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Abstract

This paper collects the efforts done in our previous works [8],[11],[10] to build a robust
multiscale kinetic-fluid solver. Our scope is to efficiently solve fluid dynamic problems which
present non equilibrium localized regions that can move, merge, appear or disappear in time.
The main ingredients of the present work are the followings ones: a fluid model is solved in the
whole domain together with a localized kinetic upscaling term that corrects the fluid model
wherever it is necessary; this multiscale description of the flow is obtained by using a micro-
macro decomposition of the distribution function [10]; the dynamic transition between fluid
and kinetic descriptions is obtained by using a time and space dependent transition function;
to efficiently define the breakdown conditions of fluid models we propose a new criterion based
on the distribution function itself. Several numerical examples are presented to validate the
method and measure its computational efficiency.

Keywords: kinetic-fluid coupling, multiscale problems, Boltzmann-BGK equation.

1 Introduction

Many engineering problems involve fluids in transitional regimes such as hypersonic flows or micro-
electro-mechanical devices. In these cases, usual fluid models (like Euler or Navier-Stokes equa-
tions) break down in localized regions of the computational domain (typically in shock and bound-
ary layers). For such problems, using classical fluid models is generally not sufficient for an accurate
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description of the flow in non-equilibrium regions. However, it is not necessary to solve the Boltz-
mann equation—which is computationally more expensive than continuum solvers by several orders
of magnitude—especially in situations where the flow is close to thermodynamical equilibrium.

For the above reasons, it is important to develop hybrid techniques which can reduce the
use of kinetic solvers to the regions where they are strictly necessary (kinetic regions), leaving the
simulation in the rest of the domain to a continuum or fluid solver (fluid regions). The construction
of these methods involve two main problems. The first one is how to accurately identify the different
regions. We refer, for instance, to the works of Wijesinghe and Hadjiconstantinou [15], Levermore,
Morokoff, and Nadiga [20], and Wang and Boyd [32], in which various breakdown criteria are
proposed. The second main problem is how to efficiently and correctly match the two models
at the interfaces. Most of the recent methods are based on domain decomposition techniques,
such as in the works of Bourgat, LeTallec, Perthame, and Qiu [3], Bourgat, LeTallec and Tidriri
[4], LeTallec and Mallinger [23], Aktas and Aluru [1], Roveda, Goldstein and Varghese [27], Sun,
Boyd and Candler [29], Wadsworth and Erwin [33], and Wijesinghe et al. [34]. The same domain
decomposition approach has been also used in many others fields, such as, for instance, in molecular
dynamics [14], in epitaxial growth [28] or for problems involving diffusive scalings [18] instead of
hydrodynamic ones. We also mention the use of decompositions in velocity instead of physical
space done by Crouseilles, Degond and Lemou [7] and by Dimarco and Pareschi [12].

It is important to stress that most of the mentioned methods use a static interface between
kinetic and fluid regions that is chosen once for all at the beginning of the computation. However,
for unsteady problems, this approach appears as somehow inadequate and inefficient, and for this
reason, some automatic domain decomposition methods have also been proposed, see for example
Kolobov et al. [19], or Tiwari [30, 31] and Dimarco and Pareschi [11]. We have also proposed a
similar approach in [11].

In this paper, we propose a method that has similar features as the methods mentioned above:
we solve the Boltzmann-BGK equation coupled with the compressible Euler equations through an
adaptive domain decomposition technique. With this technique, it is possible to achieve consid-
erable computational speedup, as compared to steady interface coupling strategies, without losing
accuracy in the solution. This method is somehow an extension of our previous work [11], but
several important differences must be noted. First, we introduce a new breakdown criterion which
is based on a careful inspection of the distribution function. This criterion can be defined by using
the macroscopic variables only, at least in fluid regions, and thus does not introduce additional
expensive computations. This allows us to define kinetic regions that are small as possible. Second,
we use a decomposition of the distribution function that has better properties than the one used
in [11]. In fact, while it has been proved by Degond, Jin, and Mieussens [8] that the decomposition
used in [11] preserves uniform flows at the continuous level, we show in this paper that this is not
true in general at the discrete level, except if a quite specific and very expensive kinetic scheme
is used. For this reason in the present work we use the decomposition proposed by Degond, Liu,
and Mieussens [10], since it perfectly preserves uniform flows, both for the continuous and discrete
cases. As in [10], we decompose the distribution function into an equilibrium part, that can be
described by macroscopic fluid variables, and a perturbative non-equilibrium part. We obtain a
micro-macro fluid model in which the macroscopic variables are determined by solving a fluid equa-
tion with a kinetic upscaling. This kinetic upscaling is determined by solving a kinetic equation,
and is dynamically and automatically localized wherever it is necessary, by using our breakdown
criterion and the transition function idea [9, 8, 10, 11]. Third, we propose an efficient numerical
scheme for discretizing our micro-macro fluid model: we use a time splitting approach that has
several advantages. In particular it is shown to preserve the positivity of the distribution function.

The outline of the article is the following. In section 2, we introduce the BGK equation and
its properties. In section 3, we present the coupling strategy, while in section 4 the numerical
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scheme is described and positivity properties are analyzed. In section 5, we derive our breakdown
criterion, and the final algorithm is presented. Several numerical tests are presented in section 6
to illustrate the properties of our method and to demonstrate its efficiency. A short conclusion is
given in section 7. In appendix A, the differences between the present coupling strategy and the
decomposition used in [8, 11] are analyzed in some details.

2 The Boltzmann-BGK model

We consider the kinetic equation
∂tf + v · ∇xf = Q(f), (1)

with the initial data
f(x, v, t = 0) = finit,

where f = f(x, v, t) is the density of particles that have velocity v ∈ R
3 and position x ∈ Ω ⊂ R

3

at time t > 0. The collision operator Q locally acts in space and time and takes into account
interactions between particles. It is assumed to satisfy local conservation properties

〈mQ(f)〉 = 0 (2)

for every f , where we denote weighted integrals of f over the velocity space by

〈φf〉 =
∫

R3

φ(v)f(v)dv, (3)

where φ(v) is any function of v, and m(v) = (1, v, |v|2) are the so-called collisional invariants. It
follows that the multiplication of (1) by m(v) and the integration in velocity space leads to the
system of local conservation laws

∂t〈mf〉+∇x〈vmf〉 = 0. (4)

We also assume that the functions satisfying Q(f) = 0, referred to as local equilibrium distributions
and denoted by E[̺], are defined implicitly through their moments ̺ by

̺ = 〈mE[̺]〉 (5)

In the present paper we will work with the BGK model of the Boltzmann collision operator that
reads

Q(f) = ν(E[̺]− f). (6)

With this operator, collisions are modelled by a relaxation towards the local Maxwellian equilib-
rium:

E[̺](v) =
̺

(2πθ)3/2
exp

(−|u− v|2
2θ

)

, (7)

where ̺ and u are the density and mean velocity while θ = RT with T the temperature of the gas
and R the gas constant. The macroscopic values ̺, u and T are related to f by:

̺ =

∫

R3

fdv, ̺u =

∫

R3

vfdv, θ =
1

3̺

∫

R3

|v − u|2fdv, (8)

while the internal energy e is defined as

e =
1

2̺

∫

R3

|v|2fdv =
1

2
|u|2 + 3

2
θ. (9)
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The parameter ν > 0 is the relaxation frequency. In this paper, we use the classical choice ν = µ/p
where µ = µref (θ/θref )

ω is the viscosity and p is the pressure. We refer to section 6 for numerical
values of µref , θref and ω.

Boundary conditions have to be specified for equation (1). Different type of conditions are
used in applications: inflow, outflow, specular reflection or total accomodation. We will specify
the conditions we use for every numerical test in section 6.

When the mean free path between particles is very small compared to the size of the compu-
tational domain, the space and time variables can be rescaled to

x′ = εx, t′ = εt (10)

where ε is the ratio between the microscopic and the macroscopic scale (the so-called Knudsen
number). Using these new variables in (1), we get

∂t′f
ε + v · ∇x′f ε =

ν

ε
(Eε[̺]− f ε). (11)

If the Knudsen number ε tends to zero, this equation shows that the distribution function converges
towards the local Maxwellian equilibrium Eε[̺]. Using this relation into the conservation laws (4)
gives the Euler equations for ̺:

∂t′̺+∇x′F (̺) = 0, (12)

where F (̺) = 〈vmEε[̺]〉 = (̺, ̺u, ̺e).
In the sequel, to give a simple description of our approach, all schemes and all algorithms

are shown for the one dimensional case in velocity and physical space. The extension to the
multidimensional case does not introduce any additional difficulty in the mathematical setting.
We will also omit the primes wherever they are unnecessary.

