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Abstract

This paper studies and analyzes a preconditioned Krylov solver for Helmholtz problems that are

formulated with absorbing boundary layers based on complex coordinate stretching. The preconditioner

problem is a Helmholtz problem where not only the coordinates in the absorbing layer have an imaginary

part, but also the coordinates in the interior region. This results into a preconditioner problem that is

invertible with a multigrid cycle. We give a numerical analysis based on the eigenvalues and evaluate the

performance with several numerical experiments. The method is an alternative to the complex shifted

Laplacian and it gives a comparable performance for the studied model problems.

1 Introduction

The Helmholtz equation is frequently used to model propagation of waves in applications such as acoustic,

seismic and electromagnetic realistic systems. It is less known that the equation is also helpful to understand

and predict the reaction rates of fundamental processes in few-body physics and chemistry that are important

for many areas of technology. In gas discharge reactors that are used industrially for chemical processing

of surfaces, for example, these reaction rates are an essential modeling input [1]. There is both a scientific

interest and an industrial need for accurate prediction of reaction rates [2]. To predict accurately the reaction

rates of these processes it is necessary to solve the multi-dimensional Schrödinger equation [3, 4] that is, for

the energy regime of these processes, equivalent to a multi-dimensional Helmholtz equation with outgoing

waves boundary conditions and a space dependent wave number. The reaction rate of a particular process

is then found as a post-processing step where the fluxes of the outgoing waves, corresponding to a particular

reaction, are extracted [5].

These applications, often in diverse fields, have little in common amongst them except the Helmholtz model

used in the simulations. Naturally, the numerical solution of the indefinite Helmholtz equation forms an

interesting field of research for a widespread scientific community. Two main numerical concerns in this

context are the truncation of the infinite physical domain to a finite numerical one mapped on a grid, and

the efficient iterative solution of the resulting indefinite discrete linear system. In this paper, we concentrate

on the latter of these issues.

A hard truncation of the physical domain (in the Dirichlet sense) on a numerically feasible finite boundary,

results in waves reflecting back and propagating into the truncated domain. These artificial reflections

have to be avoided for an acceptable numerical treatment of the Helmholtz equation. This consideration

led to the commonly used boundary conditions by Engquist and Majda [6] and Bayliss and Turkel [7]
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who approximated the Sommerfeld radiation condition for homogeneous media at the boundary. Bérenger

avoided reflecting waves by adding perfectly matched layers (PML) [8] to the truncated domain. On this

absorbing extension the problem is reformulated in order to damp the solution exponentially. Both techniques

have been generalized and fine-tuned by many authors, see e.g. [9] for an overview. Chew and Weedon

[10] related the PML method to a complex coordinate stretching. They consider the absorbing layer as

an analytical continuation of the space domain into the complex plane, where the original equation is

preserved. Earlier, in the 70’s, linear complex scaling of the space domain was already used as a method

to compute atomic resonances in microscopic system described by the Schrödinger equation [11, 12]. There

a coordinate transformation, r → r exp(iθ) with a angle θ > 0, was applied on the full domain. In the

same decade, Simon introduced exterior complex scaling (ECS) by only transforming the boundary region

with the transformation r → (R0 − r) exp(iθ) + r, where R0 denotes the start of the boundary region. The

purpose of this transformation was to introduce the correct boundary condition for resonant states while

avoiding analytical continuation of non-analytical potentials in the Schrödinger equation. Later this ECS

transformation was used to enforce outgoing wave boundary conditions to atomic break-up problems [3].

Note that the ECS transformation has a discontinuous first derivative in R0, while in PML the complex

stretching is usually introduced as a smooth coordinate transformation.

