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Abstract

We present and compare third- as well as fifth-order accuratefinite difference schemes for the numerical solution of
the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different
reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO)
schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed
numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth
extrema and provide sharp non-oscillatory transitions at discontinuities.

We suggest a numerical formulation based on a cell-centeredapproach where all of the primary flow variables
are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations
with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. (J.
Comput. Phys. 175 (2002) 645-673). The resulting family of schemes is robust, cost-effective and straightforward to
implement. Compared to previous existing approaches, it completely avoids the CPU intensive workload associated
with an elliptic divergence cleaning step and the additional complexities required by staggered mesh algorithms.

Extensive numerical testing demonstrate the robustness and reliability of the proposed framework for computa-
tions involving both smooth and discontinuous features.

Keywords: Magnetohydrodynamics, Compressible Flow, Higher-order methods, WENO schemes, Monotonicity
Preserving, Cell-centered methods

1. Introduction

The development of high-order schemes has been receiving anincreasing amount of attention from practitioners
in the fields of fluid dynamics and, only more recently, magnetohydrodynamics (MHD). This interest is driven by a
variety of reasons, such as the possibility of obtaining highly accurate solutions with reduced computational effort as
well as the need to narrow the gap between the smallest resolved features and the dissipative scales. Although several
successful strategies have been developed in the context ofthe Euler equations of gasdynamics, only few of them have
been extended to MHD. In the present context, we focus our attention on high-order finite difference schemes for the
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solution of the compressible MHD equations in multiple spatial dimensions,

∂ρ

∂t
+ ∇ · (ρv) = 0 ,

∂(ρv)
∂t
+ ∇ ·

[

ρvvT − BBT + I

(

p+
B2

2

)]

= 0 ,

∂B
∂t
− ∇ × (v × B) = 0 ,

∂E
∂t
+ ∇ ·

[(

E + p+
B2

2

)

v − (v · B) B
]

= 0 ,

(1)

whereρ, v, B, E andp are the fluid density, velocity vector, magnetic induction,energy and gas pressure, respectively.
The system of equations (1) is complemented by the divergence-free constraint of the magnetic field,

∇ · B = 0 , (2)

and by an equation of state relating energy and pressures. For the present work we assume an ideal gas law

E =
p
Γ − 1

+
1
2

(

ρv2 + B2
)

, (3)

whereΓ is the ratio of specific heats.
Traditional second-order schemes have been largely employed for the solution of Eq. (1) using either finite vol-

ume (FV, e.g., [54, 44, 11, 23, 2, 19, 23, 40, 3]) or finite difference (FD, e.g., [5, 35, 13, 51, 22, 1, 32]) methods.
At the second-order level, the two approaches are essentially equivalent and popular schemes have been built on
Godunov-type discretizations based on the Total VariationDiminishing (TVD, [25]) property making use of slope-
limited reconstructions. In spite of the excellent resultsproduced in proximity of discontinuous waves where sharp
non-oscillatory transitions can be obtained, TVD schemes still suffer from excessive unwanted numerical dissipation
in regions of smooth flow. This deficiency owes to the inherentbehavior of TVD methods that reduces the order of
accuracy to first-order near local extrema (clipping) and smear linearly degenerate fields (such as contact waves) much
more than shocks. Furthermore, discretization errors are mainly responsible for the loss of accuracy.

Efforts to relax the TVD condition and overcome these limitations have been spent over the last decades towards
the development of highly accurate schemes that retain the robustness common to second-order Godunov-type meth-
ods. The original piecewise parabolic method (PPM) method by [14], for example, provides fourth-order accurate
interface values in smooth regions (in 1D) and has been extended to MHD by [17, 18] and, more recently by [27, 28].
PPM, however, still degenerates to first-order at smooth extrema and attempts to solve the problem have been recently
presented in [15] and [45].

Based on a different approach, weighted essentially non-oscillatory (WENO, [47]) schemes have improved on their
ENO predecessor (originally proposed by Harten et al. [26])and are now considered a powerful and effective tool
for solving hyperbolic partial differential equations. WENO methods provide highly accurate solutions in regions of
smooth flow and non-oscillatory transitions in presence of discontinuous waves by combining different interpolation
stencils of orderr into a weighted average of order 2r −1. The nonlinear weights are adjusted by the local smoothness
of the solution so that essentially zero weights are given tonon smooth stencils while optimal weights are prescribed
in smooth regions. WENO scheme have been formulated in the context of MHD using both FD [30, 4] and FV
formulations, [50, 5, 21, 6, 7]. Third- and fifth-order WENO schemes have been recently improved in terms of
reduced dissipation, better resolution properties and faster convergence rates (see [53] and [9]) and will be considered
here.

An alternative strategy is followed by the Monotonicity Preserving (MP) family of schemes by Suresh & Huynh
[48] who proposed to carry the reconstruction step by first computing an accurate and stable interface value and then
by imposing monotonicity- and accuracy-preserving constraints to limit the original value. MP schemes have been
successfully merged with WENO methods by [4] and employed inthe context of relativistic MHD by [16].

Finally, a reconstruction procedure that avoids the clipping phenomenon has been recently discussed byČada &
Torrilhon [10] who devised a new class of nonlinear limiter functions based upon a non-polynomial reconstruction
showing good shape-preserving properties.
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It is important to point out that, for spatial accuracy higher than two, multidimensional FV schemes become
notoriously more elaborate than their FD counterparts, since point values can no longer be interchanged with volume
averages. As a result, FV schemes generally require fully multidimensional reconstructions and the solution of several
Riemann problems at a zone face providing the necessary number of quadrature points required by the desired level
of accuracy, see, for instance, [12, 49, 5]. However, FV algorithms do have the adventage that they are better suited
to non-uniform grids and adaptive mesh hierarchies. High-order FV schemes have been recently ameliorated in the
work of [21, 6, 7] using either ADER-WENO schemes or least-squares polynomial reconstruction.

Conversely, multidimensional FD schemes evolve the point values of the conserved quantities and considerably
ease up the coding efforts by restricting the computations of flux derivatives to one dimensional stencils. In this
perspective, we present a new class of FD numerical schemes adopting a point-wise, cell-centered formulation of
all of the flow quantities, including magnetic fields. The proposed schemes have order of accuracy three and five
and their performance is compared through extensive testing on two and three-dimensional problems. Selected third-
order accurate schemes are i) an improved version of the classical third-order WENO scheme of [29] based on new
weight functions designed to improve accuracy near critical points [53] and ii) the recently proposed non-polynomial
reconstruction of [10]. Selected fifth-order schemes include i) the WENO-Z scheme of [9] and ii) the monotonicity
preserving scheme of [48] based on a fifth-order accurate interface value (MP5 henceforth).

The solenoidal constraint of the magnetic field is controlled by extending the hyperbolic/parabolic divergence
cleaning technique of Dedner et al. [20] to FD schemes. This avoids the computational cost associated with an
elliptic cleaning step as in [30], and the scrupulous treatment of staggered fields demanded by constrained transport
algorithms, e.g. [5, 35, 27, 7]. Furthermore, Mignone & Tzeferacos [39] have shown through extensive testing, for a
class of second-order accurate schemes, that the GLM approach is robust and can achieve accuracy comparable to the
constrained transport. The resulting class of schemes is explicit and fully conservative in mass, momentum, magnetic
induction and energy. Besides the ease of implementation and efficiency issues, the benefits offered by a method
where all of the primary flow variables are placed at the same spatial position ease the task to add more complex
physics.

The comparison between the different methods of solution is conveniently handled using thePLUTO code for
computational astrophysics [37].

The paper is structured as follows. In§2 we describe the GLM-MHD equations, while§3 shows the finite dif-
ference formulation and the selected reconstruction methods. In§4 we test and compare the different scheme perfor-
mance on problems involving the propagation of both continuous and discontinuous features. Conclusions are drawn
in §5.

2. The Constrained GLM-MHD Equations

We look at a conservative discretization of the MHD equations (1) where all fluid variables retain a cell-centered
collocation and enforce the divergence-free condition through the hyperbolic/parabolic divergence cleaning technique
of Dedner’s [20]. In this approach Gauss’s and Faraday’s laws of magnetism are modified by the introduction of a new
scalar field function or generalized Lagrangian multiplier(GLM henceforth)ψ. The resulting system of GLM-MHD
equations then reads

∂U
∂t
= −

∑

l=x,y,z

∂Fl

∂l
+ S , (4)

with conservative state vectorU and fluxesFl defined by

U =
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ρvdvl − BdBl + δdl

(

p+ B2/2
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Bdvl − Blvd + δdlψ
(

E + p+ B2/2
)
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c2
hBl
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, (5)
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whered = x, y, z labels the different components whileδdl is the delta Kronecker symbol. Equations (4) are hyperbolic
and fully conservative with the only exception of the unphysical scalar fieldψ which satisfies a non-homogeneous
equation with a source term. In the GLM approach, divergenceerrors are propagated to the domain boundaries at
finite speedch and damped at a rate given byc2

h/c
2
p (see§2).

