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Abstract

We present and compare third- as well as fifth-order acctirste difference schemes for the numerical solution of
the compressible ideal MHD equations in multiple spatiatelisions. The selected methods lean on fofieint
reconstruction techniques based on recently improvedores®f the weighted essentially non-oscillatory (WENO)
schemes, monotonicity preserving (MP) schemes as welbag-dimited polynomial reconstruction. The proposed
numerical methods are highly accurate in smooth regionseoflbw, avoid loss of accuracy in proximity of smooth
extrema and provide sharp non-oscillatory transitionssatatinuities.

We suggest a numerical formulation based on a cell-centgspdbach where all of the primary flow variables
are discretized at the zone center. The divergence-fredittam is enforced by augmenting the MHD equations
with a generalized Lagrange multiplier yielding a mixed ésfpoligparabolic correction, as in Dedner et al. (J.
Comput. Phys. 175 (2002) 645-673). The resulting familyobfesnes is robust, costfective and straightforward to
implement. Compared to previous existing approachesnitpdetely avoids the CPU intensive workload associated
with an elliptic divergence cleaning step and the additicoanplexities required by staggered mesh algorithms.

Extensive numerical testing demonstrate the robustnabsediability of the proposed framework for computa-
tions involving both smooth and discontinuous features.

Keywords: Magnetohydrodynamics, Compressible Flow, Higher-ordethmds, WENO schemes, Monotonicity
Preserving, Cell-centered methods

1. Introduction

The development of high-order schemes has been receivinmgaasing amount of attention from practitioners
in the fields of fluid dynamics and, only more recently, maghgtrodynamics (MHD). This interest is driven by a
variety of reasons, such as the possibility of obtainindnlyigiccurate solutions with reduced computatiortédre as
well as the need to narrow the gap between the smallest egbtdatures and the dissipative scales. Although several
successful strategies have been developed in the contisd Bller equations of gasdynamics, only few of them have
been extended to MHD. In the present context, we focus oentédih on high-order finite éierence schemes for the
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solution of the compressible MHD equations in multiple sdatimensions,
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wherep, v, B, E andp are the fluid density, velocity vector, magnetic inductiemergy and gas pressure, respectively.
The system of equations| (1) is complemented by the divesgéee constraint of the magnetic field,

V-B=0, (2)
and by an equation of state relating energy and pressurethé-present work we assume an ideal gas law
__b 1, 5
E—r_1+§(pv +87)., (3)

wherel is the ratio of specific heats.

Traditional second-order schemes have been largely emglimy the solution of Eq.L{1) using either finite vol-
ume (FV, eg@ﬂﬂﬂﬁ[ 2.119] 23] 4b, 3)]) or finitdetience (FD, e.g.D[EBﬂl g1,)22]1] 32]) methods.
At the second-order level, the two approaches are esdgreigliivalent and popular schemes have been built on
Godunov-type discretizations based on the Total Variablaninishing (TVD, [25]) property making use of slope-
limited reconstructions. In spite of the excellent resplitsduced in proximity of discontinuous waves where sharp
non-oscillatory transitions can be obtained, TVD schemi#ssfter from excessive unwanted numerical dissipation
in regions of smooth flow. This deficiency owes to the inhelesitavior of TVD methods that reduces the order of
accuracy to first-order near local extrema (clipping) andanlinearly degenerate fields (such as contact waves) much
more than shocks. Furthermore, discretization errors aialynresponsible for the loss of accuracy.

Efforts to relax the TVD condition and overcome these limitagibave been spent over the last decades towards
the development of highly accurate schemes that retairothestness common to second-order Godunov-type meth-
ods. The original piecewise parabolic method (PPM) meth,oﬂ], for example, provides fourth-order accurate
interface values in smooth regions (in 1D) and has been é&ttto MHD by ml%b] and, more recently H;;_Ltﬁ] 28].
PPM, however, still degenerates to first-order at smoottemxd and attempts to solve the problem have been recently
presented iHﬂS] and [45].

Based on a dierent approach, weighted essentially non-oscillatory M@E[47]) schemes have improved on their
ENO predecessor (originally proposed by Harten etlall [26] are now considered a powerful arfteetive tool
for solving hyperbolic partial dierential equations. WENO methods provide highly accuraligtions in regions of
smooth flow and non-oscillatory transitions in presenceisé@htinuous waves by combiningf@irent interpolation
stencils of order into a weighted average of order21. The nonlinear weights are adjusted by the local smoothnes
of the solution so that essentially zero weights are givemtosmooth stencils while optimal weights are prescribed
in smooth regions. WENO scheme have been formulated in theexbof MHD using both FDI[[30,/4] and FV
formulations,g|{__5b[|5§1|:|d:| 7]. Third- and fifth-order WEN®hemes have been recently improved in terms of
reduced dissipation, better resolution properties artdfasnvergence rates (s@ [53] and [9]) and will be consitier
here.

An alternative strategy is followed by the Monotonicity Beeving (MP) family of schemes by Suresh & Huynh
[4€] who proposed to carry the reconstruction step by firstpating an accurate and stable interface value and then
by imposing monotonicity- and accuracy-preserving caists to limit the original value. MP schemes have been
successfully merged with WENO methods E}y [4] and employeadencontext of relativistic MHD b)}I]lG].

Finally, a reconstruction procedure that avoids the cliggghenomenon has been recently discusseﬁetqa &
Torrilhon [EJ] who devised a new class of nonlinear limitenétions based upon a non-polynomial reconstruction
showing good shape-preserving properties.



It is important to point out that, for spatial accuracy higligan two, multidimensional FV schemes become
notoriously more elaborate than their FD counterpartgespoint values can no longer be interchanged with volume
averages. As a result, FV schemes generally require fullfigimensional reconstructions and the solution of selvera
Riemann problems at a zone face providing the necessaryenwhfiluadrature points required by the desired level
of accuracy, see, for instanc@[ﬁ] 4o, 5]. However, FV idigms do have the adventage that they are better suited
to non-uniform grids and adaptive mesh hierarchies. HigleoFV schemes have been recently ameliorated in the
work of ﬂﬂ,@iﬁ] using either ADER-WENO schemes or leasiesgs polynomial reconstruction.

Conversely, multidimensional FD schemes evolve the pahies of the conserved quantities and considerably
ease up the codingferts by restricting the computations of flux derivatives teeaimensional stencils. In this
perspective, we present a new class of FD numerical scheduggiag a point-wise, cell-centered formulation of
all of the flow quantities, including magnetic fields. The posed schemes have order of accuracy three and five
and their performance is compared through extensive testirtwo and three-dimensional problems. Selected third-
order accurate schemes are i) an improved version of thsicéshird-order WENO scheme of [29] based on new
weight functions designed to improve accuracy near ctifoats @] and ii) the recently proposed non-polynomial
reconstruction oﬂﬂo . Selected fifth-order schemes idel)) the WENO-Z scheme o|f|[9] and ii) the monotonicity
preserving scheme 8] based on a fifth-order accuratefate value (MP5 henceforth).

The solenoidal constraint of the magnetic field is contblly extending the hyperboligarabolic divergence
cleaning technique of Dedner et a|:|[20] to FD schemes. T¥igda the computational cost associated with an
elliptic cleaning step as in [30], and the scrupulous treathof staggered fields demanded by constrained transport
algorithms, e.g[[8, 35, 27| 7]. Furthermore, Mignone & Hatos%ﬂ have shown through extensive testing, for a
class of second-order accurate schemes, that the GLM agipioeobust and can achieve accuracy comparable to the
constrained transport. The resulting class of schemeglig#and fully conservative in mass, momentum, magnetic
induction and energy. Besides the ease of implementatidrefficiency issues, the benefitfered by a method
where all of the primary flow variables are placed at the sapadia position ease the task to add more complex
physics.

The comparison between theffédrent methods of solution is conveniently handled usingrhETO code for
computational astrophysidng?].

The paper is structured as follows. §& we describe the GLM-MHD equations, whig& shows the finite dif-
ference formulation and the selected reconstruction naksthio §4] we test and compare theffdirent scheme perfor-
mance on problems involving the propagation of both comtirsuiand discontinuous features. Conclusions are drawn

in 5.

