
grids), has been presented by [23].

In the present work we propose a new fully unsplit Godunov scheme for multidimensional MHD, based
on a combination of the Corner Transport Upwind of [8] and the mixed hyperbolic/parabolic divergence
cleaning technique of [12] (CTU-GLM). The proposed scheme has second order accuracy in both space
and time and adopts a cell-centered spatial collocation (no staggered mesh) of all flow variables, including
the magnetic field. The scheme is fully conservative in mass, momentum, magnetic induction and energy
and the divergence-free constraint is enforced via a mixed hyperbolic/parabolic correction which avoids the
computational cost associated with an elliptic cleaning deriving from a Hodge projection. A variant of the
scheme, which introduces divergence source terms breaking the conservative properties of some equations, is
also presented. We assess the accuracy and robustness of the scheme by a direct quantitative comparison with
the 8-wave formulation of [22] and the recently developed constrained transport method of [15, 16]. Other
similar implementations may be found in [14, 17]. The comparison is conveniently handled using the PLUTO
code for computational astrophysics [20] where both cell-centered and staggered-mesh implementations are
available.

Our motivating efforts are driven by issues of simplicity, efficiency and flexibility. In this sense, the
benefits offered by a method where all of the primary flow variables are discretized at the same spatial
location considerably ease the extension to adaptive grids, to more complex physics and to schemes with
higher than second order accuracy. The latter possibility will be explored in a companion paper.
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2. The Constrained GLM-MHD Equations

In the approach of [12], the divergence constraint of the magnetic field (Gauss’s law) is coupled to
Faraday’s equation by introducing a new scalar field function or generalized Lagrangian multiplier ψ. The
second and third Maxwell’s equations are thus replaced by







∇ ·B = 0 ,

∂B

∂t
= ∇× (v ×B) ,

=⇒







D(ψ) +∇ ·B = 0 ,

∂B

∂t
+∇ψ = ∇× (v ×B) ,

(1)

where D is a linear differential operator. Dedner et al. built this approach into the MHD equations and
showed that a satisfactory explicit approximation may be obtained by choosing a mixed hyperbolic/parabolic
correction, according to which D(ψ) = c−2

h ∂tψ + c−2
p ψ where ch and cp are constants. Direct manipulation

of the modified Maxwell’s equations (1) leads to the telegraph equation,

∂2ψ

∂t2
+
c2h
c2p

∂ψ

∂t
= c2h∆ψ , (2)

which implies that divergence errors are propagated to the domain boundaries at finite speed ch and decay
with time and distance. The constant ratio c2h/c

2
p, which has the dimension of inverse time, sets the damping

rate. In the limiting case of cp → ∞, one retrieves the simple hyperbolic correction and Eq. (2) reduces to
an ordinary wave equation.

The GLM-Maxwell’s equations (1) can be coupled to the equations of magnetohydrodynamics writ-
ten in their conservative form. The resulting system is called the generalized Lagrange multiplier (GLM)
formulation of the MHD equations (GLM-MHD) and is comprised of the following nine evolution equations:

∂ρ

∂t
+∇ · (ρv) = 0 ,

∂(ρv)

∂t
+∇ ·

[

ρvvT −BBT + I

(

p+
B2

2

)]

= 0 ,

∂B

∂t
+∇ ·

(

vBT −BvT
)

+∇ψ = 0 ,

∂E

∂t
+∇ ·

[(

E + p+
B2

2

)

v − (v ·B)B

]

= 0 ,

∂ψ

∂t
+ c2h∇ ·B = −c

2
h

c2p
ψ ,

(3)

where ρ, v, p and B are the mass density, velocity, gas pressure and magnetic field, respectively. Total
energy E and gas pressure are related by the ideal gas law, E = p/(Γ− 1) + ρv2/2 +B2/2, where Γ is the
specific heat ratio. Notice that we have conveniently switched, using vector identities, to the divergence form
of the induction equation, more appropriate for the cell-centered finite volume formalism. The constrained
GLM-MHD equations (3) are hyperbolic and fully conservative in all flow variables with the exception of
the unphysical scalar field ψ which satisfies a non-homogeneous equation with a source term. Divergence
errors propagate with speed ch independently of the flow velocity, thus avoiding accumulation in presence
of stagnation points. The presence of the source term is responsible for damping divergence errors as they
propagate.

Dedner et al. also considered a slightly different constrained formulation, in which the Lorentz force
term in the MHD equations is directly derived from the GLM-Maxwell equations. In this case, the system
(3) is extended by an additional source term on the right hand side, namely

SEGLM = [0,−(∇ ·B)B,0,−B · ∇ψ, 0]T , (4)
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where the non-zero entries correspond to the momentum and energy equations. Dedner called the system
(3) augmented with the source term (4) on its right hand side the extended GLM (EGLM) formulation
of the MHD equations. Although the system breaks conservation of energy and momentum, it still holds
some attractive features and we found it, in our experience, a more robust scheme in presence of strong
discontinuity propagating through highly magnetized environments.

3. The CTU-GLM scheme

We now illustrate the detailed steps of our new cell-centered numerical scheme. The derivation is shown
for the conservative GLM scheme, whereas modifications relevant to the EGLM formulation are described
in §3.4.

We adopt a Cartesian system of coordinates and re-write the system of equations in (3) as

∂

∂t





















ρ

ρvd

Bd

E

ψ





















+
∑

l=x,y,z

∂

∂l





















ρvl

ρvdvl −BdBl + δdl
(

p+B2/2
)

Bdvl −Blvd + δdlψ
(

E + p+B2/2
)

vl − (v ·B)Bl

c2hBl





















=





















0

0

0

0

−c2h/c2pψ





















, (5)

where d, l = x, y, z label the different component and flux contributions in the three directions while δdl
is the delta Kronecker symbol. The system of equations given in (5) is advanced in time by solving the
homogeneous part separately from the source term contribution, in an operator-split fashion:

Un+1 = S∆t/2A∆tS∆t/2Un (6)

whereA and S are the advection and source step operators separately described in §3.1 and §3.3, respectively.

3.1. Advection Step

During the homogeneous step, we adopt a numerical discretization of (5) based on the corner trans-
port upwind (CTU) method of [8]. For simplicity, we will assume hereafter an equally-spaced grid with
computational cells centered in (xi, yj , zk) having size ∆x ×∆y ×∆z. For the sake of exposition, we omit
the subscript (i, j, k) from cell centered quantities while keeping the half increment index notation when
referring to the interfaces, e.g., ρj+ 1

2

≡ ρi,j+ 1

2
,k. An explicit second order accurate discretization of Eqns.

(5), based on a time-centered flux evaluation, reads

Un+1 = Un −∆tn





F
n+ 1

2

i+ 1

2

− F
n+ 1

2

i− 1

2

∆x
+

G
n+ 1

2

j+ 1

2

−G
n+ 1

2

j− 1

2

∆y
+

H
n+ 1

2

k+ 1

2

−H
n+ 1

2

k− 1

2

∆z



 , (7)

where U = (ρ, ρv,B, E, ψ) is the state vector of conservative variables. The expression in square brackets
provides a conservative discretization of the divergence operator appearing in the original conservation laws
with F, G and H being suitable numerical approximations to the flux contributions in (5) coming from
the l = x, y, z directions, respectively. In the CTU approach, numerical fluxes are computed by solving a
Riemann problem between suitable time-centered left and right states, i.e.,

F
n+ 1

2

i+ 1

2

= R
(

V
n+ 1

2

i,+ ,V
n+ 1

2

i+1,−

)

, G
n+ 1

2

i+ 1

2

= R
(

V
n+ 1

2

j,+ ,V
n+ 1

2

j+1,−

)

, H
n+ 1

2

i+ 1

2

= R
(

V
n+ 1

2

k,+ ,V
n+ 1

2

k+1,−

)

, (8)

where V = (ρ,v,B, p, ψ)T is the state vector of primitive variables and R(·, ·) denotes the flux obtained

by means of a Riemann solver, see §3.2. The corner-coupled states, V
n+ 1

2

i,+ and V
n+ 1

2

i+1,−, are computed via
a Taylor expansion consisting of an evolutionary step in the direction normal to a given interface (§3.1.1)
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followed by a correction step involving transverse flux gradients (§3.1.2). The algorithm requires a total of
6 solution to the Riemann problem per zone per step.