The purpose of this paper is to find efficient iterative solvers for Helmholtz problems equipped with absorbing

boundary layers based on complex coordinate stretching. The main iterative challenge in a discrete Helmholtz

problem Hhuh = bh is the indefiniteness of the discretized operator Hh. A powerful way to get around

this issue is the use of preconditioned Krylov subspace methods. The original troublesome matrix Hh is

multiplied by the inverse of the preconditioning matrix Mh, resulting in a new system M−1
h Hh = M−1

h bh

for left preconditioning. The choice of the preconditioner is a trade off between a cheaply invertible matrix

Mh and a definite preconditioned system M−1
h Hh with nicely clustered eigenvalues. The former demand

can be relaxed by allowing an inexact inversion of the preconditioner Mh, e.g. a few sweeps of a multigrid

method. A successful preconditioner in this setup of multigrid preconditioning (MGP) of Krylov methods is

the complex shifted Laplacian (CSL) developed for Sommerfeld radiation conditions by Erlangga, Vuik and

Oosterlee [13].

In this paper we study the effect of complex stretching a part of the domain on the eigenvalues of the

discretized Helmholtz equation. We have chosen to study the simplest problem with complex coordinate

stretching which is the ECS domain as introduced by Simon and still used for atomic break-up problems.

We have analyzed the eigenvalues of the one-dimensional Laplacian discretized on an ECS domain. Then the

achieved insights are used to apply the CSL preconditioning idea to two-dimensional Helmholtz problems

with ECS boundaries. The theoretical analysis also leads to an alternative family of preconditioners based on

different complex stretchings of the numerical grid (CSG). Although ECS is not the most accurate absorbing

boundary condition, we believe the insights on the performance of the iterative solver are valid for problems

where a smooth complex stretching transformation is introduced.

The remainder of this paper is organized as follows. In Section 2, we describe the ECS absorbing boundary

layer. We use a one-dimensional Laplace problem for theoretical considerations; this reference problem is also

described in Section 2. The numerical analysis of the discrete one-dimensional reference problem is given next

in Section 3. Three important lemmas are given here, the insights from which paved the way for the work in

this paper. We use three model problems for experimentation. They possess particular properties, which we

detail in Section 4. Section 5 follows, and deals with preconditioning ideas. Multigrid behavior as a solver

as well as for approximate preconditioner inversion is discussed. We also calibrate multigrid performance

with different components. Numerical validation of all the theoretical insights is given in Section 6 where

the model problems are solved with multigrid preconditioned Bi-CGSTAB [14] and IDR(s) [15] (with s = 4

and s = 8), with the CSL and the CSG preconditioning operators, and accompanied by comparison tables.
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2 Exterior complex stretched domains

The Helmholtz equation in a homogeneous medium is

Definition 2.1 (Helmholtz).

Hu ≡ −
(
4+ k2

)
u = χ in Ω0 ⊆ Rd, (2.1)

with dimension d ≥ 1.

where χ is a source term, k ∈ R is called the wave number. The equation describes acoustic wave problems

on an unbounded domain Ω0. We want to solve the Helmholtz equation (2.1) numerically on a bounded part

of the domain Ω ⊂ Ω0, with absorbing boundary layers.

For the Helmholtz equation (2.1) restricted to the bounded domain Ω, a popular boundary condition is the

first order Sommerfeld boundary condition, given by,

∂u

∂n̂
= −ıku on ∂Ω, (2.2)

where ∂Ω represents the domain boundary and n̂, the outward normal. We write ı for the complex identity. In

multi-dimensional Helmholtz problems absorbing boundary layers are preferred over these classical first order

Sommerfeld conditions because the latter requires an exact knowledge of the wave number at the boundary.

More important, in higher dimensions condition (2.2) suffers from artificial reflections and a higher order

version should be applied [6, 7]. Equation (2.2) is still useful for the analysis of iterative methods though.