2. TheConstrained GLM-MHD Equations

We look at a conservative discretization of the MHD equatiff) where all fluid variables retain a cell-centered
collocation and enforce the divergence-free conditioaulgh the hyperboljparabolic divergence cleaning technique
of Dedner’s]. In this approach Gauss’s and Faraday'’s lafwmagnetism are modified by the introduction of a new
scalar field function or generalized Lagrangian multip{@tM henceforth)y. The resulting system of GLM-MHD
equations then reads

ou oF
ot ol

1=xy,z

+8S, (4)

with conservative state vectbrand fluxes defined by

o oM 0
Vg pVavi — BaB; + dal (p + 32/2) 0
U=| By |, F= Bgvi — Bivg + S , S= 0 , (5)
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whered = x, Y, zlabels the dierent components whil®, is the delta Kronecker symbol. Equatiobk (4) are hyperbolic
and fully conservative with the only exception of the ungbgbkscalar field) which satisfies a non-homogeneous
equation with a source term. In the GLM approach, divergemoers are propagated to the domain boundaries at
finite speedt, and damped at a rate given G/ c3 (see§?).

The eigenvalues of the MHD flux Jacobia#fs /dU are all real and coincide with the ordinary MHD waves plus
two additional modescy, for a total of 9 characteristic waves. Restricting ourratiten to thel = x direction, they
are given by

M ==xc,, PB=vwFcr, BT=wFca, *=wFcs, 1=y, (6)
where
1 2 1Byl
Cro= \/Z (rp+|B|2i Jro+ B —4rpB§), = B2, ™)

are the fast magneto-sonic; (with the + sign), slow magneto-sonicd with the — sign) and Alfvén velocities. The
two additional modesc, are decoupled from the remaining ones and correspondseiar limaves carrying jumps in
By andy.. These waves are made to propagate at the maximum signal spegpatible with the time step, i.e.,

Ch = MaX(IVul + Crx Iyl + Cry, Vol +C ) - (8)

wherecs y, Cty, Cr; are the fast magneto-sonic speeds in the three directiahthamaximum is taken throughout the
domain.

Owing to the decoupling, one can treat the 2 linear system given by the longitudinal component of thiel fizs
andy separately from the other ordinary 7-wave MHD equationswAshall see, this greatly simplifies the solution
process and allows to use the standard characteristic gesition of the MHD equations.

Following @], we divide the solution process into an homogous step, where the GLM-MHD (4) are solved
with S = 0, and a source step, where integration is done analytically

. with ap=Ah % . 9)

lp(At) — lp(o) exp(
p

g G

P Ah/At
whereAh = min(Ax, Ay, AZ) is the minimum grid size. Extensive humerical testing Hasas that divergence errors
are minimized when the parametgylies in the range [01] depending on the particular problem, although in presenc
of smooth flows this choice seems to be less sensitive to tinerical value ofrp,.

3. Finite Difference schemes

We consider a conservative finitefidirence discretization dfl(4) where point-values rathen trdume averages
are evolved in time. A uniform Cartesian mesh is employedh will sizesAx x Ay x Az centered atx, yj, z),
wherei, j, k label the computational zones in the three directions. Roitg of exposition, we disregard the integer
subscripts when redundant but always keep the half increimeéex notation when referring to a cell boundary, e.g.,
Fiii= Fi+%,j,k'

2Integration in time resorts to a semi-discrete formulatitrere, given a high-order numerical approximatity)
to the derivatives appearing on the right hand side of El. qd¢ is faced with the solution of the following initial
value problem

du
=~ _—r(J 10
== L), (10)
with initial condition given by the point-wise values bf(x, y;, z, t") = Ui’jj’k. We choose the popular third-order
Runge-Kutta schem 24] to advance the solution in tforeyhich one has
uU* = U+ LU,
ok — 3 n 1 * Atn *
1 2 2
UMl = ZU"+ ZU™ + AL (U™) .
gV T3y ALy
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The choice of the time steft” is restricted by the Courant-Friedrichs-Levy (CFL) coruglit
A" =Ca—, (12)

whereC, is the CFL number. Since the time step is proportional to tkeshsize, the overall accuracy of the scheme
is restricted to third-order because of the time-steppit@duced in Eq.L(T1).

Our task is now to provide a stable and accurate non-osmjlaumerical approximation tg(U). To this purpose,
we begin by focusing our attention to the direction and set, for ease of notatioks= Fx(Ui jk). We then let point
values of the fluxE; correspond to the volume averages of another functionEsagd define

Fim e [ Fe = MO -HOp|. where = [ R (13

Ax Jy .

2

In this formalism, point values of the fluk are identified as cell averagesl%(fx) andH(x) may be regarded as the
primitive function ofF. Straightforward dferentiation of Eq.[{1I3) yields the conservative approxiorat

oF
OX |y

Alx (Fios—Fia)- (14)

Nl

Stated in this form, the problem consists of finding a higtileoapproximation to the interface vaIueﬂ:Qfl knowing
the undivided dferences of the primitive functiard (x), a procedure entirely analogous to that used i in the confext
finite volume methods such as PPMI[14]. Thus one can set

Fi.i =R(Fg) (15)

I+3

whereR() is a highly accurate reconstruction scheme providingblstinterface flux value from point-wise values
and the indexg] spans through the interpolation stencil.

The procedure can be repeated in an entirely similar wayfaitbey andz flux contributions and allows to write
the £ operator in[(ID) as

1 - A N A 1,2 A
L) = T AX (Fx,i+% - Fx,i—%) - A_y (Fy,j+% - Fy,j—%) T Az (sz+% - sz—%) : (16)

This yields the fully unsplit approach considered in thipgra Alternatively, one could use a directionally split
formalism to obtain the solution through a sequence of ormreedsional problems separately corresponding to each
term in equatior((16).

In order to ensure robustness and to avoid the appearanperdss oscillations, the reconstruction step is best
carried with the help of local characteristic fields and byasately evaluating contributions coming from right- and
left-going waves. To this end we first compute, using the napithmetic averagl=JI+§ = (Ui + Ui+1)/2, left and
right elgenvectorﬂak andRK of the Jacobian matrigF/oU, for each characteristic field = 1,...,9. We then

obtain a projection of the posmve and negative part of the fising a simple Rusanov Lax-Friedrichs flux splitting:

Vi’:;[s] - %Lﬁ% -(Fig +a*Upg) , a7
ViK:%,[s] = %LiKJr% (Fis1 - @*Ursy)

whereFg andUq are the point-wise values of the flux and conservative végalFor a typical one-point upwind-
biased approximation of orderr(2 1), one hasg] =i —r,...,i + r while [S] = 2i — [s] + 1 mirrors left-going
characteristic fields with respect to the interfdiee%. The codicienta® represents the maximum absolute value of
thex-th characteristic speed throughout the domain.

The global Lax-Friedrichs flux splitting thus introducegarticularly difusive and other forms of splitting are of
course possible, e.ﬂﬁ, 4]. However, we have found theglietiel of extra numerical dissipation tend to become less
important for higher-order scheme.



The interface flux is then written as a local expansion in itjetreigenvector space:

- _ 7K+ /K, — K
Fi"’% - Z (Vi+% + Vi+%)Ri+% ’ (18)
where the cofficients
KE K+
s = R(VH%’[S]) . (19)

are the reconstructed interface values of the local cheniatit fields andR() can be any one of the procedures
described ir§3.2.

3.1. Moadification for the Constrained GLM-MHD equations
The procedure illustrated so far is valid for an arbitrargteyn of hyperbolic conservation laws, providedand
R* satisfy
oF
ou

i.e., they are left and right eigenvectors of the flux Jacobraspectively. However, foIIowinﬂiZO], we wish to
exploit the full 7x 7 characteristic decomposition of the usual MHD equati@tisar than resorting to a full 9 9
diagonalization procedure. To this purpose, we take adganf the fact that the longitudinal component of the field
By and the Lagrange multiplier satisfy

o ( Bx 0 1) 4 ( Bx
— + — =0, (22)
ot W Cﬁ 0 ) Ox W
and are thus decoupled from the remaining seven MHD equati&. [21) defines a constant @ogent linear
hyperbolic system with left and right eigenvectors givesspectively, by the rows and columns of

1(1 -1/c 11
Loxo = = , Roxo = , (22)
21 Ve, —Ch Cn

Le 28 R = 1F, (20)

associated with the eigenvalués= —c, andA® = +c,. The 2x 2 linear systeni{d1) can be preliminary solved to find
the values 0B, andy at a given interface. Indeed, by applying the projection) (@ zhe linear systeni(21) using Eqg.
(22), one obtains that the only non trivial characterisetd$ are

1- —
i+3.[s

1 9 1

5 Wis1 = CnBxis)) VTG g = 5 (W19 + ChByrg) - (23)
Since the eigenvectors are constant in space, the locaqia) ati + % are completely unnecessary and the compu-
tations in Eq. [2B) can be carried out verfigently throughout the grid. OncE_(23) have been recont&digsing
Eg. (I9) one defines

79, 71— /9, 71—
Bivy = (Vi++% _Vi+%)/ch’ vy = Vi1 T VT (24)

i1
i+3 i+3

and proceed by solving the ordinark?7 MHD equations usin@m% defined by[(Z4) as a constant parameter.