3 The coupling method

In this section, we follow the work of [10] and extend the micro-macro fluid model to allow for
dynamic localization of the kinetic upscaling.

3.1 Decomposition of the kinetic equation

Our method is based on the micro-macro decomposition of the distribution function: it is decom-
posed in its local Maxwellian equilibrium and the deviation part as

f = E[̺] + g. (13)

Because the equilibrium distribution has the same first three moments as f we have

〈mg〉 = 0. (14)

Then it can be easily proved that the following coupled system

∂t̺+ ∂xF (̺) + ∂x〈vmg〉 = 0 (15)

∂tg + v∂xg = −νg − (∂t + v∂x)E[̺] (16)

is satisfied by ̺ = 〈mf〉 and g = f − E[̺], where F (̺) = 〈vmE[̺]〉 is the flux associated to the
equilibrium state. The corresponding initial data are

̺t=0 = ̺init = 〈mfinit〉, gt=0 = finit − E[̺init]. (17)
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The converse statement is also true: if ̺ and g satisfy system (15) and (16) with initial data (17),
then f = E[̺] + g satisfies the kinetic equation (1) (see [8] for details). In the following sec-
tion, starting from this decomposition, we introduce the set of equations that define the domain
decomposition technique we are proposing.

3.2 Transition function

Let Ω1, Ω2, and Ω3 be three disjointed sets such that Ω1 ∪ Ω2 ∪ Ω3 = R
3. The first set Ω1 is

supposed to be a domain in which the flow is far from the equilibrium (the ”kinetic zone”), while
the flow is supposed to be close to the equilibrium in Ω2 (the ”fluid zone”) and also in Ω3 (the
”buffer zone”). We define a function h(x, t) such that

h(x, t) =







1, for x ∈ Ω1,
0, for x ∈ Ω2,
0 ≤ h(x, t) ≤ 1, for x ∈ Ω3.

(18)

Note that the time dependence of h means that we account for possibly dynamically changing fluid
and kinetic zones. The topology and geometry of these zones is directly encoded in h and may
change dynamically as well.

Next, we split the perturbation term in two distribution functions gK = hg and gF = (1− h)g.
The time derivatives of these functions then are

∂tgK = ∂t(hg) = g ∂th+ h∂tg,

∂tgF = ∂t((1 − h)g) = −g ∂th+ (1− h)∂tg,

and it is therefore easy to derive the following coupled system of equations

∂t̺+ ∂xF (̺) + ∂x〈vmgK〉+ ∂x〈vmgF 〉 = 0 (19)

∂tgK + hv∂xgK + hv∂xgF = −νgK − h(∂t + v∂x)E[̺] +
gK
h
∂th, (20)

∂tgF + (1− h)v∂xgK + (1 − h)v∂xgF = −νgF − (1 − h)(∂t + v∂x)E[̺]− gF
1− h

∂th, (21)

with initial data

gK,t=0 = ht=0gt=0 , gF,t=0 = (1− ht=0)gt=0 , ̺t=0 = ̺init (22)

and with ht=0 = hinit and gt=0 = finit − E[̺init]. Again, system (19–21) with initial data (22) is
equivalent to system (15–16) with initial data (17) (see [8] for details).

Now assume that the flow is very close to equilibrium in Ω2 ∪ Ω3. This means that g is very
small in these domains and can be set to zero. Since g = gF in Ω2, we set gF = 0 in this domain.
In Ω3, we also set gF = 0, which means that we approximate g by gK . Consequently, gF can be
eliminated from (19–21) to get:

∂t̺+ ∂xF (̺) + ∂x〈vmgK〉 = 0 (23)

∂tgK + hv∂xgK = −ν
ε
gK − h(∂t + v∂x)E[̺] +

gK
h
∂th, (24)

with initial data

gK,t=0 = ht=0gt=0 = hinit(finit − E[̺init]) , ̺t=0 = ̺init. (25)

Note that since by definition gK is zero in the fluid zone Ω2, the kinetic equation equation (24) is
solved in the kinetic and buffer zones Ω1 and Ω3 only. Indeed, in the fluid zone, we only solve (23)
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with gK = 0, which is nothing but the Euler equations. In the kinetic zone, we have gK = g
and hence system (23–24) is nothing but system (15–16), which is equivalent to the original BGK
equation. System (23–24) is our micro-macro fluid model with dynamically localized kinetic effects
which will be used to solve multiscale kinetic problems. With this system, the distribution function
f is approximated by E[̺] + gK .

In the next section we describe and analyze the numerical scheme we use to discretize this
system, and we compare this new model to the model used in our previous work [11].

Remark 1. We mention here a slightly different derivation that leads to a different micro-macro
model. In (20), the term gK

h can be equivalently replaced by gK + gF , since gK = hg by definition
and also g = gK + gF . In this case, the approximation gF = 0 in Ω2 and Ω3 leads to the model:

∂t̺+ ∂xF (̺) + ∂x〈vmgK〉 = 0 (26)

∂tgK + hv∂xgK = −ν
ε
gK − h(∂t + v∂x)E[̺] + gK∂th (27)

Note that, surprisingly, this model is different from (23–24): indeed, the factor of ∂th is gK in (26–
27), while it is gK

h in (23–24). However, we only use system (23–24) in the sequel, since it can be
proved to have very good properties (like positivity preservation).

4 Numerical approximation of the coupled model and its

properties

First, we briefly describe a velocity discretization of the kinetic BGK equation. Then, we propose
a second order in space numerical scheme for the perturbation term gK and for the macroscopic
fluid equations. Then, we introduce a time splitting method between the transition function term
and the rest of the system to compute the evolution of the perturbation function gK . Finally,
positivity property for the distribution function f is analyzed in details.

4.1 Discrete velocity model for kinetic equations

Here, we replace the continuous velocity space by a bounded Cartesian grid V of N nodes vj =
j∆v + a, where j is a bounded index, ∆v is the grid step, and a is a constant. The collisional
invariants m(v) are replaced by mj = (1, vj ,

1
2 |vj |2). The distribution function f is approximated

on the grid by (fj(t, x))j , where fj(t, x) ≈ f(x, vj , t), while the fluid quantities are obtained from
fj through discrete summations on V :

̺ =
∑

j

mjfj ∆v. (28)

The BGK model is then replaced by the following system of N hyperbolic equations with a stiff
relaxation term:

∂tfj + vj∂xfj =
ν

ε
(Ej [̺]− fj), (29)

where Ej[̺] is the approximation of the continuous Maxwellian E[̺]. Note that this approximation
is not the evaluation of E[̺] on the grid points: in fact, to ensure conservation of macroscopic
quantities and entropy decay at the discrete level, the approximated Maxwellian E [̺j ] is defined
through an entropy minimization problem that can be solved by computing the solution of a small
non-linear system (we refer the reader to [21, 22] for details about this approximation).
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Finally, a micro-macro system with localized upscaling can be derived from the discrete-velocity
BGK equation (29), exactly as in the continous case, and we find:

∂t̺+ ∂xF (̺) + ∂x〈vmgK〉 = 0 (30)

∂tgK,j + hvj∂xgK,j = −ν
ε
gK,j − h(∂t + vj∂x)Ej [̺] +

gKj

h
∂th, (31)

with initial data

gK,j,t=0 = ht=0gt=0,j = hinit(finit,j − Ej [̺init]) , ̺t=0 = ̺init,

where 〈.〉 now stands for
∑

j .∆v.