The physical interpretation of absorbing boundary layers is to extend the original domain Ω with a layer Γ

of an absorbing material. In Ω the original equation is kept and in the layer Γ the equation is manipulated

to enforce specific boundary conditions on the new boundaries ∂Γ, through an adapted potential due to

a change in the material. This was introduced as a perfectly matched layer (PML) by Bérenger [8]. The

original PML idea is mathematically equivalent to a particular complex coordinate stretching [10] in the

boundary layers, where the original equation is used in a new coordinate system. In this complex stretching

approach we define an analytic continuation on the layers by

z(x) =

{
x, x ∈ Ω;

x+ ıf(x), x ∈ Γ,
(2.3)

with f ∈ C2 the stretching function, increasing (e.g. linear, quadratic, . . . ) and lim
x→∂Ω

f(x) = 0. We denote

the image of the layer Γz ≡ z(Γ) and call it the complex contour. These robust boundary layers do not

use the wave number explicitly as opposed to the Sommerfeld conditions (2.2) and they can easily be tuned

in numerical experiments. The transformation (2.3) constructs the absorbing complex contour by adding

a complex shift to the domain extension Γ, but it can also be done by a complex rotation of Γ. For a

one-dimensional problem in Ω = [x0, r] with linear complex stretching applied to the extension Γ = [r,R],

with an angle θ this is typically

z(x) = (x− r)eıθ + r, x ∈ Γ,

and was introduced by Simon as exterior complex scaling [16]. On discrete level the mesh width on the

contour Γz becomes hγ = heıθ. We point out that although the above definition suffices well for practical

purposes, as for the experiments presented in this paper, we will keep the analytic discussion general by

using the expression (2.3).

We will study the effect of a complex stretching transformation on a simple one-dimensional Laplace problem

− Lu(x) ≡ − d2

dx2
u(x) = χ(x) in [0, 1] ⊂ R, (2.4)

with u(0) = 0 and an absorbing boundary condition in x = 1. The minus sign is introduced to make the

Laplacian positive definite. The homogeneous Helmholtz problem only differs in a constant shift k2 and
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shares the same eigenvectors. An eigenvalue of the Helmholtz problem is λL − k2 where λL is an eigenvalue

of the negative Laplacian L. However, this minor difference can turn the definite problem into a indefinite

one, with major consequences on the behavior of iterative methods such as Krylov methods and multigrid

methods. The numerical results in Section 6 show that the results are easily extended to two dimensions,

and that the same preconditioning ideas can be useful for different values of k and for non-homogeneous

Helmholtz problems.

We now implement the complex stretched boundary layer on the one-dimensional Laplace problem (2.4) by

adding an extension Γ = [1, R] with 1 < R ∈ R to construct the complex contour Γz = z(Γ) ⊂ C. In this

paper, we use a linear coordinate transformation on the layer so that Γz is the complex line connecting 1

and z(R) ≡ Rz ∈ C that we will denote as [1, z(R)] = [1, Rz]. This transforms the problem to

− Lu(z) ≡ − d2

dz2
u(z) = χ(z) in [0, 1] ∪ [1, Rz] ⊂ C, (2.5)

with homogeneous Dirichlet boundary conditions at z(0) = 0 and z(R) = Rz (see Figure 1). In the re-

mainder of the paper will refer to this linear stretching (2.5) as the exterior complex scaled (or stretched)

transformation or in short ECS. The two boundary points z = 0 and z = Rz determine the position of the

x=0 x=1 x=R
−0.1

0

0.1

0.2

real

im
ag

R
z

θγ

Figure 1: The ECS domain z(x). An ECS contour is added as an extension of the domain at x = 1. This

shifts the domain and consequently the spectrum of the resulting operator into the complex plane.

eigenvalues independently of the path connecting the two points. This is readily obvious by inspecting the

following equation, which gives the eigenvalues of the negative Laplacian on any one-dimensional curve in

the complex plane connecting the points 0 and Rz:

λL =

(
jπ

Rz

)2

with j ∈ N0.

The derivation is trivial and hence not shown here. The complex contour acts as an absorbing layer. Indeed,

because of the exponential decay of the analytically continued solution one can enforce homogeneous Dirichlet

boundary conditions at the end of the complex contour with a significantly smaller boundary error than on

a real truncated domain [17], as is illustrated in Figure 2. The larger the imaginary part of the complex

boundary, the stronger the suppression of the reflected waves. Although the shape of the contour, i.e. the

stretching function f(x), does not explicitly influence the damping in the continuous case, the discretized

problem is susceptible to different shapes, as we will see in the next section.