3.2. Third and Fifth-order Accurate Reconstructions

We have shown i3 that flux derivatives may be written in conservative formapplying any one-dimensional
finite volume reconstruction to the point values of the figxAmong the variety of dferent strategies we investigate
both third- and fifth-order accurate interpolation schemeging use of three- and five-point stencil, respectively:

e animproved version of the classical third-order WENO Scdael‘rfz_g] based on new weight functions designed
to improve accuracy near critical points (WEM®), §3.2.1);

e the recently proposed LimO3 third-order reconstructiofiLd], $3.2.2.
6



e the improved WENO5 scheme 6f [9] also known as WENQYZZ.3);
e the monotonicity preserving scheme [of|[48] based on a fifttebinterface value (MPF3.2.2).

Our choice is motivated by the sake of comparing well-knowd gecently presented state of the art algorithms that
rely on heavy usage of conditional statements (LimO3 and)MP&mpletely avoid them (WENEB and WENO-2Z).

The proposed algorithms are applied to the left (-) and rightpropagating characteristic fields defined by Eq.
(I7) to provide an accurate interface value, formally reprnéed by Eq.[(19). Thus, in our formulation, the total
number of reconstruction is 16: two for the linear charastierfields defined by Eq.[{23) and 14 for the left- and
right-going wave families defined by E§.{17) wih= 2,...,8.

In the following we will drop thei + 1 index for the sake of exposition and shorten either on€&_df ith fig.
Undivided diference will be frequently used and denoted with

Ay = fisa— fi. (25)
Occasionally, we will also make use of the Minmod and Mediarcfions defined, respectively as

sgne) + sgnb)

Minmod(a, b) = >

min(lal,|b)), Median@,b,c) = a+ Minmod{ -a,c— a). (26)
3.2.1. Third-Order Improved WENO (WENQ)

In the classical third-order WENO scheme @[29], the irdedf value is reconstructed using the information
available on a three-point local stenci|_(;, X;, X+1). More specifically, a third-order accurate value is preddy a
linear convex combination of second-order fluxes:

fi + fis1 —fi_1 + 3f;
+ w1 .

R (fig) = wo—— 5 (27)
The weightsy, for | = 0, 1 are defined by
w| = S om ., q = G+ 6)2 ,  Wwith o= Ai+% , p1= Ai—% s (28)

wheredp = 2/3,d; = 1/3 are optimal weights and the smoothness indicgdogs/e a measure of the regularity of the
corresponding polynomial approximation.

The scheme has been recently improved in the work by Yam&ékwrpenter,@b], where the introduction of an
additional nonlinear artificial dissipation term was shae@make the scheme stable in the L2-energy norm for both
continuous and discontinuous solutions. Yamaleev & Cagraaiso derived new weight functions providing faster
convergence and improved accuracy at critical points. Ti@adved weights are still defined by Ed._28) with
replaced by

B +e€

’Ai+1 - Ai—1 ’

a —dil+ (29)

To avoid loss of accuracy at critical points, it was show@] [thate has to satisfy = O(AX?).

Here adopt the conventional third-order scheme defined by(Ed)-(Z8) but witha; replaced by Eq.[{29) and
simply sete = Ax?. This improves the accuracy over the origindl&der scheme omg] in regions where the solution
is smooth and provides essentially non-oscillatory sohginear strong discontinuities and unresolved features. T
improved third-order WENO scheme just described will benefd to as WEN®3.

3.2.2. Third-Order Limited reconstruction (LimO3)

Recently,Cada and TorrilhormO] have proposed a new affidient third-order limiter function in the context
of finite volume schemes. Similarly to th&arder WENO scheme described§B.2.1, the new limiter employs a
local three-point stencil to achieve piecewise-parab@éonstruction for smooth data and preserves the accutacy a
local extrema, thus avoiding the well known clipping of cliasl second-order TVD limiters. Interface values are

7



reconstructed using a simple piecewise-linear fméx function acting as a logical switch depending on the deift
right slope:

A,
R(fg) = fi + —2 [Pg(e) +x (#(6) - Ps(9))] . (30)
wheref = Ai_1/Ai s is the slope ratioP3(0) = (2 + 6)/3 is the building block giving polynomial quadratic recon-
struction andj(6) is the third-order limiter

max [0, min (P3(6), 26, 1.6)] if >0,

#(0) = (31)

max[O, min(Pg(H), —g)] if 6<0.

The functiony in Eq. (30) smoothly switches between limited and unlimitedonstructions based on a local
indicator functionn properly introduced to avoid loss of accuracy at smoothesé& with one vanishing lateral
derivative:

Y = max

1 -1 A.-- + A
0,min(1, = + , =#, 32

( 2 2 )] g (rax)? (32)
wheree = 1072, The functiony measures the curvature of non-monotone data inside a catigngl zone and the
free-parameter & r < 1 is used to discriminate between smooth extrema and shgladients. Larger values of
noticeably improve the reconstruction properties at thet obintroducing more local variation, séE[lO]. In the gest
presented here we use- 1.

3.2.3. Fifth-Order Improved WENO: WENO-Z

Borges et al. |__[]9] presented an improved version of the aak$ifth-order weighted essentially non-oscillatory
(WENO) FD scheme 0@9]. The new scheme, denoted with WEN®a8 been shown to be less dissipative and
provide better resolution at critical points at a very madedditional computational cost. We will employ such
scheme here and, for the sake of completeness, report angstential steps for its implementation (for a thorough
discussion see the paper by [9]).

Following the general idea of WENO reconstruction, one @®rs the convex combination offtérent third-order
accurate interface values built on the three possible terEs ofi -2 < s<i + 2:

2fi_2 - 7fi_1 + llfi _fi—l + 5fi + 2fi+1 4 2fi + 5fi+1 - fi+2

R (fig) = wo 6 + w1 6 w2 5 (33)
The weightsy for | = 0,1, 2 are defined by
il (WENOS)
+€)?
w = ol a = (6 +€) (34)

2m@m '

( w[;’ﬂz') (WENO - Z)

wheredy = 1/10,d; = 3/5,d; = 3/10 are the optimal weights giving a fifth-order accurate agjpnation,e = 10-4°
is a small number preventing division by zero and the smasthindicatorg, give a measure of the regularity of the
corresponding polynomial approximation:

Bo = S(Ai—% - A'*%)z * %1(3Ai*% - Ai*%)z ’

13 2 1 2
B = 1_2(Ai+% - Ai—%) *t2 (AH% + Ai+%) ’ (59)
B2 = g(An% —Aig ) ; (3A A”%)z :

While maintaining the essentially non-oscillatory beleayvihe new formulation makes use of higher-order informa-
tion about the regularity of the solution thus providing anbed order of convergence at critical points as well as
reduced dissipation at discontinuities.



3.2.4. Fifth-order Monotonicity Preserving (MP5)

The monotonicity preserving (MP) schemes of Suresh & HUE]I fchieve high-order interface reconstruction
by first providing an accurate polynomial interpolation ahdn by limiting the resulting value so as to preserve
monotonicity near discontinuities and accuracy in smoetfians. The MP algorithm is better sought on stencils with
five or more points in order to distinguish between localexta and a genuir@(1) discontinuities. Here we employ
the fifth-order accurate scheme based on the (unlimitedjfate value given by

_ Zfi,z - 13fi,1 + 47fi + 27fi+1 - 3fi+2
= 60 9

based on the five point valuds,, . . ., fi,». Together with[(36), we also define the monotonicity-preisgrbound

f.

