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Abstra
t

Impli
it parti
le-in-
ell 
odes o�er advantages over their expli
it 
ounterparts

in that they su�er weaker stability 
onstraints on the need to resolve the higher

frequen
y modes of the system. This feature may prove parti
ularly valuable for

modeling the intera
tion of high-intensity laser pulses with over
riti
al plasmas,

in the 
ase where the ele
trostati
 modes in the denser regions are of negligi-

ble in�uen
e on the physi
al pro
esses under study. To this goal, we have de-

veloped the new two-dimensional ele
tromagneti
 
ode ELIXIRS (standing for

ELe
tromagneti
 Impli
it X-dimensional Iterative Relativisti
 Solver) based on

the relativisti
 extension of the so-
alled Dire
t Impli
it Method [D. Hewett and

A. B. Langdon, J. Comp. Phys. 72, 121(1987)℄. Dissipation-free propagation of

light waves into va
uum is a
hieved by an adjustable-damping ele
tromagneti


solver. In the high-density 
ase where the Debye length is not resolved, satisfa
-

tory energy 
onservation is ensured by the use of high-order weight fa
tors. In

this paper, we �rst present an original derivation of the ele
tromagneti
 dire
t

impli
it method within a Newton iterative s
heme. Its linear properties are then

investigated through numeri
ally solving the relation dispersions obtained for

both light and plasma waves, a

ounting for �nite spa
e and time steps. Finally,

our 
ode is su

essfully ben
hmarked against expli
it parti
le-in-
ell simulations

for two kinds of physi
al problems: plasma expansion into va
uum and relativis-

ti
 laser-plasma intera
tion. In both 
ases, we will demonstrate the robustness

of the impli
it solver for 
rude dis
retizations, as well as the gains in e�
ien
y

whi
h 
an be realized over standard expli
it simulations.
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1. Introdu
tion

Parti
le-in-
ell (PIC) 
odes have be
ome widely used plasma simulation tools

owing to their ability to mimi
 real plasma behavior. Yet the standard PIC algo-

rithm employs an expli
it time-di�eren
ing, and hen
e su�ers from stri
t stability


onstraints on the time step, whi
h needs to resolve the highest-frequen
y modes

of the system [1℄. Furthermore, the mesh size must be 
omparable to the Debye

length λD in order to prevent the �nite-grid instability [1℄. As a 
onsequen
e, ex-

pli
it PIC 
odes may �nd it di�
ult to 
ope with the large spatial and temporal

s
ales asso
iated with a number of physi
al s
enarios, thus requiring massively

parallel 
omputing fa
ilities [2℄. Several alternatives have been developed over the

past de
ades to relax these 
onstraints so that the 
hoi
e of the spa
e and time

steps 
an be di
tated by physi
al a

ura
y rather than stability 
onditions. The

simplest way to do so is to suppress high-frequen
y pro
esses within the mathe-

mati
al model itself. Codes based on the Darwin-�eld approximation [3, 4℄, gy-

rokineti
 equations [5℄ or hybrid parti
le-�uid models [6, 7, 8, 9, 10℄ rely pre
isely

on su
h an approa
h. The short
oming inherent in these 
odes is the somewhat

un
ertain domain of validity of their basi
 assumptions. A se
ond, more involved

numeri
ally, possibility retains a fully kineti
 and ele
tromagneti
 des
ription by

using an impli
it s
heme for the entire Vlasov-Maxwell set of equations. This is

the approa
h dealt with in this work.

The main feature, and di�
ulty, of a fully impli
it PIC s
heme is the pre-

di
tion of the future parti
les' 
harge and 
urrent densities as fun
tions of the

future ele
tromagneti
 �elds. Two main te
hniques have been designed to this

goal. The �rst one to be published, the so-
alled moment method, makes use of

the �uid equations to predi
t future sour
e terms [11, 12, 13, 14, 15, 16℄. and

has been re
ently extended to the relativisti
 regime [17℄. The present arti
le

will fo
us on the alternate approa
h, referred to as the dire
t impli
it method,

whi
h is based on a dire
t linearization of the Lorentz equations [18, 19, 20, 21℄.

Most implementations of the dire
t impli
it method start with the so-
alled D1

dis
retization of the Lorentz equation, �rst presented in Ref. [22℄. The rela-

tivisti
 formulation, originally derived in Ref. [23℄, was implemented, albeit in a

simpli�ed form, in the LSP 
ode [24, 25, 26, 27, 28℄.

The dire
t impli
it method pro
eeds as follows. First, parti
les' momenta and

positions are advan
ed to an intermediate time level using known �elds, yielding

predi
ted 
harge and 
urrent densities. Se
ond, by linearizing the latter quantities

around the predi
ted momenta and positions, we 
an express 
orre
tion terms as

fun
tions of the future �elds and thus derive an impli
it wave equation. On
e

this equation is solved, the parti
les' quantities are updated. Here we will show

that the dire
t method 
an be derived as a simpli�ed Newton s
heme.

Our main motivation is the simulation of the intera
tion of an ultra-intense
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laser pulse with solid-density plasma slabs. The energeti
 parti
le beams originat-

ing from this intera
tion stir great interest in many �elds spanning inertial 
on-

�nement fusion [29, 26, 30, 31, 32, 33℄, high energy density physi
s [34, 35, 36, 37℄,

nu
lear physi
s [38, 39℄ or medi
al physi
s [40℄. For the high plasma densities


onsidered, the ele
tron plasma frequen
y ωp largely ex
eeds the laser frequen
y.

Using an expli
it PIC 
ode, the spa
e and time steps should resolve the high-

frequen
y ele
tron plasma modes of the plasma bulk. However, these modes are

of no interest for the problem sin
e they do not a�e
t the laser-plasma inter-

a
tion nor other potentially important related pro
esses as the subsequent, fast

ele
tron-driven ion expansion. By 
ontrast, resorting to an impli
it s
heme would

allow a signi�
antly in
reased time step, that is, determined only by the need to

resolve the in
oming laser wave. In this respe
t, one should realize that the strong

wave damping inherent with impli
it methods may be harmful in the 
ontext of

laser-plasma intera
tion, for whi
h light waves have to travel over many wave-

lengths. This prompted us to develop an ele
tromagneti
 solver with adjustable

damping, based on a generalization of the s
heme initially proposed by Friedman

[41℄ for the Lorentz equation. We will demonstrate that our adjustable damping

s
heme tolerates abrupt spatial jumps in the 
ontrolling parameter. Our 
ode

therefore allows for dissipation-free laser propagation into va
uum, along with

strong damping of undesirable plasma waves into the densest part of the target.

As expli
it 
odes, impli
it 
odes su�er from the arti�
ial heating arising from

a 
rude dis
retization of the Debye length, as is 
ommonpla
e when handling

large-s
ale, high-density plasmas. This detrimental e�e
t is generally attributed

to the so-
alled grid-instability [1℄. To keep it at an a

eptable level, we will

exploit the well-known mitigating in�uen
e of high-order weight fa
tors [42, 43℄

by using quadrati
 weight fa
tors. We will also take advantage of the stabilizing

e�e
t of the large time steps allowed by the impli
it s
heme.

The paper is organized as follows. In Se
. 2, we re
all the basi
 prin
i-

ples of the PIC te
hnique, give the impli
it time-dis
retized equations to solve,

and derive within a simpli�ed Newton formalism the relativisti
 dire
t impli
it

method. In Se
. 3, we outline the numeri
al resolution of the wave equation

as implemented in our newly developed, 2Dx-3Dv 
ode ELIXIRS (ELe
tromag-

neti
 Impli
it X-dimensionnal Iterative Relativisti
 Solver). The introdu
tion of

impli
it inje
ting/outgoing boundary 
onditions for the ele
tromagneti
 �eld is

also dis
ussed. Se
. 4 is devoted to the linear properties of the dire
t impli
it

method through the resolution of the ele
tromagneti
 and ele
trostati
 disper-

sion relations. The e�e
ts of �nite spa
e and time steps, adjustable damping and

high-order weight fa
tors will be a

ounted for. Finally, in Se
. 5, our 
ode is

ben
hmarked against expli
it simulations for two kinds of physi
al problems: the

expansion of a plasma slab in va
uum, and the intera
tion of an ultra-intense

laser pulse with an over
riti
al plasma target. The sensitivity of the simulation

results to the damping parameter and the number of ma
ro-parti
ules will be

addressed.
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2. The relativisti
 dire
t impli
itmethod as a simpli�ed Newton s
heme

In 
ontrast to Ref. [23℄, we present here a derivation of the ele
tromag-

neti
 dire
t impli
it method for the relativisti
 
ase within a Newton iterative

s
heme and a weak formulation of Maxwell's equations. Anti
ipating our need of

a dissipation-free propagation of light waves inside the va
uum region of the sim-

ulation domain, we introdu
e a generalization of the adjustable damping s
heme

proposed and used in the ele
trostati
 regime by Friedman [41℄.

2.1. Basi
 equations

Consider Maxwell's equations

∇× E = −∂B
∂t

, (1)

∇×B = µ0j+
1

c2
∂E

∂t
, (2)

and the 
ollisionless Vlasov equation for the distribution fun
tion fs(x,u, t) of
the sth parti
le spe
ies

∂fs
∂t

+
u

γ

∂fs
∂x

+
qs
ms

(
E+

u

γ
×B

)
· ∂fs
∂u

= 0 . (3)

Here qs and ms are the 
harge and the rest mass of the sth parti
le spe
ies,

respe
tively. u denotes the relativisti
 momentum normalized by ms. The rel-

ativisti
 fa
tor then writes γ = (1 + u2/c2)
1/2

. The parti
le method 
onsists in

des
ribing the distribution fun
tion fs as an ensemble of ma
ro-parti
les in the

form

fs(x,u, t) =

Ns∑

p=1

S(x−Xp(t))δ(u−Up(t)) , (4)

where S is the shape fun
tion [1℄, Ns the total number of parti
les of the sth
spe
ies, and δ the Dira
 distribution. The relativisti
 motion of ea
h ma
ro-

parti
le obeys the following equations:

dXp(t)

dt
= Vp(t) =

Up(t)

γp(t)
, (5)

dUp(t)

dt
=

qs
ms

{
E [Xp(t), t] +

Up(t)

γp(t)
×B [Xp(t), t]

}
. (6)

We now make use of the impli
it s
heme with adjustable damping proposed

by Friedman [41℄ for an ele
trostati
 problem, whi
h generalizes the so-
alled D1-

s
heme of Langdon et al. [18, 19, 20, 23℄. The equations of motion are dis
retised

4



as

Xn+1 = Xn +∆t
Un+1/2

γn+1/2

, (7)

Un+1/2 = Un−1/2 +
∆t

2
(an+1 + Ān−1) +

qs∆t

2ms

(
Un+1/2 +Un−1/2

γn

)
×Bn(Xn) ,

(8)

Ān−1 =
θf
2
an +

(
1− θf

2

)
ān−2 , (9)

ān−1 =

(
1− θf

2

)
an +

θf
2
ān−2 , (10)

where the index n denotes the time step index and we have de�ned

an =
qs
ms

En , (11)

γn =

{
1 +

1

c2

[
Un−1/2 +

∆t

4

(
an+1 + Ān−1

)]2
}1/2

, (12)

γn+1/2 =

(
1 +

U2
n+1/2

c2

)1/2

. (13)

Friedman's s
heme 
an be readily applied to Maxwell's equations, whi
h yields

En+1 = En + c2∆t∇×Bn+1/2 −
∆t

ǫ0
jn+1/2 , (14)

Bn+1/2 = Bn−1/2 −
∆t

2
∇×

(
En+1 +

¯̄En−1

)
, (15)

Bn = Bn−1/2 −
∆t

2
∇×En , (16)

¯̄En−1 =
θf
2
En +

(
1− θf

2

)
Ēn−2 , (17)

Ēn−1 =

(
1− θf

2

)
En +

θf
2
Ēn−2 . (18)

where j denotes the 
urrent density.

As will be demonstrated in Se
. 4, this s
heme allows, via the parameter

θf , a �exible 
ontrol of the damping of the high-frequen
y (ele
trostati
 and

ele
tromagneti
) waves of the system. This property is of major interest for

appli
ations su
h as laser-plasma intera
tion involving a traveling ele
tromagneti


wave into va
uum, for whi
h the numeri
al damping asso
iated with the standard

D1 method may prove too severe. It is worth noting that, even though referred to

uniquely as θf , the damping parameters involved in the ele
tromagneti
 s
heme
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and the parti
le pusher may assume distin
t values. The next se
tions will be

devoted to the solution of the set of Eqs. (7)-(18) within a Newton iterative

s
heme. We will show that for a proper 
hoi
e of the initial 
onditions, this

s
heme redu
es to the dire
t impli
it method developed in Refs. [20, 23℄.