4.2 Numerical schemes

4.2.1 Non-splitting scheme

For the space discretization, we consider a grid of step ∆x and nodes xi, while for the time
discretization, we consider the step ∆t and times tn = n∆t. The unknowns ̺ and gK,j are
approximated by ̺n

i ≈ ̺(tn, xi) and g
n
K,i,j ≈ gj(tn, xi). Now, the space and time discretization of

the discrete velocity micro-macro system (30–31) is:

gn+1
K,i − gnK,i

∆t
+ hni

(

φi+1/2(g
n
K)− φi−1/2(g

n
K)

∆x

)

= −ν
ε
gn+1
K,i

−hni
(E [̺n+1

i ]− E [̺n
i ]

∆t
+
φi+1/2(E [̺n])− φi−1/2(E [̺n])

∆x

)

+
gnK,i

hni

hn+1
i − hni

∆t
(32)

where the second order numerical fluxes are defined by

φi+1/2(g
n
K) = v−gnK,i+1 + v+gnK,i +

1

2
|vj |minmod (gnK,i − gnK,i−1, g

n
K,i+1 − gnK,i, g

n
K,i+2 − gnK,i)

with v− = vj if vj < 0 and v− = 0 in other cases, while v+ = vj if vj ≥ 0 and v+ = 0 if vj is
negative. The same numerical flux is used for φi+1/2(E[̺n]). Note that for simplicity, in (32) and
all what follows, the discrete-velocity index j is omitted, as well as the space and time dependency
of ν.

Note that in (32), ̺n+1 is computed by using a discrete version of (30) which is explained
below. Moreover, note that the last term of the right-hand side of (32) models the evolution of
the transition function h: the new value hn+1 depends on the equilibrium/non equilibrium state
of the gas in a way that will be described in section 5. In addition, we point out that when hni = 0,
equation (32) is not solved, thus the term gnK,i/h

n
i does not lead to any computational difficulties.

Finally, note that the stiff relaxation term of (32) is implicit. This allows us to use a time step
which is independent of ε.

Now, we describe the numerical scheme for the macroscopic equation (30). This equation is
discretized according to

̺n+1
i − ̺n

i

∆t
+
ψi+1/2(̺

n, gnK)− ψi−1/2(̺
n, gnK)

∆x
= 0 (33)

where the numerical flux is an approximation of the total flux F (̺, gK) = F (̺)+〈vmgK〉 obtained
by the second order MUSCL extension of a Lax-Friedrichs like scheme:

ψi+1/2(̺
n, gnK) =

1

2
(F (̺n

i , g
n
K,i) + F (̺n

i+1, g
n
K,i+1))−

1

2
α(̺n

i+1 − ̺n
i ) +

1

4
(σn,+

i − σn,−
i+1 ) (34)
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In this relation, we set

σn,±
i =

(

F (̺n
i+1, g

n
K,i+1)± α̺n

i+1 − F (̺n
i , g

n
K,i)∓ α̺n

i

)

ϕ(χn,±
i ) (35)

where ϕ is a slope limiter, α is the largest eigenvalue of the Euler system and

χn,±
i =

F (̺n
i , g

n
K,i)± α̺n

i − F (̺n
i−1, g

n
K,i−1)∓ α̺n

i−1

F (̺n
i+1, g

n
K,i+1)± α̺n

i+1 − F (̺n
i , g

n
K,i)∓ α̺n

i

(36)

where the above vectors ratios are defined componentwise.

4.2.2 Time splitting scheme

Here, we propose an alternative scheme based on a time splitting between the ∂th term and the
other terms in the kinetic equation for gK (31). We will show in the next section that this method
preserves the positivity of the distribution function f = E[̺]+gK under a suitable CFL condition.

First, we solve the macroscopic equation using (33) as in the previous scheme, where the
numerical fluxes are defined in (34). Now, for the kinetic equation on gK , the time variation of h
only is taken into account in (31) to get the second step:

g
n+ 1

2

K,i = gnK,i +
gnK,i

hni
(hn+1

i − hni ).

Note that this relation can be readily simplified in

g
n+ 1

2

K,i = gnK,i

hn+1
i

hni
, (37)

where, again, we point out that this equation is solved only if hni 6= 0.
In a third step, (31) is discretized without the ∂th term, by using the same approximation as

for the non-splitting scheme. We get:

gn+1
K,i − g

n+1/2
K,i

∆t
+ hn+1

i

(

φi+1/2(g
n+1/2
K )− φi−1/2(g

n+1/2
K )

∆x

)

= −ν
ε
gn+1
K,i

−hn+1
i

(E [̺n+1
i ]− E [̺n

i ]

∆t
+
φi+1/2(E [̺n])− φi−1/2(E [̺n])

∆x

)

. (38)

Note that for the moment, we did not mention how the new value of the transition function hn+1

is defined. This is done by using some criteria that are introduced in section 5. Independently
of this problem, we analyze in the following section the positivity property for the distribution
function.

4.3 Positivity of the distribution function for the discretized equations

In this section, we prove that the splitting scheme (37-38) preserves the positivity of f under a
suitable CFL condition. Another interesting property of the model here proposed, the preservation
of uniform flows, will be analyzed in the appendix in comparison with different coupling strategies
proposed in the recent past [8, 9, 11].

Proposition 1. If f0 ≥ 0 and g0K = h0(f0 − E [̺0]), where ̺0 = 〈mE[̺]〉 and 0 ≤ h0 ≤ 1, then
scheme (33–38) satisfies

fn
i = E [̺n

i ] + gnK,i ≥ 0

8



for every n and i, provided that ∆t satisfies the following CFL condition:

∆t ≤ ∆x

max(vj)
min
i,vj

(

g
n+1/2
K,i + hn+1

i E [̺n
i ]

hn+1
i (g

n+1/2
K,i + E [̺n

i ])

)

. (39)

Proof. The idea is in fact to prove a stronger property: indeed, we can prove, by induction, that
the positivity of hni E [̺ni ] + gnK,i is preserved at any time.

First, note that this relation holds at n = 0: from the definition of g0K , we have h0i E [̺0
i ]+g

0
K,i =

h0i f
0
i ≥ 0.
Then, we assume that this relation is satisfied for some n, and we prove that it is true for n+1.

This is done in the following three steps.
Step 1.

We first use (38) (where the numerical fluxes φi+1/2 are computed by the first order upwind scheme)

to explicitely compute gn+1
K,i and then to obtain:

gn+1
K,i + hn+1

i E [̺n+1
i ] =

1

1 + ν∆t/ε

(

(g
n+1/2
K,i + hn+1

i E [̺n
i ])−

|v|∆t
∆x

hn+1
i (g

n+1/2
K,i + E [̺n

i ])

+
v+∆t

∆x
hn+1
i−1 (g

n+1/2
K,i−1 + E [̺n

i−1])

− v−∆t

∆x
hn+1
i+1 (g

n+1/2
K,i+1 + E [̺n

i+1])

)

+
1

1 + ε/(ν∆t)
hn+1
i E [̺n+1

i ]

(40)

Now, it is clear that the sign of the left-hand side depends on the sign of g
n+1/2
K,i + hn+1

i E [̺n
i ] and

g
n+1/2
K,i + E [̺n

i ]. These two terms are studied in step 2.

Step 2.

Here, we use the definition of g
n+1/2
K,i (see (37)) to obtain g

n+1/2
K,i +hn+1

i E [̺n
i ] =

hn+1

i

hn
i

(hni E [̺n
i ]+g

n
K,i)

which is non-negative (due to the induction assumption). Consequently, g
n+1/2
K,i +hn+1

i E [̺n
i ] is non-

negative. Since E [̺n
i ] ≥ 0 and 0 ≤ hn+1

i ≤ 1, then we also have that g
n+1/2
K,i +E [̺n

i ] is non-negative.

Step 3.
Note that step 2 shows that the last three terms of the right-hand side of (40) are non-negative.
Consequently, (40) shows that gn+1

K,i + hn+1
i E [̺n+1

i ] is non-negative if ∆t satisfies the CFL condi-
tion (39). By induction, hni E [̺n

i ] + gnK,i is non-negative for every n, and for every i and v.
Finally, using again that E [̺n

i ] ≥ 0 and 0 ≤ hni ≤ 1, we easily deduce that E [̺n
i ] + gnK,i is also

non-negative.

Remark 2. If gnK,i ≥ 0, condition (39) is less restrictive than the CFL condition ∆t ≤ ∆x
max(vj)

obtained with a classical semi-implicit scheme for the original BGK equation. On the contrary,
condition (39) becomes more restrictive if the perturbation term gnK,i is negative. However, if we

assume that g is small enough (e.g. E [̺n
i ] ≫ g

n+1/2
K,i ), then the factor ∆x

max(vj)
in (39) is close to 1.