I+

(36)

Nl

fMP = f + M|nm0d(A|+l,a’A ;), (37)
resulting from the median betwedn f;,; and the left-sided extrapolated upper lirfit- = f; + A, e The parameter

a > 2 controls the maximum steepness of the left sided slope @s@ pres monotonicity during a smgle Runge-Kutta
stage (EqZI1) provided the CFL number satisfigs< 1/(1 + ). In practice, setting: = 4 still allows larger values
of C, to be used. The interface value given by Eq] (36) is not altettgen the data is $ficiently smooth or monotone
that f,+_ lies inside the interval defined byf;[ fMP]. Otherwise limiting takes place by bringing the originallwe

back into a new interval[ f™", f "] specifically designed to preserve accuracy near smootierestand provide
monotone profile close to discontinuous data. The final rettoation can be written as

fi it (fiy - f)(fi - M7) <0,
Rlg) = { Medlan(fm'” fii1, fmax) otherwise 9
where
fmin = max|min(f, fi,1, f°), min(f,, {5, )| , 39
fmax = min[max(f;, fi.a, f°), max(f,, fU-, f-°)] .

The bounds given by Ed. (B9) provide accuracy-preservingtraints by allowing the original interface valqg% to

lie in a somewhat larger interval thapf;, fi 1] or I[ f;, fU-]. This is accomplished by considering the intersection of
the two extended interval§f;, fi.1, fMP]andlI[f, fU-, f-C] that leave enough room to accommodate smooth extrema
based on a measure of the local curvature defined by

d"4 = Minmod(4d; — di;1, 4dis1 — di, di, disq) | (40)

I+

whered; = Aj, 1 — Ai_s. Using Eq. [4D), one defines the medilff and the large curvaturé- values as

fi + fi 1
MD i+1 M4 LC _ ¢ M4
fi+% 5~ Edl+1 , fH% =fi+ A 1+ 3dI I (41)
respectively. The curvature measure provided[Ry (40) isesdmt heuristic and chosen to reduce the amount of
room for local extrema to develop. The reconstruction flated preserves monotonicity and does not degenerate to
first-order in proximity of smooth extrema.

4, Numerical Tests

In this section we present a series of test problems aimetkatdrification of the FD methods previously de-
scribed. The selected algorithms have been implementéiRtUTO code for astrophysical gas-dynamics [37] in
order to ease inter-scheme comparisons through a flexiblenom computational framework.



Unless otherwise stated, the specific heat ratio will besEt+ 5/3 and the Courant numbé&y, will be taken
equal to 08, 0.4 or 03 for one, two and three dimensional computations, respaygti Errors for a generic flow
guantityQ are computed using tHe discrete norm defined by

— 1 - ref
a(Q) = NN g;( |Quik— Q% - (42)

where the summation extends to all grid zoriég N, andN, are the number of grid points in the three directions and
Q' is a reference solution. The divergence of magnetic fieldiantjfied using Eq[{42) witF - B computed as

Bx,i+% - Bx,i

e s e
+ +

V-B-=
AX Ay Az ’

(43)
where the interface values are obtained through[Eqg. (24).

4.1. Propagation of Circularly polarized Alfvén Waves

We start by considering a planar, circularly polarized Atiwvave propagating along thalirection. As the wave
propagates, density and pressure stay constant wheraagdrse vector components trace circles without changing
their magnitude. Denoting witly andk the angular frequency and wavenumber, respectively, osie ha

Vx Vox By CapP
vy [=]| voy+Asing |, By |=| F+pAsing |, (44)
Vz Voz + ACosp B; F ypAcCose

where¢ = kx— wt, w/k = Vox = C4 IS the corresponding phase velocity (s the Alfvén speed) and is the wave
amplitude. The plus or minus sign corresponds to right drgedpagating waves, respectively. Here we consider a
standing wave for which one hag, = voy = vo, = 0 and further sgp = 1,c, = 1.

The one-dimensional solution given iy {44) is first rotatgcah angley around they axis and subsequently by
an anglex around thez axis, as in éb]. The resulting transformation leaves sagl@antities invariant and produces
vector rotationg] — R,,q, whereq is either velocity or magnetic field and

coswCcoSy —Sina —cosasiny COSw COSy  Sinacosy siny
Ry, =| sinacosy cose —sinasiny |, R;j = —sina cosa 0 , (45)
siny 0 coSy —cosa siny —sinasiny cosy

are the rotation matrix and its inverse.

Note that the rotation can be equivalently specified by pilgis the orientation of the wave vector= (ky, ky, k)
in a three-dimensional Cartesian frame through the angéasds such that

ky k,
= — — 4
tana < tang < (46)

such that tay = cosa tang. With these choices; in (44) becomes = k - X — wt wherew = +[K|.

Periodicity is guaranteed by setting, without loss of galigt kx = 27 and by choosing the computational domain
x € [0,1],y € [0, 1/ tana] andz € [0, 1/ tang]. With these definitions the wave returns into the originadiion after

one period
1

T=
V1+tarta +targ

Different configurations can be specified in terms of the fourpeterse, 8, A and p (background pressure). One
and two dimensional propagation are recovered by settiagg = 0 andg = 0, respectively.

(47)
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Table 1: Accuracy analysis for the one dimensional (third fourth columns) and three dimensional (fifth and sixth)vAlf wave propagation

after one wave period. Errors are computec\/smzi(Bx)2 + e1(By)? + e1(B,)?. The numerical scheme and the number of pdljtén the x direction
are given in the first and second columns. For 3-D propagati@resolution in thg andz direction is set byNy = Nz = Ny/2.

One Dimension Three Dimensions
Method Nx e (IB]) O, e (IBI) Oy,
WENO+3 16 3.45E-03 - 2.54E-02 -
32 4.39E-04 2.97 3.68E-03 2.79
64 5.52E-05 2.99 4.47E-04 3.04
128 6.91E-06 3.00 5.51E-05 3.02
256 8.64E-07 3.00 6.85E-06 3.01
LimO3 16 3.36E-03 - 2.82E-02 -
32 4.36E-04 2.95 3.76E-03 291
64 5.53E-05 2.98 4.34E-04 3.11
128 6.91E-06 3.00 5.46E-05 2.99
256 8.65E-07 3.00 6.84E-06 3.00
WENO-Z 16 7.50E-04 - 4.10E-03 -
32 2.40E-05 4.96 1.32E-04 4.96
64 7.55E-07 4.99 3.89E-06 5.09
128 2.36E-08 5.00 1.20E-07 5.02
256 7.37E-10 5.00 3.74E-09 5.00
MP5 16 7.38E-04 - 3.41E-03 -
32 2.40E-05 4,94 1.19E-04 4.84
64 7.55E-07 4,99 3.81E-06 4.97
128 2.36E-08 5.00 1.20E-07 4,99
256 7.37E-10 5.00 3.74E-09 5.00

4.1.1. One Dimensional Propagation

As a first test, we consider one-dimensional propagatinges/an the segment € [0, 1] usingNx = 29 grid
points withg = 4,...,8. We set the background pressure topge= 0.1 and the wave amplitudé = 0.1. The GLM
correction is not necessary and has turndar one dimensional propagation.

In order to investigate the convergence of solution, thegrdation time step is adjusted to

r/3
Aty = Aty, (M) (48)
N

whereAty, is the nominal time increment at the minimum resolutiy) whereas > 3 is the spatial accuracy of the
scheme. Errors (ih; norm) for the four selected schemes are plotted after one wexiodT = 1 in the left panel

of Fig[Ad and arranged, together with the correspondingiood convergence, in the third and fourth columns of
Tabled. All schemes meet the expected order of accuracyd(far LimO3 and WENQ-3, 5 for WENO-Z and MP5)
with no significant diferences. It is remarkable that, at the resolution of 64 zahesfifth-order schemes achieve
essentially the same accuracy as the third-order schemestke use of four times (i.&lx = 256) as many points.

4.1.2. Three Dimensional Oblique Propagation
A three dimensional configuration is obtained by rotating ¢ime-dimensional setup described§#h1.1 by the
anglese = B = tar! 2 so that tary = 2/ V5 in Eq. [@5). The background pressurepis= 0.1 and the wave has
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amplitudeA = 0.1. The size of the computational box turns out toxbe [0,1],y € [0,1/2], z € [0, 1/2] and the
number of grid points is set by, = N, = Ny/2, whereN, changes as iff4.1.1. Integration lasts for one wave period,
i.e.,.t = T = 1/3 and the time step is determined by the same condition giyeligh (48). Thus, apart from the
different normalization, our setup is identical to that usef2&].[

Errors are plotted at fferent resolutions in the right panel of Fig'/A.1 and sortedabl&1 for all schemes. On
average, errors are 4 larger than their one-dimensional counterparts but trexadivbehavior meets the expected
order of accuracy with MP5 and LimO3 performing slightlyteethan WENO-Z and WEN®3, respectively. As for
the 1D case, roughly/4 of the resolution is required by a fifth-order scheme to m#te accuracy of a third-order
one.