2.2. Weak formulation of the ele
tri
 �eld equation

By repla
ing Eq. (15) into Eq. (14), one obtains the following wave equation

En+1 +
c2∆t2

2
∇×∇× En+1 +

∆t

ǫ0
jn+1/2 = Q′ , (19)

with the (known) sour
e term

Q′ = En + c2∆t∇×Bn−1/2 −
c2∆t2

2
∇×∇× ¯̄En−1 . (20)

For any test fun
tion ψ, we assume the following weak formulation of the 
urrent

density

∫
jn+1/2(x)ψ(x)dx

=
∑

s

qs
2

∫
fs,0(x,u)Vn+1/2(x,u) [ψ (Xn+1(x,u)) + ψ (Xn(x,u))] dxdu , (21)

where fs,0 = fs(x,u, 0) is the initial parti
le distribution fun
tion and Vn+1/2 =
Un+1/2/γn+1/2.

The problem then 
onsists in �nding (En+1,Xn+1,Un+1/2) whi
h solve

∫
En+1(x)ψ(x)dx+

c2∆t2

2

∫
∇×∇× En+1(x)ψ(x)dx

+
∆t

ǫ0

∫
jn+1/2(x)ψ(x)dx =

∫
Q′(x)ψ(x)dx (22)

together with Eqs. (7)-(13). We employ the Newton method to solve this system:

for ea
h quantity of interest Y , we introdu
e the ansatz

Y
(k+1)
n+α = Y

(k)
n+α + δY

(k)
n+α k = 0, 1, . . . (23)

where α = (1/2, 1) depending on whether Y is 
entered at full or half time steps.

The subs
ript n+ 1 will be hereafter omitted for 
larity. Substituting the above

ansatz into Eq. (20) yields

∫ [
E(k)(x) + δE(k)(x)

]
ψ(x)dx+

c2∆t2

2

∫
∇×∇×

[
E(k)(x) + δE(k)(x)

]
ψ(x)dx

+
∆t

ǫ0

∫
j(k+1)(x)ψ(x)dx =

∫
Q′(x)ψ(x)dx . (24)
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The term involving j(k+1)
is 
al
ulated with positionsX(k+1)

and velo
itiesV(k+1)

∫
j(k+1)ψ(x)dx =

∑

s

qs
2

∫
fs,0(x,u)V

(k)
[
ψ(X(k)) + ψ(Xn)

]
dxdu

+
∑

s

qs
2

∫
fs,0(x,u)δV

(k)
[
ψ(X(k)) + ψ(Xn)

]
dxdu

+
∑

s

qs
2

∫
fs,0(x,u)V

(k)
[
∇ψ(X(k)) · δX(k)

]
dxdu . (25)

To obtain the equation solved for the ele
tri
 �eld, we need to express the

terms X(k)
, δX(k)

, V(k)
and δV(k)

as fun
tions of the ele
tri
 �eld. Before pro-


eeding, let us �rst de�ne the following quantities

γ(k) =

(
1 +

U(k)2

c2

)1/2

, (26)

Γ(k) =

{
1 +

1

c2

[
Un−1/2 +

∆t

4

(
qs
ms

E(k)(X(k)) + Ān−1

)]2}1/2

, (27)

θ(Xn) =
qs∆t

2msΓ(k)
Bn(Xn) , (28)

R(Xn) =
2

1 + θ2
(I+ θ ⊗ θ − θ × I)− I , (29)

M(U(k)) =
1

γ(k)

(
I− U(k) ⊗U(k)

γ(k)2c2

)
, (30)

N
(
E(k)(X(k)),U(k)

)
=

qs∆t

4msc2

[
Un−1/2 +U(k)

Γ(k)3
×Bn(Xn)

]

⊗
[
Un−1/2 +

∆t

4

(
qs
ms

E(k)(X(k)) + Ān−1

)]
, (31)

with I the identity matrix. Straightforward 
al
ulations then yield

X(k) = Xn +
∆tU(k)

γ(k)
, (32)

δX(k) = ∆tMδU(k) , (33)

V(k) =
U(k)

γ(k)
, (34)

δV(k) = MδU(k) , (35)

Using the above expressions and the Newton ansatz (23), the Lorentz equation

7



be
omes

U(k) + δU(k) = Un−1/2 +
qs∆t

2ms

[
E(k)(X(k)) +∇E(k)(X(k))δX(k) + δE(k)(X(k))

]

+
∆t

2
Ān−1 +

qs∆t

2ms

(
U(k) + δU(k) +Un−1/2

Γ(k)

)
×Bn(Xn)

− qs∆t

2ms
N(E(k)(X(k)),U(k))∇E(k)(X(k))δX(k)

− qs∆t

2ms
N(E(k)(X(k)),U(k))δE(k)(X(k)) , (36)

where we have dropped se
ond-order terms. Assuming the ele
tri
 �eld gradient

term is negligible, this equation further simpli�es as

U(k) + δU(k) = Un−1/2 +
∆t

4
[I+R(Xn)]

[
Ān−1 +

qs
ms

E(k)(X(k))

]

+
∆tqs
4ms

[I+R(Xn)]
[
I−N

(
E(k)(X(k)),U(k)

)]
δE(k)(X(k)) . (37)

The set of equations (22)-(38) 
onstitutes the weak formulation of the problem.

We will now show how to re
over the dire
t impli
it method as a simpli�ed

Newton algorithm.

2.2.1. The dire
t impli
it method

The simplest s
heme 
onsists in 
onsidering only one iteration in the above

system and 
hoosing the following initial values






X(0) = X̃n+1

U(0) = Ũn+1/2

E(0) = 0






δX(0) = δX
δU(0) = δU
δE(0) = E(1) = En+1 ,

(38)

where we have introdu
ed the predi
ted position and momentum X̃n+1 and Ṽn+ 1

2


omputed from the known �elds Ān−1 and Bn. We have

X̃n+1 = Xn +∆t
Ũn+1/2

γ̃n+1/2

, (39)

Ũn+1/2 = R(Xn)Un−1/2 +
∆t

4
[I+R(Xn)] Ān−1 . (40)

with γ̃n+1/2 = γ(0). The 
orre
tion terms then write

δU =
qs∆t

4ms
[I+R(Xn)][I−N(Ũn+1/2)]En+1(X̃n+1) , (41)

δV = MδU , (42)

δX = ∆tMδU , (43)

8



where we have de�ned

µ(Ũn+1/2) = N(0, Ũn+1/2)

=
qs∆t

4msc2

[
Un−1/2 + Ũn+1/2

γ̃3n
×Bn(Xn)

]
⊗
(
Un−1/2 +

∆t

4
Ān−1

)
, (44)

and γ̃n = Γ(0)
. After substituting the above equations into (25), using Xn =

X̃n+1 −∆tṼn+1/2 and repla
ing the resulting expression into (24), we obtain

∫
En+1(x)ψ(x)dx+

c2∆t2

2

∫
∇×∇× En+1(x)ψ(x)dx

+
∑

s

qs∆t

2ǫ0

∫
fs,0(x,u)Ṽn+1/2(x,u)

[
ψ(X̃n+1 (x,u)) + ψ(Xn (x,u))

]
dxdu

+
∑

s

qs∆t

ǫ0

∫
fs,0(x,u)δV(x,u)ψ(X̃n+1(x,u))dxdu

+
∑

s

qs∆t

2ǫ0

∫
fs,0(x,u)

[
δX⊗ Ṽn+1/2 − Ṽn+1/2 ⊗ δX

]
∇ψ(X̃n+1)dxdu

=

∫
Q′(x)ψ(x)dx . (45)

From Eq. (21), we identify

∑

s

qs∆t

2ǫ0

∫
fs,0(x,u)Ṽn+1/2(x,u)

[
ψ(X̃n+1 (x,u)) + ψ(Xn (x,u))

]
dxdu

=
∆t

ǫ0

∫
j̃n+1/2(x)ψ(x)dx . (46)

To redu
e the next integral, it is 
onvenient to introdu
e the weak formulation

of the predi
ted 
harge density

∫
ρ̃s(x)ψ(x)dx = qs

∫
fs,0(x,u)ψ

(
X̃n+1(x,u)

)
dxdu .

Approximating R(Xn) ≈ R(X̃n+1), we obtain

qs∆t

ǫ0

∫
fs,0δVψ(X̃n+1)dxdu

=
qs∆t

2

4msǫ0

∫
ρ̃(x)M(x)(I+R(x)) [I−N(x)]En+1(x)dx . (47)

De�ning the impli
it sus
eptibility χ as

χ(x) =
∑

s

qs∆t
2

4msǫ0
M(x)(I+Rs,n(x)) [I−N(x)] ρ̃s(x) , (48)

9



we have

∑

s

qs∆t

ǫ0

∫
fs,0(x,u)δV(x,u)ψ(X̃n+1(x,u))dxdu =

∫
ψ(x)χ(x)En+1(x)dx .

(49)

We treat the remaining integral by introdu
ing the modi�ed 
urrent j̃+s
∫

j̃+s (x)ψ(x)dx = qs

∫
fs,0(x,u)Ṽn+1/2 (x,u)ψ

(
X̃n+1(x,u)

)
dxdu .

We then have

qs∆t

2ǫ0

∫
fs,0(x,u)

[
δX⊗ Ṽn+1/2 − Ṽn+1/2 ⊗ δX

]
∇ψ(X̃n+1)dxdu

= − qs∆t
3

8msǫ0

∫
∇×

{[
j̃+s (x)×M(x) [I+R(x)] [I−N(x)]

]
En+1(x)

}
ψ(x)dx

= − qs∆t
3

8msǫ0

∫
∇×

{[
j̃+s (x)

γ̃n+1/2(x)
× [I+R(x)] [I−N(x)]

]
En+1(x)

}
ψ(x)dx

(50)

where use has been made of the identity U × U ⊗ U = 0. We are then led to

de�ne the tensor ζ as

ζ(x) =
∆t2

8ǫ0

∑

s

qs
ms

j̃+s
γ̃n+1/2

× [I+R(x)] [I−N(x)] . (51)

There follows

qs∆t

2ǫ0

∫
fs,0

(
δX⊗ Ṽn+1/2 − Ṽn+1/2 ⊗ δX

)
∇ψdxdu = −∆t

∫
∇× (ζEn+1)dx .

(52)

Equation (25) supplemented by Eqs. (46), (49) and (52) should be satis�ed for

any test fun
tion ψ. As a result, we have to solve the lo
al �eld equation

En+1 +
c2∆t2

2
∇×∇×En+1 + χEn+1 −∆t∇×

(
ζEn+1

)
= Q , (53)

where the sour
e term now reads

Q = En −
∆t

ǫ0
j̃n+1/2 + c2∆t∇×Bn−1/2 −

c2∆t2

2
∇×∇× ¯̄En−1 . (54)

We have thus re
overed the relativisti
 impli
it method based on the D1 s
heme

whi
h was presented in Ref. [23℄, with the only di�eren
e that the sour
e term

now involves the time-averaged �eld

¯̄En−1. It then appears that the dire
t impli
it

method 
an be derived as a one-iteration Newton method with the starting values

X(0) = X̃n+1, U
(0) = Ũn+1/2 and E(0) = 0.
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3. Numeri
al resolution

3.1. Resolution of the �eld equation

In this se
tion, we sket
h the numeri
al pro
edure used to solve Eq. (53) in

the 
ase of a 2Dx-3Dv phase spa
e with periodi
 boundary 
onditions along the

transverse y axis. We have �rst to evaluate the impli
it sus
eptibilities. These

terms are 
omputed for ea
h ma
roparti
le, yielding χ(Xp,Up) and ζ(Xp,Up),
before being proje
ted onto the (x, y) grid through the usual formulas:

χ(x) =
∑

s

∑

p

S(Xp − x)χ(Xp,Up) , (55)

ζ(x) =
∑

s

∑

p

S(Xp − x)ζ(Xp,Up) . (56)

We then apply the iterative method of Con
us and Golub [44℄ to solve the ellipti


system de�ned by Eq. (53), whi
h reads in the present 
ase

E(m+1) +
c2∆t2

2
∇×∇×E(m+1) + χE(m+1) −∆t∇×

(
ζE(m+1)

)
= Q̃(m)

(57)

The right-hand side of Eq. (57) is given by

Q̃(m) = Q− (χ− χ0)E(m) +∆t∇×
[(
ζ − ζ0

)
E(m)

]
(58)

where m is the iteration index and χ0
and ζ0 denote the y-averaged sus
eptibil-

ities. The fast 
onvergen
e of the s
heme implies, in prin
iple, slow variations

of the �eld quantities in the y dire
tion, but this has not proved parti
ularly


onstraining for the physi
al situations we have 
onsidered.

As is usual in ele
tromagneti
 PIC 
odes, two interleaved meshes are used for

the spatial di�eren
ing of the grid quantities. The �elds are dis
retized as fol-

lows: ρi,j , Jz,i,j, Ez,i,j, Jx,i+1/2,j, Ex,i+1/2,j, By,i+1/2,j , Jy,i,j+1/2, Ey,i,j+1/2, Bx,i,j+1/2

and Bz,i+1/2,j+1/2. The χ and ζ are stored at (i, j) ex
ept for χ11, ζ11, ζ21, ζ31,
whi
h are lo
ated at (i + 1/2, j), and χ22, ζ12, ζ22, ζ32, lo
ated at (i, j + 1/2).
On
e spa
e-dis
retized, the above equations are Fourier transformed along the y
dire
tion. Considering Ny grid 
ells, we obtain Ny one-dimensional equations to

solve. Considering Nx grid 
ells in the x dire
tion, ea
h equation gives a 6Nx sys-

tem of equations. These systems have a band-diagonal stru
ture and are solved

by a standard LU te
hnique, using routines bande
 and banbks of the numeri
al

re
ipes library [45℄. Details on spatial dis
retisations and Fourier transformations

used to solve Eq. (57) are given in Appendix A.