The eigenvalues of the MHD flux Jacobians∂Fl/∂U are all real and coincide with the ordinary MHD waves plus
two additional modes±ch, for a total of 9 characteristic waves. Restricting our attention to thel = x direction, they
are given by

λ1,9 = ∓ch , λ2,8 = vx ∓ cf , λ3,7 = vx ∓ ca , λ4,6 = vx ∓ cs , λ5 = vx , (6)

where

cf ,s =

√

1
2ρ

(

Γp+ |B|2 ±
√

(

Γp+ |B|2)2 − 4ΓpB2
x

)

, ca =
|Bx|√
ρ
, (7)

are the fast magneto-sonic (cf with the+ sign), slow magneto-sonic (cs with the− sign) and Alfvén velocities. The
two additional modes±ch are decoupled from the remaining ones and corresponds to linear waves carrying jumps in
Bx andψ. These waves are made to propagate at the maximum signal speed compatible with the time step, i.e.,

ch = max
(

|vx| + cf ,x, |vy| + cf ,y, |vz| + cf ,z

)

. (8)

wherecf ,x, cf ,y, cf ,z are the fast magneto-sonic speeds in the three directions and the maximum is taken throughout the
domain.

Owing to the decoupling, one can treat the 2× 2 linear system given by the longitudinal component of the field Bl

andψ separately from the other ordinary 7-wave MHD equations. Aswe shall see, this greatly simplifies the solution
process and allows to use the standard characteristic decomposition of the MHD equations.

Following [39], we divide the solution process into an homogeneous step, where the GLM-MHD (4) are solved
with S = 0, and a source step, where integration is done analytically:

ψ(∆t) = ψ(0) exp

(

−αp
ch

∆h/∆t

)

, with αp = ∆h
ch

c2
p
. (9)

where∆h = min(∆x,∆y,∆z) is the minimum grid size. Extensive numerical testing has shown that divergence errors
are minimized when the parameterαp lies in the range [0, 1] depending on the particular problem, although in presence
of smooth flows this choice seems to be less sensitive to the numerical value ofαp.

3. Finite Difference schemes

We consider a conservative finite difference discretization of (4) where point-values rather than volume averages
are evolved in time. A uniform Cartesian mesh is employed with cell sizes∆x × ∆y × ∆z centered at (xi , y j , zk),
wherei, j, k label the computational zones in the three directions. For clarity of exposition, we disregard the integer
subscripts when redundant but always keep the half increment index notation when referring to a cell boundary, e.g.,
Fi+ 1

2
≡ Fi+ 1

2 , j,k
.

Integration in time resorts to a semi-discrete formulationwhere, given a high-order numerical approximationL(U)
to the derivatives appearing on the right hand side of Eq. (4), one is faced with the solution of the following initial
value problem

dU
dt
= L (U) , (10)

with initial condition given by the point-wise values ofU(xi , y j , zk, tn) ≡ Un
i, j,k. We choose the popular third-order

Runge-Kutta scheme [46, 24] to advance the solution in time,for which one has

U∗ = Un +L (Un) ,

U∗∗ =
3
4

Un +
1
4

U∗ +
∆tn

4
L (U∗) ,

Un+1 =
1
3

Un +
2
3

U∗∗ +
2
3
∆tnL (U∗∗) .

(11)
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The choice of the time step∆tn is restricted by the Courant-Friedrichs-Levy (CFL) condition:

∆tn = Ca
∆h
ch

, (12)

whereCa is the CFL number. Since the time step is proportional to the mesh size, the overall accuracy of the scheme
is restricted to third-order because of the time-stepping introduced in Eq. (11).

Our task is now to provide a stable and accurate non-oscillatory numerical approximation toL(U). To this purpose,
we begin by focusing our attention to thex− direction and set, for ease of notations,Fi ≡ Fx(Ui, j,k). We then let point
values of the fluxFi correspond to the volume averages of another function, sayF̂, and define

Fi =
1
∆x

∫ x
i+ 1

2

x
i− 1

2

F̂(ξ)dξ =
1
∆x

[

H(xi+ 1
2
) −H(xi− 1

2
)
]

, where H(x) =
∫ x

−∞
F̂(ξ)dξ . (13)

In this formalism, point values of the fluxFi are identified as cell averages ofF̂(x) andH(x) may be regarded as the
primitive function ofF̂. Straightforward differentiation of Eq. (13) yields the conservative approximation

∂F
∂x

∣

∣

∣

∣

∣

xi

=
1
∆x

(

F̂i+ 1
2
− F̂i− 1

2

)

. (14)

Stated in this form, the problem consists of finding a high-order approximation to the interface values ofF̂i+ 1
2

knowing
the undivided differences of the primitive functionH(x), a procedure entirely analogous to that used in the contextof
finite volume methods such as PPM [14]. Thus one can set

F̂i+ 1
2
= R (

F[s]
)

, (15)

whereR() is a highly accurate reconstruction scheme providing a stable interface flux value from point-wise values
and the index [s] spans through the interpolation stencil.

The procedure can be repeated in an entirely similar way alsofor they andzflux contributions and allows to write
theL operator in (10) as

L (U) = − 1
∆x

(

F̂x,i+ 1
2
− F̂x,i− 1

2

)

− 1
∆y

(

F̂y, j+ 1
2
− F̂y, j− 1

2

)

− 1
∆z

(

F̂z,k+ 1
2
− F̂z,k− 1

2

)

. (16)

This yields the fully unsplit approach considered in this paper. Alternatively, one could use a directionally split
formalism to obtain the solution through a sequence of one dimensional problems separately corresponding to each
term in equation (16).

In order to ensure robustness and to avoid the appearance of spurious oscillations, the reconstruction step is best
carried with the help of local characteristic fields and by separately evaluating contributions coming from right- and
left-going waves. To this end we first compute, using the simple arithmetic averageUi+ 1

2
= (Ui + Ui+1)/2, left and

right eigenvectorsLκ

i+ 1
2

andRκ

i+ 1
2

of the Jacobian matrix∂F/∂U, for each characteristic fieldκ = 1, . . . , 9. We then

obtain a projection of the positive and negative part of the flux using a simple Rusanov Lax-Friedrichs flux splitting:






















Vκ,+

i+ 1
2 ,[s]

= 1
2Lκ

i+ 1
2

· (F[s] + α
κU[s]

)

,

Vκ,−
i+ 1

2 ,[s]
= 1

2Lκ

i+ 1
2

· (F[s′] − ακU[s′]
)

,
(17)

whereF[s] andU[s] are the point-wise values of the flux and conservative variables. For a typical one-point upwind-
biased approximation of order (2r + 1), one has [s] = i − r, . . . , i + r while [s′] = 2i − [s] + 1 mirrors left-going
characteristic fields with respect to the interfacei + 1

2 . The coefficientακ represents the maximum absolute value of
theκ-th characteristic speed throughout the domain.

The global Lax-Friedrichs flux splitting thus introduced isparticularly diffusive and other forms of splitting are of
course possible, e.g. [29, 4]. However, we have found that the level of extra numerical dissipation tend to become less
important for higher-order scheme.
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The interface flux is then written as a local expansion in the right-eigenvector space:

F̂i+ 1
2
=

∑

κ

(

V̂κ,+

i+ 1
2

+ V̂κ,−
i+ 1

2

)

Rκ

i+ 1
2
, (18)

where the coefficients
V̂κ,±

i+ 1
2

≡ R
(

Vκ,±
i+ 1

2 ,[s]

)

. (19)

are the reconstructed interface values of the local characteristic fields andR() can be any one of the procedures
described in§3.2.

3.1. Modification for the Constrained GLM-MHD equations

The procedure illustrated so far is valid for an arbitrary system of hyperbolic conservation laws, providedLκ and
Rκ satisfy

Lκ · ∂F
∂U
· Rκ = λκ , (20)

i.e., they are left and right eigenvectors of the flux Jacobian, respectively. However, following [20], we wish to
exploit the full 7× 7 characteristic decomposition of the usual MHD equations rather than resorting to a full 9× 9
diagonalization procedure. To this purpose, we take advantage of the fact that the longitudinal component of the field
Bx and the Lagrange multiplierψ satisfy

∂

∂t















Bx

ψ















+















0 1

c2
h 0















∂

∂x















Bx

ψ















= 0 , (21)

and are thus decoupled from the remaining seven MHD equations. Eq. (21) defines a constant coefficient linear
hyperbolic system with left and right eigenvectors given, respectively, by the rows and columns of

L2×2 =
1
2















1 −1/ch

1 1/ch















, R2×2 =















1 1

−ch ch















, (22)

associated with the eigenvaluesλ1 = −ch andλ9 = +ch. The 2×2 linear system (21) can be preliminary solved to find
the values ofBx andψ at a given interface. Indeed, by applying the projection (17) to the linear system (21) using Eq.
(22), one obtains that the only non trivial characteristic fields are

V1,−
i+ 1

2 ,[s]
=

1
2

(

ψ[s′] − chBx,[s′]
)

, V9,+
i+ 1

2 ,[s]
=

1
2

(

ψ[s] + chBx,[s]
)

. (23)

Since the eigenvectors are constant in space, the local projection ati + 1
2 are completely unnecessary and the compu-

tations in Eq. (23) can be carried out very efficiently throughout the grid. Once (23) have been reconstructed using
Eq. (19) one defines

Bx,i+ 1
2
=

(

V̂9,+
i+ 1

2

− V̂1,−
i+ 1

2

)

/ch , ψx,i+ 1
2
= V̂9,+

i+ 1
2

+ V̂1,−
i+ 1

2

, (24)

and proceed by solving the ordinary 7× 7 MHD equations usingBx,i+ 1
2

defined by (24) as a constant parameter.