Following @], we construct in Fig_Al2 a scatter plot of thexgmetic field component parallel to tyeaxis of
the original one dimensional frame. This is achieved bytlgf for every point in the computational domain, the
component OR;;B as a function of the normakj coordinate oR;alx, whereR,, is the rotation matrix introduced
in (@5). The ability of the scheme to retain the planar synmynétiring the computation is confirmed by the lack of
scatter in the plots. The profiles affdirent resolutions verify the general trend establishedlie[] and deviations
from the exact solution appear to be imperceptibleNor- 64 for the third-order schemes and alreadiag> 32 for
the fifth-order schemes.

Overally, the results obtained with third- and fifth-ordecarate schemes outperform traditional TVD schemes,
such as the CT-PPM algorithm MZ8] yielding at most secorder accurate solutions. The CPU costs associated
with WENO+3, LimO3 , WENO-Z and MP5 show, for this test problem, a reascaling 1 : ®8 : 146 : 131,
respectively.

4.1.3. Numerical Dissipation and Long Term Decay in Two Disiens

As already stated, circularly polarized Alfvén waves amesaact nonlinear solution of the MHD equations and
measuring their decay provides a direct indication of thirisic numerical viscosity and resistivity possessedigy t
underlying algorithm, seé [44] Bl 6]. This study is releydat example, in the field of MHD turbulence modeling
where one should carefully control the amount of directilydlaiased dissipation introduced by waves propagating
inclined to the mesh. The error introduced during an obligtaagation is usually minimized at 4Since contri-
butions coming from dferent directions have comparable magnitude. On the conwares propagating at smaller
inclination angles make the problem more challenging.

Our setup builds orﬂS] although we adopt a slightlffelient, more severe, configuration. Using the notations
introduced in§4.7, we set tan = 6, tanB = 0, A = 0.2 and prescribe the background pressure tpdpe 1. The
corresponding ratio of the plasma pressure to the (unpmtiyrmagnetic pressure is then givengy§2oc?) = 1/2,
wherec, = 1is the wave propagation speed. The choice of the inclinatigle determines the computational domain
x € [0,1], y € [0,1/6] as well as the wave pericH = 1/ V37 from Eq. [4¥). The final integration tinte= 16.5 is
chosen by having the wave cross the domaih00 times. This configuration results in a more arduous lest E$]
where the wave period wasv8lr longer and the integration was stopped ae37 wave transits.

Fig[A.3 shows, at the resolution of 12020 mesh points, the maximum values of the vertcabmponents of
velocity (left panel) and magnetic field (right panel) asdtions of time. By the end of the simulation, third-order
schemes (dashed lines) show some degree of dissipationhgithave amplitude being reduced+a0 per cent of
its initial value. On the contrary, schemes of order fivei(sbhes in the figure) preserve the original shape more
accurately and the amplitude retain®4 per cent of its nominal value. These results are compé&edlustrative
purposes, to a" order TVD scheme using the Monotonized Centré&kaience limiter (dotted lines), showing that the
initial peak values have scaled dowrd@ per cent, thus showing a considerably larger level of nigakdissipation.

These results are in agreement with previous investiga ﬂﬁ] and strongly supports the idea that problems
involving complex wave interactions may benefit from usimnghler-order schemes such as the ones presented here.

4.2. Shock tube problems

Shock tube problems are commonly used to test the abilithefscheme in describing both continuous and
discontinuous flow features. In the following we consides tmd three dimensional rotated configurations of standard
one dimensional tubes. The default value for the paranagteontrolling monopole damping (see K. 9) i8.0
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Table 2: One dimensional norm errors for density, normal component of magnetic fieldi| % - B| for the two and three-dimensional shock tube.

Two Dimensions Three Dimensions
Method ei(p) e1(B1) e (V-B) e1(p) e1(B1) e (V-B)
WENO+3 4.11E-03 8.53E-05 7.19E-03 1.82E-03 4.41E-05 7.12E-03
LimO3 3.61E-03 8.74E-05 1.08E-02 1.63E-03 4.07E-05 9.03E-
WENO-Z 2.72E-03 7.90E-05 1.48E-02 1.29E-03 5.41E-05 1-69E
MP5 2.31E-03 6.24E-05 7.60E-03 1.07E-03 2.22E-05 1.37E-02

4.2.1. Two-Dimensional Shock tube

Following @,@3], we consider a rotated version of the Bl test problem|]8] with left and right states are
given by

(49)
Vk = (0.1250,0,0.75-1,0.1)" for x>0,

whereV = (o, v1, Vo, By, By, p) is the vector of primitive variables. The subscript “1” givthe direction perpendicular

to the initial surface of discontinuity whereas “2” corresgls to the transverse direction. Hére: 2 is used and the
evolution is interrupted at time= 0.2, before the fast waves reach the borders.

In order to address the ability to preserve the initial ptasyenmetry we rotate the initial condition by the angle
a = n/4 in a two dimensional plane witk € [-1,1] andy € [-0.01, 0.01] usingNx x Ny/100 grid points, with
Ny = 600. Vectors follow the same transformation given by Eq) (i g = y = 0. This is known to minimize errors
of the longitudinal component of the magnetic field (see k@meple the discussions i 27]). Boundary conditions
respect the translational invariance specified by theiootator each flow quantity we prescriloé, j) = q(i+di, j+4])
where §i,0j) = (1,-1), with the plus (minus) sign for the leftmost and upperHtigost and lower) boundary.
Computations are stopped before the fast rarefaction waaeh the boundaries, at 0.2 cosa.

Fig[A.4 shows the primitive variable profiles for all scheragsinst a one-dimensional reference solution obtained
on a base grid of 1024 zones with 5 levels of refinement. Eirotg norm, computed with respect to the same
reference solution, are sorted in Table 2 for density anchthrenal component of magnetic field. The out-coming
wave pattern is comprised, from left to right, of a fast racéibn, a compound wave (an intermediate shock followed
by a slow rarefaction), a contact discontinuity, a slow $hetd a fast rarefaction wave. We see that all discontirauitie
are captured correctly and the overall behavior matchesstfleeence solution very well. The normal component of
magnetic field is best described with MP5 and does not shosneaus jumps. Indeed, the profiles are essentially
constant with small amplitude oscillations showing a retapeak~ 0.7%. Divergence errors, typicallg 1072,
remain bounded with resolution and tend to saturate wherdameping parametet, = 0.4 for both 2 and 3D
calculations, see F[g'A.7. In this sense, our results fayrcompare to those dﬂblfﬁ%] alﬁ|[21]

Fifth-order methods exhibit less dissipation across jumjith fewer points in each discontinuous layer. Still, the
accuracy gained from third to fifth-order accurate scherses abl€12) is only a factor3.— 2 since interpolation
across discontinuities usually degenerates to lowerrdodguppress spurious oscillations.

{VL = (1,0,0,0.751, 1) for x; <0,

4.2.2. Three-Dimensional Shock tube

The second Riemann problem was introduced bl [43] and latesidered by![44, 52] 4] and by [28,39] in 3D.
The primitive variables are initialized as

36 2 T
V. = 1081200L05——— 095) for x; <0
: ( Va4r Var Vir !
; (50)
VR = (1000 2 4 2 ) for x; >0
) Var' ar \ar' !

whereV = (p, Vi, Vo, V3, By, By, Bs, p). A reference solution at = 0.2 is obtained on the domaie [-0.75,0.75]
using 2048 grid points and 5 levels of refinement. Our setagvdron the three dimensional version [28] and
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[@] where the initial condition[{30) is rotated using Eq.B)4y the anglesr andy such that taa = -1/2 and
tany = 1/(2V5) (corresponding to tghi= 1/4). With this choice the planar symmetry is respected by seggr shift
of cells. The computational domain consists of 268 x 8 zones and spans().75,0.75] in the x direction while
y,z € [0,0.015625]. Computations stop at 0.2 cose cosy (note the misprint iriEQ]).

Fig[A.H and’A.6 show primitive variable profiles obtainedtwihird- and fifth-order schemes, respectively. The
wave pattern consists of a contact discontinuity that sgpartwo fast shocks, two slow shocks and a pair of rota-
tional discontinuities. Tablgl 2 confirms again that the dedm high-order methods is not particularly significant
when the flow is discontinuous. Our results favorably corapaith those of other investigators and no prominent
overunder-shoots are observed. Moreover, the amount of dswilkain the normal component of the magnetic field
is comparable to (or smaller than) those found.in @3 39] dimdrgence errors behave in a very similar way to the
2D case (see also the right panel in EigIA.7).