The time increment ∆tn is computed via the Courant-Friedrichs-Levy (CFL) condition:

∆tn = Ca
min (∆x,∆y,∆z)

maxi,j,k (|vx|+ cf,x, |vy|+ cf,y, |vz|+ cf,z)
, (9)

where the maximum and minimum are taken over all zones and cf,x, cf,y, cf,z are the fast magneto-sonic
speeds in the three directions, see §3.1.1. Ca is the Courant number and, for the 6-solve CTU presented
here, is restricted to Ca < 1 in two dimensions and Ca < 1/2 in three dimensions.

3.1.1. Normal Predictors

During the computation of the normal predictors, we take advantage of the primitive (or quasi-linear)
form of the equations. By discarding contributions from y and z and considering the reconstruction process
in the x direction only, one has

∂V

∂t
+ Ax

∂V

∂x
= SBx

∂Bx
∂x

+ Sψ
∂ψ

∂x
, (10)

where the 9× 9 matrix

Ax =













































vx ρ 0 0 0 0 0 0 0

0 vx 0 0 0 By/ρ Bz/ρ 1/ρ 0

0 0 vx 0 0 −Bx/ρ 0 0 0

0 0 0 vx 0 0 −Bx/ρ 0 0

0 0 0 0 0 0 0 0 1

0 By −Bx 0 0 vx 0 0 0

0 Bz 0 −Bx 0 0 vx 0 0

0 Γp 0 0 0 0 0 vx 0

0 0 0 0 c2h 0 0 0 0













































, (11)

is the usual matrix of the MHD equations in primitive form plus the addition of a fifth row and a ninth
column. The source terms SBx

and Sψ are of crucial importance for the accuracy of the scheme in multi-
dimensions [9, 15, 17] and take the form

SBx
=

[

0,
Bx
ρ
,
By
ρ
,
Bz
ρ
, 0, vy, vz,−(Γ− 1)v ·B, 0

]T

, Sψ =
[

0, 0, 0, 0, 0, (Γ− 1)Bx, 0
]T

. (12)

The matrix Ax of the quasi-linear form is diagonalizable with the same eigenvalues as the ordinary MHD
equations plus two new additional entries ch and −ch, for a total of 9 characteristic waves:

λ1,9 = ∓ch , λ2,8 = vx ∓ cf , λ3,7 = vx ∓ ca , λ4,6 = vx ∓ cs , λ5 = vx , (13)

where

cf,s =

√

1

2ρ

(

Γp+ |B|2 ±
√

(Γp+ |B|2)2 − 4ΓpB2
x

)

, ca =
|Bx|√
ρ
, (14)

are the fast magneto-sonic (cf with the + sign), slow magneto-sonic (cs with the − sign) and Alfvén
velocities. The two additional modes ±ch are decoupled from the remaining ones and corresponds to waves
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carrying jumps in Bx and ψ. The constant ch gives the speed of propagation of local divergence errors and
is chosen to be the maximum speed compatible with the time step restriction, in other words

ch = max
i,j,k

(|vx|+ cf,x, |vy|+ cf,y, |vz|+ cf,z) , (15)

Finally, the corresponding left (lk) and right (rk) eigenvectors are given in Appendix A.
Using the characteristic decomposition of the quasi-linear form (10), we extrapolate V(xi, t

n) from the
cell center to the edges xi± 1

2

for a time increment ∆tn/2. During this step we only consider the contribution
of those waves traveling from the center to the given interface and discard any interaction between neighbor
cells. The resulting construction yields the normal predictors

V∗
i,± = Vn

i +
1

2

∑

k:λk
i
≷0

(

±1− λki∆t
n

∆x

)

∆Vk
i +

∆tn

2∆x

(

SnBx,i∆Bx + Snψ,i∆ψ
)

, (16)

where only positive waves (λki > 0, k = 1, ..., 9) contribute to the left of the i+ 1
2 interface (i,+) while only

negative waves (λki < 0) are considered to the right of the i − 1
2 interface (i,−). The undivided differences

∆Bx and ∆ψ may be computed using a standard centered finite difference approximation. The jump
contribution from the k−th characteristic field is denoted with ∆Vk

i = ∆wki r
k
i where rki is the corresponding

right eigenvector and ∆wki is a limited slope in the k−th characteristic variable,

∆wki = Lim
(

lki ·∆Vn
i+ 1

2

, lki ·∆Vn
i− 1

2

)

, (17)

where ∆Vn
i± 1

2

= ±
(

Vn
i±1 −Vn

i

)

, lki is the k−th primitive left eigenvector and Lim(·, ·) is a limiter function,
e.g.

Lim(δ−, δ+) =
sign(δ−) + sign(δ+)

2
min

(

β|δ−|, β|δ+|,
δ− + δ+

2

)

. (18)

Usually taking β = 2 gives the largest compression. However, for problems involving strong shocks, we
found setting β = 1 for nonlinear fields (fast and slow shocks) and β = 2 for the linear fields to give a more
robust recipe.

3.1.2. Transverse Predictors

Once the normal predictor states have been computed, we solve a Riemann problem at constant y− and
z− faces to obtain the transverse fluxes, e.g.,

G∗
j+ 1

2

= R
(

V∗
j,+,V

∗
j+1,−

)

, H∗
k+ 1

2

= R
(

V∗
k,+,V

∗
k+1,−

)

, (19)

where left and right states have been computed during the normal predictor stages in the y and z direction.
The solution of the Riemann problem follows the guidelines illustrated in §3.2, where the linear sub-system
formed by the longitudinal magnetic field component and the Lagrange multiplier is preliminary solved
before a standard 7−wave Riemann solver is applied. Transverse flux gradients are then added to the
normal predictors (16) once they are transformed back to conservative variables. This yields the corner
coupled states:

U
n+ 1

2

i± 1

2

= U∗
i± 1

2

− ∆t

2

(

G∗
j+ 1

2

−G∗
j− 1

2

∆y
+

H∗
k+ 1

2

−H∗
k− 1

2

∆z

)

, (20)

where U∗ is obtained by converting V∗ to conservative variables.
We recall that the starting point in the derivation of Eq. (20) may be viewed, in its simplest form, as a

first order Taylor expansion around the cell center (xi, t
n),

U
n+ 1

2

i± 1

2

≈ Un
i ± ∂Un

i

∂x

∆x

2
+
∂Un

i

∂t

∆t

2
≈
(

Un
i ± ∂Un

i

∂x

∆x

2
− ∆t

2

∂Fni
∂x

)

− ∆t

2

(

∂G∗
i

∂y
+
∂H∗

i

∂z

)