3.2. Third and Fifth-order Accurate Reconstructions

We have shown in§3 that flux derivatives may be written in conservative form byapplying any one-dimensional
finite volume reconstruction to the point values of the fluxFi . Among the variety of different strategies we investigate
both third- and fifth-order accurate interpolation schemesmaking use of three- and five-point stencil, respectively:

• an improved version of the classical third-order WENO scheme of [29] based on new weight functions designed
to improve accuracy near critical points (WENO+3,§3.2.1);

• the recently proposed LimO3 third-order reconstruction of[10], §3.2.2.
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• the improved WENO5 scheme of [9] also known as WENO-Z (§3.2.3);

• the monotonicity preserving scheme of [48] based on a fifth-order interface value (MP5,§3.2.4).

Our choice is motivated by the sake of comparing well-known and recently presented state of the art algorithms that
rely on heavy usage of conditional statements (LimO3 and MP5) or completely avoid them (WENO+3 and WENO-Z).

The proposed algorithms are applied to the left (-) and right(+) propagating characteristic fields defined by Eq.
(17) to provide an accurate interface value, formally represented by Eq. (19). Thus, in our formulation, the total
number of reconstruction is 16: two for the linear characteristic fields defined by Eq. (23) and 14 for the left- and
right-going wave families defined by Eq. (17) withk = 2, . . . , 8.

In the following we will drop thei + 1
2 index for the sake of exposition and shorten either one of (17) with f[s] .

Undivided difference will be frequently used and denoted with

∆i+ 1
2
= fi+1 − fi . (25)

Occasionally, we will also make use of the Minmod and Median functions defined, respectively as

Minmod(a, b) =
sgn(a) + sgn(b)

2
min(|a|, |b|) , Median(a, b, c) = a+Minmod(b− a, c− a) . (26)

3.2.1. Third-Order Improved WENO (WENO+3)
In the classical third-order WENO scheme of [29], the interface value is reconstructed using the information

available on a three-point local stencil (xi−1, xi , xi+1). More specifically, a third-order accurate value is provided by a
linear convex combination of second-order fluxes:

R (

f[s]
)

= ω0
fi + fi+1

2
+ ω1

− fi−1 + 3 fi
2

. (27)

The weightsωl for l = 0, 1 are defined by

ωl =
αl

∑

mαm
, αl =

dl

(βl + ǫ)2
, with β0 = ∆

2
i+ 1

2
, β1 = ∆

2
i− 1

2
, (28)

whered0 = 2/3, d1 = 1/3 are optimal weights and the smoothness indicatorsβl give a measure of the regularity of the
corresponding polynomial approximation.

The scheme has been recently improved in the work by Yamaleev& Carpenter, [53], where the introduction of an
additional nonlinear artificial dissipation term was shownto make the scheme stable in the L2-energy norm for both
continuous and discontinuous solutions. Yamaleev & Carpenter also derived new weight functions providing faster
convergence and improved accuracy at critical points. The improved weights are still defined by Eq. (28) withαl

replaced by

αl → dl

























1+

∣

∣

∣

∣
∆i+ 1

2
− ∆i− 1

2

∣

∣

∣

∣

2

βl + ǫ

























. (29)

To avoid loss of accuracy at critical points, it was shown in [53] thatǫ has to satisfyǫ = O(∆x2).
Here adopt the conventional third-order scheme defined by Eq. (27)-(28) but withαl replaced by Eq. (29) and

simply setǫ = ∆x2. This improves the accuracy over the original 3rd order scheme of [29] in regions where the solution
is smooth and provides essentially non-oscillatory solutions near strong discontinuities and unresolved features. The
improved third-order WENO scheme just described will be referred to as WENO+3.

3.2.2. Third-Order Limited reconstruction (LimO3 )
Recently,Čada and Torrilhon [10] have proposed a new and efficient third-order limiter function in the context

of finite volume schemes. Similarly to the 3rd-order WENO scheme described in§3.2.1, the new limiter employs a
local three-point stencil to achieve piecewise-parabolicreconstruction for smooth data and preserves the accuracy at
local extrema, thus avoiding the well known clipping of classical second-order TVD limiters. Interface values are
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reconstructed using a simple piecewise-linear max/min function acting as a logical switch depending on the leftand
right slope:

R (

f[s]
)

= fi +
∆i+ 1

2

2

[

P3(θ) + χ
(

φ̂(θ) − P3(θ)
)]

, (30)

whereθ = ∆i− 1
2
/∆i+ 1

2
is the slope ratio,P3(θ) = (2 + θ)/3 is the building block giving polynomial quadratic recon-

struction and̂φ(θ) is the third-order limiter

φ̂(θ) =























max [0,min(P3(θ), 2θ, 1.6)] if θ ≥ 0 ,

max
[

0,min
(

P3(θ),− θ
2

)]

if θ < 0 .
(31)

The functionχ in Eq. (30) smoothly switches between limited and unlimitedreconstructions based on a local
indicator functionη properly introduced to avoid loss of accuracy at smooth extrema with one vanishing lateral
derivative:

χ = max

[

0,min

(

1,
1
2
+
η − 1
2ǫ

)]

, η =

∆2
i− 1

2

+ ∆2
i+ 1

2

(r∆x)2
, (32)

whereǫ = 10−12. The functionη measures the curvature of non-monotone data inside a computational zone and the
free-parameter 0≤ r ≤ 1 is used to discriminate between smooth extrema and shallowgradients. Larger values ofr
noticeably improve the reconstruction properties at the cost of introducing more local variation, see [10]. In the tests
presented here we user = 1.

3.2.3. Fifth-Order Improved WENO: WENO-Z
Borges et al. [9] presented an improved version of the classical fifth-order weighted essentially non-oscillatory

(WENO) FD scheme of [29]. The new scheme, denoted with WENO-Z, has been shown to be less dissipative and
provide better resolution at critical points at a very modest additional computational cost. We will employ such
scheme here and, for the sake of completeness, report only the essential steps for its implementation (for a thorough
discussion see the paper by [9]).

Following the general idea of WENO reconstruction, one considers the convex combination of different third-order
accurate interface values built on the three possible sub-stencils ofi − 2 ≤ s≤ i + 2:

R (

f[s]
)

= ω0
2 fi−2 − 7 fi−1 + 11fi

6
+ ω1

− fi−1 + 5 fi + 2 fi+1

6
+ ω2

2 fi + 5 fi+1 − fi+2

6
. (33)

The weightsωl for l = 0, 1, 2 are defined by

ωl =
αl

∑

mαm
, αl =



































dl

(βl + ǫ)2
(WENO5)

dl

(

1+
|β0 − β2|
βl + ǫ

)

(WENO− Z)

(34)

whered0 = 1/10, d1 = 3/5, d2 = 3/10 are the optimal weights giving a fifth-order accurate approximation,ǫ = 10−40

is a small number preventing division by zero and the smoothness indicatorsβl give a measure of the regularity of the
corresponding polynomial approximation:

β0 =
13
12

(

∆i− 1
2
− ∆i− 3

2

)2
+

1
4

(

3∆i− 1
2
− ∆i− 3

2

)2
,

β1 =
13
12

(

∆i+ 1
2
− ∆i− 1

2

)2
+

1
4

(

∆i+ 1
2
+ ∆i+ 1

2

)2
,

β2 =
13
12

(

∆i+ 3
2
− ∆i+ 1

2

)2
+

1
4

(

3∆i+ 1
2
− ∆i+ 3

2

)2
.