3.2. Charge 
orre
tion

Our method to a

umulate 
harge and 
urrent densities [Eqs. (21) and (47)℄

does not satisfy 
harge 
onservation, whi
h results into the violation of Poisson's

11



equation. This is a 
ommon �aw of early ele
tromagneti
 PIC 
odes [1℄ whi
h

may be 
orre
ted by a more sophisti
ated proje
tion s
heme [46, 47℄. A well-

known alternative approa
h, whi
h will be implemented here, is to 
orre
t the

ele
trostati
 part of the ele
tri
 �eld En+1 solution of Eq. (53) so that it ful�lls

Poisson's equation [1℄. Using normalized quantities, our best statement of Gauss's

law is

∇ · E∗
n+1 = ρn+1 , (59)

where E∗
n+1 represents the sought-for ele
tri
 �eld. Using ρn+1 = ρ̃n+1 − ∇ ·(

χE∗
n+1

)
, this 
an be reformulated as

∇ ·
[
(1 + χ)E∗

n+1

]
= ρ̃n+1 . (60)

Now, taking the divergen
e of Eq. (53) yields

∇ · [(1 + χ)En+1] = ∇ ·Q (61)

with generally ∇·Q 6= ρ̃n+1. We may �rst think of introdu
ing a potential ψ su
h

that Q∗ = Q−∇ψ ful�lls ∇ ·Q∗ = ρ̃n+1, but this 
orre
tion has been shown to


ause spurious e�e
ts [20℄. A proper 
orre
tion makes use of the following form

[20℄

Q∗ = Q− (I+ χ)∇ψ , (62)

There follows

∇ · [(1 + χ)∇ψ] = ∇ ·Q− ρ̃n+1 , (63)

whi
h is equivalent to

∇ · [(1 + χ)∇ψ] = ∇ · [(1 + χ)En+1]− ρ̃n+1 , (64)

where the only unknown is the s
alar �eld ψ. Eventually, the 
orre
ted �eld

E∗
n+1 ensuring Eq. (60) is given by E∗

n+1 = En+1−∇ψ. Details on the numeri
al

resolution of Eq. (64) are given in Appendix B.

3.3. Ele
tromagneti
 boundary 
onditions

In this se
tion we des
ribe the implementation of inje
ting/outgoing boundary


onditions on both sides of the simulation box. In
ident and s
attered ele
tro-

magneti
 waves are assumed linearly polarized and depending on the phase term

k · x− ωt only. Waves polarized in the (x, y) plane then verify

Einc
y = Binc

z cos θi , (65)

Escat
y = −Bscat

z cos θs , (66)

where θi and θs denote respe
tively the in
ident and s
attered angles. The total

�eld be
omes

Etot
y = Escat

y + Einc
y (67)

= −Btot
z cos θs +

Einc
y

cos θi
(cos θi + cos θs) (68)

12



Dis
retizing with 
entered �nite di�eren
es in spa
e and time gives

1

4

(
En+1

y,1,j+1/2 + En+1
y,0,j+1/2 + En

y,1,j+1/2 + En
y,0,j+1/2

)
= −Bn+1/2

z,1/2,j+1/2 cos θs

+ E
inc,n+1/2
y,1/2,j+1/2

(cos θi + cos θs)

cos θi
. (69)

Using Maxwell-Faraday's equation, we 
an express En+1
y,0,j+1/2 as a fun
tion of the

�eld values at inner grid points and previous time steps. We have

En+1
y,0,j+1/2 = AEn+1

y,1,j+1/2

(
2 ∆t

∆x
cos θs − 1

)
− 2A∆t

∆y
cos θs

(
En+1

x,1/2,j+1 − En+1
x,1/2,j

)

− 4A cos θsB
n−1/2
z,1/2,j+1/2 +

2A∆t

∆x
cos θs

(
¯̄En−1
y,1,j+1/2 − ¯̄En−1

y,0,j+1/2

)

− 2A∆t

∆y
cos θs

(
¯̄En−1
x,1/2,j+1 − ¯̄En−1

x,1/2,j

)
+

4A

cos θi
(cos θi + cos θs)E

inc,n+1/2
y,1/2,j+1/2

−A
(
En

y,1,j+1/2 + En
y,0,j+1/2

)
, (70)

where the 
oe�
ient A is given by

A =

(
1 + 2

∆t

∆x
cos θs

)−1

. (71)

A similar equation 
an be established for z-polarized waves, whi
h reads

En+1
z,0,j = BEn+1

z,1,j

(
2∆t

∆x cos θs
− 1

)

−B(En
z,0,j + En

z,1,j) +
4B

cos θs
B

n−1/2
y,1/2,j +

2B∆t

∆x cos θs

(
¯̄En−1
z,1,j − ¯̄En−1

z,0,j

)

+ 4BE
inc,n+1/2
z,1/2,j

(
1 +

cos θs
cos θi

)
, (72)

where we have de�ned the 
oe�
ient B as

B =

(
1 +

2∆t

∆x cos θs

)−1

. (73)

Note that the above equations only apply in va
uum. This is realized in

pra
ti
e by imposing boundary 
onditions on parti
les a few grid 
ells away from

the outer boundaries of the 
omputational domain.

4. Numeri
al analysis of the adjustable-damping, dire
t impli
itmethod

4.1. Dispersion relation of ele
tromagneti
 waves in va
uum

Our aim here is to quantify the error in phase velo
ity and the damping

asso
iated with ele
tromagneti
 waves as fun
tions of the spa
e and time steps.
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In parti
ular, we will demonstrate the possibility to 
ontrol the wave damping by

adjusting the parameter θf .
Combining Maxwell-Ampère's (14) and Maxwell-Faraday's (15) equations and

assuming propagation in va
uum yield the wave equation

En+1 = 2En −En−1 −
c2∆t2

2
∇×∇×

(
En+1 +

¯̄En−1

)
. (74)

The time-�ltered term involves the adjustable damping parameter θf [Eq. (17)℄

and 
an be expanded as

En+1 +
¯̄En−1 = En+1 +

θf
2
En +

(
1− θf

2

)2

En−1 +

(
1− θf

2

)2
θf
2
En−2

+

(
1− θf

2

)2(
θf
2

)2

En−3 + . . . (75)

In a 2-D geometry, taking the ele
tri
 �eld in the form En = E0Φ(x, y)z
n
with

z = exp(−iω∆t) and i =
√
−1, Eq. (75) be
omes

En+1 +
¯̄En−1 = E0Φ(x, y)

{
z−1

[(
1− θf

2

)2

+
θf
2
z + z2

]

+

(
1− θf

2

)2
θf
2
z−2

[
1 +

θf
2
z−1 +

(
θf
2

)2

z−2 + . . .

]}
zn . (76)

where the adjustable damping parameter θf ∈ [0, 1]. Simplifying the series in the

right-hand side of Eq. (76) yields

En+1 +
¯̄En−1 = E0Φ(x, y)

{
z−1

[(
1− θf

2

)2

+
θf
2
z + z2

]

+

(
1− θf

2

)2
θf
2

2z−1

2z − θf

}
zn . (77)

The ele
tromagneti
 wave is assumed polarized in the (x, y) plane with a harmoni


dependen
e Φ(x, y) = exp [i(kxx+ kyy)]. Substituting Eq. (77) into Eq.(74) and
spa
e-di�eren
ing the Lapla
ian leads, we get after some straightforward algrebra

the following third degree polynomial equation

z2 = 2z − 1−
{[(

1− θf
2

)2

+
θf
2
z + z2

]
+

(
1− θf

2

)2
θf

2z − θf

}
Ω2

2
, (78)

where we have introdu
ed

Ω2 = 4

{
c2∆t2

∆x2
sin2

(
kx∆x

2

)
+
c2∆t2

∆y2
sin2

(
ky∆y

2

)}
. (79)
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Equation (78) simpli�es as

z3(2 + Ω2)− z2(4 + θf) + z
[
2 + Ω2(1− θf ) + 2θf

]
− θf = 0 . (80)

Let us �rst examine the spe
ial 
ase θf = 0. The roots of interest are solutions
of

z2(2 + Ω2)− 4z + (2 + Ω2) = 0 (81)

The dis
riminant ∆ = 4 − (2 + Ω2)2 being always negative, we get the roots

z± = (2 ± i
√
−∆)/(2 + Ω2), whi
h statisfy |z+| = |z−| = 1. We have there-

fore demonstrated the absen
e of damping when θf = 0. Figure 1 plots the

normalized phase velo
ity vφ = ℜω
kc

(where k =
√
k2x + k2y) for di�erent values

of c∆t/∆x = c∆t/∆y. The phase velo
ity error grows for in
reasing ∆x and

∆t/∆x. A value c∆t/∆x > 1, that is, violating the stability 
onstraint of the

standard expli
it s
heme, therefore implies a moderate spatial step kx∆x . 0.38
(c∆t/∆x = 1.27) so as to avoid ex
essive (> 5%) phase velo
ity error, whi
h, in

presen
e of relativisti
 parti
les, may 
ause unphysi
al Cerenkov radiation [48℄.

Let us now address the 
ase of nonzero θf . Figures 2 and 3 plot the normalized

phase velo
ity vφ/c (left) and damping rate ℑω∆t (right) of the least damped root

of Eq. (80) as fun
tions of (kx∆x, ky∆y) for θf = 1. Cuts of these two quantities
in the plane ky = 0 are represented in Figures 4 and 5 respe
tively. Again the

phase velo
ity error grows for in
reasing ∆x and ∆t/∆x. A value c∆t/∆x > 1,
therefore implies a redu
ed spatial step kx∆x . 0.28 (c∆t/∆x = 1.27) so as to

keep phase velo
ity error below 5%. In this 
ase the damping rate, whi
h also

in
reases with ∆x and ∆t/∆x, proves mu
h too strong for appli
ations relying

on the propagation of an ele
tromagneti
 wave over several wavelengths. For

example, assuming kx∆x = 0.2 and c∆t/∆x = 1, a typi
al travel time of 200∆t
requires |ℑω|∆t < 2.5 × 10−4

for a tolerable wave dissipation (< 5%). As seen

in Fig. 5(right), this 
ondition 
annot be ful�lled when θf = 1, whi
h further

demonstrates the need for an adjustable-damping s
heme for a proper modeling

of laser-plasma intera
tion.

4.2. Dispersion relation of ele
trostati
 plasma waves

We will now fo
us on the numeri
al relation dispersion of the ele
tron plasma

�u
tuations in the 
ase of a uniform, nonrelativisti
 Maxwellian plasma with a

�xed neutralizing ba
kground. For this purpose, we shall adopt the formalism of

Langdon [49℄ that a

ounts for both �nite spa
e and time steps, as well as allows

for an arbitrary time-di�eren
ing s
heme of the Lorentz equation. An in�nite

number of ma
roparti
les is assumed, yielding a 
ontinuous velo
ity distribution

fun
tion (taken in the Maxwellian form). In this framework, as detailed in Ap-

pendix C, the present adjustable-damping, dire
t impli
it algorithm 
an be easily

managed. The relation dispersion yielding the 
omplex frequen
y ω as a fun
tion
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Figure 1: Phase velo
ity of the least damped root of Eq. (80) as a fun
tion of (kx∆x, ky∆y),
for di�erent values of c∆t/∆x = c∆t/∆y ∈ {0.05, 0.66, 1.28, 1.9, 2.5} (from top to bottom) and

θf = 0. A narrower (kx∆x, ky∆y) range is represented on the right.
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of Eq. (80) as a fun
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of the wave number k then reads

1 +
(∆x/λD)

2

(k∆x)2
[
sin(k∆x/2)

k∆x/2

]2
+∞∑

p=−∞

[
sin (kp∆x/2)

kp∆x/2

]2m+2
sin(kp∆x)

kp∆x

+∞∑

q=−∞
[1 + ξqZ(ξq)]

+
(ωp∆t)

2/2

(k∆x)2
[
sin(k∆x/2)

k∆x/2

]2
+∞∑

p=−∞
(kp∆x)

2

[
sin (kp∆x/2)

kp∆x/2

]2m+2
sin(kp∆x)

kp∆x
S(θf ) = 0 ,

(82)

where m is the order of the shape fa
tor [1℄. kp = k − 2πp/∆x and ωq =
ω − 2πq/∆t are the aliased wave number and frequen
y, respe
tively. Z denotes

the plasma dispersion fun
tion [50℄ whose argument is ξq = ωq/
√
2kpvt (where vt

is the ele
tron thermal velo
ity). Moreover, we have de�ned the fun
tion S as

S(θf ) =
+∞∑

s=0

ei(ω/ωp)s(ωp∆t)

(2/θf)s
e−

1

2
(λD/∆x)2s2(k∆x)2(ωp∆t)2 , (83)

with the value S(0) = 1. We have numeri
ally solved Eq. (82) using the nonlinear

solver STRSCNE developed in Ref. [51℄ and the algorithm of Ref. [52℄ to 
ompute

the Z fun
tion. We will restri
t the following analysis to systems 
hara
terized

by a 
rude resolution of the Debye length (∆x/λD > 1), as is 
ommonpla
e in

simulations of large-s
ale, high-density plasmas.