, (21)
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where the temporal derivative ∂U/∂t has been replaced, in the second expression, by taking advantage of
the original conservation law and the different terms have been grouped according to the step in which they
are computed (i.e., Eq 16 and Eq 20). In this perspective, the input states entering in the computation
of the transverse fluxes (19) may be slightly modified by O(∆t2) in order to more accurately represent
the ∇ ·B term in the construction of the scalar multiplier ψ. To better understand this minor correction,
we rewrite the ψ component of the interface states (20) in 2D using, for the sake of simplicity, a simple
MUSCL-Hancock step during the normal predictor:

ψ
n+ 1

2

± = ψn ± ∆ψn

2
− c2h∆t

2

[

∆Bnx
∆x

+
B∗
y,j+ 1

2

−B∗
y,j− 1

2

∆y

]

. (22)

Clearly, the multidimensional terms approximating ∇ · B in the square bracket of Eq. (22) split into a
normal (∆Bnx ) and a transverse (B∗

y,j+ 1

2

− B∗
y,j− 1

2

) directional contribution. Since the first one is taken at

time level n while the second term comes from solving a Riemann problem between normal predictors in
the y direction (extrapolated a tn + ∆tn/2), these contributions are not taken at the same time level but
are spaced by ∆tn/2. In practice, from the tests included here and several others we found evidence that a
better balance is achieved if one replaces, in the input states of (19), the longitudinal field component with
its interpolated value at time level n, i.e., B∗

y,j,± → Bny ±∆Bny /2 (or, equivalently with the value obtained
by setting ∆t = 0 in Eq. 16). Note that this is a second-order correction that does not alter the accuracy
of the scheme and only affects the solution of the Riemann problem in computing the transverse fluxes (19)
but does not concern the definitions of the normal predictors. Although this is not an essential step, it was
found to improve the accuracy in the numerical tests presented in §4.

3.2. Solving the Riemann Problem

In the case of the GLM-MHD equations, left and right input states to the Riemann solver R(·, ·) bring a
set of 9 jumps propagating along the 7 standard characteristic MHD waves (i.e. fast, slow, rotational pairs
and one entropy modes) as well as 2 additional modes carrying jumps only in the normal (longitudinal)
component of B and ψ. Nonetheless, when solving a one-dimensional Riemann problem at a zone interface
(say the x direction), these additional waves are decoupled from the remaining ones and are described by
the 2× 2 linear hyperbolic system















∂Bx
∂t

= −∂ψ
∂x

∂ψ

∂t
= −c2h

∂Bx
∂x

.

(23)

For a generic pair of left and right input states (Bx,L, ψL) and (Bx,R, ψR), the Godunov flux of the system
(23) can be computed exactly as

B∗
x =

Bx,L +Bx,R
2

− 1

2ch
(ψR − ψL) , ψ∗ =

ψL + ψR
2

− ch
2

(Bx,R −Bx,L) . (24)

This allows to carry out the solution of the 2 × 2 linear Riemann problem separately before using any
standard 7-wave Riemann solver for the one-dimensional MHD equations. The longitudinal component of
the magnetic field B∗

x, preliminary computed with (24), enters hence the ordinary Riemann flux computation
as a constant parameter.

In other words, given the arbitrary left and right states VL and VR, input to the Riemann problem, we
compute

R (VL,VR) = R7 (V
∗
L,V

∗
R) (25)

where V∗
S (S = L,R) is the same as VS with (Bx,S , ψS) replaced by (B∗

x, ψ
∗) and R7 is a standard 7−wave

Riemann solver. In this work, we will employ the linearized Riemann solver of Roe, in the version of [7].
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3.3. Source Step

During the source step we solve the initial value problem given by the last of equations (3) without the
∇ ·B term, that is,

∂ψ

∂t
= −c

2
h

c2p
ψ , (26)

supplemented with the initial condition ψ(0) given by the output of the most recent step. The constant c2p
has the dimension of length squared over time and thus can be regarded as a diffusion coefficient. Dedner
et al. prescribe an optimal value c2p/ch = 0.18 independently of the mesh spacing; however, we suspect
this definition to be incomplete, since c2p/ch has the dimension of length and thus it is not a dimensionless
quantity. Our numerical experiments indicate that divergence errors are minimized when the parameter
α = ∆hch/c

2
p (where ∆h = min(∆x,∆y,∆z)) lies in the range α ∈ [0, 1], depending on the particular

problem. In first approximation this value can be regarded as grid-independent although we have verified
a weak tendency to decrease as the mesh thickens. Using the definition of α, Eq. (26) can be integrated
exactly for a time increment ∆tn, yielding

ψ(∆tn) = ψ(0) exp

(

−α ch
∆h/∆t

)

, with α = ∆h
ch
c2p
. (27)

Note that, when ch is chosen using Eq. (15), the argument of the exponential becomes simply (−Caα).
Finally, we comment out that the dimensionless α parameter can be regarded as the ratio of the diffusive
and advective time scales, i.e., α = ∆td/∆ta, where ∆td = ∆h2/c2p and ∆ta = ∆h/ch.

3.4. Modifications for the Extended GLM (EGLM) formulation

The extended GLM-MHD (EGLM-MHD) equations may be derived from the primitive MHD equations
rather than the conservative ones, [12]. In this approach, the divergence part of the Lorentz force is added
to the momentum flux and an additional source term, given by (4), is introduced into the system. The
construction of the normal predictor states carried out in §3.1.1 remains the same with the exception of the
source terms (12) which must be replaced by

SBx
= [0, 0, 0, 0, 0, vy, vz,− (Γ− 1)v ·B, 0]T , Sψ = 0 . (28)

Since the corner coupled states in Eq. (20) are obtained in conservative variables, they must also be
augmented with the source term contribution (Eq. 4) and thus replaced by

U
n+ 1

2

i± 1

2

→ U
n+ 1

2

i± 1

2

+
∆t

2

(

SnEGLM,y + SnEGLM,z

)

. (29)

Likewise, the final update Eq. (7) becomes

Un+1 → Un+1 +∆t
(

S
n+ 1

2

EGLM,x + S
n+ 1

2

EGLM,y + S
n+ 1

2

EGLM,z

)

. (30)

In Eq. (29) and (30) we have split the source term into contributions coming from the derivatives in the x,
y and z directions. For each term we take advantage of the upwind fluxes computed in the corresponding
direction during the Riemann solver step. For example, during the y−sweep we compute the momentum
and energy sources in SEGLM,y as

−B
∂By
∂y

≈ −B

(

B∗
y,j+ 1

2

−B∗
y,j− 1

2

∆y

)

, −By
∂ψ

∂y
≈ −By

(

ψ∗
j+ 1

2

− ψ∗
j− 1

2

∆y

)

, (31)

where B∗
y and ψ∗ follows from the solution of the linear 2 × 2 Riemann problem (24). The cell-centered

magnetic field is evaluated at tn for the computation of the corner coupled states (29) and by averaging to
cell-center the final interface values for the final update, Eq. (30).
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4. Numerical Tests

We now proceed to a direct verification of the CTU-GLM and CTU-EGLM algorithms developed in the
previous sections. A test suite of standard two- and three-dimensional MHD problems has been selected in
order to monitor and quantify the accuracy of the proposed schemes. For the sake of comparison, we extend
the verification process to other two well known methods, namely, Powell’s eight wave formulation [22]
based on a cell-centered approach and the constrained transport (CT) scheme of [15, 16] using a staggered
formulation. The four selected algorithms, “GLM”, “EGLM”, “8W” and “CT”, have been built into the CTU
methodology and have been implemented in the current distribution of the PLUTO code for astrophysical
gas-dynamics [20] available at http://plutocode.to.astro.it. Adopting the same numerical framework provides
a practical way for a convenient and extensive inter-scheme comparison.