(35)

While maintaining the essentially non-oscillatory behavior, the new formulation makes use of higher-order informa-
tion about the regularity of the solution thus providing enhanced order of convergence at critical points as well as
reduced dissipation at discontinuities.
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3.2.4. Fifth-order Monotonicity Preserving (MP5)
The monotonicity preserving (MP) schemes of Suresh & Huynh [48] achieve high-order interface reconstruction

by first providing an accurate polynomial interpolation andthen by limiting the resulting value so as to preserve
monotonicity near discontinuities and accuracy in smooth regions. The MP algorithm is better sought on stencils with
five or more points in order to distinguish between local extrema and a genuineO(1) discontinuities. Here we employ
the fifth-order accurate scheme based on the (unlimited) interface value given by

fi+ 1
2
=

2 fi−2 − 13fi−1 + 47fi + 27fi+1 − 3 fi+2

60
, (36)

based on the five point valuesfi−2, . . . , fi+2. Together with (36), we also define the monotonicity-preserving bound

f MP = fi +Minmod
(

∆i+ 1
2
, α∆i− 1

2

)

, (37)

resulting from the median betweenfi , fi+1 and the left-sided extrapolated upper limitf UL = fi +α∆i− 1
2
. The parameter

α ≥ 2 controls the maximum steepness of the left sided slope and preserves monotonicity during a single Runge-Kutta
stage (Eq. 11) provided the CFL number satisfiesCa ≤ 1/(1+ α). In practice, settingα = 4 still allows larger values
of Ca to be used. The interface value given by Eq. (36) is not altered when the data is sufficiently smooth or monotone
that fi+ 1

2
lies inside the interval defined by [fi , f MP]. Otherwise limiting takes place by bringing the original value

back into a new intervalI [ f min, f max] specifically designed to preserve accuracy near smooth extrema and provide
monotone profile close to discontinuous data. The final reconstruction can be written as

R (

f[s]
)

=



















fi+ 1
2

if ( fi+ 1
2
− fi)( fi+ 1

2
− f MP) < 0 ,

Median
(

f min, fi+ 1
2
, f max

)

otherwise,
(38)

where
f min = max

[

min
(

fi , fi+1, f MD
)

, min
(

fi , f UL , f LC
)]

,

f max = min
[

max
(

fi , fi+1, f MD
)

, max
(

fi , f UL , f LC
)]

.
(39)

The bounds given by Eq. (39) provide accuracy-preserving constraints by allowing the original interface valuefi+ 1
2

to

lie in a somewhat larger interval thanI [ fi , fi+1] or I [ fi , f UL ]. This is accomplished by considering the intersection of
the two extended intervalsI [ fi , fi+1, f MD ] andI [ fi , f UL , f LC] that leave enough room to accommodate smooth extrema
based on a measure of the local curvature defined by

dM4
i+ 1

2
= Minmod(4di − di+1, 4di+1 − di , di, di+1) , (40)

wheredi = ∆i+ 1
2
− ∆i− 1

2
. Using Eq. (40), one defines the medianf MD and the large curvaturef LC values as

f MD
i+ 1

2
=

fi + fi+1

2
− 1

2
dM4

i+ 1
2
, f LC

i+ 1
2
= fi +

1
2
∆i− 1

2
+

4
3

dM4
i− 1

2
, (41)

respectively. The curvature measure provided by (40) is somewhat heuristic and chosen to reduce the amount of
room for local extrema to develop. The reconstruction illustrated preserves monotonicity and does not degenerate to
first-order in proximity of smooth extrema.

4. Numerical Tests

In this section we present a series of test problems aimed at the verification of the FD methods previously de-
scribed. The selected algorithms have been implemented in the PLUTO code for astrophysical gas-dynamics [37] in
order to ease inter-scheme comparisons through a flexible common computational framework.
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Unless otherwise stated, the specific heat ratio will be set to Γ = 5/3 and the Courant numberCa will be taken
equal to 0.8, 0.4 or 0.3 for one, two and three dimensional computations, respectively. Errors for a generic flow
quantityQ are computed using theL1 discrete norm defined by

ǫ1(Q) =
1

NxNyNz

∑

i, j,k

∣

∣

∣Qi, j,k − Qref
i, j,k

∣

∣

∣ , (42)

where the summation extends to all grid zones,Nx,Ny andNz are the number of grid points in the three directions and
Qref is a reference solution. The divergence of magnetic field is quantified using Eq. (42) with∇ · B computed as

∇ · B =
Bx,i+ 1

2
− Bx,i− 1

2

∆x
+

By, j+ 1
2
− By, j− 1

2

∆y
+

Bz,k+ 1
2
− Bz,k− 1

2

∆z
, (43)

where the interface values are obtained through Eq. (24).

4.1. Propagation of Circularly polarized Alfvén Waves

We start by considering a planar, circularly polarized Alfvén wave propagating along thex direction. As the wave
propagates, density and pressure stay constant whereas transverse vector components trace circles without changing
their magnitude. Denoting withω andk the angular frequency and wavenumber, respectively, one has
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ca
√
ρ

∓√ρAsinφ

∓√ρAcosφ





























, (44)

whereφ = kx− ωt, ω/k = v0x ± ca is the corresponding phase velocity (ca is the Alfvén speed) andA is the wave
amplitude. The plus or minus sign corresponds to right or left propagating waves, respectively. Here we consider a
standing wave for which one hasv0x = v0y = v0z = 0 and further setρ = 1, ca = 1.

The one-dimensional solution given by (44) is first rotated by an angleγ around they axis and subsequently by
an angleα around thez axis, as in [39]. The resulting transformation leaves scalar quantities invariant and produces
vector rotationsq→ Rγαq, whereq is either velocity or magnetic field and

Rγα =





























cosα cosγ − sinα − cosα sinγ

sinα cosγ cosα − sinα sinγ

sinγ 0 cosγ





























, R−1
γα =





























cosα cosγ sinα cosγ sinγ

− sinα cosα 0

− cosα sinγ − sinα sinγ cosγ





























, (45)

are the rotation matrix and its inverse.
Note that the rotation can be equivalently specified by prescribing the orientation of the wave vectork = (kx, ky, kz)

in a three-dimensional Cartesian frame through the anglesα andβ such that

tanα =
ky

kx
, tanβ =

kz

kx
, (46)

such that tanγ = cosα tanβ. With these choices,φ in (44) becomesφ = k · x − ωt whereω = ±|k|.
Periodicity is guaranteed by setting, without loss of generality, kx = 2π and by choosing the computational domain

x ∈ [0, 1], y ∈ [0, 1/ tanα] andz ∈ [0, 1/ tanβ]. With these definitions the wave returns into the original position after
one period

T =
1

√

1+ tan2α + tan2 β
(47)

Different configurations can be specified in terms of the four parametersα, β,A andp0 (background pressure). One
and two dimensional propagation are recovered by settingα = β = 0 andβ = 0, respectively.
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Table 1: Accuracy analysis for the one dimensional (third and fourth columns) and three dimensional (fifth and sixth) Alfvén wave propagation

after one wave period. Errors are computed as
√

ǫ1(Bx)2 + ǫ1(By)2 + ǫ1(Bz)2. The numerical scheme and the number of pointsNx in thex direction

are given in the first and second columns. For 3-D propagation, the resolution in they andz direction is set byNy = Nz = Nx/2.

One Dimension Three Dimensions
Method Nx ǫ1 (|B|) OL1 ǫ1 (|B|) OL1

WENO+3 16 3.45E-03 - 2.54E-02 -

32 4.39E-04 2.97 3.68E-03 2.79

64 5.52E-05 2.99 4.47E-04 3.04

128 6.91E-06 3.00 5.51E-05 3.02

256 8.64E-07 3.00 6.85E-06 3.01

LimO3 16 3.36E-03 - 2.82E-02 -

32 4.36E-04 2.95 3.76E-03 2.91

64 5.53E-05 2.98 4.34E-04 3.11

128 6.91E-06 3.00 5.46E-05 2.99

256 8.65E-07 3.00 6.84E-06 3.00

WENO-Z 16 7.50E-04 - 4.10E-03 -

32 2.40E-05 4.96 1.32E-04 4.96

64 7.55E-07 4.99 3.89E-06 5.09

128 2.36E-08 5.00 1.20E-07 5.02

256 7.37E-10 5.00 3.74E-09 5.00

MP5 16 7.38E-04 - 3.41E-03 -

32 2.40E-05 4.94 1.19E-04 4.84

64 7.55E-07 4.99 3.81E-06 4.97

128 2.36E-08 5.00 1.20E-07 4.99

256 7.37E-10 5.00 3.74E-09 5.00

4.1.1. One Dimensional Propagation
As a first test, we consider one-dimensional propagating waves on the segmentx ∈ [0, 1] using Nx = 2q grid

points withq = 4, . . . , 8. We set the background pressure to bep0 = 0.1 and the wave amplitudeA = 0.1. The GLM
correction is not necessary and has turned off for one dimensional propagation.