Indeed:
(

g
n+1/2
K,i + hn+1

i E [̺n
i ]

hn+1
i (g

n+1/2
K,i + E [̺n

i ])

)

=

(

1 +
(1 − hn+1

i )g
n+1/2
K,i

hn+1
i (g

n+1/2
K,i + E [̺n

i ])

)

≃ 1, (41)

and (39) reduces to the classical CFL for transport ∆t ≤ ∆x
max(vj)

.
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By contrast, we justify below why we think that the non-splitting scheme (32–33) cannot
preserve the positivity of f . Indeed, by using similar computations as the ones we did for the
splitting scheme, we find:

fn+1
i ≥ ε/ν

ε/ν +∆t

(

(gnK,i + hni E [̺n
i ])−

v∆t

∆x
hni (g

n
K,i + E [̺n

i ]) + gnK,i

hn+1
i − hni
hni

)

+
ε/ν

ε/ν +∆t

hni ∆tv

∆x
(gnK,i−1 + E [̺n

i−1]) +
∆t

ε/ν +∆t
E [̺n+1

i ].

Now, it is clear that the sign of fn+1 depends on the signs of hn+1
i −hni and gnK , and hence cannot

be controlled by a CFL condition on ∆t.

5 Localization of Fluid-Kinetic Transitions and the Dynamic

Coupling Technique

One of the key points in a domain decomposition technique for gas dynamics problems is to
efficiently localize the regions where the state of the gas departs from equilibrium, so as to describe
the solution with the appropriate microscopic model. In other words we look for an accurate
criterion the evaluation of which is computationally inexpensive.

Here, we propose three different criteria based on the information which can be retrieved from
either the kinetic distribution function or from the macroscopic variables. The way the localization
of the equilibrium and non-equilibrium regions evolves is described at the end of this section.

5.1 Analysis of Microscopic and Macroscopic Criteria

5.1.1 Microscopic Criteria

In regions where the kinetic or coupled kinetic/fluid models are solved, we can use the distribution
function to measure the fraction of gas particles which are not distributed according to a Maxwellian
(as in [11]). In the same way, the fractions of momentum, energy, and heat flux due to the non-
equilibrium flux can be measured. Consequently, in every cell where h 6= 0, it is possible to evaluate
the parameters

λ1,K = 〈|gK(v)|〉, λ2,K = 〈v|gK(v)|〉, λ3,K = 〈 |v|
2

2
|gK(v)|〉, λ4,K = |〈v |v|

2

2
gK(v)〉|. (42)

Note that the first three values above will be zero if we use gK instead of |gK |, while the last
one is in general different from zero. For compatibility with the macroscopic criterion introduced
in the sequel, the definition of λ4 in (42) has been preferred to the alternate definition λ4,K =

〈|v |v|2

2 gK(v)|〉. The four parameters are computed in our code with the following quadrature
formula

λ1,K =
∑

j

|gK,j|∆v, λ2,K =
∑

j

vj |gK,j |∆v,

λ3,K =
∑

j

|vj |2
2

|gK,j |∆v, λ4,K = |
∑

j

v
|vj |2
2

gK,j∆v|, (43)

where gK,j(t, x) ≈ gK(x, vj , t). In kinetic and buffer zones Ω1 ∪Ω3 (where h 6= 0), the discrepancy
between the fluid and kinetic models can be measured by the following parameters

βn
1,i,K =

λn1,i,K
̺ni

, βn
2,i,K =

λn2,i,K
̺ni u

n
i

, βn
3,i,K =

λn3,i,K
̺ni e

n
i

, (44)
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or alternatively, we can use the value of the heat flux relatively to the value of the equilibrium
energy flux

βn
4,i,K =

λn4,i,K

|〈v 1
2 |v|2E[ρni ]〉|

. (45)

In order to define a unique variable which permits to switch from one model to the other one
in every regime and in every region (Ωi, i = 1, 2, 3), we choose β4 as the breakdown parameter.
Indeed, as shown below, it is possible to estimate this quantity also in fluid regimes. By using this
criterion, the transition function can be defined by an appropriate function that maps β4 to the
interval [0, 1]: hni = f(βn

4,i,K). Such a mapping is defined in section 5.2.

5.1.2 Macroscopic criteria

The previous analysis is quite efficient and does not induce expensive additional computations,
since the perturbation term gK is already known in regions where the parameter β4 has to be
computed. However, if we decide to use this criterion in the whole domain, the cost will be
equivalent to the cost of computing the solution of the kinetic model in the whole domain. For
this reason, it is necessary to look for others indicators that are based on the equilibrium values
only. The most obvious one is the local Knudsen number ε which is defined as the ratio of the
mean free path of the particles λpath to a reference length L:

ε = λpath/L, (46)

where the mean free path is defined by

λpath =
kT√
2πpσ2

c

,

with k the Boltzmann constant equal to 1.380062×10−23JK−1, p the pressure and πσ2
c the collision

cross section of the molecules. The Knudsen number is determined through macroscopic quantities
and can be computed in the whole domain with a minimum additional cost. Now, in order to take
into account the elementary fact that, even in extremely rarefied situations, the flow can be in
thermodynamic equilibrium, according to Bird [2], the reference length is defined as

L = min

(

̺

∂̺/∂x
,

̺u

∂̺u/∂x
,

̺e

∂̺e/∂x

)

. (47)

According to [20] and [19], the fluid model is accurate enough if the local Knudsen number is lower
than the threshold value 0.05. It is argued that, in this way, the error between a macroscopic
and a microscopic model is less than 5% [32]. This parameter has been extensively used in many
works and is now considered in the rarefied gas dynamic community as an acceptable indicator.
We notice that the local Knudsen number takes into account both the physics (with the measure
of the mean free path and the identification of large gradients) and the numerics (through the
approximation of derivatives on the mesh).

In the present work we propose an alternative criterion, based on the analysis of the micro-
macro decomposition. We will apply this criterion only in fluid regions. For this reason, we consider
the equation for the non-localized perturbation g (see (16)) in its discretized form

gn+1
i − gni

∆t
+

(

φi+1/2(g
n)− φi−1/2(g

n)

∆x

)

= −ν
ε
gn+1
i +

−
(E [̺n+1

i ]− E [̺n
i ]

∆t
+
φi+1/2(E [̺n])− φi−1/2(E [̺n])

∆x

)

. (48)

11



Let us consider a point xi which lies in the macroscopic region at time tn , i.e. gni ≡ 0. If, in
addition, we assume that gn is close to zero in the neighboring cells (which should be true if the
transition function is smooth enough), then we obtain

gn+1
i = − ε/ν

ε/ν +∆t

(

E [̺n+1
i ]− E [̺n

i ]
)

− ε/ν∆t

(ε/ν +∆t)∆x

(

φi+1/2(E [̺n])− φi−1/2(E [̺n])
)

(49)

Using this relation, we are able to evaluate the mismatch between the macroscopic fluid equations
and the kinetic equation. In fact, note that, in the macroscopic equation (15) we do not know how
to evaluate the kinetic term ∂x < vmg >, except if we solve, at the same time, the kinetic and the
macroscopic problem (15-16). However, at point xi, thanks to (49), the perturbation term only
depends on the Maxwellian distribution which in turn only depends on the macroscopic variables
at the previous time step. Then, integrating (49) over the velocity space we get:

∫

R3

vmgn+1
i dv = − ε/ν

ε/ν +∆t

(
∫

R3

vmE [̺n+1
i ]dv −

∫

R3

vmE [̺n
i ]dv

)

+

− ε/ν∆t

(ε/ν +∆t)∆x

[

φi+1/2

(
∫

R3

vvmE [̺n]dv

)

− φi−1/2

(
∫

R3

vvmE [̺n]dv

)]

(50)

where in one space dimension we have
∫

R3

vE[̺]dv = ̺u,

∫

R3

v2E[̺]dv = ̺(u2 + 3θ) (51)

and
∫

R3

v3E[̺]dv = ̺u(u2 + 5θ),

∫

R3

v4E[̺]dv = ̺(u4 + 8u2θ + 5θ2) (52)

Now, the last step is to measure the ratio of the non-equilibrium fraction to the equilibrium
one. Observe that in the one dimensional case the only non-zero moment of the non-equilibrium
term g is the heat flux. Thus, like for the microscopic criterion (45), we measure the ratio of the
heat flux to the energy flux:

βn
4,i =

λn4,i
|F3(̺n

i )|
, λ4,i =

∫

R3

v
|v|2
2
gn+1
i dv (53)

and define, as before, the value of the transition function hni at this point as an appropriate function
of β4:

hni = f(βn
4,i), 0 ≤ hni ≤ 1 (54)

In practice, we use the same function f to evaluate hni in all the computational domain, but while
βn
4,i is defined by (45) in kinetic regions, it is defined by (53) in fluid regions.
The quantities (45)-(53) (which will be referred to as breakdown parameters) furnish a true

measure of the model error, while the local Knudsen criterion is rather a physical-based criterion.
In the numerical test section, we will compare these two strategies.