Remark 1 (Accuracy of ECS layers). A detailed discussion on the accuracy of ECS layers does not lie

within the scope of this paper; we merely use the simple linear ECS in (2.5) as a model to understand the

iterative solution of the problems with more advanced complex stretched boundary layers.
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Figure 2: ECS on a one-dimensional domain. A complex contour is added to both boundaries, enforcing the

wave to fulfill Dirichlet boundary conditions. eıκz(x) = eıκ(x+ıf(x)) = eıκxe−κf(x) ≈ 0, (color online)

3 Numerical analysis of discretized operator

In this section we discretize the Laplace problem (2.5) with finite differences using the Shortley-Weller

formula for non-uniform vertex centered grids [18]. It enables discretization through the region of transition

to complex mesh widths for the complex contour in the ECS domain. We present theoretical results for the

eigenvalues of the discretization matrix.

Consider the one-dimensional Laplace problem (2.5). We define a uniform grid

(zj)0≤j≤n on [0, 1]

with z0 = 0 and zn = 1 and mesh width h = 1/n ∈ R, and a second uniform grid on the complex contour

(zj)n≤j≤n+m on [1, Rz]

with zn+m = Rz and complex mesh width hγ = (Rz − 1)/m. We will refer to the angle of hγ in the complex

plane as the ECS angle and denote it θγ . The union of these two grids is the ECS grid

(zj)0≤j≤n+m on [0, 1] ∪ [1, Rz] (3.1)

in the entire ECS domain. We will often use the fraction γ = hγ/h ∈ C. To approximate the second

derivative in (2.5) we choose the Shortley-Weller formula

d2u

dz2
(zj) ≈

2

hj−1 + hj

(
1

hj−1
uj−1 −

(
1

hj−1
+

1

hj

)
uj +

1

hj
uj+1

)
for non-uniform grids in grid point j, where hj−1 and hj are the left and right mesh widths respectively,

and may belong either to the h category or to the hγ category. The formula is easily derived from Taylor

series and reduces to regular second order central differences when hj−1 = hj , i.e., in the interior real region

(0, 1), and in the interior of the complex contour (1, Rz) because the stretching function f is taken to be

linear. The only exception is the point zn where at most we lose an order of accuracy, however with ample

discretization steps, the overall accuracy is anticipated to match up to second order. The result is a linear
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Figure 3: Discretized ECS domain zj . The ECS domain is discretized with complex mesh widths on the

complex contour.

system of equations that we will represent by the matrix equation

− Lhuh = bh. (3.2)

The right hand side bh contains contributions from the source function χ. The spectrum of the discretization

matrix Lh in (3.2) determines the convergence behavior of iterative methods such as Krylov subspace methods

and multigrid schemes for solving the system. It is drastically different from the spectrum of the continuous

operator L. We start with the construction of bounds on the field of values of −Lh.

The remainder of this section is focused on several lemmas that will help to understand the spectral properties

of the discretized operator. First, in Lemma 3.1 the Gershgorin disks are used to produce bounds on the

spectrum. Next, in Lemma 3.2 we find a condition for the eigenvalues of the discrete ECS Helmholtz operator

for constant wave numbers. The solutions lie on a pitchfork-shaped figure. In Lemma 3.3 of this section, it

is shown how an approximation can be found for the limiting points of this spectrum.

Lemma 3.1. Consider the ECS grid (3.1) and the discretization matrix Lh in Equation (3.2). Define

γ =
hγ
h , and its complex conjugate γ̄. If λ ∈ σ(−Lh), then

<(
1

γ2
)−

∣∣∣∣ 1

2γ2
+

1

γ̄(1 + γ̄)

∣∣∣∣ ≤ h2<(λ) ≤ max(4, 3 +
1

2

∣∣∣∣3 + γ̄

1 + γ̄

∣∣∣∣)
=(

4

γ2
) ≤ h2=(λ) ≤ 1

2

∣∣∣∣ |γ|2 − γ|γ|2 + γ

∣∣∣∣
where < and = denote the real and imaginary part, respectively.