In order to investigate the convergence of solution, the integration time step is adjusted to

∆tN = ∆tN0

(N0

N

)r/3

(48)

where∆tN0 is the nominal time increment at the minimum resolutionN0, whereasr ≥ 3 is the spatial accuracy of the
scheme. Errors (inL1 norm) for the four selected schemes are plotted after one wave periodT = 1 in the left panel
of Fig A.1 and arranged, together with the corresponding order of convergence, in the third and fourth columns of
Table 1. All schemes meet the expected order of accuracy (i.e. 3 for LimO3 and WENO+3, 5 for WENO-Z and MP5)
with no significant differences. It is remarkable that, at the resolution of 64 zones, the fifth-order schemes achieve
essentially the same accuracy as the third-order schemes that make use of four times (i.e.Nx = 256) as many points.

4.1.2. Three Dimensional Oblique Propagation
A three dimensional configuration is obtained by rotating the one-dimensional setup described in§4.1.1 by the

anglesα = β = tan−1 2 so that tanγ = 2/
√

5 in Eq. (45). The background pressure isp0 = 0.1 and the wave has
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amplitudeA = 0.1. The size of the computational box turns out to bex ∈ [0, 1], y ∈ [0, 1/2], z ∈ [0, 1/2] and the
number of grid points is set byNy = Nz = Nx/2, whereNx changes as in§4.1.1. Integration lasts for one wave period,
i.e., t = T = 1/3 and the time step is determined by the same condition given by Eq. (48). Thus, apart from the
different normalization, our setup is identical to that used in [28].

Errors are plotted at different resolutions in the right panel of Fig A.1 and sorted in Table 1 for all schemes. On
average, errors are∼ 4 larger than their one-dimensional counterparts but the overall behavior meets the expected
order of accuracy with MP5 and LimO3 performing slightly better than WENO-Z and WENO+3, respectively. As for
the 1D case, roughly 1/4 of the resolution is required by a fifth-order scheme to match the accuracy of a third-order
one.

Following [28], we construct in Fig A.2 a scatter plot of the magnetic field component parallel to they axis of
the original one dimensional frame. This is achieved by plotting, for every point in the computational domain, they
component ofR−1

γαB as a function of the normal (x) coordinate ofR−1
γαx, whereRγα is the rotation matrix introduced

in (45). The ability of the scheme to retain the planar symmetry during the computation is confirmed by the lack of
scatter in the plots. The profiles at different resolutions verify the general trend established in Table 1 and deviations
from the exact solution appear to be imperceptible forNx > 64 for the third-order schemes and already atNx & 32 for
the fifth-order schemes.

Overally, the results obtained with third- and fifth-order accurate schemes outperform traditional TVD schemes,
such as the CT-PPM algorithm of [28] yielding at most second-order accurate solutions. The CPU costs associated
with WENO+3, LimO3 , WENO-Z and MP5 show, for this test problem, a relative scaling 1 : 0.98 : 1.46 : 1.31,
respectively.

4.1.3. Numerical Dissipation and Long Term Decay in Two Dimensions
As already stated, circularly polarized Alfvén waves are an exact nonlinear solution of the MHD equations and

measuring their decay provides a direct indication of the intrinsic numerical viscosity and resistivity possessed by the
underlying algorithm, see [44, 5, 6]. This study is relevant, for example, in the field of MHD turbulence modeling
where one should carefully control the amount of directionally-biased dissipation introduced by waves propagating
inclined to the mesh. The error introduced during an obliquepropagation is usually minimized at 45◦ since contri-
butions coming from different directions have comparable magnitude. On the contrary, waves propagating at smaller
inclination angles make the problem more challenging.

Our setup builds on [5] although we adopt a slightly different, more severe, configuration. Using the notations
introduced in§4.1, we set tanα = 6, tanβ = 0, A = 0.2 and prescribe the background pressure to bep0 = 1. The
corresponding ratio of the plasma pressure to the (unperturbed) magnetic pressure is then given byp/(2ρc2

a) = 1/2,
whereca = 1 is the wave propagation speed. The choice of the inclination angle determines the computational domain
x ∈ [0, 1], y ∈ [0, 1/6] as well as the wave periodT = 1/

√
37 from Eq. (47). The final integration timet = 16.5 is

chosen by having the wave cross the domain≈ 100 times. This configuration results in a more arduous test than [5]
where the wave period was 6

√
4π longer and the integration was stopped after≈ 37 wave transits.

Fig A.3 shows, at the resolution of 120× 20 mesh points, the maximum values of the verticalz components of
velocity (left panel) and magnetic field (right panel) as functions of time. By the end of the simulation, third-order
schemes (dashed lines) show some degree of dissipation withthe wave amplitude being reduced to∼ 20 per cent of
its initial value. On the contrary, schemes of order five (solid lines in the figure) preserve the original shape more
accurately and the amplitude retains∼ 94 per cent of its nominal value. These results are compared,for illustrative
purposes, to a 2nd order TVD scheme using the Monotonized Central difference limiter (dotted lines), showing that the
initial peak values have scaled down to∼ 3 per cent, thus showing a considerably larger level of numerical dissipation.

These results are in agreement with previous investigations [5, 6] and strongly supports the idea that problems
involving complex wave interactions may benefit from using higher-order schemes such as the ones presented here.

4.2. Shock tube problems

Shock tube problems are commonly used to test the ability of the scheme in describing both continuous and
discontinuous flow features. In the following we consider two and three dimensional rotated configurations of standard
one dimensional tubes. The default value for the parameterαp controlling monopole damping (see Eq. 9) is 0.8.
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Table 2: One dimensionalL1 norm errors for density, normal component of magnetic field and |∇ ·B| for the two and three-dimensional shock tube.

Two Dimensions Three Dimensions
Method ǫ1(ρ) ǫ1(B1) ǫ1 (∇ · B) ǫ1(ρ) ǫ1(B1) ǫ1 (∇ · B)

WENO+3 4.11E-03 8.53E-05 7.19E-03 1.82E-03 4.41E-05 7.12E-03

LimO3 3.61E-03 8.74E-05 1.08E-02 1.63E-03 4.07E-05 9.41E-03

WENO-Z 2.72E-03 7.90E-05 1.48E-02 1.29E-03 5.41E-05 1.59E-02

MP5 2.31E-03 6.24E-05 7.60E-03 1.07E-03 2.22E-05 1.37E-02

4.2.1. Two-Dimensional Shock tube
Following [30, 33], we consider a rotated version of the Brio-Wu test problem [8] with left and right states are

given by














VL = (1, 0, 0, 0.75, 1, 1)T for x1 < 0 ,

VR = (0.125, 0, 0, 0.75,−1, 0.1)T for x1 > 0 ,
(49)

whereV = (ρ, v1, v2, B1, B2, p) is the vector of primitive variables. The subscript “1” gives the direction perpendicular
to the initial surface of discontinuity whereas “2” corresponds to the transverse direction. HereΓ = 2 is used and the
evolution is interrupted at timet = 0.2, before the fast waves reach the borders.

In order to address the ability to preserve the initial planar symmetry we rotate the initial condition by the angle
α = π/4 in a two dimensional plane withx ∈ [−1, 1] andy ∈ [−0.01, 0.01] usingNx × Nx/100 grid points, with
Nx = 600. Vectors follow the same transformation given by Eq. (45) with β = γ = 0. This is known to minimize errors
of the longitudinal component of the magnetic field (see for example the discussions in [52, 27]). Boundary conditions
respect the translational invariance specified by the rotation: for each flow quantity we prescribeq(i, j) = q(i±δi, j±δ j)
where (δi, δ j) = (1,−1), with the plus (minus) sign for the leftmost and upper (rightmost and lower) boundary.
Computations are stopped before the fast rarefaction wavesreach the boundaries, att = 0.2 cosα.

Fig A.4 shows the primitive variable profiles for all schemesagainst a one-dimensional reference solution obtained
on a base grid of 1024 zones with 5 levels of refinement. Errorsin L1 norm, computed with respect to the same
reference solution, are sorted in Table 2 for density and thenormal component of magnetic field. The out-coming
wave pattern is comprised, from left to right, of a fast rarefaction, a compound wave (an intermediate shock followed
by a slow rarefaction), a contact discontinuity, a slow shock and a fast rarefaction wave. We see that all discontinuities
are captured correctly and the overall behavior matches thereference solution very well. The normal component of
magnetic field is best described with MP5 and does not show erroneous jumps. Indeed, the profiles are essentially
constant with small amplitude oscillations showing a relative peak∼ 0.7%. Divergence errors, typically. 10−2,
remain bounded with resolution and tend to saturate when thedamping parameterαp & 0.4 for both 2 and 3D
calculations, see Fig A.7. In this sense, our results favourably compare to those of [30, 33] and [21].

Fifth-order methods exhibit less dissipation across jumps, with fewer points in each discontinuous layer. Still, the
accuracy gained from third to fifth-order accurate schemes (see Table 2) is only a factor 1.5 − 2 since interpolation
across discontinuities usually degenerates to lower-order to suppress spurious oscillations.

4.2.2. Three-Dimensional Shock tube
The second Riemann problem was introduced by [43] and later considered by [44, 52, 4] and by [28, 39] in 3D.