In the following test problems the scalar field function ψ will be always initialized to zero and thus
omitted from the definition of the initial conditions. Moreover, unless otherwise stated, the specific heat
ratio will be set to Γ = 5/3 and the default Courant number is set to Ca = 0.8 in two dimensions and
Ca = 0.4 in three dimensions. Errors for any flow quantity Q are computed using the L1 discrete norm
defined by

ǫ1(Q) =
1

NxNyNz

∑

i,j,k

∣

∣Qi,j,k −Qref
i,j,k

∣

∣ (32)

where Nx, Ny and Nz are the number of points in the three directions, Qref
i,j,k is a reference solution and the

summation extends to all grid zones.

4.1. Propagation of Circularly polarized Alfvén Waves

Circularly polarized Alfvén waves are an exact nonlinear solution of the compressible MHD equations
thus providing an excellent code benchmark. For a planar wave propagating along the x direction with
angular frequency ω and wave number k, the transverse components of velocity and magnetic fields trace
circles in the yz plane and the solution can be written as









vx

vy

vz









=









v0x

v0y +A sinφ

v0z +A cosφ









,









Bx

By

Bz









=









ca
√
ρ

∓√
ρA sinφ

∓√
ρA cosφ









, (33)

where φ = kx − ωt, ω/k = v0x ± ca is the corresponding phase velocity (ca = 1 is the Alfvén speed) and
A = 1/10 is the wave amplitude. The plus or minus sign corresponds to right or left propagating waves,
respectively. The constants v0x, v0y, v0z give the translational velocity components in the three directions.
Density and pressure remain constant and equal to their initial values ρ0 = 1 and p0 = 0.1 since torsional
Alfvén waves do not involve any compression.

Here we consider a rotated version of the one-dimensional solution given by (33) and specify the orien-
tation of the wave vector k = (kx, ky, kz) in a three dimensional space x, y, z through the angles α and β
such that

tanα =
ky
kx

, tanβ =
kz
kx

. (34)

The full 3D solution is then recovered by rotating the original one dimensional frame by an angle γ =
tan−1(cosα tanβ) around the y axis and subsequently by an angle α around the z axis. The resulting
transformation leaves scalar quantities invariant and produce vectors rotation q → Rγαq, where

Rγα =









cosα cos γ − sinα − cosα sin γ

sinα cos γ cosα − sinα sin γ

sin γ 0 cos γ









, R
−1
γα =









cosα cos γ sinα cos γ sin γ

− sinα cosα 0

− cosα sin γ − sinα sin γ cos γ









, (35)
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are the rotation matrix and its inverse whereas q is a three-dimensional vector. Note that φ is now given
by φ = k · x− ωt where ω = |k|(v0x ± ca) and

|k| = kx

√

1 + tan2 α+ tan2 β (36)

is the wavenumber corresponding to a wavelength λ = 2π/|k| and period T = 2π/ω.
In order to ensure correct periodicity we assume, without loss of generality, kx = 2π and pattern the

computational domain such that one wave period is prescribed in each grid direction, i.e., x ∈ [0, 1], y ∈
[0, 1/ tanα] and z ∈ [0, 1/ tanβ]. Also, for the tests discussed here, we consider standing waves and thus
set v0x = v0y = v0z = 0. With these definitions the wave returns into the original position after one period
T = λ/ca with

T =
1

√

1 + tan2 α+ tan2 β
. (37)

4.1.1. Two-Dimensional Propagation

Table 1: Errors (in L1 norm) and orders of accuracy for the two and three-dimensional circularly polarized Alfvén wave tests.
The first and second columns refer to the numerical scheme and the number of points in the x direction. Columns 3-4 and
5-6 show the result obtained in the 2D problem with Courant number of Ca = 0.8 and Ca = 0.4, respectively. The last two
columns corresponds to the three dimensional case.

2D, Ca = 0.8 2D, Ca = 0.4 3D, Ca = 0.4
Scheme Nx L1 Error L1 order L1 Error L1 order L1 Error L1 order

GLM 16 2.46E-002 - 2.60E-002 - 3.19E-002 -

32 4.56E-003 2.43 5.17E-003 2.33 5.66E-003 2.50

64 1.16E-003 1.97 1.27E-003 2.03 1.15E-003 2.30

128 3.19E-004 1.87 3.02E-004 2.07 3.03E-004 1.92

256 8.48E-005 1.91 7.01E-005 2.11 8.05E-005 1.91

CT 16 2.54E-002 - 2.79E-002 - 3.44E-002 -

32 4.96E-003 2.36 7.09E-003 1.98 5.57E-003 2.63

64 1.16E-003 2.09 1.90E-003 1.90 1.18E-003 2.24

128 2.76E-004 2.08 4.25E-004 2.16 3.24E-004 1.86

256 6.73E-005 2.04 9.32E-005 2.19 9.67E-005 1.75

8W 16 2.60E-002 - 2.81E-002 - 3.37E-002 -

32 5.19E-003 2.32 7.28E-003 1.95 5.44E-003 2.63

64 1.22E-003 2.09 1.88E-003 1.95 1.37E-003 1.99

128 2.96E-004 2.05 4.02E-004 2.22 3.45E-004 1.99

256 7.29E-005 2.02 8.40E-005 2.26 8.79E-005 1.97

We begin by considering two dimensional propagation choosing tanα = 2, β = 0 in accordance with [18,
15, 17]. Computations are carried out for exactly one wave period (t = T = 1/

√
5) on the computational box

[0, 1]× [0, 1/2] with Nx×Ny points, where Ny = Nx/2. Errors, computed as
√

ǫ1(Bx)2 + ǫ1(By)2 + ǫ1(Bz)2,
are reported in Table 1 and plotted as function of the mesh size, Nx = 16, ..., 256, in the left panel of Fig 1.

Selected schemes (CT, GLM and 8W) produce comparable errors and show essentially second-order
accuracy. We notice that decreasing the Courant number to Ca = 0.4 has the effect of slightly reducing the
errors for GLM at large resolution but not for CT and 8W. From Table 1, in fact, one can see that, when
Nx = 256, the error is reduced from ∼ 8.5 · 10−5 to ∼ 7 · 10−5 for GLM, while it grows from 6.7 · 10−5 to
9.3 · 10−5 for the CT scheme.
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We have found that the solution is very weakly dependent on the α parameter and the errors are
minimized when α = 0. Besides, we repeated the computations with the EGLM formulation and observed
essentially the same level of accuracy with no particular improvement over GLM.

4.1.2. Three-Dimensional Propagation

In three dimensions we follow [16] and set tanα = tanβ = 2 so that the resulting computational box is
given by x ∈ [0, 1], y, z ∈ [0, 1/2] discretized on Nx ×Nx/2×Nx/2 grid points. Computations are followed
for one wave period (T = 1/3) and repeated, with Ca = 0.4, on increasingly finer grids corresponding to
Nx = 16, 32, 64, 128, 256. The right panel in Figure 1 shows that all schemes meet the expected order of
accuracy providing comparable errors, as found in the two-dimensional case. A more quantitative comparison
can be made by inspecting the last two columns of Table 1, where one can see that GLM performs slightly
better than the other schemes.