Remark 3. In the above analysis we have discarded the convection term (v∂xg). This can be
justified by the hypothesis of smoothly varying transitions, which means that this term is supposed
to be small. Anyway, it is possible to take it into account. For example, through an upwind
discretization, we obtain

v∂xg
n
i =











v
gni − gni−1

∆x
if v ≥ 0

v
gni − gni−1

∆x
if v < 0

Now, as before, gni ≡ 0, while gni+1 or gni−1 assume known values, which can be different from zero
if the transition function h appears to be greater than zero in these cells (hni+1 6= 0 or hni−1 6= 0).

12



5.2 Kinetic/Fluid Coupling Algorithm

We now describe the kinetic/fluid coupling algorithm.
Define βthr and β∗

thr ≤ βthr as the maximum errors that we can afford by using the fluid model
instead of the kinetic one. Then:

Assume ̺n, gnK , h
n are known in the whole space domain at time n.

1. Advance the macroscopic equation in time by using scheme (33) and obtain ̺n+1.

2. Compute the equilibrium parameter βn
4,i in every space cell for which h = 0 through relation

(53).

3. If βn
4,i ≥ βthr then set hn+1

i = 1 which means that xi at time tn+1 belongs to the kinetic

region; if βn
4,i < β∗

thr then set hn+1
i = 0, which means that xi at time tn+1 belongs to the

fluid region.

4. If β∗
thr ≤ βn

4,i ≤ βthr then set hn+1
i =

βn
4,i−β∗

thr

βthr−β∗

thr

, which means that xi at time tn+1 belongs to

the buffer region.

5. Advance the kinetic equation in time by using scheme (37)–(38) and obtain gn+1
K .

6. Compute the equilibrium parameter βn
4,i,K in every space cell for which h 6= 0 through relation

(45).

7. If βn
4,i,K ≥ βthr then set hn+1

i = 1 which means that xi at time tn+1 belongs to the kinetic

region, if βn
4,i,K < β∗

thr then set hn+1
i = 0, which means that xi at time tn+1 belongs to the

fluid region.

8. If β∗
thr ≤ βn

4,i,K ≤ βthr then set hn+1
i =

βn
4,i,K−β∗

thr

βthr−β∗

thr

, which means that xi at time tn+1 belongs

to the buffer region.

9. Re-project the non equilibrium part of the distribution function gnK through the relation (37).

Remark 4.

• In the above algorithm the steps 2-3-4 can be substituted by equivalent steps in which the
breakdown criterion is the local Knudsen number, with convenient threshold values.

2. Compute the local Knudsen number εni in every space cell for which h = 0 through
relation (46).

3. If εni ≥ εtrh then set hn+1
i = 1 which means that xi at time tn+1 belongs to the kinetic

region, if εni < ε∗trh then set hn+1
i = 0, which means that xi at time tn+1 belongs to the

fluid region.

4. If ε∗trh ≤ εni ≤ εtrh then set hn+1
i =

εni −ε∗trh
εtrh−ε∗

trh

, which means that xi at time tn+1 belongs

to the buffer region.

In the next section, we report comparisons between using the Knudsen number and the new
breakdown parameter.

• At the beginning of the computation the full domain is supposed in thermodynamical equilib-
rium. During the computation, kinetic regions are created. Some of these regions can become
even one cell thick, merge or split. The transition function can also pass from 0 to 1 and
vice-versa in a single time step and with jumps in space. Every step is completely automatic
in each simulation, no additional parameters are used.
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• Compared to the previous work [11] in which the buffer regions where fixed once for all at
the beginning of the computation, the present strategy consists in making the buffer regions
dependent on the current state of the gas through the functions (45)-(53) and the thresholds
values. This modification leads to a considerable improvement in accuracy, flexibility and
usability of the method.

6 Numerical tests

6.1 General setting

In this section, we present several numerical results to highlight the performances of the method.
By using unsteady test problems, we emphasize the deficiencies of the static decomposition method.
As in [11] we start with an unsteady shock test problem. Even in this simple situation, a standard
static domain decomposition fails in its scope. Indeed, the shock moves in time. Thus in rarefied
regimes, it is necessary to use a kinetic solver in the full domain, which turns to be a quite inefficient
method. On the other hand, with our algorithm, we reduce the computationally expensive regions
to a small zone compared to the full domain.

Next, we use our scheme to compute the solution of the Sod test. Here some new difficulties
arise. Indeed, contact discontinuities and rarefaction waves appear but, as described below, the
method efficiently deals with such situations.

Finally, in the third test, a blast wave simulation is performed. In spite of the complexity of the
solution, the algorithm shows a very good behavior, creating, deleting or merging zones together
and obtaining fast and precise results.

In order to obtain the correct equation of state with only one velocity-space dimension, we use
the following model:

∂t

(

F
G

)

+ v∂x

(

F
G

)

= ν

(

MF − F
TMF −G

)

.

It is obtained from the full three-dimensional Boltzmann-BGK system by means of a reduction
technique [16]. In this model, the fluid energy is given by

E =

∫

R

(
1

2
v2F +G)dv.

This model permits to recover the correct hydrodynamic limit given by the standard Euler system
even with a one-dimensional velocity space.

The collision frequency is given by ν = τ−1 = (µp )
−1 where µ = C ·θω. We choose gas hydrogen

for our simulations. Thus C = 1.99× 10−3, ω = 0.81 and R = 208.24 [2].
In all tests the time step is given by the minimum of the maximum time steps allowed by the

kinetic and fluid schemes. This means that no attempts have been made to try to increase the
computational efficiency by means of a reduction of the number of necessary effective steps for
the less restrictive scheme, by, e.g. freezing one model in time, while the other one is advanced.
Indeed, such a reduction still requires further investigations. Thus, the global speed-up is only due
to the reduction of the sizes of the kinetic and buffer regions inside the domain. This reduction
is achieved through a correct prediction of the evolution of the transition function and the use of
efficient criteria for the determination of the equilibrium regions. We point out that no a-priori
choices on the dimension of the buffer and position of the different regions are done in all the tests.
Instead all the procedure is automatic and determined by the step by step algorithm presented in
the previous section. For all tests, we set βthr = 10−3 and β∗

thr = 10−4.
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6.2 Unsteady Shock Tests

We consider an unsteady shock that propagates from left to right in the computational domain
x = −20 m, x = 20 m. The shock is produced pushing the hydrogen gas against a wall which
is located on the left boundary. We consider that the particles are specularly reflected and that
the wall instantaneously adopts the temperature of the gas. This effect is numerically simulated
by setting macroscopic variables in ghost cells (two cells for a second order scheme) beyond the
left boundary with parameters ̺, T equal to the values of the first cell while the momentum is
set opposite. In the non equilibrium case gK is also different from zero in the ghost cell, and is
equal to a specularly reflected copy of gK in the first cell. At the right boundary, we mimic the
introduction of the gas by adding two ghost cells where, at each time step, the initial values for
density, momentum and energy are fixed. The gas is supposed in thermodynamic equilibrium,
which implies that gK = 0. The computation is stopped at the final time t = 0.04 s. There are
300 cells in physical space and 40 cells in velocity space. We do not use a finer mesh because the
scheme is second order. Symmetric artificial boundaries in velocity space are fixed at the beginning
of the computation through the relation vb = ±C1 max(

√
RTW ), where R is the gas constant, C1

is a parameter normally fixed equal to 4 and TW is a temperature set equal to the maximum
attainable temperature, which is obtained by supposing that all the kinetic energy is transformed
into thermal energy. The transition function h is initialized as h = 0 (fluid region) everywhere.