Figure 6 displays the k-dependen
e of the 
omplex frequen
y of the fastest

growing (or least damped) mode solution of Eq. (82) for θf = 1, ωp∆t = 2
and various values of ∆x/λD. For ∆x/λD = 32 (i.e., vt∆t/∆x = 0.06), most

of the k-spe
trum is damped ex
ept for a bounded unstable region lo
ated near

k∆x ∼ 2.6 with a maximum growth rate ℑω/ωp ∼ 0.011. This 
orresponds

to the well-known �nite-grid instability [1℄ 
ommonly a�i
ting PIC simulations

with∆x/λD ≫ 1, and responsible for nonphysi
al �eld energy growth and plasma

heating. This instability originates from the interplay of the aliased wave num-

bers in Eq. (82). Note also the nonphysi
al k-dependen
e of the real frequen
y
obtained at large ωp∆t : ℜω is signi�
antly below ωp at k = 0 and further drops

with in
reasing k∆x. As seen in Fig. 6, de
reasing ∆x/λD eventually leads to a


omplete stabilization of the system along with a displa
ement of the dominant

mode towards low k values. For ∆x/λD = 4 (i.e., vt∆t/∆x = 0.5), the least

damped mode is thus lo
ated at k∆x = 0.76 with ℑω/ωp ∼ −0.1. This evolution
points to a transition between spatial step-dominated and time-step-dominated

regimes.

The dependen
e of the 
hara
teristi
s of the dominant mode on the ratio

∆x/λD ≫ 1 and the weight fa
tor order is summarized in Table 1 for θf = 1 and
ωp∆t = 2. The bene�t of a high-order interpolation s
heme is 
learly eviden
ed:

the system turns out to be entirely stabilized up to ∆x/λD = 32 with a quadrati
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Figure 6: Real frequen
y (blue) and growth rate (red) vs k∆x of the dominant mode solving

Eq. (82) with ωp∆t = 2, θf = 1 and a linear weight fa
tor (n = 1): ∆x/λD = 32 (left), 20

(
enter) and 4 (right).

∆x/λD 14.3 22.6 32 64

linear -0.024 3.3× 10−3
0.011 0.01

(2.11) (2.42) (2.58) (2.85)

quadrati
 -0.04 -0.015 −3.7× 10−3 2.8× 10−3

(1.96) (2.30) (2.48) (2.70)


ubi
 -0.039 -0.018 −8.6× 10−3 −2 × 10−4

(1.84) (2.14) (2.36) (2.67)

Table 1: Imaginary frequen
y ℑω/ωp (wavenumber k∆x) of the dominant mode as a fun
tion

of the ratio ∆x/λD and the weight fa
tor order for ωp∆t = 2 and θf = 1.

weight fa
tor, and ∆x/λD = 64 with a 
ubi
 weight fa
tor. In addition, the

wavenumber of the in
reasingly damped dominant mode is shifted downward.

A 
onne
tion between the present 
al
ulations and previously published simu-

lation results [13, 21℄ is provided by Tables 2 and 3, whi
h display the dependen
e

of the dominant mode on the ratio vt∆t/∆x = ωp∆t/(∆x/λD), as well as on the

damping parameter (the time step being �xed to ωp∆t = 2). An extensive set

of impli
it ele
trostati
 PIC simulations using the D1 s
heme (i.e., θf = 1) and
linear interpolation has indeed revealed that satisfa
tory energy 
onservation 
an

be a
hieved in the range [13, 21℄

0.1 . vt
∆t

∆x
. 1 (84)

Even though the present stability analysis alone is not expe
ted to a

ount for

the 
omplex issue of numeri
al self-heating [1, 53℄, the results of Table 2 are found

in reasonable agreement with the lower bound of the above heuristi
 range, as

they indi
ate a 
omplete stabilization of the system for vt∆t/∆x & 0.1 in 
ase

of a linear weigth fa
tor and θf = 1. For lower θf values, stabilization is rea
hed

for in
reased vt∆t/∆x. Moreover, Table 3 shows that the use of a quadrati


weight fa
tor permits to suppress the �nite-grid instability at redu
ed vt∆t/∆x
(& 0.06 for θf = 1). Similarly to Fig. 6, a 
lear transition from the high-k spatial
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θf 0 0.1 0.5 1

vt∆t/∆x
0.05 0.0166 0.016 0.0150 0.012

(2.64) (2.64) (2.67) (2.67)

0.0625 0.0192 0.0187 0.0161 0.011

(2.51) (2.51) (2.54) (2.58)

0.1 0.0204 0.0185 0.01 −1.8× 10−3

(2.18) (2.18) (2.27) (2.33)

0.25 8× 10−4 −7.4× 10−3
-0.04 -0.08

(1.05) (1.11) (1.28) (1.46)

0.5 0 -0.01 -0.0508 -0.105

(0.39) (0.54) (0.63) (0.76)

1 0 -0.0102 -0.0532 -0.112

(0.14) (0.27) (0.33) (0.39)

Table 2: Imaginary frequen
y ℑω/ωp (wave number k∆x) of the dominant mode as a fun
tion

of the ratio vt∆t/∆x and the damping parameter θf for ωp∆t = 2 and a linear weight fa
tor.

regime to the low-k temporal regime is eviden
ed when raising vt∆t/∆x. As

expe
ted, a high-order (m > 1) weight fa
tor, whi
h enables to �lter out high

spatial frequen
ies, proves bene�
ial only in the high-k, grid-instability regime

(for vt∆t/∆x . 0.25). Note that we have not 
onsidered values vt∆t/∆x > 1
sin
e, in the present 
ase, this would imply ∆x/λD < 2, a parameter range of

little pra
ti
al interest for the aforementioned appli
ations.

Further insight into the stability properties of the adjustable-damping s
heme

is given by �xing the ratio vt∆t/∆x = 0.09 and varying a

ordingly the spa
e

and time steps. Equivalently, within the laser-plasma 
ontext whi
h we propose

to address, this 
an be a
hieved by �xing the parameters ω0∆x/c and ω0∆t
(where ω0 is the in
ident laser frequen
y) and varying the plasma density. The

resulting data is displayed in Table 4 in the ranges 1.26 ≤ ωpt ≤ 8.94 and

14.3 ≤ ∆x/λD ≤ 101.1. One 
an see that a linear shape fa
tor proves rather

inappropriate for most of the parameter range 
onsidered. By 
ontrast, 
omplete

stabilization is a
hieved for n ≥ 2 weight fa
tors. It is worth noting that, in

terms of laser-plasma parameters, the rightmost 
olumn of Table 4 
orresponds

to a 2000nc, 1 keV plasma (where nc is the 
riti
al density at the laser frequen
y

ω0) dis
retized with ω0∆t = 0.2 and ω0∆x/c = 0.1. In addition to a

essing

su
h extreme plasma 
onditions, employing a 
ubi
 weight fa
tor may give the

opportunity to redu
e the damping parameter θf .
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θf 0 0.1 0.5 1

vt∆t/∆x
0.05 5.3× 10−3 5× 10−3 3.5× 10−3 10−4

(2.54) (2.54) (2.58) (2.61)

0.0625 5.4× 10−3 4.8× 10−3 1.8× 10−3 −3.7× 10−3

(2.39) (2.39) (2.45) (2.48)

0.1 3.2× 10−3 1.1× 10−3 −8 × 10−3
-0.0207

(1.99) (2.02) (2.14) (2.24)

0.25 0 −8.1× 10−3
-0.039 -0.078

(0.81) (1.05) (1.22) (1.4)

0.5 0 −9.7× 10−3
-0.05 -0.103

(0.33) (0.54) (0.64) (0.76)

1 0 -0.01 -0.053 -0.11

(0.14) (0.27) (0.33) (0.39)

Table 3: Imaginary frequen
y ℑω/ωp (wave number k∆x) of the dominant mode as a fun
tion

of the ratio vt∆t/∆x and the damping parameter θf for ωp∆t = 2 and a quadrati
 (n = 2)
weight fa
tor.

ωp∆t 1.26 2 2.83 3.46 4 5.66 6.32 8.94

∆x/λD 14.3 22.6 32 39.1 45.2 64 71.5 101

linear -0.0036 0.0034 0.0048 0.0047 0.0044 0.0036 0.0033 0.0024

(2.09) (2.41) (2.59) (2.67) (2.74) (2.85) (2.87) (2.96)

quadrati
 -0.021 -0.015 -0.01 -0.0078 -0.0066 -0.0044 -0.0039 -0.0026

(1.95) (2.3) (2.5) (2.62) (2.68) (2.82) (2.85) (2.92)


ubi
 -0.022 -0.019 -0.015 -0.013 -0.011 -0.0079 -0.0071 -0.0051

(1.83) (2.16) (2.36) (2.48) (2.56) (2.7) (2.76) (2.85)

Table 4: Imaginary frequen
y ℑω/ωp (wave number k∆x) of the dominant mode as a fun
tion

of the spa
e and time steps and the weight fa
tor order, for a �xed ratio vt∆t/∆x = 0.09 and

θf = 1.
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Figure 7: Propagation of a plane wave with θf = 1 (top, left), θf = 0 (top, right), and a

spatially varying θf pro�le a

ording to Eq. (85) (bottom).

5. Numeri
al appli
ations

5.1. Wave propagation in va
uum

Here, we illustrate the 
apability of the adjustable damping, impli
it s
heme

implemented in the 
ode ELIXIRS to manage the propagation of ele
tromagneti


waves in va
uum. Let us 
onsider a plane wave, with normalized ve
tor potential

a0 = 3 and frequen
y ω0, entering the left-hand side of a 1024∆x × 4∆y box,

with ∆x = 0.2c/ω0, ∆y = 0.8c/ω0 and ∆t = 0.2ω−1
0 . The wave is inje
ted and

absorbed using the pro
edure detailed in 3.3. Figure 7(left) shows the expe
ted

monotonous damping of the in
ident wave indu
ed when a spatially uniform

damping parameter θf = 1 is applied. After propagating a
ross the simulation

box, the wave amplitude is measured to be 46% of the initial value, whi
h is 
lose

to the theoreti
al value (49%). The opposite, dissipation-free 
ase 
orresponding

to θf = 0 is displayed in Fig. 7(right). Finally, with the problem of laser plasma

intera
tion in mind, we address the 
ase of a spatially varying θf pro�le in the

form 




θf = 0, 0 < ω0x/c < 51.2
θf = 1, 51.2 < ω0x/c < 153.6
θf = 0, 153.6 < ω0x/c < 204.8

(85)

Figure 7(
enter) shows that the dis
ontinuity in θf does not 
ause signi�
ant

spurious e�e
ts. This sought-for property is of major interest for modeling

laser-plasma intera
tion as it allows the laser wave to travel unperturbed in

va
uum over several wavelengths before rea
hing the over
riti
al target, whose

numeri
al stability 
alls for �nite numeri
al damping. For the sake of 
om-

pleteness, we have 
he
ked that the weak (∼ 0.1% in the present 
ase) re-
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�e
tion arising at the dis
ontinuity surfa
e is 
onsistent with Fresnel's formula

R = (N(1) − N(0))2/(N(1) + N(0))2, where N(θf ) = c/vφ(θf ) is the numeri
al

refra
tion index derived in Se
. 4.1.

5.2. Plasma expansion into va
uum: ben
hmarking against expli
it simulations

As a �rst test of the impli
it Vlasov-Maxwell solver, we simulate the dynami
s

of a plasma slab freely expanding into va
uum. The results of the impli
it 
ode

ELIXIR are 
onfronted to re�ned, expli
it simulations performed with the 
ode

CALDER [54℄. We 
onsider a 0.6c/ωp plasma slab 
omposed of hot (10 keV)

ele
trons and 
old ions. In the impli
it 
ase, the simulation box is 103∆x× 4∆y
large, with ∆x = 2c/ωp and ∆y = 0.4c/ωp (yielding the ratios ∆x/λD = 14 and

vt∆t/∆x = 0.14), whereas the expli
it simulation handles a 1024∆x× 8∆y box,
with ∆x = ∆y = 0.2c/ωp. A linear weight fa
tor is used in all 
ases.

Figure 8: Time evolution of the ion density pro�le: expli
it (left) and impli
it (right) simulations

with ∆x = 0.2c/ωp, ∆t = 0.1ω−1

p , Np = 6 × 105 and ∆x = 2c/ωp, ∆t = 2ω−1

p , Np = 6 × 104,
respe
tively. The impli
it damping parameter is θf = 1.