The primitive variables are initialized as






































VL =

(

1.08, 1.2, 0.01, 0.5,
2
√

4π
,

3.6
√

4π

2
√

4π
, 0.95

)T

for x1 < 0

VR =

(

1, 0, 0, 0,
2
√

4π
,

4
√

4π
,

2
√

4π
, 1

)T

for x1 > 0

(50)

whereV = (ρ, v1, v2, v3, B1, B2, B3, p). A reference solution att = 0.2 is obtained on the domainx ∈ [−0.75, 0.75]
using 2048 grid points and 5 levels of refinement. Our setup draws on the three dimensional version of [28] and
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[39] where the initial condition (50) is rotated using Eq. (45) by the anglesα andγ such that tanα = −1/2 and
tanγ = 1/(2

√
5) (corresponding to tanβ = 1/4). With this choice the planar symmetry is respected by an integer shift

of cells. The computational domain consists of 768× 8 × 8 zones and spans [−0.75, 0.75] in thex direction while
y, z ∈ [0, 0.015625]. Computations stop att = 0.2 cosα cosγ (note the misprint in [39]).

Fig A.5 and A.6 show primitive variable profiles obtained with third- and fifth-order schemes, respectively. The
wave pattern consists of a contact discontinuity that separates two fast shocks, two slow shocks and a pair of rota-
tional discontinuities. Table 2 confirms again that the gainfrom high-order methods is not particularly significant
when the flow is discontinuous. Our results favorably compare with those of other investigators and no prominent
over/under-shoots are observed. Moreover, the amount of oscillations in the normal component of the magnetic field
is comparable to (or smaller than) those found in [28, 39] anddivergence errors behave in a very similar way to the
2D case (see also the right panel in Fig A.7).

The computational costs relative to that of WENO+3 (= 1) are found, for this problem, to be 0.99 : 1.48 : 1.25
for LimO3 , WENO-Z and MP5, respectively.

4.3. Iso-density MHD Vortex advection

The following problem has been introduced in [5] and lately considered by [6, 7, 21]. The initial condition,
satisfying the time-independent MHD equations, consists of a magnetized vortex structure in force equilibrium that
propagates along the main diagonal of the computational box(a square in 2D and a cube in 3D). Here we setαp = 0.4.

4.3.1. Two Dimensional Propagation
Following Dumbser et al. [21], we perform computations on the Cartesian box [−5, 5]2 with an initial flow

described byρ = 1,v = 1+(−y, x, 0)κeq(1−r2), B = (−y, x, 0)µeq(1−r2) andp = 1+1/(4q) (µ2 (1−2q r2)−κ2 ρ) e2q (1−r2).
The constantsκ andµ are chosen to be equal to 1/2π while r =

√

x2 + y2. The simulations are evolved for 10 time
units with periodic boundary conditions, i.e. a single passage of the vortex through the domain. The parameterq is
chosen equal to 0.5 for third-order schemes, effectively reproducing the configuration shown in [5, 7]. For WENO-Z
and MP5, on the other hand, we chooseq = 1 in order to reduce the unwanted effects produced by the small jump in
the magnetic field at the periodic boundaries, as argued in [21].

In order to compare our results to the findings of the latter study, we report, in Table 3, errors forBx measured both
in L1 andL2 norms and the corresponding convergence rates. All schemesquickly converge to the asymptotic order
of accuracy. Remarkably, errors obtained with the third-order schemes are identical and somewhat better than those
of [7]. At the resolution of 1282, fifth-order schemes yield errors∼ 4 times smaller than third-order ones at 2562. A
comparison between third- and fifth-order schemes from Fig A.12 reveals that divergence errors rapidly decrease with
resolution following a similar pattern. This eloquently advocates towards the use of higher-order schemes.

4.3.2. Three Dimensional Propagation
We propose a novel three dimensional extension of the vortexproblem, consisting of similar initial conditions as

the 2D case, albeit the radiusr now refers to the spherical one,r =
√

x2 + y2 + z2. The perturbation of pressure is now
given by

p = 1+
1

4q

[

µ2
(

1− 2q (r2 − z2)
)

− κ2 ρ

]

e2q (1−r2) , (51)

while we prescribe also a vertical velocityvz = 2. The computational domain is the cube [−5, 5]3 with periodic
boundary conditions. The evolution stops after 10 time units.

The last four columns of Table 3 report theL1 andL2 norm errors ofBx showing an excellent agreement with
the analytical solution. Notice that the errors measured inL2 norm are systematically smaller thanL1 errors and a
comparison between similar configurations using different norms (as reported in [21]) may be deceitful. Keeping that
in mind and given the somewhat diverse configurations, one can see that our results (inL2 norm) are competitive with
those of [21] at least at a qualitative level.

Divergence errors, shown in Fig A.12, quickly decrease as the mesh thickens and fall below 10−8 at the resolution
of 1283 for the fifth-order schemes.

The computational cost is in accordance with previous tests, giving a ratio of 1 : 0.99 : 1.46 : 1.24 for WENO+3,
LimO3 , WENO-Z and MP5, respectively.
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Table 3:L1 andL2 norm errors and corresponding convergence rates for the MHDVortex problem in 2D (columns 3-6) and 3D (columns 7-10) at
t = 10.

Two Dimensions Three Dimensions
Method Nx ǫ1(Bx) OL1 ǫ2(Bx) OL2 ǫ1(Bx) OL1 ǫ2(Bx) OL2

WENO+3 32 2.49E-03 - 1.94E-04 - 7.81E-04 - 1.74E-05 -

64 4.13E-04 2.6 1.73E-05 3.5 1.29E-04 2.6 1.12E-06 4.0

128 5.72E-05 2.9 1.16E-06 3.9 1.82E-05 2.8 5.38E-08 4.4

256 7.69E-06 2.9 7.24E-08 4.0 - - - -

LimO3 32 2.49E-03 - 1.94E-04 - 7.81E-04 - 1.74E-05 -

64 4.13E-04 2.6 1.73E-05 3.5 1.29E-04 2.6 1.12E-06 4.0

128 5.72E-05 2.9 1.16E-06 3.9 1.82E-05 2.8 5.38E-08 4.4

256 7.69E-06 2.9 7.24E-08 4.0 - - - -

WENO-Z 32 8.17E-04 - 1.02E-04 - 1.63E-04 - 7.39E-06 -

64 5.10E-05 4.0 2.89E-06 5.1 1.07E-05 3.9 1.50E-07 5.6

128 1.83E-06 4.8 5.23E-08 5.8 3.78E-07 4.8 1.87E-09 6.3

256 5.94E-08 4.9 8.28E-10 6.0 - - - -

MP5 32 9.57E-04 - 1.04E-04 - 1.96E-04 - 7.34E-06 -

64 5.16E-05 4.2 3.02E-06 5.1 1.07E-05 4.2 1.53E-07 5.6

128 1.75E-06 4.9 5.15E-08 5.9 3.66E-07 4.9 1.85E-09 6.4

256 5.69E-08 4.9 8.04E-10 6.0 - - - -

4.4. Advection of a magnetic field loop

We now consider the advection of a magnetic field loop. For sufficiently large plasmaβ, specifying a thermal
pressure dominance, the loop is transported as a passive scalar. The preservation of the initial circular shape tests the
scheme’s dissipative properties and the correct discretization balance of multidimensional terms [27, 28, 32, 39].

4.4.1. Two Dimensional Propagation
Following [27, 22], the computational box is defined byx ∈ [−1, 1] andy ∈ [−0.5, 0.5] discretized on 2Ny × Ny

grid cells (Ny = 64). Density and pressure are initially constant and equal to 1. The velocity of the flow is given
by v = V0(cosα, sinα) with V0 =

√
5, sinα = 1/

√
5 and cosα = 2/

√
5. The magnetic field is defined through its

magnetic vector potential as

Az =































a0 + a2r2 if 0 ≤ r ≤ R1 ,

A0(R− r) if R1 < r ≤ R,

0 if r > R,

(52)

whereA0 = 10−3, R= 0.3, R1 = 0.2R, a2 = −0.5A0/R1, a0 = A0(R− R1) − a2R2
1 andr =

√

x2 + y2. The modification
to the vector potential in ther ≤ R1 region (with respect to similar setups presented by other investigators) is done
to remove the singularity in the loop’s center that can causespurious oscillations and erroneous evaluations of the
magnetic energy. The simulations are allowed to evolve until t = 2 ensuring the crossing of the loop twice through
the periodic boundaries.

In Fig. A.8 the magnetic energy density is displayed for the LimO3 , WENO+3, WENO-Z and MP5 schemes,
along with iso-contours of thez component of the magnetic vector potential. The initial circular shape is preserved
well by all schemes. The third-order schemes are substantially more diffusive, as can be seen on the borders of the
loop. This is confirmed by the time evolution of the magnetic energy density (normalized to its initial value), plotted
in the left panel of Fig.A.9. The power law behaviour is similar for the schemes of the same order, with the MP5
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method being the least diffusive. No pronounced difference is found between the LimO3 and WENO+3 schemes, for
this particular problem.