In the first test the initial conditions are ̺ = 10−6 kg/m3 for the mass density, u = −900
m/s for the mean velocity and T = 273 K for the temperature. In Figure 1 we have reported the
mass density on the left and the velocity on the right. ¿From top to bottom, time increases from
t = 10−2 s (top) to t = 4 × 10−2 s (bottom), with t = 2 × 10−2 s middle top and t = 3 × 10−2 s
middle bottom. In Figure 2 we have reported the temperature on the left, the transition function,
the heat flux and the local Knudsen number on the right. From top to bottom the same instants
of time as for the previous Figure are shown. In the plots regarding the macroscopic variables we
reported the solution computed with our algorithm (mic-mac in the legend of the Figures), the
solution computed with a kinetic solver and the solution computed with a macroscopic fluid solver.
Magnifications of the solutions close to non equilibrium regions are given for clarity.

As soon as the simulation starts on the left boundary, the transition function h increases from
zero to one, which means that the solution is computed with the kinetic scheme, while in the rest
of the domain the solution is still computed with the fluid scheme (h = 0). When the shock starts
to move towards the right, we notice a splitting of the kinetic region. One very narrow region still
continues to follow the shock and one remains close to the left boundary. Once that the threshold
values of the breakdown parameters β and βK are fixed, the procedure automatically determines
the sizes of the kinetic and buffer regions.

We repeat the simulation with a lower initial density ̺ = 10−7 kg/m3. This yields different
results which are reported in Figure 3 for the density and velocity and in Figure 4 for the temper-
ature, local Knudsen, heat flux and transition function. The results are obtained with the same
criteria as in the previous test case. Again at the beginning h is set equal to zero (fluid), but now
the shock is much less sharp and the non equilibrium region becomes larger.

We observe that in this first test the discrepancy between the fully kinetic solver and the
coupling strategy is not perceivable, while the computational time is reduced in proportion to
the ratio between the areas of the kinetic and buffer regions compared to the entire domain.
Thus, in the first case we have a reduction of approximately 70% of the computational time while
in the second one the reduction is only the 20%. Further reductions are possible through code
optimization.
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6.3 Sod Tests

In these second series of tests, we consider the classical Sod initial data in a domain which ranges
from −20 m to 20 m. The numerical parameters are the same as for the previous examples.
Thus respectively 300 and 40 mesh points in physical and velocity space are used. Symmetric
artificial boundary condition are fixed in velocity space at the same points vb = ±C1 max(

√
RTW ),

while Neumann boundary condition are chosen both for the kinetic (if necessary) and fluid models.
Finally the simulations are initialized with a thermodynamic equilibrium with h = 0 and gK = 0
everywhere.

In the first case, we take the following initial conditions: mass density ̺L = 2 × 10−5 kg/m3,
mean velocity uL = 0 m/s and temperature TL = 273.15 K if −20 ≤ x ≤ 0 m, while ̺R =
0.25× 10−5 kg/m3, uR = 0 m/s, TR = 218.4 K if 0 ≤ x ≤ 20 m. The results are reported in Figure
5 for the density (left) and velocity (right) and in Figure 6 for the temperature (left), Knudsen
number, heat flux and transition function (right). Snapshot at increasing times are displayed top
to down, corresponding successively to t = 6× 10−3 s, then t = 1.2× 10−2 s, t = 1.8× 10−2 s and
finally t = 2.4× 10−2 s. Again we provide magnifications of the solution close to non equilibrium
zones in order to highlight the differences between the three different schemes: the macroscopic
and kinetic ones and the coupling strategy (mic-mac in the legend). We observe that due to the
initial shock, a kinetic region appears immediately and starts to grow in time, but as soon as the
different non equilibrium regions separate, the kinetic region itself splits into three: one around
the rarefaction wave, one around the contact discontinuity, and one around the shock. Even with
magnifications it is not possible to perceive differences between the kinetic model and the coupling
strategy, even though the kinetic regions remain very tiny, permitting a fast computation.

The simulation is repeated, with a lower initial density ̺L = 5 × 10−6 kg/m3 and ̺R =
0.75 × 10−6 kg/m3, and the results are displayed in Figure 7 for the density and velocity and
in Figure 8 for the temperature, heat flux, local Knudsen and transition function. The same
qualitative features as in the previous test can be observed, the only difference being that the
kinetic regions are thicker, which means that the non equilibrium zone is larger. This is clearly
visible from the plots of the macroscopic quantities: the difference between the kinetic and fluid
models is significant in a large portion of the domain.

We finally observe that compared to [11], in which a similar scheme was developed, we are able to
capture small discrepancies between the kinetic and macroscopic models in very tiny regions. This
turns to be a much more efficient use of the domain decomposition technique. The computational
time reduction is of the order of 70% and 60% respectively for the two tests compared to a kinetic
solver.

6.4 Blast Wave Tests

In this paragraph we present two interacting symmetric blast waves in hydrogen gas. The domain
ranges from x = 0 m to x = 1 m, while the numerical parameters in terms of mesh and velocity
space boundaries are the same as in the previous tests. The physical boundaries are represented
by two specularly reflecting walls, on which impinging particles are re-emitted in the opposite
direction with the same velocity (in magnitude). Mass is conserved at the walls which additionally
are supposed to adopt the gas temperature instantaneously. These effects are obtained like in
the unsteady shock test with two ghost cells (four for a second order scheme), in which the same
macroscopic values as those of the first and last cells are imposed, except for momentum which
changes sign. The perturbation function gK can in general be different from zero and assumes the
same values of its corresponding counterpart in the first and last cell, with a sign change in the
velocity variable. At the beginning, we set h = 0 and gK = 0 everywhere.
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In the first test, the initial data are:

̺ = 10−3kg/m3 u = 200 m/s T = 10000 K if x ≤ 0.1

̺ = 10−3kg/m3 u = −200 m/s T = 10000 K if x ≥ 0.9

̺ = 10−3kg/m3 u = 0 m/s T = 50 K if 0.1 ≤ x ≤ 0.9

The results in terms of the density and mean velocity are reported in Figure 9, while the temper-
ature, local Knudsen, heat flux and transition function are reported in Figure 10. The displayed
results are for increasing times t = 10−4 s to t = 4 × 10−4 s from top to bottom. Again we
plot the kinetic, the fluid schemes and the coupling strategy (micmac scheme) in each Figure and
magnifications close to non equilibrium regions are provided.

In the second test the initial density is decreased, and we use:

̺ = 10−4kg/m3 u = 200 m/s T = 10000 K if x ≤ 0.1

̺ = 10−4kg/m3 u = −200 m/s T = 10000 K if x ≥ 0.9

̺ = 10−4kg/m3 u = 0 m/s T = 50 K if 0.1 ≤ x ≤ 0.9

The results obtained with this second set of data are reported in Figure 11 and 12. We observe
that starting from a situation where the fluid model is used almost everywhere we end up in the
opposite situation where the kinetic model is used in the whole domain(h = 1 ∀x). Thus, while
a static domain decomposition technique leads to similar computational times as a fully kinetic
resolution, the coupling strategy leads to a speed up of about 40% for the first test and 30% for
the second test, compared to a fully kinetic solver.

7 Conclusion

In this paper we have presented a moving domain decomposition method which provides an efficient
way to deal with multiscale fluid dynamic problems. Regions far from thermodynamical equilibrium
are treated with a kinetic solver. The method is based on the micro-macro decomposition technique
developed by Degond-Liu-Mieussens [10] in which macroscopic fluid equations are coupled with
a kinetic equation which describes the time evolution of the perturbation from equilibrium. The
method consists in splitting the distribution function into an equilibrium part and a non-equilibrium
part, together with the introduction of buffer zones and transition functions as proposed in [10],
[8] and [11] to smoothly pass from the macroscopic model to the kinetic model and vice versa.

In order to build up an efficient method that can be used in a wide spectrum of situations,
and by contrast to [10], we consider the possibility of moving the different domains like in [11],
using however, a decomposition technique which shows enhanced performances. Moreover, we have
developed a scheme which is able to automatically create, cancel and move as many kinetic, fluid
or buffer regions as necessary. The method relies on the proper combination of the two equilibrium
criteria we have identified and on a priori tolerance that we decide to accept. An important point
also resides in the introduction of a new criterion for the breakdown of the fluid model, which is
able to measure the discrepancy between the kinetic and the fluid model in a much more accurate
way then the mere Knudsen number. Finally, we have proved that the coupling strategy preserves
positivity under a CFL condition, and the uniform flows, also in the fully discrete case.