Figure 9: Ion phase spa
e at t = 2600ω−1

p : expli
it (left) and impli
it (right) simulations with

∆x = 0.2c/ωp, ∆t = 0.1ω−1
p , Np = 6 × 105 and ∆x = 2c/ωp, ∆t = 2ω−1

p , Np = 6 × 104,
respe
tively. The impli
it damping parameter is θf = 1.
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Figure 10: Time evolution of the ele
tron (red) and ion (green) kineti
 energies: expli
it (left)

and impli
it (right) simulations with ∆x = 0.2c/ωp, ∆t = 0.1ω−1

p , Np = 6 × 105 and ∆x =
2c/ωp, ∆t = 2ω−1

p , Np = 6× 104, respe
tively. The impli
it damping parameter is θf = 1.

Figures 8, 9 and 10 plot the time evolution of the ion density pro�le, the ion

phase spa
e and the time evolution of the plasma kineti
 energies, as simulated

by the impli
it and expli
it 
odes. The impli
it damping parameter is 
hosen to

be θf = 1, whereas the total number of ma
roparti
les Np is 6× 104 and 6× 105

in the impli
it and expli
it 
ases, respe
tively. Overall, albeit roughly resolved

and strongly damped (as expe
ted from Table 1), the impli
it s
heme manages to

satisfa
torily 
apture the �nely resolved, expli
it results. Yet, the wave damping

gives rise to arti�
ial ele
tron 
ooling, whi
h results into a weakened ion a

el-

eration as seen in Figs. 9 and 10. More quantitatively, the total energy drops

by ∼ 3%, yielding a maximum ion energy of ∼ 160 keV, as 
ompared to ∼ 220
keV in the expli
it 
ase. For the sake of 
ompleteness, we have 
arried out addi-

tional 
al
ulations so as to assess the in�uen
e of the damping parameter and the

number of ma
roparti
ules. For ea
h simulation, we have measured the energy

variation and the peak ion energy. The data thus obtained is summarized in

Tables 5 and 6. The impli
it s
heme behaves reasonably well up to θf = 0.15
with an energy variation < 10%, 
omparable or better than its expli
it 
ounter-

part for an equal number of ma
roparti
les. In
reasing the latter from 6× 104 to
6 × 105 approximately halves the energy variation but hardly 
hanges the peak

ion energy. The transition from numeri
al ele
tron 
ooling and heating o

urs

between θf = 1 and θf = 0.5. Finally, the undamped (θf=0) 
ase is subje
t to
a mu
h stronger, if still limited, ele
tron heating, whi
h translates into a twofold

overestimate of the peak ion energy.

5.3. A parametri
 study of plasma self-heating and 
ooling

We have 
arried out a series of simulations of the free evolution of an ele
tron-

ion plasma to gauge the potential dis
repan
y between the idealized linear anal-

ysis of Se
. 4.2 and the a
tual predi
tor-
orre
tor numeri
al s
heme. Evidently,

the obje
tive is to gain further insight into the energy 
onservation properties of

the latter and the predi
tive 
apability of the former. These 
al
ulations draw
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∆E/E0 Ion peak energy (keV)

Expli
it +9.3 % 232

Impli
it (θf = 1) -2.8% 162

Impli
it (θf = 0.5) +3.1% 208

Impli
it (θf = 0.15) +9% 273

Impli
it (θf = 0) +19.7% 451

Table 5: Total energy variation and ion peak kineti
 energy (keV) at 2600ω−1

p with Np = 6×104.

∆E/E0 Ion peak energy (keV)

Expli
it +1 % 221

Impli
it (θf = 1) -1.4% 162

Impli
it (θf = 0.5) +1.5% 198

Impli
it (θf = 0.15) +4.5% 256

Impli
it (θf = 0) +12.4% 418

Table 6: Total energy variation and ion peak kineti
 energy (keV) at 2600ω−1

p with Np = 6×105.

upon and extend the work of Ref. [21℄ to the ele
tromagneti
 regime. The

system 
onsists of a bounded ele
tron-ion plasma with Te = Ti = 1 keV and

mi/me = 900, extending over half a 300∆x × 4∆y simulation box. We have

s
anned the (∆x/λD, ωp∆t) parameter spa
e in the range [5, 60]× [1, 5]. In pra
-

ti
e, after introdu
ing ω0, the frequen
y of a �
titious ele
tromagneti
 wave,

and nc, the 
orresponding 
riti
al density, we have set ∆x = 0.2c/ω0 and var-

ied the ratio ne/nc and the time step so that ∆x/λD ∈ {5, 10, 20, 30, 60} and

ωp∆t ∈ {1, 2, 5}. The damping parameter is θf = 1. The total simulation time

is kept �xed at 1000ω−1
0 . For ea
h simulation, we have 
al
ulated the relative

variation of the total kineti
 energy per time step (∆K/K0)/N (where ∆K is the

kineti
 variation, K0 the initial kineti
 energy and N the number of time steps).

To be 
omplete, we have also performed ele
trostati
 
al
ulations, whereby the

ele
tri
 �eld is dire
tly 
omputed through the Poisson equation (64).

∆x/λD 5 10 20 30 60

ωp∆t
1 3.2× 10−5 3.2× 10−4 1.1× 10−3 2.1× 10−3 4.7× 10−3

2 −9.2× 10−5 1.5× 10−4 7.9× 10−4 1.5× 10−3 4.5× 10−3

5 0 −1.6× 10−4 1.2× 10−4 4.7× 10−4 1.7× 10−3

Table 7: Relative variation of the total kineti
 energy per time step (∆K/K0)/N : ele
trostati



ase and linear weight fa
tor.
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∆x/λD 5 10 20 30 60

ωp∆t
1 2.8× 10−5 3.2× 10−4 9.9× 10−4 1.7× 10−3 2.8× 10−3

2 −1.1× 10−4 1.3× 10−4 6.9× 10−4 1.2× 10−3 2.6× 10−3

5 −5.8× 10−5 −2.4× 10−4 2.9× 10−5 3× 10−4 9.5× 10−4

Table 8: Relative variation of the total kineti
 energy per time step (∆K/K0)/N : ele
tromag-

neti
 
ase and linear weight fa
tor.

∆x/λD 5 10 20 30 60

ωp∆t
1 −3 × 10−5 4× 10−5 2.3× 10−4 4.6× 10−4 1.1× 10−3

2 −1.1× 10−4 −3.5× 10−5 1.4× 10−4 3.2× 10−4 8.3× 10−4

5 −1.3× 10−4 −2.2× 10−4 −10−4 0 2.4× 10−4

Table 9: Relative variation of the total kineti
 energy per time step (∆K/K0)/N : ele
tromag-

neti
 
ase and quadrati
 weight fa
tor.

The results are summarized in Tables 7-9. The asso
iated plots of the kineti


energies are shown in Figs. 11- 13: ea
h 
olumn 
orresponds to a spe
i�
 value of

∆x/λD and ea
h line to a spe
i�
 value of ωp∆t. Note that we have ex
luded in

these plots the 
ase ∆x/λD = 60 as it always gives rise to signi�
ant numeri
al

heating. We have 
he
ked that the plasma kineti
 energy makes up for most of the

system energy. Overall, the ele
trostati
 results prove 
lose to the ele
tromagneti


ones. Satisfa
tory energy 
onservation (. 10−4
) is obtained for vt∆t/∆x & 0.2

and vt∆t/∆x & 0.1 in the linear and quadrati
 interpolation 
ases, respe
tively.

These lower bound values are in fairly good agreement, albeit slightly higher,

with the linear results of Se
. 4.2. Larger vt∆t/∆x ratios eventually lead to

plasma 
ooling,

5.4. High intensity laser intera
tion with an overdense plasma slab

5.4.1. Quasi-one-dimensional simulation

Let us now address the problem of the intera
tion of a relativisti
-intensity

laser pulse with an over
riti
al plasma, whi
h is the prime motivation behind this

work.

As a �rst illustration, we 
onsider the 
ase of a quasi-1D laser-plasma sys-

tem. The irradiated target 
onsists of a 60c/ω0-long, 1 keV, 200nc plasma slab

pre
eded by a 18c/ω0-long density ramp rising linearly from 0 to 200nc . The

in
ident ele
tromagneti
 plane wave has a 120ω−1
0 
onstant-intensity pro�le with

a 22ω−1
0 rise time and a normalized amplitude a0 = eE0/mecω0 = 3. The

impli
it simulation employs a 2048∆x × 4∆y grid, with ∆x = ∆y = 0.1c/ω0
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Figure 11: Time evolution of the total (blue), ion (red) and ele
tron (green) energies: ele
-

trostati
 
ase with linear weight fa
tor. ∆x/λD = (5, 10, 20, 30) from left to right and

ωp∆t = (1, 2, 5) from top to bottom.
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Figure 12: Time evolution of the total (blue), ion (red) and ele
tron (green) energies: ele
-

tromagneti
 
ase with linear weight fa
tor. ∆x/λD = (5, 10, 20, 30) from left to right and

ωp∆t = (1, 2, 5) from top to bottom.
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Figure 13: Time evolution of the total (blue), ion (red) and ele
tron (green) energies: ele
tro-

magneti
 
ase with quadrati
 weight fa
tor.
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and ∆t = 0.14ω−1
0 , yielding, in terms of plasma parameters, ∆x/λD = 32 and

ωp∆t = 2 (vt∆t/∆x = 0.06). The damping parameter in the ele
tromagneti


solver, as well as in the parti
le pusher, is set to zero in the va
uum region and

the moderately dense plasma region up to ne = 60nc, and to unity in the denser

plasma region. Guided by the results of Se
. 5.3, we make use of a quadrati


weight fa
tor to redu
e the numeri
al heating. The number of ma
roparti
les

per 
ell Np is varied from 100 to 1300. These 
al
ulations are 
ompared with

expli
it simulations using the same parameters ex
ept for a de
reased time step

∆t = 0.05ω−1
0 so as to ful�ll the Courant stability 
ondition.

Expli
it Impli
it (θf = 0) Impli
it (θf = 1 if ne > 60nc)

Np = 1300 +14.4% +6% −3%
Np = 400 +15.3% +10.5% −1%
Np = 100 +22% +25.5% +12.7%

Table 10: Quasi-1D laser-plasma intera
tion: energy variation in the expli
it simulations with

∆t = 0.05ω−1

0
and the impli
it simulations with ∆t = 0.14ω−1

0
and varying θf . See text for

other simulation parameters.

Table 10 
ompares the values of the total energy variation (
al
ulated after


omplete re�e
tion of the laser pulse) as obtained in the expli
it and impli
it


ases. Results from impli
it simulations with zero damping are also displayed.

Overall, ex
ept for Np = 100, for whi
h 
ase the three s
hemes behave similarly,

the impli
it simulations are found to a
hieve better energy 
onservation than

their expli
it 
ounterparts. The bene�t of a strongly damped s
heme in the

densest region of the plasma is mostly eviden
ed for Np = 1300 and 400. The

not-so-good performan
es of the expli
it 
al
ulations prompted us to 
arry out

an additional, more re�ned expli
it simulation that 
an serve more properly as

a referen
e 
al
ulation. This simulation made use of a 4096∆x× 8∆y grid with

∆x = ∆y = 0.05c/ω0 and ∆t = 0.03ω−1
0 , as well as of a third-order weight fa
tor

with Np = 650. It yielded a total energy variation of 4%.

The ele
tron (x, px) phase spa
e (integrated in the y-dire
tion) is displayed
in Fig. 14 for both expli
it and impli
it s
hemes. Consistently with the well-

known ponderomotive heating me
hanism arising at relativisti
 laser intensities,

fast ele
trons are a

elerated into the target as bun
hes separated by half the

laser wavelength [55℄. The expli
it simulation predi
ts maximum ele
tron mo-

menta about 20% higher than that predi
ted by the impli
it simulation. Also, as

a result of the damping of longitudinal beam-plasma modes, the impli
it simula-

tion exhibits a longer-lived separation between the thermal ele
trons and the fast

ele
trons as the latter propagate through the target. In an a
tual solid-density


on�guration, though, the beam-plasma wave mixing observed in the expli
it


ase should be suppressed by 
ollisions as demonstrated in Ref. [56℄. Yet, these

dis
repan
ies do not translate into major di�eren
es in the ele
tron energy dis-
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Figure 14: Ele
tron (x, px) phase spa
e at t = 198ω−1

0
: expli
it simulation (left) and impli
it

simulation with θf = 1 (right). In both 
ases, Np = 1300. See text for other simulation

parameters.

Figure 15: Ele
tron energy distribution at di�erent times: expli
it simulation (red) and impli
it

simulation (blue). Energy is normalized by mec
2
.

Figure 16: Ion (x, px) phase spa
e at t = 792ω−1

0
: expli
it simulation (left) and impli
it simu-

lation with θf = 1 (right). In both 
ases, Np = 1300. See text for other simulation parameters.
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Figure 17: Time evolution of the ele
tron (red) and ion (green) kineti
 energies: expli
it sim-

ulation (left) and impli
it simulation with θf = 1 (right). In both 
ases, Np = 1300. See text

for other simulation parameters.

tribution as shown at three su

essive times in Fig. 15. In parti
ular, the slope

of the high-energy tail of the spe
tra is satisfa
torily reprodu
ed. The redu
ed

ele
tron heating gives rise in turn to a ∼ 15% slower, spa
e-
harge-driven ion

a

eleration into va
uum as depi
ted by the ion (x, px) phase spa
es of Fig. 16.