4.2. Nonlinear smooth flow

In the next example we consider the evolution of a fully nonlinear smooth flow where, unlike the previous
example, all waves (linear and nonlinear) are triggered. Following [27, 1] we specify a periodic computational
box in Cartesian coordinates, spanning from −1 to 1 in the x and y directions with initial conditions given
by

ρ =
3

2
+

1

2
sin(πx) +

1

4
cos(πy) ,

(vx, vy) =

[

1 +
1

2
sin(πy) +

1

4
cos(πx), 1 +

1

4
sin(πx) +

1

2
cos(πy)

]

,

(Bx, By) =

(

1

2
, 1

)

,

(38)

where p = 1/4, while vz = Bz = 0. Integration terminates at t = 0.2, before the formation of any
discontinuous feature. A resolution study is carried out for all schemes and compared to a reference solution
obtained on 20482 zones with the CT scheme. The error, shown in Fig. (2) as a function of the number of
cells, is computed as a quadratic mean of the L1 norm errors (given by Eq. 32) of the primitive variables. All
schemes are second-order accurate with comparable errors, with the GLM approach giving slightly better
results than the others at the largest resolution (256 zones).

4.3. Shock Tube Problems

One dimensional shock tubes have proven to be valuable benchmarks in order to assess the ability of the
scheme to capture both continuous and discontinuous flow features. The rotated multidimensional versions
considered in the following may be used to check the strength of the numerical method in preserving the
original planar symmetry through an oblique propagation.

4.3.1. Two-dimensional shock tube

In the first shock tube, taken from [26], we consider an initial discontinuity with left and right states given
by (ρ, v1, v2, B1, B2, p)L = (1, 10, 0, 5/

√
4π, 5/

√
4π, 20) and (ρ, v1, v2, B1, B2, p)R = (1,−10, 0, 5/

√
4π, 5/

√
4π, 1)

respectively. The subscripts “1” and “2” give the directions perpendicular and parallel to the initial discon-
tinuity. The initial condition is then rotated on a Cartesian grid (x, y) using the transformation defined by
Eq. (35) with α = tan−1 2 and β = γ = 0.

Since the magnetic field is initially uniform, ∇ ·B = 0 is trivially ensured at t = 0. The computational
domain spans from 0 to 1 in the x direction and from 0 to 2/Nx in the y direction with Nx×2 computational
zones. Outflow boundaries are set at the rightmost and leftmost sides of the box whereas for any flow
variables q at the upper and lower boundaries we impose the translational invariance q(i, j) = q(i±δi, j±δj)
where (δi, δj) = (2,−1) with the plus (minus) sign holding at the upper (lower) boundary. Computations
terminate before the fast shocks reach the boundaries, at t = 0.08 cosα.
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Table 2: One dimensional L1 (×10−2) norm error for the two-dimensional shock tube.

ρ V1 V2 B1 B2 p
8W 2.7 8.6 1.9 9.6 6.2 94.5
CT 2.6 8.5 1.5 0.4 4.7 93.0
GLM 2.6 8.4 1.4 0.4 4.3 90.5
EGLM 3.2 8.3 1.3 0.4 5.1 96.4

Fig 3 shows the primitive variable profiles obtained with the conservative GLM-MHD scheme. The
resulting wave pattern is comprised of two outermost fast shocks (at x1 ∼ 0.12 and x1 ∼ 086) enclosing two
slow magneto-sonic waves and a contact mode at x1 ∼ 0.56. We see that all discontinuities are captured
correctly although some spurious oscillations are visible in the transverse velocity profile in proximity of the
fast shocks. Similar features are also evident in the paper by Tóth [26] and with the CT scheme (not shown
here).

We have repeated the same test with the four different schemes described at the beginning of this section
and compared the results against a one-dimensional reference solution obtained at higher resolution (1024
cells) up to t = 0.08. Table 2 gives the errors, using the one-dimensional L1 norm, of the primitive variables
for the 8W, CT, GLM and EGLM schemes. While errors in density, velocity and pressure are very similar
for all schemes, the longitudinal component of the magnetic field (B1) shows substantially large deviations
with the 8W scheme. This is further illustrated in Fig 4 where, in accordance with [26], we find that the
8-wave formulation results in erroneous jump conditions in the normal component of the field. On the other
hand, both the GLM and the non conservative EGLM schemes behave as well as CT on this particular test
without producing spurious jump conditions.

Finally, in the left panel in Fig. 7 we plot, as a function of α, the L1 norm errors in B1 at different
resolutions, Nx = 128, 256, 512, for both the GLM (black) and EGLM (red) formulations. The plots show
a weak dependence on the α parameter and errors are minimized for α ≈ 0.5, independently of the mesh
resolution, for both schemes. Also, owing to the presence of shock waves, the order of convergence is
approximately one.

4.3.2. Three-dimensional shock tube

For the three dimensional version we follow [16] and set the initial left and right states to



















VL =

(

1.08, 1.2, 0.01, 0.5,
2√
4π
,
3.6√
4π

2√
4π
, 0.95

)T

for x1 < 0 ,

VR =

(

1, 0, 0, 0,
2√
4π
,

4√
4π
,

2√
4π
, 1

)T

for x1 > 0 ,

(39)

where V = (ρ, v1, v2, v3, B1, B2, B3, p) is the vector of primitive variables. The coordinate transformation
used for the 3D rotation is given by Eq. (35) where the rotation angles α and β are chosen in such a
way that an integer shift of cells satisfies, for any flow quantities q, the translational invariance expressed
by q(x + s) = q(x), where s is a Cartesian vector orthogonal to x1 and thus x1(x + s) = x1(x). This
condition follows from the fact that the solution is a function of x1 alone and thus invariant for translations
transverse to this direction, providing a convenient way to assign boundary conditions in the (x, y, z) system
of coordinates. By choosing tanα = −r1/r2 and tanβ = r1/r3 together with s = (nx∆x, ny∆y, nz∆z), one
can show that the three shift integers nx, ny, nz must obey

nx − ny
r1
r2

+ nz
r1
r3

= 0 , (40)

where ∆x = ∆y = ∆z has been assumed and (r1, r2, r3) = (1, 2, 4) will be used. The computational domain
consists of [768× 8× 8] zones and spans (−0.75, 0.75) in the x direction while y, z ∈ [0, 0.015625].
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Table 3: L1 (×10−4) error for the 3D Shock Tube

ρ V1 V2 V3 B1 B2 B3 p
8W 3.0 2.0 4.8 4.7 3.6 4.5 5.1 5.0
CT 3.1 2.4 4.2 4.4 0.5 5.3 5.4 5.5
GLM 2.9 2.3 3.6 4.3 0.5 4.7 5.4 5.1
EGLM 3.5 2.5 4.3 4.8 0.5 5.3 5.9 7.3

In Fig. 5 we plot the primitive variable profiles for the GLM scheme at t = 0.02 cosα cos γ. In accordance
with the one dimensional solution (see also [10]), we observe the formation of a structure involving a contact
discontinuity separating two fast shocks, two slow shocks and a pair of rotational discontinuities. The
three-dimensional integration reproduces the correct behavior of all waves and the error in the longitudinal
component of the field (B1 in Fig 5) exhibits small spurious oscillations about the same order of the CT
scheme (see also, for instance, Fig. 7 in [16]).