Proof. Every eigenvalue of a matrix lies in the field of values of that matrix. For the field of values W (AN )

of a matrix AN = (aij)1≤i,j≤N holds

min{<(W (AN ))} = min{µ ∈ R : µ ∈ σ(
AN +A∗N

2
)}

max{<(W (AN ))} = max{µ ∈ R : µ ∈ σ(
AN +A∗N

2
)}

min{=(W (AN ))} = min{µ ∈ R : µ ∈ −ıσ(
AN −A∗N

2
)}

max{=(W (AN ))} = max{µ ∈ R : µ ∈ −ıσ(
AN −A∗N

2
)},

with A∗N the adjoint matrix of AN . We scale the model problem with h2 and construct the Gershgorin disks

of −h2 Lh+L∗
h

2 and −h2 Lh−L∗
h

2 . The eigenvalues of a matrix lie on the union of its Gershgorin disks. They
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are defined as

Di = {z ∈ C : |z − ajj | ≤
N∑
j 6=i

|aij |}.

The scaled operator is

−h2Lh =



2 −1

−1 2 −1
. . .

−1 2 −1

− 2
1+γ 2

1+ 1
γ

1+γ − 2
γ(1+γ)

− 1
γ2

2
γ2 − 1

γ2

. . .

− 1
γ2

2
γ2 − 1

γ2

− 1
γ2

2
γ2


We will use the notation B(c, r) ⊂ C for the ball centered around c ∈ C with radius r ∈ R. So the matrix

−h2 Lh+L∗
h

2 has seven distinct Gershgorin disks

i = 1 : D1 = B (2, 1)

∀2 ≤ i ≤ n− 2 : D2 = B (2, 2)

i = n− 1 : D3 = B

(
2, 1 +

1

2

∣∣∣∣3 + γ̄

1 + γ̄

∣∣∣∣)
i = n : D4 = B

(
2<(

1 + 1
γ

1 + γ
),

(
1

2

∣∣∣∣3 + γ

1 + γ

∣∣∣∣+

∣∣∣∣ 1

2γ̄2
+

1

γ(1 + γ)

∣∣∣∣)
)

j = m− 1 : D5 = B

(
2<(

1

γ2
),<(

1

γ2
) +

∣∣∣∣ 1

2γ2
+

1

γ̄(1 + γ̄)

∣∣∣∣)
∀ 2 ≤ j ≤ m− 2 : D6 = B

(
2<(

1

γ2
), 2<(

1

γ2
)

)
j = 1 : D7 = B

(
2<(

1

γ2
),<(

1

γ2
)

)
.

The minimum and maximum of
⋃

1≤i≤7Di =
⋃

2≤i≤6Di determine a lower and upper bound for h2σ(−Lh+L∗
h

2 ).

For our ECS problems, ECS angles up to π
6 (0 < θγ ≤ π

6 ) the minimum is <( 1
γ2 )−

∣∣∣ 1
2γ2 + 1

γ̄(1+γ̄)

∣∣∣ < 0 and the

maximum is max(4, 3 + 1
2

∣∣∣ 3+γ̄
1+γ̄

∣∣∣). Note that the lower bound for the real part of the eigenvalues is negative

and does not exclude negative values.

The matrix −h2 Lh−L∗
h

2 has five distinct Gershgorin disks

i = n− 1 : D1 = B

(
0,

1

2

∣∣∣∣1− γ̄1 + γ̄

∣∣∣∣)
i = n : D2 = B

(
2ı=(

1 + 1
γ

1 + γ
),

(
1

2

∣∣∣∣1− γ1 + γ

∣∣∣∣+

∣∣∣∣ 1

2γ̄2
− 1

γ(1 + γ)

∣∣∣∣)
)

j = m− 1 : D3 = B

(
2ı=(

1

γ2
),−=(

1

γ2
) +

∣∣∣∣ 1

2γ2
− 1

γ̄(1 + γ̄)

∣∣∣∣)
∀ 2 ≤ j ≤ m− 2 : D4 = B

(
2ı=(

1

γ2
),−2=(

1

γ2
)

)
j = 1 : D5 = B

(
2ı=(

1

γ2
),−2=(

1

γ2
)

)
.
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The minimum and maximum of
⋃

1≤i≤5Di =
⋃

1≤i≤4Di determine a lower and upper bound for−ıh2σ(−Lh−L
∗
h

2 ).