The computational costs relative to that of WEN®(= 1) are found, for this problem, to bed® : 148 : 125
for LimO3 , WENO-Z and MP5, respectively.

4.3. Iso-density MHD Vortex advection

The following problem has been introduced li [5] and latetynsidered by[[6L17, 21]. The initial condition,
satisfying the time-independent MHD equations, consits magnetized vortex structure in force equilibrium that
propagates along the main diagonal of the computationa{deguare in 2D and a cube in 3D). Here weigget 0.4.

4.3.1. Two Dimensional Propagation

Following Dumbser et al. @1], we perform computations oa artesian box-5, 5] with an initial flow
described by = 1,v = 1+(-y, X, 0) k") B = (-y, x, 0) @~ andp = 1+1/(4q) (u? (1-2qr?)—«2 p) 2901,
The constants andu are chosen to be equal tg2lr while r = /X2 +y2. The simulations are evolved for 10 time
units with periodic boundary conditions, i.e. a single jpagsof the vortex through the domain. The paramegtier
chosen equal to.B for third-order schemesffectively reproducing the configuration shownEhlIb, 7]. FOEMO-Z
and MP5, on the other hand, we choase 1 in order to reduce the unwantefilexts produced by the small jump in
the magnetic field at the periodic boundaries, as arguéﬁllh [2

In order to compare our results to the findings of the lattedystwe report, in Tablgl 3, errors f8 measured both
in L; andL, norms and the corresponding convergence rates. All scheuieldy converge to the asymptotic order
of accuracy. Remarkably, errors obtained with the thirdeoischemes are identical and somewhat better than those
of [|f|]. At the resolution of 128 fifth-order schemes yield errors4 times smaller than third-order ones at 258
comparison between third- and fifth-order schemes frori Ei@lAeveals that divergence errors rapidly decrease with
resolution following a similar pattern. This eloquentlywadates towards the use of higher-order schemes.

4.3.2. Three Dimensional Propagation

We propose a novel three dimensional extension of the verialdlem, consisting of similar initial conditions as
the 2D case, albeit the radiusiow refers to the spherical orre= /X2 + y2 + 72. The perturbation of pressure is now
given by

p=1+ %3] [,uz (1 —-2q(r?- 22)) - sz] g?a-r?) , (51)

while we prescribe also a vertical velocity = 2. The computational domain is the cubes[5]® with periodic
boundary conditions. The evolution stops after 10 timesunit

The last four columns of Tablg 3 report the and L, norm errors ofBx showing an excellent agreement with
the analytical solution. Notice that the errors measurelinorm are systematically smaller thap errors and a
comparison between similar configurations usinfedent norms (as reported 21]) may be deceitful. Keetiag t
in mind and given the somewhat diverse configurations, oneea that our results (I, norm) are competitive with
those of[L_le] at least at a qualitative level.

Divergence errors, shown in Hig AJ12, quickly decrease asribsh thickens and fall below 0at the resolution
of 128’ for the fifth-order schemes.

The computational cost is in accordance with previous tgstig a ratio of 1 : 099 : 146 : 124 for WENO+3,
LimO3 , WENO-Z and MP5, respectively.
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Table 3:L; andL norm errors and corresponding convergence rates for the Mst2x problem in 2D (columns 3-6) and 3D (columns 7-10) at
t=10.

Two Dimensions Three Dimensions
Method NX El(Bx) OL1 Ez(BX) OL2 El(Bx) OL1 Ez(BX) OL2
WENO+3 32 2.49E-03 - 1.94E-04 - 7.81E-04 - 1.74E-05 -

64 4.13E-04 2.6 1.73E-05 3.5 1.29E-04 2.6 1.12E-06 4.0
128 5.72E-05 2.9 1.16E-06 3.9 1.82E-05 2.8 5.38E-08 4.4
256 7.69E-06 29 7.24E-08 4.0 - - - -
LimO3 32 2.49E-03 - 1.94E-04 - 7.81E-04 - 1.74E-05 -
64 4.13E-04 2.6 1.73E-05 3.5 1.29E-04 2.6 1.12E-06 4.0
128 5.72E-05 2.9 1.16E-06 3.9 1.82E-05 2.8 5.38E-08 4.4
256 7.69E-06 29 7.24E-08 4.0 - - - -
WENO-Z 32 8.17E-04 - 1.02E-04 - 1.63E-04 - 7.39E-06 -
64 5.10E-05 4.0 2.89E-06 51 1.07E-05 3.9 1.50E-07 5.6
128 1.83E-06 4.8 5.23E-08 5.8 3.78E-07 4.8 1.87E-09 6.3
256 5.94E-08 4.9 8.28E-10 6.0 - - - -
MP5 32 9.57E-04 - 1.04E-04 - 1.96E-04 - 7.34E-06 -
64 5.16E-05 4.2 3.02E-06 51 1.07E-05 4.2 1.53E-07 5.6
128 1.75E-06 4.9 5.15E-08 5.9 3.66E-07 4.9 1.85E-09 6.4
256 5.69E-08 4.9 8.04E-10 6.0 - - - -

4.4. Advection of a magnetic field loop

We now consider the advection of a magnetic field loop. Fdiicantly large plasmg@, specifying a thermal
pressure dominance, the loop is transported as a passlae Sdze preservation of the initial circular shape tesés th
scheme’s dissipative properties and the correct diset@diz balance of multidimensional tern@[ﬁl 28,32, 39].

4.4.1. Two Dimensional Propagation
Following [ﬁ,@], the computational box is defined k¥ [-1, 1] andy € [-0.5,0.5] discretized on R, x Ny
grid cells (Ny = 64). Density and pressure are initially constant and ecqual tThe velocity of the flow is given
by v = Vg(cosa, sina) with Vo = V5, sine = 1/ V5 and cosr = 2/ V5. The magnetic field is defined through its
magnetic vector potential as
a+axy? if 0<r<Ry,

A,={ A(R-r) if Ri<r<R, (52)
0 if r>R,

whereAg = 103, R= 0.3,R; = 0.2R, & = —0.5A¢/Ry, ap = Ao(R— Ry) — &R% andr = /X2 + y2. The modification

to the vector potential in the < R; region (with respect to similar setups presented by othagsiigators) is done

to remove the singularity in the loop’s center that can caymeious oscillations and erroneous evaluations of the
magnetic energy. The simulations are allowed to evolvd tiati 2 ensuring the crossing of the loop twice through
the periodic boundaries.

In Fig. [A.8 the magnetic energy density is displayed for thm@3 , WENO+3, WENO-Z and MP5 schemes,
along with iso-contours of thecomponent of the magnetic vector potential. The initiatalar shape is preserved
well by all schemes. The third-order schemes are subsligntiare diffusive, as can be seen on the borders of the
loop. This is confirmed by the time evolution of the magnetiergy density (normalized to its initial value), plotted
in the left panel of FigLA. The power law behaviour is samifor the schemes of the same order, with the MP5
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method being the leastftlisive. No pronounced fierence is found between the LimO3 and WENEXschemes, for
this particular problem.

The divergence of magnetic field measured.innorm is shown in the left panel of Fig"’All1, as a function of
@p € [0, 1.0]. For the fifth-order schemes errors are minimized wiagg, 0.4 whereas LimO3 and WENEB present
smaller errors fotrp, < 0.2.

4.4.2. Three Dimensional Propagation

The three dimensional version of this problem is partidulelnallenging as the correct evolution depends on how
accurately thev - B = 0 condition is preserved and how the multidimensional MHBn& are balanced out. The
computational domair0.5 < x < 0.5,-0.5<y < 0.5,-1.0 < z< 1.0 is resolved onto 128 128x 256 zones. As for
the two-dimensional case the vector potentiglis used to initialize the magnetic field, which is then rodatising
the coordinate transformation given by EQ.](45) witk= 0 andy = tarr' 1/2. Even though the loop is rotated only
around one axis, the velocity profile.(vy, v;) = (1, 1, 2) makes the test intrinsically three-dimensional. Oncargg
pressure and density are taken uniform and equal to unitiewbiundary conditions are periodic in all directions.