A quantitative estimate of the error (using the one-dimensional L1 norm error) is obtained by comparing
the three-dimensional results with a one-dimensional reference solution computed on 1024 zones until t =
0.02. The comparison, extended to the four selected integration schemes, is given in Table 3. We notice
that the CT, GLM and EGLM schemes all yield errors of the same order of magnitude (typically 10−4).
Beware that these computations may be susceptible to small variations depending on implementation details
(e.g. limiter, Courant number, etc.) and thus give a representative estimate of the error. For instance, the
implementation of the CTU-CT scheme in the PLUTO code [20] is similar, although not exactly equivalent,
to that of [16] who instead use piecewise parabolic reconstruction. Nevertheless, we have ascertained that
the 8W scheme always performs the worst and the discrepancy becomes particular evident by looking at
the longitudinal component of the field where the 8W scheme yields, once again, incorrect (although smaller
than the previous 2D case) jumps. This is better illustrated in Fig. 6, where we compare the profiles of B1

for the four selected numerical schemes. We stress that, despite its non-conservative character, the EGLM
formulation does not seem to produce incorrect jump conditions or wrong shock propagation speeds.

A resolution study, shown in the right panel of Fig 7, demonstrates that errors produced by the GLM
and EGLM formulations are very much comparable and only weakly dependent on the α parameter. Both
schemes report a minimum at α ≈ 0.005 − 0.01 regardless of the resolution, and the inferred order of
convergence is approximately one as expected for solutions involving shock waves.

4.4. Magnetic Field Loop Advection

This problem consists of a weak magnetic field loop being advected in a uniform velocity field. Since
the total pressure is dominated by the thermal contribution, the magnetic field is essentially transported as
passive scalar.

4.4.1. Two-dimensional advection

Following [15, 14, 17], we employ a periodic computational box defined by x ∈ [−1, 1] and y ∈ [−0.5, 0.5]
discretized on Nx ×Nx/2 grid cells (Nx = 128). Density and pressure are initially constant and equal to 1.
The velocity of the flow is given by v = (V0 cosα, V0 sinα, 1) with V0 =

√
5, sinα = 1/

√
5 and cosα = 2/

√
5.

The magnetic field is defined through its magnetic vector potential as

Az =

{

A0(R− r) if r ≤ R ,

0 if r > R ,
(41)

where A0 = 10−3, R = 0.3 and r =
√

x2 + y2. The simulations are allowed to evolve until t = 2 ensuring
the crossing of the loop twice through the periodic boundaries.

In Fig. 8 we show the magnetic energy density for the 8W, GLM and CT schemes using Ca = 0.8 (top)
and Ca = 0.4 (bottom), along with the field lines shape. The circular shape of the loop is best preserved
with the CT and GLM schemes while some distortions are visible using the 8 wave formulation. Using
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Ca = 0.4 with the GLM scheme yields slightly better results, while the CT does not seem to be affected by
the choice of the Courant number.

The time-history of the magnetic energy density (left panel in Fig 9) reveals that the numerical dissipation
is essentially similar for all schemes, being smaller at larger Courant numbers. At the quantitative level, our
results are similar and in good agreement with those of other investigators (e.g., .[15, 14, 17]).

The ability of the GLM scheme in preserving the divergence-free condition is monitored by checking the
growth of Bz in time: owing to a non-vanishing z component of velocity, in fact, we expect Bz to grow in
time with a rate ∝ vz∇ ·B as seen from the induction equation. In the middle panel of Fig. 9 we plot the
volume-averaged value of Bz as a function of time for Nx = 64, 128, 256. The nominal value is ∼ 10−3 of the
initial field strength, decreasing with resolution. Notice that the observed order of convergence is ∼ 0.6−0.7
and thus sub-linear as expected for a linearly degenerate wave in Godunov-type schemes, in accordance with
the results of [5].

Computations carried with different values of α reveal that divergence errors are minimized for α & 0.01
while errors in Bz become smallest for α ≈ 0.01 (right panel in Fig 9). Despite this may generate some
ambiguities in prescribing an optimal α value, however, we see that its choice does not significantly affect
the error and thus constitutes a minor effect on the solution.

4.5. Three-dimensional field loop advection

A three-dimensional extension can be obtained by rotating the previous 2D configuration around one axis
using the coordinate transformation given by Eq. (35) with α = 0 and γ = tan−1 1/2, see [16]. Even though
the loop is rotated only around one axis, the velocity profile (vx, vy, vz) = (1, 1, 2) makes the test intrinsically
three-dimensional. We consider the computational box −0.5 ≤ x ≤ 0.5, −0.5 ≤ y ≤ 0.5, −1.0 ≤ z ≤ 1.0,
resolved on a N ×N × 2N grid. Boundary conditions are periodic in all directions.

A three-dimensional rendering of the magnetic energy density is shown in Fig. 10 for the selected schemes
while relevant quantities are plotted in the three panels of Fig 11. All schemes show a similar amount of
numerical dissipation, in agreement with the results of [16].

As for the 2D case, it is useful to check the growth of the magnetic field component B3 = (−Bx+2Bz)/
√
5

orthogonal to the original (x1, x2) plane where the loop is two-dimensional. Analytically, the magnetic field
component in this direction is a trivial constant of motion since

∂B3

∂t
= v3

(

∂B1

∂x1
+
∂B2

∂x2

)

= 0 . (42)

The numerical integration in the rotated (x, y, z) Cartesian frame, however, preserves this condition only to
some accuracy which strongly reflects the ability of the scheme in controlling the divergence-free constraint
(this is true for all presented numerical methods). The middle panel in Fig 11 shows the volume-integrated
value of |B3|, normalized to the initial field strength B0 = 10−3 for three different resolutionsN = 32, 64, 128.
Our results reveal that the value of B3 grows slowly in time while remaining reasonably small. The conver-
gence rate (≈ 0.6− 0.7) is approximately the same as the one observed in the 2D case.

The dependency on α is illustrated in the right panel Fig 11 showing that divergence errors are progres-
sively reduced for α & 0.03 although this has very little effect on the growth of B3.

4.6. Two-dimensional Rotor problem

The rotor problem consists of a dense disk rotating in a static medium threaded by an initially uniform
magnetic field. As the rotor spins, the magnetic field gets wrapped around the disk creating torsional Alfvén
waves, stemming from the rotating disk and moving towards the surrounding gas. This interaction slows
down the disk by extracting angular momentum. On the other hand, the build-up of magnetic pressure
around the rotor causes its compression.
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Table 4: Parameter sets used for the first and second versions of the three-dimensional blast wave problem.

pin pout B0 θ r0 tstop

Test 1 102 1 10 π/4 0.125 0.02

Test 2 104 1 100 0 0.1 2.5 · 10−3

We initialized the problem on the Cartesian box x, y ∈ [− 1
2 ,

1
2 ] with outflow boundary conditions and

use 4002 grid points. The primitive variable profiles at the beginning of the simulation are given by

(ρ, vx, vy) =



















(10,−ωy, ωx) if r ≤ r0 ,
(

1 + 9f,−fωy r0
r
, fωx

r0
r

)

if r0 < r < r1 ,

(1, 0, 0) if r ≥ r1 ,

(43)

where ω = 20, r0 = 0.1, r1 = 0.115, r =
√

x2 + y2 and the taper function is f = (r1 − r)/(r1 − r0).
Thermal pressure is initially uniform and equal to one (Γ = 1.4 is used). The magnetic field has only one
non-vanishing component, Bx = 5/

√
4π.