The last part of the work is devoted to several numerical tests. The results clearly demonstrate
the advantages of this method over existing ones. The method captures the correct kinetic behav-
iors even in transition regions and provides significant improvements in terms of computational
speedup while maintaining the accuracy of a kinetic solver.
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In the future we will extend the method to make it consistent with the Navier-Stokes equations
instead of the Euler model. This step can further improve the technique allowing very narrow
kinetic zones and providing considerable speed-up while maintaining accuracy. We will also explore
the use of Monte Carlo techniques for the full Boltzmann equation and that of time sub-cycling
for the two models. We finally observe that the computational speed-up will significantly increase
for two or three dimensional simulations, which we intend to carry out in the future. To conclude,
because multiscale effects are very important also in many others fields we plan to extend our
method to other models.

A Preservation of uniform flows

Preservation of uniform flows is a very important property, which prevents oscillations to appear
when the transition region is located in a domain where the flow is smooth. In this appendix we
compare the properties of the present micro-macro coupling strategy to those of the decomposition
methods of [8, 9, 11] regarding preservation of uniform flows.

In [10], it has been demonstrated that the micro-macro model is able to preserve uniform flows
in the continuous case. This property is also true for the decomposition used in [8, 9, 11], but
only when the collision operator has specific properties (which are satisfied by the Boltzmann and
BGK operator). In this appendix, we show that the present micro-macro coupling strategy is able
to preserve uniform flows also in the discrete case independently of the choice of the discretization
scheme. We observe that this property does not hold in the general case for the decompositions
used in [8, 9, 11]. The satisfaction of this property by the present micro-macro coupling strategy
constitutes a very big advantadge of this method over the previous ones [8, 9, 11].

As an example, we consider the decomposition used in [11], which reads

∂̺L

∂t
+ (1− h)∂xF (̺L) + (1 − h)∂x〈vmfR〉 = −̺∂th (55)

∂tfR + hv∂xfR + hv∂xE[̺] = h
ν

ε
(E[̺]− f) + f∂th, (56)

where the distribution function is defined by f = fR + E[̺L], fR = hf and E[̺L] = (1 − h)E[̺].
In this model the solution of the full kinetic problem is given by fR if x ∈ Ω1, by E[̺L] if x ∈ Ω2

and by E[̺L]+ fR if x ∈ Ω3. This is due to the fact that fR = 0 for x ∈ Ω2, E[̺L] = 0 for x ∈ Ω1,
while in Ω3 they are both different from zero and the global solution is obtained as a sum of the
two partial solutions. We refer to the above cited papers for details.

Here we recall that, in [8, 9, 11], small oscillations appear inside the transition regions except
when the scheme used for the fluid part is an exact discrete velocity integration of the scheme used
for the kinetic part (in this case, we say that the two schemes are ’compatible’, and are ’incompat-
ible’ otherwise). These oscillations appear even in situations where preservation of uniform flows
is true for the continuous model. To circumvent this problem, in [8, 9, 11], we used a standard
shock-capturing scheme (such as e.g. the Godunov scheme) for the Euler equations in the pure
fluid region (i.e. h = 0), but we converted to a compatible scheme with the discretization of the
kinetic model inside the buffer zones (see [11] for details). However, this choice introduces some
implementation difficulties and reduces the performances. Indeed, a compatible scheme with the
discretization of the kinetic model has intrinsically the same cost as the full kinetic solver, and the
coupling strategy is twice more costly than the mere kinetic model in all the buffer region.

In order to prove the property that uniform flows are not preserved by the decomposition (55-
56) in the discrete case, we focus on the first one of the two equations. The same considerations
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hold for the other one. If the initial data is such that f = E[̺] we have

∂̺L

∂t
+ (1− h)∂xF (̺L) + (1− h)∂x〈vmfR〉+ ̺∂th =

= (1 − h)

(

∂̺

∂t
+ (1− h)∂xF (̺) + h∂x〈vmE[̺]〉 − h′F (̺) + h′〈vmE[̺]〉

)

=

= (1 − h)

(

∂̺

∂t
+ (1− h)∂xF (̺) + h∂x〈vmE[̺]〉

)

.

In the above equation, the time derivative with respect to h disappears and so does the flux, using
that F (̺) = 〈vmE[̺]〉. In the continuous case it is also true that

(1− h)∂xF (̺) + h∂x〈vmE[̺]〉 = ∂xF (̺) = ∂x〈vmE[̺]〉 (57)

and so, uniform flows are preserved. However, when we discretize the fluxes according to ∂xF (̺) =
(φi+1/2(̺)−φi−1/2(̺))/∆x and ∂x〈vmE(̺)〉 = (ψi+1/2(E [̺])−ψi−1/2(E [̺]))/∆x, the equality (57)
does not hold anymore. In fact, in the general case we have

(1 − h)

(

φi+1/2(̺)− φi−1/2(̺)

∆x

)

+ h

(

ψi+1/2(E [̺])− ψi−1/2(E [̺])
∆x

)

6=

6=
(

φi+1/2(̺)− φi−1/2(̺)

∆x

)

6=
(

ψi+1/2(E [̺])− ψi−1/2(E [̺])
∆x

)

.

Thus, if two incompatible numerical schemes are used to discretize the kinetic and fluid fluxes, oscil-
lations in the solution can appear as documented in [11]. However, we observe that, using the same
numerical flux is not sufficient to ensure preservation of uniform flows through the decomposition
(55-56). To that aim, consider a generic discretization of the coupled system (55-56):

̺n+1
i,L = ̺n

i,L − (1 − hi)
∆t

∆x

(

ψi+1/2(̺
n
L)− ψi−1/2(̺

n
L)
)

− (1− hi)
∆t

∆x

∑

k

mk

(

ψi+1/2(f
n
k,R)− ψi−1/2(f

n
k,R)

)

∆v, (58)

fn+1
k,i,R = fn

k,i,R − hi
∆t

∆x

(

φi+1/2(f
n
k,R)− φi−1/2(f

n
k,R)

)

− hi
∆t

∆x

(

φi+1/2(Ek[̺n
L])− φi−1/2(Ek[̺n

L])
)

(59)

+ hi
∆tν

ε

(

Ek[̺n
i ]− fn

k,i

)

,

where a discrete velocity model has been used to resolve the kinetic equation (59) with mk the
discretized collision invariants. The function φi±1/2, ψi±1/2 are two different generic numerical
fluxes while, for simplicity, the function h is considered constant in time. The initial data are
̺0
i = ̺0, f

0
i = E[̺0], f

0
R,i = hif0, ̺0

L,i = (1 − hi)̺0 and E[̺0
L,i] = (1 − hi)E[̺0] ∀i. Now,

supposing the flow uniform at time n we will see that not every numerical scheme ensures a
uniform flow at time n + 1. To this aim, if we integrate equation (59) multiplied by the collision
invariants mk over the velocity space, we can rewrite the coupled numerical schemes (58-59) as
follows:

̺n+1
i,L =

i±I
∑

j=i

Aj̺
n
j,L, (60)
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̺n+1
i,R =

i±I1
∑

j=i

K
∑

k

Bj,kmkf
n
j,R∆v, (61)

with ̺n+1
j,R =

∑

k mkf
n+1
j,R ∆v, I and I1 the length of the stencils in physical space and K in velocity

space. The symbols Aj and Bj,k represent the weights determined by the particular choice of the
numerical schemes. Without loss of generality, suppose that I = I1. Then, we have that

̺n+1
i = ̺n+1

i,L + ̺n+1
i,R =

∑

j

Aj̺
n
j,L +

∑

j

∑

k

Bj,kmkf
n
j,R∆v =

=
∑

j

Aj(̺
n
j,L + ̺n

j,R) +
∑

j

[(

∑

k

Bj,kmkf
n
j,R

)

−Aj̺
n
j,R

]

=

=
∑

j

Aj̺
n
j +

∑

j

[(

∑

k

Bj,kmkf
n
j,R

)

−Aj̺
n
j,R

]

=

= ̺n
i +

∑

j

[(

∑

k

Bj,kmkf
n
j,R

)

−Aj̺
n
j,R

]

(62)

which means that we do not have preservation of uniform flows except in some particular cases,
such as, for instance, when the numerical schemes used to discretize the two equations (58-59) are
compatible. Therefore, such compatible schemes are needed in all buffer zones to make sure that
oscillations in the solutions will be avoided.