5.5. Two-dimensional simulations

We now 
onsider a fully two-dimensional laser-plasma system. The ele
tron-

ion plasma slab has a peak density of 200nc, a temperature of 1 keV and a

thi
kness of 6c/ω0. A 12c/ω0-long linear density ramp is added in front of the

target. The simulation box 
onsists of a 1024 × 512 grid with ∆x = ∆y =
0.1c/ω0 (∆x/λD = 32). The in
oming laser pulse has un
hanged parameters

ex
ept for a 12c/ω0 FWHM Gaussian transverse pro�le. Open and periodi


boundary 
onditions are applied for the ele
tromagneti
 �elds along the x- and
y-axis, respe
tively. Due to memory 
onstraints, we use a rather small number

of ma
roparti
les Np = 40. So as to stabilize the system, in addition to using

a quadrati
 weight fa
tor, the time step is signi�
antly in
reased as 
ompared

to the previous simulations: ∆t = 0.3ω−1
0 , whi
h 
orresponds to ωp∆t = 4.2

and vt∆t/∆x = 0.13. Parti
les are subje
t to periodi
 boundary 
onditions in

the y-dire
tion, and reinje
ted with their initial temperature in the x-dire
tion.
The damping parameter in the ele
tromagneti
 solver, as well as in the parti
le

pusher, is set to zero in the va
uum region and the moderately dense plasma

region up to ne = 30nc. Two maximum values of the spatially varying damping

parameter have been tried in the denser plasma region: θf = 0.1 and 0.5. The

expli
it simulation of referen
e makes use of a third-order weight fa
tor with

the parameters ∆x = ∆y = 0.08c/ω0, ∆t = 0.05ω−1
0 and Np = 160. This

parallel 
al
ulation takes 4.5h on 64 1.6 GHz Itanium 2 pro
essors. By 
ontrast,

the (sequential) impli
it simulations take 27h on a 2.66 GHz Intel Xeon X5355

pro
essor.
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The time evolution of the parti
le kineti
 energies is displayed in Fig. 18. All

simulations predi
t about the same peak ele
tron energy. Yet, the damped im-

pli
it 
al
ulations yield a faster de
reasing ele
tron energy. The total energy vari-

ation, evaluated over the time interval 215 < ω0t < 715 (that is, after 
omplete

re�e
tion of the laser pulse and before the fastest ions hit the box boundaries)

is −12% and −15% for the θf = 0.1 and θf = 0.5 impli
it 
ases, respe
tively, as


ompared to +5% in the expli
it 
ase.

Figure 18: Time evolution of the ele
tron (red) and ion (green) kineti
 energies: expli
it simu-

lation (left), impli
it simulations with θf = 0.1 (
enter) and θf = 0.5 (right).

Despite their 
rude time resolution and limited number of ma
roparti
les, the

impli
it 
al
ulations manage to reprodu
e quite a

urately the salient features

of the fast ele
tron and ion generation. This is eviden
ed by the ele
tron and

ion (x, px) phase spa
es of Figs. 19 and 20, as well as by the ele
tron energy

spe
tra of Fig. 22. As in the previous Se
tion, if to a lesser extent due to the

weaker numeri
al damping employed here, the impli
it simulations somewhat un-

derestimate the maximum ele
tron energies. A 2-D pi
ture of the fast ele
tron

generation is provided by the map of the ele
tron kineti
 energy density shown in

Fig. 23. A reasonable agreement is observed between the three 
ases, ea
h 
al
u-

lation showing the 
hara
teristi
 2ω0-bun
hed propagation of the fast ele
trons

and their breakout into va
uum.

Figure 19: Ele
tron (x, px) phase spa
e at t = 96ω−1

0
: expli
it simulation (left) and impli
it

simulations with θf = 0.1 (
enter) and θf = 0.5 (right).
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Figure 20: Ion (x, px) phase spa
e at t = 523ω−1

0
: expli
it simulation (left) and impli
it simu-

lations with θf = 0.1 (
enter) and θf = 0.5 (right).

Figure 21: Ele
tron energy distribution at di�erent times: expli
it simulation (red) and impli
it

simulation with θf = 0.1 (blue). Energy is normalized by mec
2
.

Figure 22: Ele
tron energy distribution at di�erent times: expli
it simulation (red) and impli
it

simulation with θf = 0.5 (blue). Energy is normalized by mec
2
.
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Figure 23: Ele
tron kineti
 energy density (normalized bymec
2nc) at t = 67ω−1

0
and t = 86ω−1

0
:

expli
it simulation (top) and impli
it simulations with θf = 0.1 (
enter) and θf = 0.5 (bottom).
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6. Con
lusion

This paper has been devoted to the appli
ation of the relativisti
 dire
t im-

pli
it method to the problem of laser-plasma intera
tion. In 
ontrast to 
losely

related works [26, 27, 28℄, our s
heme, implemented inside the 2Dx-3Dv 
ode

ELIXIRS, allows for high-order weight fun
tions and adjustable damping of the

high-frequen
y waves. The latter 
apability, whi
h extends to ele
tromagneti


waves a method originally designed by Friedman [41℄ for ele
trostati
 waves, per-

mits to manage within a uni�ed algorithm the dissipation-free, Courant 
ondition-

free propagation of the in
ident laser pulse through va
uum, while suppressing

the need to resolve the high-frequen
y 
olle
tive modes inside the dense plasma

region. After having presented an original derivation of the adjustable-damping,

dire
t impli
it method as a simpli�ed, one-iteration Newton s
heme, we have


arried out a thorough analysis of its numeri
al properties regarding both ele
-

tromagneti
 and ele
trostati
 waves. The latter study, a

ounting for the e�e
ts

of �nite ∆t and ∆x, the weight fa
tor order and the damping parameter is found

to provide useful hints when 
ompared to the simulation results of the free evolu-

tion of a plasma slab. Several numeri
al tests have been presented and su

essfuly

ben
hmarked against �nely resolved expli
it simulations. In parti
ular, we have

demonstrated the ability of the 
ode to 
apture the main features of the laser-

plasma intera
tion despite 
ruder spa
e-time resolution. Yet, our 
ode being still

sequential, its in
reased stability domain remains insu�
ient to a

ess the large

spa
e- and time-s
ales managed nowadays by massively parallel expli
it 
odes.

The parallelization of our 
ode is therefore required and will be the subje
t of a

future work.
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A. Numeri
al implementation of the �eld equation

We detail here the numeri
al pro
edure to solve Eq. (57) within a 2D ge-

ometry. The Con
us and Golub iterative method [44℄ is applied to the three
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omponents of Eq. (57). The x-
omponent writes

En+1
x,i+1/2,j +

c2∆t2

2∆x∆y

(
En+1

y,i+1,j+1/2 −En+1
y,i+1,j−1/2 −En+1

y,i,j+1/2 + En+1
y,i,j−1/2

)

− c2∆t2

2∆y2

(
En+1

x,i+1/2,j+1 − 2En+1
x,i+1/2,j + En+1

x,i+1/2,j−1

)
+ χ11,0

i+1/2E
n+1
x,i+1/2,j

+
1

4

[
χ12,0
i En+1

y,i,j+1/2 + χ12,0
i En+1

y,i,j−1/2 +χ12,0
i+1E

n+1
y,i+1,j−1/2 + χ12,0

i+1E
n+1
y,i+1,j+1/2

]

+
1

2
χ13,0
i En+1

z,i,j +
1

2
χ13,0
i+1E

n+1
z,i+1,j −

∆t

2∆y

[
ζ31,0i+1/2E

n+1
x,i+1/2,j+1 − ζ31,0i+1/2E

n+1
x,i+1/2,j−1

]

− ∆t

2∆y

[
ζ32,0i En+1

y,i,j+1/2 + ζ32,0i+1 E
n+1
y,i+1,j+1/2 − ζ32,0i En+1

y,i,j−1/2 − ζ32,0i+1 E
n+1
y,i+1,j−1/2

]

− ∆t

4∆y

[
ζ33,0i+1 E

n+1
z,i+1,j+1 + ζ33,0i En+1

z,i,j+1 − ζ33,0i+1 E
n+1
z,i+1,j−1 − ζ33,0i En+1

z,i,j−1

]

= Q̃x,i+1/2,j. (86)

The y-
omponent writes

En+1
y,i,j+1/2 −

c2∆t2

2∆x2

(
En+1

y,i+1,j+1/2 − 2En+1
y,i,j+1/2 + En+1

y,i−1,j+1/2

)

+
c2∆t2

2∆x∆y

(
En+1

x,i+1/2,j+1 −En+1
x,i−1/2,j+1 − En+1

x,i+1/2,j + En+1
x,i−1/2,j

)

+
χ21,0
i

4

(
En+1

x,i−1/2,j + En+1
x,i+1/2,j + En+1

x,i−1/2,j+1 + En+1
x,i+1/2,j+1

)

+ χ22,0
i En+1

y,i,j+1/2 +
χ23,0
i

2
(En+1

z,i,j + En+1
z,i,j+1)

+
∆t

2∆x

[
ζ31,0i+1/2(E

n+1
x,i+1/2,j + En+1

x,i+1/2,j+1)− ζ31,0i−1/2(E
n+1
x,i−1/2,j + En+1

x,i−1/2,j+1)
]

+
∆t

2∆x

[
ζ32,0i+1 E

n+1
y,i+1,j+1/2 − ζ32,0i−1 E

n+1
y,i−1,j+1/2

]

+
∆t

4∆x

[
ζ33,0i+1 (E

n+1
z,i+1,j + En+1

z,i+1,j+1)− ζ33,0i−1 (E
n+1
z,i−1,j + En+1

z,i−1,j+1)
]

= Q̃y,i,j+1/2. (87)
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The z-
omponent writes

En+1
z,i,j −

c2∆t2

2∆x2
(
En+1

z,i+1,j − 2En+1
z,i,j + En+1

z,i−1,j

)
− c2∆t2

2∆y2
(
En+1

z,i,j+1 − 2En+1
z,i,j + En+1

z,i,j−1

)

+
χ31,0
i

2

(
En+1

x,i−1/2,j + En+1
x,i+1/2,j

)
+
χ32,0
i

2

(
En+1

y,i,j−1/2 + En+1
y,i,j+1/2

)
+ χ33,0

i En+1
z,i,j

− ∆t

∆x

(
ζ21,0i+1/2E

n+1
x,i+1/2,j − ζ21,0i−1/2E

n+1
x,i−1/2,j

)

− ∆t

4∆x

[
ζ22,0i+1

(
En+1

y,i+1,j−1/2 + En+1
y,i+1,j+1/2

)
− ζ22,0i−1

(
En+1

y,i−1,j+1/2 + En+1
y,i−1,j−1/2

)]

− ∆t

2∆x

(
ζ23,0i+1 E

n+1
z,i+1,j − ζ23,0i−1 E

n+1
z,i−1,j

)

+
∆t

4∆y
ζ11,0i

(
En+1

x,i+1/2,j+1 + En+1
x,i−1/2,j+1 −En+1

x,i+1/2,j−1 − En+1
x,i−1/2,j−1

)

+
∆t

∆y
ζ12,0i

(
En+1

y,i,j+1/2 −En+1
y,i,j−1/2

)
+

∆t

2∆y
ζ13,0i

(
En+1

z,i,j+1 − En+1
z,i,j−1

)

= Q̃z,i,j. (88)

The right-hand sides of Eqs. (86)-(88) are given by

Q̃
(m)
x,i+1/2,j = Qx,i+1/2,j − (χ11

i+1/2,j − χ11,0
i+1/2,j)E

(m)
x,i+1/2,j

− 1

4

[
(χ12

i,j − χ12,0
i )

(
E

(m)
y,i,j+1/2 + E

(m)
y,i,j−1/2

)

+(χ12
i+1,j − χ12,0

i+1 )
(
E

(m)
y,i+1,j−1/2 + E

(m)
y,i+1,j+1/2

)]
− (χ13

i,j − χ13,0
i,j )E

(m)
z,i,j

+
∆t

2∆y

[(
ζ31i+1/2,j+1 − ζ31,0i+1/2

)
E

(m)
x,i+1/2,j+1 −

(
ζ31i+1/2,j−1 − ζ31,0i+1/2

)
E

(m)
x,i+1/2,j−1

]

+
∆t

2∆y

[(
ζ32i,j+1/2 − ζ32,0i

)
E

(m)
y,i,j+1/2 +

(
ζ32i+1,j+1/2 − ζ32,0i+1

)
E

(m)
y,i+1,j+1/2

−
(
ζ32i,j−1/2 − ζ32,0i

)
E

(m)
y,i,j−1/2 −

(
ζ32i+1,j−1/2 − ζ32,0i+1

)
E

(m)
y,i+1,j−1/2

]