The maps of density, magnetic energy and sonic Mach number are displayed in Fig. 12 at t = 0.15 for the
GLM and the CT schemes, when the torsional Alfén waves have almost reached the outer boundaries. The
strength of the scheme is also measured by its ability to preserve the circular shape of the sonic Mach number
profile in the central region, an essential feature of the solution, [17]. This is better shown in Fig. 13 where
an enlargement of the central region reveals that the GLM and CT schemes have developed extremely similar
Mach number contours and the absence of spurious peaks (that would be caused by pressure undershoots)
advocates towards the validity of the scheme.

4.7. Three Dimensional Blast Wave

The MHD blast wave problem has been specifically designed to show the scheme ability to handle
strong shock waves propagating in highly magnetized environments, see for instance [28, 2, 29, 16, 17].
Depending on the strength of the magnetic field, it can become a rather arduous test leading to unphysical
densities or pressures if the divergence-free condition is not properly controlled and the scheme does not
introduce adequate dissipation across oblique discontinuous features. Here, we consider a three-dimensional
configuration on the unit cube [−1/2, 1/2]3 discretized on 2003 computational zones. The medium is initially
at rest (v = 0) and threaded by a constant uniform magnetic field lying in the xz plane and forming an
angle θ with the vertical z direction, B = B0 (sin θx̂+ cos θẑ). A spherical region of high thermal pressure
is initialized,

p =

{

pin for
√

x2 + y2 + z2 < r0 ,

pout otherwise .
(44)

We consider two different versions of the same test problem with parameters given in Table 4. In the first
one, taken from [16], the field forms an angle θ = π/4 with the z axis and the largest magnetization achieved
outside the sphere is β = 2pout/B

2 = 2 · 10−2. In the second version, we follow [29] and adopt a a larger
field strength (with θ = 0) yielding a more severe configuration with β = 2 · 10−4.

The over-pressurized spherical region sets a blast wave delimited by an outer fast forward shock prop-
agating (nearly) radially, see Fig 14 and 16. Magnetic field lines pile up behind the shock in the direction
transverse to the initial field orientation (θ = π/4 and θ = 0 for the two cases) thus building a region of higher
magnetic pressure. In these regions the shock becomes magnetically dominated and only weakly compressive
(δρ/ρ ∼ 1.2 in both cases). The inner structure is delimited by an oval-shaped slow shock adjacent to a
contact discontinuity and the two fronts tend to blend together as the propagation becomes perpendicular
to the field lines. The magnetic energy increases behind the fast shock and decreases downstream of the
slow shock. The resulting explosion becomes highly anisotropic and magnetically confined.
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Computed results for the first configuration are shown in Fig 14, where we display linearly scaled maps
of gas pressure, magnetic and kinetic energy densities for the GLM scheme (top), EGLM (middle) and
CT schemes (bottom). The computations are in excellent agreement and no noticeable difference can be
discerned from the images. Moreover, our results favorably compare to those of [16]. To further ascer-
tain the validity of the non-conservative EGLM scheme, we plot, in Fig 15, one-dimensional slices (along
the x direction in the yz mid-plane) showing the density and pressure obtained with the EGLM and CT
integrations.

Computations for the second configuration could be obtained only with the EGLM scheme, since the CT
scheme failed even with a minmod limiter (β = 1 in Eq. 18). In Fig. 16 we plot contour levels for density,
pressure, velocity and magnetic energy. These results comply with those of [29] who used a CT scheme
together with a Runge-Kutta time stepping and an HLL Riemann solver. They also share similarities with
the 2D strong field case discussed in [17] who used a different implementation of the CT scheme. Partially
owing also to the increased resolution (2003 instead of 1443) our CTU-EGLM algorithm shows considerably
reduced numerical diffusion while being robust in keeping sharp profiles of the discontinuities.

5. Conclusions

A second-order, cell-centered numerical scheme for the solution of the MHD equations in two and three
dimensions has been proposed. Fully unsplit integration resorts to the Corner Transport Method of Colella
[8] and the divergence-free condition is controlled by using a constrained formulation of the MHD equations
where the induction equation is coupled to a generalized Lagrange multiplier (GLM, [12]). The system
is hyperbolic, easy to implement and does not require expensive cleaning projection steps associated with
the solution of elliptic problems. The GLM scheme is fully conservative in mass, momentum, energy and
magnetic induction, although we have also considered a slightly modified variant (EGLM) which infringes
momentum and energy conservation.

In order to assess the reliability and accuracy of the schemes we have performed a number of code
benchmarks on standard two- and three-dimensional MHD test problems. Results have been compared with
two different numerical schemes: a non-conservative cell-centered method based on the 8-wave formulation
(8W, [22]) and the constrained transport (CT) method where the magnetic field has a staggered collocation.
Both the GLM and EGLM schemes give excellent results in terms of accuracy and robustness and do not
show, in the tests presented here, any evidence for incorrect jump conditions or wrong wave propagation,
as found for the eight wave formulation (in agreement with Tóth [26]). This has been verified on problems
involving discontinuous waves and holds true for both the conservative GLM formulation and the EGLM
variant which breaks momentum and energy conservation. In this perspective, our results seem to indicate
that the presence of source terms in the equations does not necessarily lead to erroneous jumps. Instead,
we have found the non-conservative formulation to be more robust for problems involving the propagation
of oblique strongly magnetized shocks. Although, this behavior may be attributed to discretization, such a
study is beyond the scope of the present paper. The comparison has also revealed an excellent quantitative
agreement with the CTU-CT scheme (in the version of [15, 16]) showing errors with comparable magnitude
and similar order of convergence while retaining the desired robustness and stability.

For these reasons, we believe that the proposed CTU-GLM and CTU-EGLM schemes provide excellent
competitive alternatives to modern staggered-mesh algorithms while being considerably easier and more flex-
ible in their implementations. Owing to the cell-centered collocation of all of the flow fields, the CTU-GLM
scheme can be easily generalized to resistive MHD, adaptive and/or unstructured grids and to higher than
second-order spatially-accurate numerical schemes. Some of these issues will be presented in forthcoming
papers.

A. Characteristic Decomposition of the GLM-MHD Equations

The 9×9 matrix Ax of the primitive MHD equations introduced in §3.1.1 can be decomposed as Ax = RΛL

where Λ = diag(λk) contains the eigenvalues (see Eq. 14) while the rows of L and columns of R are the
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corresponding left and right eigenvectors of Ax, respectively. Adopting the scaling of [22] we define

α2
f =

α2 − c2s
c2f − c2s

, α2
s =

c2f − α2

c2f − c2s
(45)

and

βy =
By

√

B2
y +B2

z

, βz =
Bz

√

B2
y +B2

z

(46)

where α =
√

Γp/ρ denotes the speed of sound. With this notation, the right eigenvectors in matrix form
will be given by