Instead if we consider the present micro-macro coupling strategy with the same initial data
f = E[̺], the following property holds:

Proposition 2. If the initial condition f0 ≥ 0 is a constant equilibrium E[̺0], then ̺ = ̺0 and
gK = h(f − E[̺]) = 0 are solutions of the micro-macro model (23-24), and E[̺] + gK = E[̺0].
In other words, the kinetic/fluid solution of the micro-macro model is exactly the solution of the
original kinetic model.

Indeed, for the micro-macro decomposition, the total flux is independent of h in equilibrium
regimes and is not obtained as a sum of two complementary terms weighted by the function h.
It follows directly that the micro-macro method preserves uniform flows even in the discrete case
independently of the choice of the numerical scheme.
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Figure 1: Unsteady Shock 1: Solution at t = 1 × 10−2 top, t = 2 × 10−2 middle top, t =
3× 10−2 middle bottom, t = 4× 10−2 bottom, density left, velocity right. The small panels are a
magnification of the solution close to the shock.
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Figure 2: Unsteady Shock 1: Solution at t = 1× 10−2 top, t = 2× 10−2 middle top, t = 3× 10−2

middle bottom, t = 4 × 10−2 bottom, temperature left, transition function, Knudsen number and
heat flux right. The small panels are a magnification of the solution close to the shock.
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Figure 3: Unsteady Shock 2: Solution at t = 1× 10−2 top, t = 2× 10−2 middle top, t = 3× 10−2

middle bottom, t = 4× 10−2 bottom, density left, velocity right.
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Figure 4: Unsteady Shock 2: Solution at t = 1× 10−2 top, t = 2× 10−2 middle top, t = 3× 10−2

middle bottom, t = 4 × 10−2 bottom, temperature left, transition function, Knudsen number and
heat flux right.
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Figure 5: Sod Test 1: Solution at t = 0.6×10−2 top, t = 1.2×10−2 middle top, t = 1.8×10−2 middle
bottom, t = 2.4× 10−2 bottom, density left, velocity right. The small panels are a magnification
of the solution close to non equilibrium regions.

27



−20 −15 −10 −5 0 5 10 15 20

100

150

200

250

300

350

400

Temperature Sod Test for t=0.006 s

x(m)

T
em

pe
ra

tu
re

(°
K

)

kinetic model
macroscopic model
micmac

1 1.5 2 2.5 3 3.5
200

250

300

350

−15 −10 −5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

x(m)

h,
 K

n 
x 

10
, Q

Interface position, Local Knudsen number and equilibrium parameter for t=0.006 s

transition function
Knudsen x 10
Q

−20 −15 −10 −5 0 5 10 15 20

100

150

200

250

300

350

400

Temperature Sod Test for t=0.012 s

x(m)

T
em

pe
ra

tu
re

(°
K

)

kinetic model
macroscopic model
micmac

5 5.5 6

220

240

260

280

300

320

340

−15 −10 −5 0 5 10 15

0

0.2

0.4

0.6

0.8

1

1.2

x(m)

h,
 K

n 
x 

10
, Q

Interface position, Local Knudsen number and equilibrium parameter for t=0.012 s

transition function
Knudsen x 10
Q

−20 −15 −10 −5 0 5 10 15 20

100

150

200

250

300

350

400

Temperature Sod Test for t=0.018 s

x(m)

T
em

pe
ra

tu
re

(°
K

)

kinetic model
macroscopic model
micmac

7.5 8 8.5

220

240

260

280

300

320

340

−15 −10 −5 0 5 10 15

0

0.2

0.4

0.6

0.8

1

1.2

x(m)

h,
 K

n 
x 

10
, Q

Interface position, Local Knudsen number and equilibrium parameter for t=0.018 s

transition function
Knudsen x 10
Q

−20 −15 −10 −5 0 5 10 15 20

100

150

200

250

300

350

400

Temperature Sod Test for t=0.024 s

x(m)

T
em

pe
ra

tu
re

(°
K

)

kinetic model
macroscopic model
micmac

10 10.5 11 11.5

220

240

260

280

300

320

340

−15 −10 −5 0 5 10 15

0

0.2

0.4

0.6

0.8

1

1.2

x(m)

h,
 K

n 
x 

10
, Q

Interface position, Local Knudsen number and equilibrium parameter for t=0.024 s

transition function
Knudsen x 10
Q

Figure 6: Sod Test 1: Solution at t = 0.6 × 10−2 top, t = 1.2 × 10−2 middle top, t = 1.8 × 10−2

middle bottom, t = 2.4 × 10−2 bottom, temperature left, transition function , Knudsen number
and heat flux right. The small panels are a magnification of the solution close to non equilibrium
regions.
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Figure 7: Sod Test 2: Solution at t = 0.6×10−2 top, t = 1.2×10−2 middle top, t = 1.8×10−2 middle
bottom, t = 2.4× 10−2 bottom, density left, velocity right. The small panels are a magnification
of the solution close to non equilibrium regions.
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Figure 8: Sod Test 2: Solution at t = 0.6 × 10−2 top, t = 1.2 × 10−2 middle top, t = 1.8 × 10−2

middle bottom, t = 2.4 × 10−2 bottom, temperature left, transition function, Knudsen number
and heat flux right. The small panels are a magnification of the solution close to non equilibrium
regions.
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Figure 9: Blast Wave Test 1: Solution at t = 1 × 10−4 top, t = 2 × 10−4 middle top, t =
3× 10−4 middle bottom, t = 4× 10−4 bottom, density left, velocity right. The small panels are a
magnification of the solution close to non equilibrium regions.

31



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2000

4000

6000

8000

10000

12000

Temperature Blast Wave Test for t=1e−4 s

x(m)

T
em

pe
ra

tu
re

(°
K

)

kinetic model
macroscopic model
micmac

0.82 0.83 0.84 0.85 0.86

4000

5000

6000

7000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x(m)

h,
 K

n 
x 

10
, Q

/1
00

00

Interface position, Local Knudsen number and equilibrium parameter for t=1e−4 s

transition function
Knudsen x 10
Q/10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1000

2000

3000

4000

5000

6000

7000

8000

9000

Temperature Blast Wave Test for t=2e−4 s

x(m)

T
em

pe
ra

tu
re

(°
K

)

kinetic model
macroscopic model
micmac

0.74 0.76 0.78 0.8 0.82
3500

4000

4500

5000

5500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x(m)

h,
 K

n 
x 

10
, Q

/1
00

00

Interface position, Local Knudsen number and equilibrium parameter for t=2e−4 s

transition function
Knudsen x 10
Q/10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1000

2000

3000

4000

5000

6000

7000

8000

Temperature Blast Wave Test for t=3e−4 s

x(m)

T
em

pe
ra

tu
re

(°
K

)

kinetic model
macroscopic model
micmac

0.74 0.76 0.78 0.8
3000

3500

4000

4500

5000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x(m)

h,
 K

n 
x 

10
, Q

/1
00

00

Interface position, Local Knudsen number and equilibrium parameter for t=3e−4 s

transition function
Knudsen x 10
Q/10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1000

2000

3000

4000

5000

6000

7000

8000
Temperature Blast Wave Test for t=4e−4 s

x(m)

T
em

pe
ra

tu
re

(°
K

)

kinetic model
macroscopic model
micmac

0.7 0.72 0.74 0.76
2500

3000

3500

4000

4500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x(m)

h,
 K

n 
x 

10
, Q

/1
00

00

Interface position, Local Knudsen number and equilibrium parameter for t=4e−4 s

transition function
Knudsen x 10
Q/10000

Figure 10: Blast Wave Test 1: Solution at t = 1× 10−4 top, t = 2× 10−4 middle top, t = 3× 10−4

middle bottom, t = 4 × 10−4 bottom, temperature left, transition function, Knudsen number and
heat flux right. The small panels are a magnification of the solution close to non equilibrium
regions.
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Figure 11: Blast Wave Test 2: Solution at t = 1× 10−4 top, t = 2× 10−4 middle top, t = 3× 10−4

middle bottom, t = 4× 10−4 bottom, density left, velocity right.
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Figure 12: Blast Wave Test 2: Solution at t = 1× 10−4 top, t = 2× 10−4 middle top, t = 3× 10−4

middle bottom, t = 4 × 10−4 bottom, temperature left, transition function, Knudsen number and
heat flux.
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