The preservation of the loop’s shape can be seen inEig] All8chemes preserve the shape, with LimO3 and
WENO+3 being equally more dusive (notice the thickness of the dark area at the loop'dérst as well as the
brighter ring just inside the loop). As for the 2D case, one sae that MP5 is the leastfilisive in preserving the
magnetic energy (right panel of Fig._A.9), while the dissiparates for LimO3 and WEN@3 practically coincide.
Moreover, the three-dimensionlal norm error ofV - B (right panel of Fig/All) exhibits a behaviour similar to the
two dimensional case. As before, the relative CPU scaligden WENG-3, LimO3 , WENO-Z and MP5 for this
test problemis 1: @7 : 145 : 125.

4.5. Orszag-Tang

The Orszag-Tang vortex system describes a doubly periadit donfiguration leading to two-dimensional su-
personic MHD turbulence. The domain, [J° is initially filled with constant density and pressure restpely
equal top = I'? andp = T, while velocity and magnetic field are initialized to = (- sin 2ry, sin 2rx, 0) and
B = (- sin 2ry, sin4rx, 0), respectively. Although an analytical solution is not kmuts simple and reproducible set
of initial conditions has made it a widespread benchmarkfi@r-scheme comparison, see for exa [52]. Density
contour plots, as ir@Z] are shown in the top and bottom roi#sian [A13 att = 0.5 andt = 1, respectively, using a
resolution of 256 points. The dynamics is regulated by multiple shock intéoas leading to the formation of small
scale vortices and density fluctuations. Our results=a0.5 are in good agreement with previous investigations, e.g.
[@,@,EB[ZHEZ], with WEN®3 and LimO3 showing increased numerical dissipation whenpared to WENO-

Z and MP5. This is further confirmed in HIgZAI15 where horizuts aty = 0.3125 in the pressure distribution are
plotted against a reference solution obtained with thersb@sder CT-CTU scheme df [27] on a finer mesh (13)24
see also[% QZ].

The most noticeable fierence occurs &t = 1, when the fifth-order schemes (in particular, MP5) revhal t
formation of a central magnetic island featuring a high dgnspot also recognizable in the results bf|[32] and
in [2, [38] for the isothermal case. This structure is abserthe third-order schemes and may be induced by the
decreasedfEective resistivity across the central current sheet, asidied in[[38].

Divergence errors, shown in FHig_Al14 at= 0.5, are comparable with those given by other investigatars (e
[@,@]) and reach their maximum magnitude in presencesufaditinuous features.

The computational cost of LimO3 , WENO-Z and MP5 relative hattof WENG+3 (= 1) are found to be
1.01: 147 : 129, in analogy with the previous results.

4.6. Kelvin-Helmholtz Unstable Flows

As a final example, we propose the nonlinear evolution of te/ik-Helmholtz instability in two dimensions.
The base flow consists of a single shear layer with an injtiatiform magnetic field lying in thezplane at an angle
6 = /3 with the direction of propagation:

M tanh(l), 0, 0} , B=cy \/,5[ coso, 0, sine], (53)

V =
2 Yo
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whereM = 1 is the Mach numbeyy = 1/20 is the steepness of the shegr= 0.1 is the Alfvén speed. Density and
pressure are initially constant and equat te 1 andp = 1/T". A single-mode perturbatiory = vy Sin(2r7x) exp[—yz/o-z]
with o = 1072, o = 0.1 is super-imposed as iﬂ36]. Computations are carriedoatCGartesian box [@] x [-1, 1]
for t = 20 time units on &y x 2N, mesh, wherd\, = 64, 128 256.

The evolutionary stages are shown in Eig'A.16, where we ayspblor maps of the ratioB + B}Z,)%/BZ at the

largest resolution 258 512 for WENGt3, LimO3 , WENO-Z and MP5. Far < 5 the perturbation follows a linear

rowth phase during which magnetic field lines wound up tghotlhe formation of a typical cat’s eye vortex structure,
ﬁ@,@], see the top row in FIg'/A.116. During this phase, maigtield lines become distorted all the way down to the
smaller difusive scales and the resulting field amplification becomggidor higher magnetic Reynolds numbers.
As such, we observe in the top row of Fig_Al17 that the magrestergy grows faster not only as the resolution is
increased from 64 to 256 mesh points (green, red, black)glbatwhen switching from a third-order to a fifth order
scheme (solid vs. dotted lines). In particular, one canisaehalf of the grid resolution is needed by MP5 to match
the results obtained with WENEB. A somewhat lesser gain can be inferred by comparing WENDZLIMmO3 .
Similarly, the growth rate (computed as¥ = (Vnax — v{mn)/z see bottom panel in Fig._AlL7), is closely related to
the poloidal field amplification and evolves faster for smatumerical resistivity and thus for finer grids amdess
dissipative schemes.

Field amplification is eventually prevented whep 8 by tearing mode instabilities leading to reconnectioméve
capable of expelling magnetic flux from the vortex (second imFig. [A.18), Ei]. Throughout the saturation phase
(third and fourth row in Fig_A.16) the mixing layer enlargewdathe field lines thicken into filamentary structures.
During this phase one can clearly recognize that small staletures are best spotted with the fifth-order methods
while they appear to be morefilised with WENQ-3 and LimO3 .

The CPU costs relative to that of WENQ (= 1) follow the ratios 8 : 148 : 124 for LimO3 , WENO-Z and
MP5, respectively, and confirm the same trend already ésitedol in previous tests.

5. Conclusions

We have presented a class of high-order finifeedence schemes for the solution of the compressible idedd MH
equations in multiple spatial dimensions. The numericaahiework adopts a point-wise, cell centered representation
of the primary flow variables and has been conveniently gastonservation form by providing highly accurate
interface values through a one-dimensional finite voluncemstruction approach. The divergence-free condition of
magnetic field is monitored by introducing a scalar geneedliLagrange multiplier, as iE[lZO]ﬂ’ering propagation
as well as damping of divergence errors in a mixed hyperjpai@abolic way. This greatly simplifies the task of
obtaining highly accurate solutions since the reconsougirocess can be carried out on one-dimensional stencils
using the information available at cell centers. In thigpeses, our formulation completely avoids expensive eltipti
cleaning steps, does not require genuinely multidimeradiorierpolation and eludes the complexities required by
staggered mesh algorithms. Selected numerical schemed bashird- as well as fifth-order accurate constraints
have been presented and compared.

e The recently improved version of the third-order WENO sch¢WENO+3, @]) and the LimO3 reconstruction
based on new limiter functions (introduced [10]) perfoequally well exhibiting third-order accuracy in
smooth problems and non-oscillatory transitions at ditnaities.

e The new fifth-order WENO scheme (WENO-Z, sk [9]) and the nmmioity preserving algorithm (MP5) of
[@] yield high-quality results on all of the selected testsl report orders of accuracy close to 5 for multidi-
mensional smooth problems. Both WENO-Z and MP5 perform witireatly reduced amount of numerical
dissipation and provide highly accurate solution with méeer grid points when compared to third-order
accurate schemes. Still, we have found MP5 to give slighdlyel results WENO-Z in terms of reduced com-
putational cost, improved accuracy and sharper transitiwaiscontinuous fronts.

e Fifth-order schemes are found to §e50 (for WENO-Z) and< 30 (for MP5) per cent slower than third-order
ones, depending on the particular choice. This favorablypeates towards the use of higher order schemes
rather than lower order ones, since the same level of acgceeathbe attained at a much lower resolution still
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giving a tremendous gain in computing time. For three-disi@mal problems, for example, the gain can be
almost two orders of magnitude in CPU cost.

e The results obtained with the present finit&elience formulation are competitive (in terms of accuraay an
description of discontinuities) with recently developadsehemes (e.g L__[JZEL , 6]) and noticeably improve over
traditional 29 order Godunov-type schemes in terms of reduced numerisipdition. The benefitsiered by a
high-order method such as the ones presented here araifaijicelevant in the context of MHD applications
involving both smooth and discontinuous flows.
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Appendix A. Conservative eigenvectorsof the GLM-MHD Equations

The 9x 9 matrix of the conservative MHD equations in one dimensidroduced can be decomposed, given the
eigenvalues (see EQl 7), to the corresponding left and eigleivectors. Following partially the notation @[ﬁl 30]
we define

a2 -2 C?—az B
of = > ai=—>——, By= i Br= —— (A1)

2 _ 27 2 _ 2 b b
Ct —Cs Ci =G /B2 + B2 /BZ+ B2
wherea = /I'p/p denotes the speed of sound. With this notation, the rigtereigctors in matrix form will be given
by