The divergence of magnetic field measured inL1 norm is shown in the left panel of Fig A.11, as a function of
αp ∈ [0, 1.0]. For the fifth-order schemes errors are minimized whenαp & 0.4 whereas LimO3 and WENO+3 present
smaller errors forαp . 0.2.

4.4.2. Three Dimensional Propagation
The three dimensional version of this problem is particularly challenging as the correct evolution depends on how

accurately the∇ · B = 0 condition is preserved and how the multidimensional MHD terms are balanced out. The
computational domain−0.5 ≤ x ≤ 0.5,−0.5 ≤ y ≤ 0.5,−1.0 ≤ z≤ 1.0 is resolved onto 128×128×256 zones. As for
the two-dimensional case the vector potentialA3 is used to initialize the magnetic field, which is then rotated using
the coordinate transformation given by Eq. (45) withα = 0 andγ = tan−1 1/2. Even though the loop is rotated only
around one axis, the velocity profile (vx, vy, vz) = (1, 1, 2) makes the test intrinsically three-dimensional. Once again,
pressure and density are taken uniform and equal to unity while boundary conditions are periodic in all directions.

The preservation of the loop’s shape can be seen in Fig. A.10.All schemes preserve the shape, with LimO3 and
WENO+3 being equally more diffusive (notice the thickness of the dark area at the loop’s borders, as well as the
brighter ring just inside the loop). As for the 2D case, one can see that MP5 is the least diffusive in preserving the
magnetic energy (right panel of Fig. A.9), while the dissipation rates for LimO3 and WENO+3 practically coincide.
Moreover, the three-dimensionalL1 norm error of∇ · B (right panel of Fig A.11) exhibits a behaviour similar to the
two dimensional case. As before, the relative CPU scaling between WENO+3, LimO3 , WENO-Z and MP5 for this
test problem is 1 : 0.97 : 1.45 : 1.25.

4.5. Orszag-Tang

The Orszag-Tang vortex system describes a doubly periodic fluid configuration leading to two-dimensional su-
personic MHD turbulence. The domain [0, 1]2 is initially filled with constant density and pressure respectively
equal toρ = Γ2 and p = Γ, while velocity and magnetic field are initialized tov = (− sin 2πy, sin 2πx, 0) and
B = (− sin 2πy, sin 4πx, 0), respectively. Although an analytical solution is not known, its simple and reproducible set
of initial conditions has made it a widespread benchmark forinter-scheme comparison, see for example [52]. Density
contour plots, as in [32] are shown in the top and bottom rows of Fig. A.13 att = 0.5 andt = 1, respectively, using a
resolution of 2562 points. The dynamics is regulated by multiple shock interactions leading to the formation of small
scale vortices and density fluctuations. Our results att = 0.5 are in good agreement with previous investigations, e.g.
[30, 52, 35, 42, 32], with WENO+3 and LimO3 showing increased numerical dissipation when compared to WENO-
Z and MP5. This is further confirmed in Fig A.15 where horizontal cuts aty = 0.3125 in the pressure distribution are
plotted against a reference solution obtained with the second-order CT-CTU scheme of [27] on a finer mesh (10242),
see also [30, 34, 42].

The most noticeable difference occurs att = 1, when the fifth-order schemes (in particular, MP5) reveal the
formation of a central magnetic island featuring a high density spot also recognizable in the results of [32] and
in [2, 38] for the isothermal case. This structure is absent in the third-order schemes and may be induced by the
decreased effective resistivity across the central current sheet, as discussed in [38].

Divergence errors, shown in Fig A.14 att = 0.5, are comparable with those given by other investigators (e.g.
[42, 33]) and reach their maximum magnitude in presence of discontinuous features.

The computational cost of LimO3 , WENO-Z and MP5 relative to that of WENO+3 (= 1) are found to be
1.01 : 1.47 : 1.29, in analogy with the previous results.

4.6. Kelvin-Helmholtz Unstable Flows

As a final example, we propose the nonlinear evolution of the Kelvin-Helmholtz instability in two dimensions.
The base flow consists of a single shear layer with an initially uniform magnetic field lying in thexzplane at an angle
θ = π/3 with the direction of propagation:

v =
[

M
2

tanh

(

y
y0

)

, 0, 0

]

, B = ca
√
ρ

[

cosθ, 0, sinθ
]

, (53)
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whereM = 1 is the Mach number,y0 = 1/20 is the steepness of the shear,ca = 0.1 is the Alfvén speed. Density and
pressure are initially constant and equal toρ = 1 andp = 1/Γ. A single-mode perturbationvy = vy0 sin(2πx) exp

[

−y2/σ2
]

with vy0 = 10−2, σ = 0.1 is super-imposed as in [36]. Computations are carried out in a Cartesian box [0, 1] × [−1, 1]
for t = 20 time units on aNx × 2Nx mesh, whereNx = 64, 128, 256.

The evolutionary stages are shown in Fig A.16, where we display color maps of the ratio (B2
x + B2

y)
1
2 /Bz at the

largest resolution 256× 512 for WENO+3, LimO3 , WENO-Z and MP5. Fort . 5 the perturbation follows a linear
growth phase during which magnetic field lines wound up through the formation of a typical cat’s eye vortex structure,
[36, 31], see the top row in Fig A.16. During this phase, magnetic field lines become distorted all the way down to the
smaller diffusive scales and the resulting field amplification becomes larger for higher magnetic Reynolds numbers.
As such, we observe in the top row of Fig A.17 that the magneticenergy grows faster not only as the resolution is
increased from 64 to 256 mesh points (green, red, black), butalso when switching from a third-order to a fifth order
scheme (solid vs. dotted lines). In particular, one can see that half of the grid resolution is needed by MP5 to match
the results obtained with WENO+3. A somewhat lesser gain can be inferred by comparing WENO-Zand LimO3 .
Similarly, the growth rate (computed as∆vy = (vy

max − vy
min)/2 see bottom panel in Fig. A.17), is closely related to

the poloidal field amplification and evolves faster for smaller numerical resistivity and thus for finer grids and/or less
dissipative schemes.

Field amplification is eventually prevented whent & 8 by tearing mode instabilities leading to reconnection events
capable of expelling magnetic flux from the vortex (second row in Fig. A.16), [31]. Throughout the saturation phase
(third and fourth row in Fig A.16) the mixing layer enlarges and the field lines thicken into filamentary structures.
During this phase one can clearly recognize that small scalestructures are best spotted with the fifth-order methods
while they appear to be more diffused with WENO+3 and LimO3 .

The CPU costs relative to that of WENO+3 (= 1) follow the ratios 0.98 : 1.48 : 1.24 for LimO3 , WENO-Z and
MP5, respectively, and confirm the same trend already established in previous tests.

5. Conclusions

We have presented a class of high-order finite difference schemes for the solution of the compressible ideal MHD
equations in multiple spatial dimensions. The numerical framework adopts a point-wise, cell centered representation
of the primary flow variables and has been conveniently cast in conservation form by providing highly accurate
interface values through a one-dimensional finite volume reconstruction approach. The divergence-free condition of
magnetic field is monitored by introducing a scalar generalized Lagrange multiplier, as in [20], offering propagation
as well as damping of divergence errors in a mixed hyperbolic/parabolic way. This greatly simplifies the task of
obtaining highly accurate solutions since the reconstruction process can be carried out on one-dimensional stencils
using the information available at cell centers. In this respect, our formulation completely avoids expensive elliptic
cleaning steps, does not require genuinely multidimensional interpolation and eludes the complexities required by
staggered mesh algorithms. Selected numerical schemes based on third- as well as fifth-order accurate constraints
have been presented and compared.

• The recently improved version of the third-order WENO scheme (WENO+3, [53]) and the LimO3 reconstruction
based on new limiter functions (introduced in [10]) performequally well exhibiting third-order accuracy in
smooth problems and non-oscillatory transitions at discontinuities.

• The new fifth-order WENO scheme (WENO-Z, see [9]) and the monotonicity preserving algorithm (MP5) of
[48] yield high-quality results on all of the selected testsand report orders of accuracy close to 5 for multidi-
mensional smooth problems. Both WENO-Z and MP5 perform witha greatly reduced amount of numerical
dissipation and provide highly accurate solution with muchfewer grid points when compared to third-order
accurate schemes. Still, we have found MP5 to give slightly better results WENO-Z in terms of reduced com-
putational cost, improved accuracy and sharper transitions at discontinuous fronts.

• Fifth-order schemes are found to be. 50 (for WENO-Z) and. 30 (for MP5) per cent slower than third-order
ones, depending on the particular choice. This favorably advocates towards the use of higher order schemes
rather than lower order ones, since the same level of accuracy can be attained at a much lower resolution still
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giving a tremendous gain in computing time. For three-dimensional problems, for example, the gain can be
almost two orders of magnitude in CPU cost.