R =















































0 ραf 0 ραs 1 ραs 0 ραf 0

0 −cfαf 0 −αscs 0 αscs 0 cfαf 0

0 αscsβyS − βz√
2

−αfcfβyS 0 αfcfβyS − βz√
2

−αscsβyS 0

0 αscsβzS
βy√
2

−αfcfβzS 0 αfcfβzS
βy√
2

−αscsβzS 0

1 0 0 0 0 0 0 0 1

0 αs
√
ραβy −

√ρ
2βz −αf

√
ραβy 0 −αf

√
ραβy

√ρ
2βz αs

√
ραβy 0

0 αs
√
ραβz

√

ρ
2βy −αf

√
ραβz 0 −αf

√
ραβz −

√

ρ
2βy αs

√
ραβz 0

0 αfΓp 0 αsΓp 0 αsΓp 0 αfΓp 0

−ch 0 0 0 0 0 0 0 ch















































(47)

where S = sign(Bx). On the other hand, the left eigenvectors are

L =





















































0 0 0 0 1
2 0 0 0 − 1

2ch

0 −αfcf
2α2

αscsβyS
2α2

αscsβzS
2α2 0

αsβy

2
√
ρα

αsβz

2
√
ρα

αf

2ρα2 0

0 0 − βz√
2

βy√
2

0 − βz√
2ρ

βy√
2ρ

0 0

0 −αscs
2α2 −αfcfβyS

2α2 −αfcfβzS
2α2 0 − αfβy

2
√
ρα − αfβz

2
√
ρα

αs

2ρα2 0

1 0 0 0 0 0 0 0 − 1
α2

0 αscs
2α2

αf cfβyS
2α2

αf cfβzS
2α2 0 − αfβy

2
√
ρα − αfβz

2
√
ρα

αs

2ρα2 0

0 0 − βz√
2

βy√
2

0 βz√
2ρ

− βy√
2ρ

0 0

0
αf cf
2α2 −αscsβyS

2α2 −αscsβzS
2α2 0

αsβy

2
√
ρα

αsβz

2
√
ρα

αf

2ρα2 0

0 0 0 0 1
2 0 0 0 1

2ch





















































. (48)
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Figure 1: L1 norm errors for the 2D (left) and 3D (right) circularly polarized Alfvén wave test problem. Each symbol refers
to results obtained with the GLM (plus sign), CT (square) and Powell’s eight wave (rhombus) methods, while the dotted line
gives the ideal second-order convergence slope. The Courant number Ca = 0.8 and the final time step is 1/

√
5 (left) and 1/3

right.
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Figure 2: L1 norm errors for the non-linear, smooth flow test problem at t = 0.2. The different symbols refer to computations
carried out with the GLM (plus signs), EGLM (ex signs), CT (squares) and Powell’s eight wave method (rhombus) with
Courant number Ca = 0.8. The dotted line gives the ideal second-order convergence slope.
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Figure 3: Primitive variable profiles for the 2D shock tube problem at t = 0.08 cosα, along the rotated direction x1. The
symbols correspond to the CTU-GLM solution whereas the solid lines represent the reference solution. From top to bottom
and left to right, density, thermal pressure, velocity components and magnetic field components (parallel and perpendicular
with respect to the x1 direction) are displayed.
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Figure 4: The parallel magnetic field component for the four schemes. Concordantly with the results of [26] the 8 wave formalism
fails to capture the correct jumps. This problem is absent in the results of the other schemes and the field component remains
close to the expected value 5/

√
4π away from discontinuities. Spikes are found in proximity of shock waves and are of the same

order of magnitude for GLM, EGLM and CT schemes.
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Figure 5: Primitive variable profiles for the 3D shock tube problem at t = 0.02 cosα cos γ, along the rotated direction x1 .
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Figure 6: Comparison of the parallel component of the magnetic field for the 3D shock tube test. As in the 2D case, the error
is minimal for all schemes with the exception of the 8-wave formalism. The latter fails to capture correctly the jump but the
error is less prominent than the 2D case.

Figure 7: L1 norm errors of B1 (the magnetic field component in the direction orthogonal to the initial discontinuity) as functions
of α = ∆hch/c

2
p for the 2D (left) and 3D (right) shock tube problem. The different symbols correspond to computations

carried at different mesh resolutions: Nx = 128, 256, 512 (in 2D) and Nx = 384, 768, 1536 in 3D. Black and red symbols refer
to results obtained with the GLM and EGLM formulations, respectively. The Courant numbers were 0.8 and 0.4 for 2 and 3D
computations, respectively.
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Figure 8: From left to right: magnetic energy density for the 2D field loop problem at t = 2 for the 8W, GLM and CT schemes.
Results have been computed with CFL numbers of 0.8 (top) and 0.4 (bottom). Overplotted are 9 isocontours of Az , between
10−5 and 10−3.

Figure 9: Leftmost panel: time evolution of the volume-integrated magnetic energy density (normalized to its initial value) for
the 2D field loop advection problem. The black and red lines correspond, respectively, to computations carried with Ca = 0.4
and Ca = 0.8. Middle panel: volume-averaged value of |Bz | (normalized to the initial value B0 = 10−3) as a function of time for
three different grid resolutions (256, 128 and 64 corresponding to stars, ”x” and plus signs). Rightmost panel: volume-averaged
values of |∇ · B| and |Bz | for different values of the α parameter controlling monopole damping at the resolution Nx = 128
points.
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Figure 10: Magnetic energy density for the 3D field loop problem at t = 1 at the resolution of 128 × 128 × 256. From left to
right: results obtained with the 8W, GLM and CT schemes.

Figure 11: Same as Fig 9 for the 3D field loop advection test. From left to right: time history of the (normalized) volume-
integrated magnetic field energy, (normalized) average value of |B3| (magnetic field component orthogonal to the original 2D
plane) and volume averages of |∇ ·B3| and |B3| as functions of the α parameter.
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Figure 12: Density, magnetic energy and sonic Mach number for the rotor problem at t = 0.15 obtained with the GLM (upper
panels) and the CT (lower panels) methods. 20 levels are displayed, the range of which is 0.5 ≤ ρ ≤ 13, 0.04 ≤ B2 ≤ 5.2 and
0 ≤ M ≤ 4
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Figure 13: A zoom in the central region of the rotor problem at time t = 0.15, showing 20 levels (0 ≤ M ≤ 4) of contour
profiles of the sonic Mach number. Results for the GLM and CT schemes are shown on the left and right panels, respectively.
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Figure 14: Two dimensional cuts in the xz plane of gas pressure, magnetic and kinetic energy densities for the GLM (top),
EGLM (middle) and CT (bottom) schemes, at t = 0.02 for the first blast wave problem. Pressure values range from 1.0 (white)
to 42.4 (black). The magnetic energy ranges from 25.2 (white) to 64.9 (black) while the kinetic energy density spans from 0.0
(white) to 33.1 (black).
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Figure 15: Density and pressure profiles, the latter on logarithmic scale, along x at y, z = 0, at time t = 0.02. Results obtained
with the CT and EGLM schemes are shown using box and cross symbols, respectively.
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Figure 16: Density, pressure, velocity and magnetic energy contours (30 levels) for the CTU-EGLM scheme at t = 2.5 · 10−3

in the xz plane. Density values range from 0.18 to 3.2 while pressure spans from 0.9 to 2290. The absolute value of velocity
ranges from 0.0 to 47 while the magnetic energy spans from 2817 to 5932.

31


	Introduction
	The Constrained GLM-MHD Equations
	The CTU-GLM scheme
	Advection Step
	Normal Predictors
	Transverse Predictors

	Solving the Riemann Problem
	Source Step
	Modifications for the Extended GLM (EGLM) formulation

	Numerical Tests
	Propagation of Circularly polarized Alfvén Waves
	Two-Dimensional Propagation
	Three-Dimensional Propagation

	Nonlinear smooth flow
	Shock Tube Problems
	Two-dimensional shock tube
	Three-dimensional shock tube

	Magnetic Field Loop Advection
	Two-dimensional advection

	Three-dimensional field loop advection
	Two-dimensional Rotor problem
	Three Dimensional Blast Wave

	Conclusions
	Characteristic Decomposition of the GLM-MHD Equations