0 af 0 as 1 as 0 af 0
0 agds 0 asla Vy asle 0 asls 0
0 arw+ By —BS asw—Jofy W aswy+Iofy —B.S  arw—Jify O
0  asvz+Jrof;  ByS asV;—JoB; Vo asVz+ 0B ByS aiVz—JigBz 0
Ro| 1 0 0 0 0 0 0 0 1 (A2)
0 By Bwt daBy 0 JaBy Py’ Jupy O
0 B, Bt “daB. 0 “daB, Byt Inp O
0 Hf —T¢ T, Hs—Ts 2V Hg+Ts Ty Hf +T'¢ 0
—Ch 0 0 0 0 0 0 0 Ch

whereS = sign(B,), Hi.s = a1.s(0.5v% + c%s — y,a%), It = @s1Cs 1S andJs g1 = as130%.
On the other hand, the left eigenvectors are given by
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0oy 05, ' 1-05n2 '
0 0 TV
0 ~0.56,S v,
0 0.56,S v
Lig= : , Laz= 0 , Ls= 0 , (A.3)
0 70.5 B, By
0 +0.5 BBy 7B,
0 0 -7
¢ﬁ 0 0
yiar £ ' yias? £Ts \'
Iy, F @fCt I'sy F @sCs
I'ty, £ JroBy Isy, F JsoBy
Itv, = JioBz Isy, ¥ Js0B2
Log = 2—; 0 » Lag= 2—;2 0 . (A.4)
I'tg, + Jr10PBy Isg, — Js10By
ltg, + Jr10B: Isg, — Js10B:
af(l'-1) as(l' - 1)
0 0

where we prescribe= (I'—1)/a2, vy, = ([ -1)/2,y> = (T -2)/(TC-1) andl(r.gw.B) = I ars(vi, B), withi = x,y,z
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Figure A.1: L; norm errors computed for the one-dimensional Alfvén war@ppgation (left panel) and the rotated three-dimensioraion
(right panel). The cross, triangle, plus sign and squarebsygrefer to computations carried out with WEN® LIimO3 , WENO-Z and MP5,
respectively, at the resolution 1¥ 64, 128 and 256 points using a CFL number & Qin 1D) and 03 (in 3D). The dotted lines gives the ideal
convergence slope, that is,Ax® ande AX®, respectively.
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Figure A.2: Scatter plots of thecomponent of magnetic field in the original one-dimensidreine att = 5/3, after 5 revolutions. Each panel
plots every point of the three-dimensional arreBy sine + By cosa as a function of the longitudinal coordinatex/|k| along the direction of wave
propagation. The lack of scatter demonstrates that theitiigoretains the expected planar symmetry. The solid limesgthe reference solution
att = 0 while dotted, dashed and dot-dashed lines correspondsripwutations carried withly = 16, 32, 64 points, respectively. The CFL number
was set taC; = 0.3.
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Figure A.3: Long term decay of circularly polarized Alfvéraves after 1% time units, corresponding te 100 wave periods. In the left panel,
we plot the maximum value of the vertical component of vejoess a function of time for the WENO-Z (solid line) and WEN® (dashed line)
schemes. For comparison, the dotted line gives the restdinglal by a second-order TVD scheme. The panel on the rightsthe analogous

behavior of the vertical component of magnetic fi@gfor LimO3 and MP5. For all cases, the resolution was set t0>20 and the Courant
number is ®4.
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Figure A.4: Primitive variable profiles for the 2D shock tytreblem att = 0.2 cose = 0.2/ V2, along the rotated direction xFrom left to right:
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number is 04. Symbols correspond to the 2D computations whereas thels@s gives the reference solution.
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Figure A.7: Divergence errors as function of the dampingapaatera,, for the shock tube problems in 2D (left,= 0.2/ V2) and 3D (right,
t = 0.8/ V21). Symbols in black color are used to distinguish betwe#ereént schemes at the nominal resolutions (8@0in 2D and 768 8 x 8
in 3D), see the legend. Computations carried at twice thautien (1200x 12 in 2D and 1536 16 x 16 in 3D) are shown using symbols in red

color.
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Figure A.8: Magnetic energy density for the 2D field loop penb att = 2 computed with the third-order (left) and fifth-order (righchemes at
the resolution of 128 64 points with Courant numb€&r; = 0.4. Magnetic field lines are overplotted using 9 contour leegjually spaced between
10°° and 103,
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difference for this particular problem.

1076003
BO1E-D04
5345004
207E-D04

5.156-010)
Mo, D.001068
Min: 5.151e-010

Figure A.10: Magnetic energy density for the 3D field looplgeon att = 1 computed on 12& 128 256 grid zones with Courant numbe0
From left to right: LimO3 , WENQ-3, WENO-Z, MP5. All schemes preserve the circularity of thed, with the fifth-order schemes displaying

sharper borders.

2D Field Loop, €,(V-B)

1 O7E-003
BO1E-004
5.34E.004
24TE-004
£.126-010

Max: 0001048
Min. 5.12 18010

Lt
WENO+3. .

10_45' o ]
; WENO—=3 x |]
[ LimO3 A |
+ WENO—-Z + |
[ MP5 O |
i

107°F J
F o+ ]
'Dﬁ ]
k E@EEDDDDDDDDDDDDDE
I ++++++ |
- T TR

107%F XXKXKX E
; KXXKKX ]
[ X ]
.XXKX i

10_7 P P B A P T .
0.0 0.2 0.4 0.6 0.8 1.0
%p

Figure A.11: Divergence errors as function of the dampingupeetera, for the field loop test problem in 2D (left,= 2) on 128x 64 grid points

and 3D (rightt = 1) on 128x 128x 256 grid points.

magnetic energy

0.96F

0.95E

WENO+3
WENO-2Z E
LimO3 e H

MP5 — - — -

0.0

1.046-003
T.T6ED04
5 18004
25VE-D04

1,376-008

Naqx: 0001036
Mir:

137 10-008

0.2

0.4
time

0.6

1 06E-003
7976004
5. 31E004

2.66E-004

Moa: 0001062
Min' 1.3720.008

* MP5

0.8

3D Field Loop, €,(V-B)
10 T~ T T T
5 WENO-3 x |]
i LimO3 A |4
3 WENO—-Z + |-
L MP5 0O |
E
10—55_ EBEEDDDDDDDDDDDDDDEHE
E +++++++++ E
: IDOSTITTEES
XXKKKXX 1
x X
10_6:— .
10_7 . L1 L1 Ll L1
0.0 0.2 0.4 0.6 0.8 1.0
Xp

28
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Figure A.12:L; norm error of the divergence of magnetic field as functionthefesolution Kly) for the 2D (left panel) and 3D (right panel) vortex
problems at = 10. Different symbols corresponds to the selected reconstrudgjoritams.

M [ o A i

0.0 L [ e
000204060810

0002040608100

Figure A.13: Density contour plots for the Orszag-Tangeysatt = 0.5 (top) andt = 1 (bottom) for the selected schemes using22§itd points.
Thirty equally spaced levels ranging fron8831'2 to 2.2414™2 for the top panel and from.094472 to 1.93372 for the bottom panel are shown.
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Figure A.14: Divergence errors for the four selected schathe: 0.5 on 256 grid zones.
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Figure A.15: Horizontal cut at = 0.3125 showing gas pressure in the Orszag-Tang system @5 at the resolution of 256 MP5 and WENGQ-3
are shown in top panel (squares and plus signs), WENO-Z am®Bi in the bottom. The solid line gives a reference solutibtained with
second-order constrained transport algorithm on 4@@fes.
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Figure A.16: Snapshots of the evolution of the Kelvin-Heofith unstable layer at= 5 (first panel from top)t = 8 (second panel}, = 12 (third
panel) and = 20 (bottom panel). The images show the ratio of the poloiééd Strength and the toroidal componeQiBﬁ + B§/Bz. Left to right

columns corresponds to computations obtained with WEBIQ.imO3 , WENO-Z and MP5, respectively, at the resolutior266 x 512. Note
how the colorbar maximum value changes #&edéent instant to reflecg%ue corresponding magnetic fiekhgth.
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Figure A.17: Volume integrated magnetic energy (top padreetsl growth rate (computed as¥ = (VY — v?’nin)/Z) as functions of time. Here
B% = B2+ Bf, accounts for the "poloidal” contribution only. Solid andttal lines corresponds to integrations carried with WEN@rd
LimO3 (left panels), MP5 and WENEB (right panels). The élierent colors, green, red and black indicatedent numerical resolution, i.e., 64,

128 and 256, respectively.
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