For our ECS problems, ECS angles up to π
6 (0 < θγ ≤ π

6 ) these extrema are 4=( 1
γ2 ) and 1

2

∣∣∣ 1−γ̄1+γ̄

∣∣∣ > 0 respec-

tively.

−1 0 1 2 3 4

−2

−1

0

1

Re(λ)

Im
(λ

)

 

 

λ ∈  σ(−h2 L
h
)

Figure 4: Spectrum of −h2Lh (•) and the Gershgorin disks of −h2/2 (Lh + L∗h) (red dotted circles) and

−h2/2 (Lh − L∗h) (blue dotted circles). The spectrum is bounded by the field of values that lies inside the

rectangle derived from the Gershgorin disks. The red circles lead to the left and right bound, the blue circles

give the upper and lower bound. The negative left bound does not assure positive definiteness of the matrix.

(color online)

By considering the Gershgorin disks of only the discretized Laplacian Lh these bounds can be further

sharpened. Next is a discussion on the exact position of the eigenvalues.

Lemma 3.2. Consider the ECS grid (3.1) and the discretization matrix Lh in Equation (3.2). Define

γ =
hγ
h . Then the eigenvalues of −Lh are the solutions of

F (λ) ≡ tan(2np(λ))

tan(2mq(λ))
+

cos(p(λ))

cos(q(λ))
= 0, (3.3)

with p(λ) = 1
2 arccos(1− λ

2h
2), q(λ) = 1

2 arccos(1− λ
2 γ

2h2).

Proof. Note that the eigenvalues of the Helmholtz problem fulfill the same condition (3.3), with λHh ≡
λLh − k2. We prove the Laplace case.

We write the grid points slightly different than before by numbering the grid points (xj)1≤n in [0, 1] from

left to right, and (yj)1≤j≤m in [1, Rz] form right to left, so that the turning point xn = ym = 1. In other

words we consider the ECS grid as two joint grids (xj)1≤j≤n and (yj)1≤j≤m. Consequently the two Dirichlet

boundaries are x0 and y0. The Shortley-Weller finite differences formula reduces to regular second order

central differences in every grid point, except for the turning point xn = ym = 1 with left grid distance h and

right grid distance γh. We look for an eigenvector v on the real grid and an eigenvector w on the complex

8



contour with the same eigenvalue λ and vn = wm in the turning point. We get the recurrence relations
− 1
h2 (vj−1 − 2vj + vj+1) = λvj , 0 < j < n;

− 2
h2(1+γ)

(
vn−1 −

(
1 + 1

γ

)
vn + 1

γwm−1

)
= λvn, j = n;

− 1
γ2h2 (wj−1 − 2wj + wj+1) = λwj , 0 < j < m.

The first and the last are Chebyshev recurrence relations with general solutions{
vj = c1Vj(sλ) + c2Tj(sλ), 0 < j < n;

wj = d1Vj(tλ) + d2Tj(tλ), 0 < j < m.

with sλ = 1 − λ
2h

2, tλ = 1 − λ
2 (γh)2 and Vj(sλ) =

√
1− sλUj−1(sλ). Tj and Uj are the j-th Chebyshev

polynomials of the first and the second kind respectively. We apply the boundary conditions u0 = 0 and

v0 = 0 and find {
vj = c1Vj(sλ), 0 < j < n;

wj = d1Vj(tλ), 0 < j < m.