+
∆t

4∆y

[(
ζ33i+1,j+1 − ζ33,0i+1

)
E

(m)
z,i+1,j+1 +

(
ζ33i,j+1 − ζ33,0i

)
E

(m)
z,i,j+1

−
(
ζ33i+1,j−1 − ζ33,0i+1

)
E

(m)
z,i+1,j−1 −

(
ζ33i,j−1 − ζ33,0i

)
E

(m)
z,i,j−1

]
, (89)
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Q̃
(m)
y,i,j+1/2 =Qy,i,j+1/2 −

1

4

[(
χ21
i,j − χ21,0

i

) (
E

(m)
x,i−1/2,j + E

(m)
x,i+1/2,j

)

+
(
χ21
i,j+1 − χ21,0

i

) (
E

(m)
x,i−1/2,j+1 + E

(m)
x,i+1/2,j+1

)]
− (χ22

i,j+1/2 − χ22,0
i )E

(m)
y,i,j+1/2

− 1

2

[(
χ23
i,j − χ23,0

i

)
E

(m)
z,i,j +

(
χ23
i,j+1 − χ23,0

i

)
E

(m)
z,i,j+1

]

− ∆t

2∆x

[(
ζ31i+1/2,j − ζ31,0i+1/2

)
E

(m)
x,i+1/2,j +

(
ζ31i+1/2,j+1 − ζ31,0i+1/2

)
E

(m)
x,i+1/2,j+1

−
(
ζ31i−1/2,j − ζ31,0i−1/2

)
E

(m)
x,i−1/2,j −

(
ζ31i−1/2,j+1 − ζ31,0i−1/2

)
E

(m)
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]

− ∆t

2∆x

[(
ζ32i+1,j+1/2 − ζ32,0i+1

)
E

(m)
y,i+1,j+1/2 −

(
ζ32i−1,j+1/2 − ζ32,0i−1

)
E

(m)
y,i−1,j+1/2

]

− ∆t

4∆x

[(
ζ33i+1,j − ζ33,0i+1

)
E

(m)
z,i+1,j +

(
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E
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(
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E
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(
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E

(m)
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]
,

Q̃
(m)
z,i,j =Qz,i,j −

1

2
(χ31

i,j − χ31,0
i )

(
E

(m)
x,i−1/2,j + E

(m)
x,i+1/2,j

)

− 1

2

(
χ32
i,j − χ32,0

i
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E

(m)
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(m)
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)
−
(
χ33
i,j − χ33,0

i
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E

(m)
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+
∆t

∆x

[(
ζ21i+1/2,j − ζ21,0i+1/2
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E

(m)
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(
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E
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]

+
∆t

4∆x

[(
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)
E

(m)
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(
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)
E

(m)
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−
(
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)
E

(m)
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(
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E

(m)
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]

+
∆t
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[(
ζ23i+1,j − ζ23,0i+1

)
E
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(
ζ23i−1,j − ζ23,0i−1
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E

(m)
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]

− ∆t

4∆y

[(
ζ11i+1/2,j+1 − ζ11,0i+1/2

)
E

(m)
x,i+1/2,j+1 +

(
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E

(m)
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−
(
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E
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E
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− ∆t

∆y
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)
E
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y,i,j+1/2 −

(
ζ12i,j−1/2 − ζ12,0i

)
E

(m)
y,i,j−1/2

]

− ∆t

2∆y

[(
ζ13i,j+1 − ζ13,0i

)
E

(m)
z,i,j+1 −

(
ζ13i,j−1 − ζ13,0i

)
E

(m)
z,i,j−1

]
.

Assuming periodi
ity of the ele
tri
 �eld along the y dire
tion, we Fourier trans-
form Eqs. (86)-(88) in this dire
tion. We introdu
e ER

k and EI
k the real and

imaginary parts of the Fourier transformed ele
tri
 �eld. For notational simpli
-

ity, the index k will be omitted in the following. The real part of the Fourier
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transform of Eq. (86) reads

(
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y

)
i
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2∆x∆y
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+
(
ER

z

)
i+1

{
χ13,0
i+1

2

}
+
(
EI

z

)
i+1

{
∆t

2∆y
ζ33,0i+1 sin(k̃∆y)
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. (90)

The imaginary part of the Fourier transform of Eq. (86) reads
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+ χ11,0

i+1/2

}

+
(
ER

y

)
i+1

{
c2∆t2

2∆x∆y
+
χ12,0
i+1

4
− ∆t

2∆y
ζ32,0i+1

}
sin(k̃∆y)

+
(
EI

y

)
i+1

{
c2∆t2

2∆x∆y

(
cos(k̃∆y)− 1

)
+
χ12,0
i+1

4

(
cos(k̃∆y) + 1

)
− ∆t

2∆y
ζ32,0i+1

(
cos(k̃∆y)− 1

)}

+
(
ER

z

)
i+1

{
− ∆t

2∆y
ζ33,0i+1 sin(k̃∆y)

}
+
(
EI

z

)
i+1

{
χ13,0
i+1

2

}
=
(
Q̃I

x

)

i+1/2
. (91)
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The real part of the Fourier transform of Eq. (87) reads

(
ER

y

)
i−1

{
−c

2∆t2

2∆x2
− ∆t

2∆x
ζ32,0i−1

}

+
(
ER

z

)
i−1

{
− ∆t

4∆x
ζ33,0i−1

(
cos(k̃∆y) + 1

)}
+
(
EI

z

)
i−1

{
− ∆t

4∆x
ζ33,0i−1 sin(k̃∆y)

}

+
(
ER

x

)
i−1/2

{
c2∆t2

2∆x∆y

(
cos(k̃∆y)− 1

)
+
χ21,0
i

4

(
cos(k̃∆y) + 1

)
− ∆t

2∆x
ζ31,0i−1/2

(
cos(k̃∆y) + 1

)}

+
(
EI

x

)
i−1/2

{
c2∆t2

2∆x∆y
+
χ21,0
i

4
− ∆t

2∆x
ζ31,0i−1/2

}
sin(k̃∆y)

+
(
ER

y

)
i

{
1 +

c2∆t2

∆x2
+ χ22,0

i

}

+
(
ER

z

)
i

{
χ23,0
i

2

(
cos(k̃∆y) + 1

)}
+
(
EI

z

)
i

{
χ23,0
i

2
sin(k̃∆y)

}

+
(
ER

x

)
i+1/2

{
− c2∆t2

2∆x∆y

(
cos(k̃∆y)− 1

)
+
χ21,0
i

4

(
cos(k̃∆y) + 1

)
+

∆t

2∆x
ζ31,0i+1/2

(
cos(k̃∆y) + 1

)}

+
(
EI

x

)
i+1/2

{
− c2∆t2

2∆x∆y
+
χ21,0
i

4
+

∆t

2∆x
ζ31,0i+1/2

}
sin(k̃∆y)

+
(
ER

y

)
i+1

{
−c

2∆t2

2∆x2
+

∆t

2∆x
ζ32,0i+1

}

+
(
ER

z

)
i+1

{
∆t

4∆x
ζ33,0i+1

(
cos(k̃∆y) + 1

)}
+
(
EI

z

)
i+1

{
∆t

4∆x
ζ33,0i+1 sin(k̃∆y)

}
=
(
Q̃R

y

)
i
.

(92)
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The imaginary part of the Fourier transform of Eq. (87) reads

(
EI

y

)
i−1

{
−c

2∆t2

2∆x2
− ∆t

2∆x
ζ32,0i−1

}

+
(
ER

z

)
i−1

{
∆t

4∆x
ζ33,0i−1 sin(k̃∆y)

}
+
(
EI

z

)
i−1

{
− ∆t

4∆x
ζ33,0i−1

(
cos(k̃∆y) + 1

)}

+
(
ER

x

)
i−1/2

{
− c2∆t2

2∆x∆y
sin(k̃∆y)− χ21,0

i

4
sin(k̃∆y) +

∆t

2∆x
ζ31,0i−1/2 sin(k̃∆y)

}

+
(
EI

x

)
i−1/2

{
c2∆t2

2∆x∆y

(
cos(k̃∆y)− 1

)
+
χ21,0
i

4

(
cos(k̃∆y) + 1

)
− ∆t

2∆x
ζ31,0i−1/2

(
cos(k̃∆y) + 1

)}

+
(
EI

y

)
i

{
1 +

c2∆t2

∆x2
+ χ22,0

i

}

+
(
ER

z

)
i

{
−χ

23,0
i

2
sin(k̃∆y)

}
+
(
EI

z

)
i

{
χ23,0
i

2

(
cos(k̃∆y) + 1

)}

+
(
ER

x

)
i+1/2

{
c2∆t2

2∆x∆y
sin(k̃∆y)− χ21,0

i

4
sin(k̃∆y)− ∆t

2∆x
ζ31,0i+1/2 sin(k̃∆y)

}

+
(
EI

x

)
i+1/2

{
− c2∆t2

2∆x∆y

(
cos(k̃∆y)− 1

)
+
χ21,0
i

4

(
cos(k̃∆y) + 1

)
+

∆t

2∆x
ζ31,0i+1/2

(
cos(k̃∆y) + 1

)}

+
(
EI

y

)
i+1

{
−c

2∆t2

2∆x2
+

∆t

2∆x
ζ32,0i+1

}

+
(
ER

z

)
i+1

{
− ∆t

4∆x
ζ33,0i+1 sin(k̃∆y)

}
+
(
EI

z

)
i+1

{
∆t

4∆x
ζ33,0i+1

(
cos(k̃∆y) + 1

)}
=
(
Q̃I

y

)
i
.
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The real part of the Fourier transform of Eq. (88) reads

(
ER

y

)
i−1

{
∆t

4∆x
ζ22,0i−1

(
cos(k̃∆y) + 1

)}
+
(
EI

y

)
i−1

{
− ∆t

4∆x
ζ22,0i−1 sin(k̃∆y)

}

+
(
ER

z

)
i−1

{
−c

2∆t2

2∆x2
+

∆t

2∆x
ζ23,0i−1

}

+
(
ER

x

)
i−1/2

{
χ31,0
i

2
+

∆t

∆x
ζ21,0i−1/2

}
+
(
EI

x

)
i−1/2

{
− ∆t

2∆y
ζ11,0i sin(k̃∆y)

}

+
(
ER

y

)
i

{
χ32,0
i

2

(
cos(k̃∆y) + 1

)
+

∆t

∆y
ζ12,0i

(
cos(k̃∆y)− 1

)}

+
(
EI

y

)
i

{
−χ

32,0
i

2
sin(k̃∆y)− ∆t

∆y
ζ12,0i sin(k̃∆y)

}

+
(
ER

z

)
i

{
1 +

c2∆t2

∆x2
+
c2∆t2

∆y2

(
1− cos(k̃∆y)

)
+ χ33,0

i

}

+
(
EI

z

)
i

{
−∆t

∆y
ζ13,0i sin(k̃∆y)

}

+
(
ER

x

)
i+1/2

{
χ31,0
i

2
− ∆t

∆x
ζ21,0i+1/2

}
+
(
EI

x

)
i+1/2

{
− ∆t

2∆y
ζ11,0i sin(k̃∆y)

}

+
(
ER

y

)
i+1

{
− ∆t

4∆x
ζ22,0i+1

(
cos(k̃∆y) + 1

)}
+
(
EI

y

)
i+1

{
∆t

4∆x
ζ22,0i+1 sin(k̃∆y)

}

+
(
ER

z

)
i+1

{
−c

2∆t2

2∆x2
− ∆t

2∆x
ζ23,0i+1

}
=
(
Q̃R

z

)
i
. (94)
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The imaginary part of the Fourier transform of Eq. (88) reads

(
ER

y

)
i−1

{
∆t

4∆x
ζ22,0i−1 sin(k̃∆y)

}
+
(
EI

y

)
i−1

{
∆t

4∆x
ζ22,0i−1

(
cos(k̃∆y) + 1

)}

+
(
EI

z

)
i−1

{
−c

2∆t2

2∆x2
+

∆t

2∆x
ζ23,0i−1

}

+
(
ER

x

)
i−1/2

{
∆t

2∆y
ζ11,0i sin(k̃∆y)

}
+
(
EI

x

)
i−1/2

{
χ31,0
i

2
+

∆t

∆x
ζ21,0i−1/2

}

+
(
ER

y

)
i

{
χ32,0
i

2
sin(k̃∆y) +

∆t

∆y
ζ12,0i sin(k̃∆y)

}

+
(
EI

y

)
i

{
χ32,0
i

2

(
cos(k̃∆y) + 1

)
+

∆t

∆y
ζ12,0i

(
cos(k̃∆y)− 1

)}

+
(
ER

z

)
i

{
∆t

∆y
ζ13,0i sin(k̃∆y)

}

+
(
EI

z

)
i

{
1 +

c2∆t2

∆x2
+
c2∆t2

∆y2

(
1− cos(k̃∆y)

)
+ χ33,0

i

}

+
(
ER

x

)
i+1/2

{
∆t

2∆y
ζ11,0i sin(k̃∆y)

}
+
(
EI

x

)
i+1/2

{
χ31,0
i

2
− ∆t

∆x
ζ21,0i+1/2

}

+
(
ER

y

)
i+1

{
− ∆t

4∆x
ζ22,0i+1 sin(k̃∆y)

}
+
(
EI

y

)
i+1

{
− ∆t

4∆x
ζ22,0i+1

(
cos(k̃∆y) + 1

)}

+
(
EI

z

)
i+1

{
−c

2∆t2

2∆x2
− ∆t

2∆x
ζ23,0i+1

}
=
(
Q̃I

z

)
i
. (95)

Considering Nx grid points along x-dire
tion Eqs. (90)-(95) 
an be formulated as

a band-diagonal system of equations, whi
h we solve using a LU te
hnique [45℄

for ea
h of the Ny modes of the dis
rete Fourier transform. Then we 
ompute

the �eld solution in real spa
e by inverse Fourier transformation.