• The results obtained with the present finite difference formulation are competitive (in terms of accuracy and
description of discontinuities) with recently developed FV schemes (e.g., [21, 7, 6]) and noticeably improve over
traditional 2nd order Godunov-type schemes in terms of reduced numerical dissipation. The benefits offered by a
high-order method such as the ones presented here are particularly relevant in the context of MHD applications
involving both smooth and discontinuous flows.
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Appendix A. Conservative eigenvectors of the GLM-MHD Equations

The 9× 9 matrix of the conservative MHD equations in one dimension introduced can be decomposed, given the
eigenvalues (see Eq. 7), to the corresponding left and righteigenvectors. Following partially the notation of [41, 30],
we define

α2
f =

a2 − c2
s

c2
f − c2

s

, α2
s =

c2
f − a2

c2
f − c2

s

, βy =
By

√

B2
y + B2

z

, βz =
Bz

√

B2
y + B2

z

(A.1)

wherea =
√

Γp/ρ denotes the speed of sound. With this notation, the right eigenvectors in matrix form will be given
by

R =



































































































































0 α f 0 αs 1 αs 0 α f 0

0 α fλ2 0 αsλ4 vx αsλ6 0 α fλ8 0

0 α f vy + Jf0βy −βzS αsvy − Js0βy vy αsvy + Js0βy −βzS α f vy − Jf0βy 0

0 α f vz + Jf0βz βyS αsvz − Js0βz vz αsvz + Js0βz βyS α f vz − Jf0βz 0

1 0 0 0 0 0 0 0 1

0 Jf1βy −βzρ
− 1

2 −Js1βy 0 −Js1βy βzρ
− 1

2 Jf1βy 0

0 Jf1βz βyρ
− 1

2 −Js1βz 0 −Js1βz −βyρ
− 1

2 Jf1βz 0

0 H f − Γ f −Γa Hs − Γs
1
2v2 Hs + Γs −Γa H f + Γ f 0

−ch 0 0 0 0 0 0 0 ch



































































































































(A.2)

whereS = sign(Bx), H f ,s = α f ,s(0.5v2 + c2
f ,s− γ2a2), Jf ,s0 = αs, f cs, f S andJf ,s1 = αs, f aρ

1
2 .

On the other hand, the left eigenvectors are given by
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, (A.3)

L2,8 =
1

2a2

































































































































γ1α f v2 ± Γ f

I f vx ∓ α f cf

I f vy ± Jf0βy
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0

I f By + Jf1ρβy
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γ1αsv2 ± Γs

Isvx ∓ αscs
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T

. (A.4)

where we prescribeτ = (Γ−1)/a2, γ1 = (Γ−1)/2,γ2 = (Γ−2)/(Γ−1) andI( f ,s) (vi ,Bi) = Γ
−1α f ,s(vi, Bi), with i = x, y, z.
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Figure A.1: L1 norm errors computed for the one-dimensional Alfvén wave propagation (left panel) and the rotated three-dimensionalversion
(right panel). The cross, triangle, plus sign and square symbols refer to computations carried out with WENO+3, LimO3 , WENO-Z and MP5,
respectively, at the resolution 16, 32, 64, 128 and 256 points using a CFL number of 0.8 (in 1D) and 0.3 (in 3D). The dotted lines gives the ideal
convergence slope, that is,∝ ∆x3 and∝ ∆x5, respectively.
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Figure A.2: Scatter plots of they component of magnetic field in the original one-dimensionalframe att = 5/3, after 5 revolutions. Each panel
plots every point of the three-dimensional array−Bx sinα+By cosα as a function of the longitudinal coordinatek ·x/|k| along the direction of wave
propagation. The lack of scatter demonstrates that the algorithm retains the expected planar symmetry. The solid line gives the reference solution
at t = 0 while dotted, dashed and dot-dashed lines corresponds to computations carried withNx = 16, 32, 64 points, respectively. The CFL number
was set toCa = 0.3.
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Figure A.3: Long term decay of circularly polarized Alfvénwaves after 16.5 time units, corresponding to∼ 100 wave periods. In the left panel,
we plot the maximum value of the vertical component of velocity as a function of time for the WENO-Z (solid line) and WENO+3 (dashed line)
schemes. For comparison, the dotted line gives the result obtained by a second-order TVD scheme. The panel on the right shows the analogous
behavior of the vertical component of magnetic fieldBz for LimO3 and MP5. For all cases, the resolution was set to 120× 20 and the Courant
number is 0.4.
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Figure A.4: Primitive variable profiles for the 2D shock tubeproblem att = 0.2 cosα = 0.2/
√

2, along the rotated direction x1. From left to right:
density, transverse velocity, longitudinal and transverse magnetic field components are displayed. The mesh resolution is 600× 6 and the Courant
number is 0.4. Symbols correspond to the 2D computations whereas the solid lines gives the reference solution.
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Figure A.5: Primitive variable profiles for the 3D shock tubeproblem att = 0.2 cosα cosγ = 0.8/
√

21 obtained with the third-order schemes.
Density, pressure, velocity and magnetic field components parallel and transverse to the direction of propagation are plotted as functions of the
longitudinal componentx1. The mesh resolution is 768× 8× 8 and the Courant number is 0.3.
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Figure A.6: Same as Fig A.5 but for the fifth-order schemes WENO-Z and MP5.
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Figure A.7: Divergence errors as function of the damping parameterαp for the shock tube problems in 2D (left,t = 0.2/
√

2) and 3D (right,
t = 0.8/

√
21). Symbols in black color are used to distinguish between different schemes at the nominal resolutions (600× 6 in 2D and 768× 8× 8

in 3D), see the legend. Computations carried at twice the resolution (1200× 12 in 2D and 1536× 16× 16 in 3D) are shown using symbols in red
color.

Figure A.8: Magnetic energy density for the 2D field loop problem att = 2 computed with the third-order (left) and fifth-order (right) schemes at
the resolution of 128×64 points with Courant numberCa = 0.4. Magnetic field lines are overplotted using 9 contour levels equally spaced between
10−5 and 10−3.
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Figure A.9: Time evolution of the magnetic energy density, normalized to its initial value, for the 2D (left) and 3D (right) field loop problem at
the resolution of 128× 64 grid points. The magnetic energy is better conserved for the MP5 method. LimO3 and WENO+3 show no pronounced
difference for this particular problem.

Figure A.10: Magnetic energy density for the 3D field loop problem att = 1 computed on 128× 128× 256 grid zones with Courant number 0.3.
From left to right: LimO3 , WENO+3, WENO-Z, MP5. All schemes preserve the circularity of the loop, with the fifth-order schemes displaying
sharper borders.

Figure A.11: Divergence errors as function of the damping parameterαp for the field loop test problem in 2D (left,t = 2) on 128× 64 grid points
and 3D (right,t = 1) on 128× 128× 256 grid points.
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Figure A.12:L1 norm error of the divergence of magnetic field as functions ofthe resolution (Nx) for the 2D (left panel) and 3D (right panel) vortex
problems att = 10. Different symbols corresponds to the selected reconstruction algorithms.

Figure A.13: Density contour plots for the Orszag-Tang system att = 0.5 (top) andt = 1 (bottom) for the selected schemes using 2562 grid points.
Thirty equally spaced levels ranging from 0.3831Γ2 to 2.2414Γ2 for the top panel and from 0.1944Γ2 to 1.9337Γ2 for the bottom panel are shown.
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Figure A.14: Divergence errors for the four selected schemeat t = 0.5 on 2562 grid zones.
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Figure A.15: Horizontal cut aty = 0.3125 showing gas pressure in the Orszag-Tang system att = 0.5 at the resolution of 2562. MP5 and WENO+3
are shown in top panel (squares and plus signs), WENO-Z and LimO3 in the bottom. The solid line gives a reference solution obtained with
second-order constrained transport algorithm on 10242 zones.
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Figure A.16: Snapshots of the evolution of the Kelvin-Hemlholtz unstable layer att = 5 (first panel from top),t = 8 (second panel),t = 12 (third

panel) andt = 20 (bottom panel). The images show the ratio of the poloidal field strength and the toroidal component,
√

B2
x + B2

y/Bz. Left to right

columns corresponds to computations obtained with WENO+3, LimO3 , WENO-Z and MP5, respectively, at the resolution of256× 512. Note
how the colorbar maximum value changes at different instant to reflect the corresponding magnetic field strength.32



Figure A.17: Volume integrated magnetic energy (top panels) and growth rate (computed as∆vy = (vy
max − vy

min)/2) as functions of time. Here
B2

p = B2
x + B2

y accounts for the ”poloidal” contribution only. Solid and dotted lines corresponds to integrations carried with WENO-Zand
LimO3 (left panels), MP5 and WENO+3 (right panels). The different colors, green, red and black indicate different numerical resolution, i.e., 64,
128 and 256, respectively.
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