B. Numeri
al implementation of the 
harge 
orre
tion step

We detail here the numeri
al pro
edure to solve Eq. (64) within a 2D geom-

etry. As for the wave equation, we make use of the Con
us and Golub iterative

method [44℄, whi
h writes in the present 
ase

−∇ ·
[
(1 + χ0)∇ψ(m+1)

]
= ρ−∇ · [(1 + χ)En+1] +∇ ·

[
(χ− χ0)∇ψ(m)

]
(96)

where χ0 =
[
χkl,0

]
1≤k,l≤3

denotes the y-averaged χ sus
eptibility tensor with

χkl,0 =< χkl >y. En+1 is the solution of the wave equation (53) and m denotes

the iteration index. Omitting the latter, we dis
retize the above equation in the
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form

− 1

∆x

[(
1 + χ11,0

i+1/2,j

) 1

∆x
(ψi+1,j − ψi,j)−

(
1 + χ11,0

i−1/2,j

) 1

∆x
(ψi,j − ψi−1,j)

]

− 1

2∆x

[
χ12,0
i+1,j

1

2∆y
(ψi+1,j+1 − ψi+1,j−1)− χ12,0

i−1,j

1

2∆y
(ψi−1,j+1 − ψi−1,j−1)

]

− 1

2∆y

[
χ21,0
i,j+1

1

2∆x
(ψi+1,j+1 − ψi−1,j+1)− χ21,0

i,j−1

1

2∆x
(ψi+1,j−1 − ψi−1,j−1)

]

− 1

∆y

[(
1 + χ22,0

i,j+1/2

) 1

∆y
(ψi,j+1 − ψi,j)−

(
1 + χ22,0

i,j−1/2

) 1

∆y
(ψi,j − ψi,j−1)

]

= Si,j , (97)

where we have de�ned the sour
e term

S =∂x
[
(χ11 − χ11,0)∂xψ + (χ12 − χ12,0)∂yψ

]

+∂y
[
(χ21 − χ21,0)∂xψ + (χ22 − χ22,0)∂yψ

]
+ ρ

−∂x
[
(1 + χ11)Ex

]
− ∂x

(
χ12Ey

)
− ∂x

(
χ13Ez

)

−∂y
(
χ21Ex

)
− ∂y

[
(1 + χ22)Ey

]
− ∂y

(
χ23Ez

)
(98)
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A 
entered spatial dis
retization of Eq. (98) is given by

Si,j =+
1

∆x

[
(χ11

i+1/2,j − χ11,0
i+1/2)

1

∆x
(ψi+1,j − ψi,j)− (χ11

i−1/2,j − χ11,0
i−1/2)

1

∆x
(ψi,j − ψi−1,j)

]

+
1

2∆x

[
(χ12

i+1,j − χ12,0
i+1 )

1

2∆y
(ψi+1,j+1 − ψi+1,j−1)

−(χ12
i−1,j − χ12,0

i−1 )
1

2∆y
(ψi−1,j+1 − ψi−1,j−1)

]

+
1

2∆y

[
(χ21

i,j+1 − χ21,0
i )

1

2∆x
(ψi+1,j+1 − ψi−1,j+1)

−(χ21
i,j−1 − χ21,0

i )
1

2∆x
(ψi+1,j−1 − ψi−1,j−1)

]

+
1

∆y

[
(χ22

i,j+1/2 − χ22,0
i )

1

∆y
(ψi,j+1 − ψi,j)− (χ22

i,j−1/2 − χ22,0
i )

1

∆y
(ψi,j − ψi,j−1)

]

− 1

∆x

[
(1 + χ11

i+1/2,j)Ex,i+1/2,j − (1 + χ11
i−1/2,j)Ex,i−1/2,j

]

− 1

2∆x

[
χ12
i+1,j

2

(
Ey,i+1,j+1/2 + Ey,i+1,j−1/2

)
−
χ12
i−1,j

2

(
Ey,i−1,j+1/2 + Ey,i−1,j−1/2

)]

− 1

2∆x

[
χ13
i+1,jEz,i+1,j − χ13

i−1,jEz,i−1,j

]

− 1

2∆y

[
χ21
i,j+1

2

(
Ex,i+1/2,j+1 + Ex,i−1/2,j+1

)
−
χ21
i,j−1

2

(
Ex,i+1/2,j−1 + Ex,i−1/2,j−1

)]

− 1

∆y

[(
1 + χ22

i,j+1/2

)
Ey,i,j+1/2 −

(
1 + χ22

i,j−1/2

)
Ey,i,j−1/2

]

− 1

2∆y

[
χ23
i,j+1Ez,i,j+1 − χ23

i,j−1Ez,i,j−1

]

+ ρi,j (99)

The above equations are Fourier transformed along the y dire
tion. Considering
Ny grid 
ells we have to solve Ny one-dimensional equations. Assuming Nx grid


ells in the x dire
tion, ea
h equation turns out into a 2Nx system of equations.

These systems have a band-diagonal stru
ture and are solved with a LU te
hnique

[45℄.

C. Derivation of the dispersion relation of ele
tron plasma waves with

�nite ∆x and ∆t

We restri
t our analysis to a one-dimensional, nonrelativisti
 ele
trostati


plasma with immobile ions. In the following, we adopt the methodology and

notations of Ref. [1℄. For a single ma
ro-parti
le, the adjustable-damping s
heme
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(7)-(10) 
an be formulated as

xn+1 − 2xn + xn−1 =
∆t2

2

{
an+1 +

an
2

+
an−1

22
+
an−2

23
+ . . .

}

=
∆t2

2

{
an+1 +

θf
2
an +

(
1− θf

2

)2
[
an−1 +

θf
2
an−2 +

(
θf
2

)2

an−3 + . . .

]}

(100)

where n stands for the time step index. We now assume a harmoni
 form for the

interpolated ele
tri
 for
e F (1) = F (k)ei(kx−ωt)
. As a dire
t 
onsequen
e of the

PIC interpolation s
heme, we have the relation [1℄

F (k) = qE(k)S(−k) (101)

where E(k) and S(k) are the dis
rete Fourier transforms of the ele
tri
 �eld and

the m-order weight fun
tion, respe
tively. The latter reads

S(k) =

[
sin (k∆x/2)

k∆x/2

]m+1

. (102)

The �rst-order a

eleration term 
an then be expressed as

an =
F (k)

m
exp

[
i(kx(0)n − ωtn)

]

=
F (k)

m
exp

[
ik(x0 + v(0)tn)− iωtn

]

=
F (k)

m
exp ikx0 exp [i(kv − ω)n∆t] . (103)

De�ning A(k) = F (k)
m
eikx0

and z = ei(kv−ω)∆t
, Eq. (103) reads

xn+1 − 2xn + xn−1 =
∆t2

2
A(k)

{
zn+1 +

1

2
zn +

(
1

2

)2

zn−1 +

(
1

2

)3

zn−2 + . . .

}

xn+1 − 2xn + xn−1 =
∆t2

2
A(k)zn

{
z−1

[(
1− θf

2

)2

+
θf
2
z + z2

]

+

(
1− θf

2

)2
θf
2
z−2

(
1 +

θf
2
z−1 +

(
θf
2

)2

z−2 + . . .

)}
.

(104)

This equation 
an be further simpli�ed as

xn+1 − 2xn + xn−1 =
∆t2

2
A(k)2zn

[(1− θf ) + z2]

2z − θf
. (105)
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We linearize xn = x
(0)
n + x

(1)
n where x

(0)
n = x

(0)
0 + v

(0)
0 tn

x
(1)
n+1 − 2x(1)n + x

(1)
n−1 =

∆t2

2
A(k)P(k) (106)

Where the polynomial P reads

P(k) = 2zn
[(1− θf ) + z2]

2z − θf
(107)

(108)

We dedu
e that x
(1)
n (x0, v0, tn) varies as ei(kv−ω)n∆t = zn. Hen
e we �nd the

solution

x(1)n =
∆t2

m
F (k)ei(kx−ωt)

[
z

(z − 1)2
+

z

2z − θf

]
(109)

To evaluate the 
harge density, we introdu
e the dipole density

P (x, t) = n0q

∫
dvf0(v)x

(1)
n (x, v, t)

= −n0q

m
F (k)ei(kx−ωt)

∫
dvf0(v)

1
(

2
∆t

sin(ω − kv)∆t
2

)2

+
n0q∆t

2

2m
F (k)ei(kx−ωt)

∫
dvf0(v)

∞∑

s=0

ei(ω−kv)s∆t

(2/θf)s
(110)

The �rst and se
ond terms of the right-hand side 
orrespond to the expli
it

leapfrog s
heme and the impli
it 
orre
tion, respe
tively. Assuming a Maxwellian

distribution f0(v) =
1

vt
√
2π
exp

[
−
(

v√
2vt

)2]
, the latter 
an be written

∫
dvf0(v)

∞∑

s=0

ei(ω−kv)s∆t

(2/θf)s
=

∞∑

s=0

eiωs∆t

(2/θf)s

∫
dvf0(v)e

−ikvs∆t

=
∞∑

s=0

eiωs∆t

(2/θf)s
F(f0)(ks∆t)

=
∞∑

s=0

eiωs∆t

(2/θf)s
e−

v2t
2
(sk∆t)2

(111)

where F denotes the Fourier transform. Thus the polarisation be
omes

P (x, t) =
n0q

m
F (k)ei(kx−ωt)∆t

2

4

∫
f ′
0(v)

2

k∆t
cotan

[
(ω − kv)

∆t

2

]
dv

+
n0q∆t

2

2m
F (k)ei(kx−ωt)

∞∑

s=0

eiωs∆t

(2/θf)s
e−

v2t
2
(sk∆t)2

(112)
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We 
an develop cotan as a series in the form

cotan

[
(ω − kv)

∆t

2

]
=

2

∆t

+∞∑

q=−∞

1

ω − kv − qωg
(113)

The 
ontinuous 
harge density is given by ρp = −∇ · P, whi
h writes in Fourier

spa
e ρp(k) = −ikP (k). The dis
rete 
harge density is then given by

ρ(k) =
∑

p

S(kp)ρp(kp)

=− i
∑

p

kpS(kp)P (kp)

=− i
∑

p

|S(kp)|2
n0q

2

m
E(kp)

+∞∑

q=−∞

∫
dv

∂f0(v)/∂v

ω − kpv − qωg

− i
∑

p

kp|S(kp)|2
n0q

2∆t2

2m
E(kp)

∞∑

s=0

eiωs∆t

(2/θ)s
e−

v2t
2
(sk∆t)2 . (114)

Using 
entered spa
e-di�eren
ing, dis
rete Fourier transform of the relation E =
−∂φ/∂x gives

E(k) = −iK(k)φ(k) = −iK(k)φ(k) , (115)

where

K(k) = k
sin(k∆x)

k∆x
. (116)

The Poisson equation as modi�ed by the dire
t impli
it method reads

∇ · (∇φn+1) = −ρn+1

ǫ0
(117)

Centered spa
e-di�eren
ing followed by a Fourier transformation gives

κ2(k)φ(k) =
ρ(k)

ǫ0
(118)

where we have de�ned

κ2(k) = k2
[
sin (k∆x/2)

k∆x/2

]2
. (119)

Combining Eqs. (114)-(119), we obtain the dispersion relation for an in�nite ele
-

trostati
 one dimensional plasma taking into a

ount both spatial and temporal

dis
retizations

ǫ(ω, k) = 1 +
ω2
p

κ2(k)

∑

p

|S(kp)|2K(kp)
+∞∑

q=−∞

∫
dv

∂f0(v)/∂v

ω − kpv − qωg

+
ω2
p

κ2(k)

∆t2

2

∑

p

kp|S(kp)|2K(kp)
+∞∑

s=0

eiωs∆t

(2/θ)s
e−

1

2
v2t (sk∆t)2 = 0 , (120)
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where kg = 2π/∆x, ωg = 2π/∆t, ωq = ω − qωg and kp = k − pkg.
Exploiting the Maxwellian form of f0, we have

∫
dv

∂f0/∂v

ωq − kpv
=

1

kpv2t
[1 + ξqZ(ξq)] , (121)

where ξq =
ωq√
2kpvt

and Z denotes the Fried and Conte plasma dispersion fun
tion

Z [50℄, de�ned by

Z(ξ) = π−1/2

∫ ∞

−∞
du

e−u2

u− ξ
with ℑ(ξ) > 0 . (122)

Finally, substituting Eq. (121) into Eq. 120 yields Eq. (82).
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