The matching condition returns

vn = wm

⇔ c1Vn(sλ) = d1Vm(tλ)

⇔ d1 = c1
Vn(sλ)

Vm(tλ)

where we assumed vn 6= 0 so Vn(sλ) 6= 0 6= Vm(tλ). The remaining constant c1 determines the norm of

the eigenvector. So we can assume c1 = 1. Now the only free parameter left is the eigenvalue λ that is

determined by the second recurrence relation, the discretization scheme in the turning point.

− 2

h2(1 + γ)

(
Vn−1(sλ)−

(
1 +

1

γ

)
Vn(sλ) +

1

γ

Vn(sλ)

Vm(tλ)
Vm−1(tλ)

)
= λVn(sλ)

⇔ − 2

h2(1 + γ)

(
Vn−1(sλ)

Vn(sλ)
−
(

1 +
1

γ

)
+

1

γ

Vm−1(tλ)

Vm(tλ)

)
= λ

⇔ Vm−1(tλ)

Vm(tλ)
+ γ

Vn−1(sλ)

Vn(sλ)
= γsλ + tλ

⇔ sin((m− 1) arccos(tλ))

sin(m arccos(tλ))
+ γ

sin((n− 1) arccos(sλ))

sin(n arccos(sλ))
= γsλ + tλ

⇔ tλ − cot(2mqλ)
√

1− t2λ + γ

(
sλ − cot(2npλ)

√
1− s2

λ

)
= γsλ + tλ

⇔ − cot(2mqλ)
√

1− t2λ − γ cot(2npλ)
√

1− s2
λ = 0

⇔ tan(2npλ)

tan(2mqλ)
= −γ

√
1− s2

λ

1− t2λ

⇔ tan(2npλ)

tan(2mqλ)
+

√
1 + sλ
1 + tλ

= 0

We introduced the shorthands pλ = arccos(t) and qλ = arccos(s), substituted Vj(x) = sin(j arccos(x)) and

excluded the trivial cases cot(2npλ) = 0 and t2λ = 1.

We can now solve the eigenvalue problem numerically by applying e.g. Newton’s method on the function

(3.3). There are eigenvalues to be found along the complex line ρe−2iθγ with ρ ∈ R, and close to 4/h2 and

4/γ2h2.
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Lemma 3.3. Let −Lh be the negative discretized Laplacian in Equation (3.2) with eigenvalues λ ∈ σ(−Lh).

Then three typical regions of the eigenvalues can be identified in the spectrum:

For |λ− 4

h2
| � 1 : λ ≈ 4n2 sin(l

π

2n
) with l . n

For |λ− 4

h2γ2
| � 1 : λ ≈ 4γ2m2 sin(l

π

2m
) with l . m

For |λ| � 1 : λ ≈
(
lπ

Rz

)2

with l & 1

These approximations are the largest eigenvalues of the discretized Laplacian restricted to the real domain

[0, 1], the complex contour [1, Rz], and the smallest eigenvalues of the discretized Laplacian on the complex

line [0, Rz], respectively.

Proof. We take the scaled operator −h2Lh. The eigenvalues are the roots of the function

F (µ) = sin (2np(µ)) cos (2mq(µ)) cos (q(µ)) (3.4)

+ cos (2np(µ)) sin (2mq(µ)) cos (p(µ))

with p(µ) = 1
2 arccos(1− µ

2 ), q(µ) = 1
2 arccos(1− µ

2 γ
2). Using Taylor series we get

p(µ) =
π

2
− 1

2

√
4− µ+O(|4− µ|3/2)

for µ ≈ 4, so F (µ) can be approximated by

F (µ) ≈ sin
(
n
(
π −

√
4− µ

))
cos (2mq(µ)) cos (q(µ))

+ cos
(
n
(
π −

√
4− µ

))
sin (2mq(µ)) sin

(
1

2

√
4− µ

)
for |µ− 4| � 1. This can be simplified even more to

F (µ) ≈ sin
(
n
(
π −

√
4− µ

))
cos (2mq(µ)) cos (q(µ)) (3.5)

+ cos
(
n
(
π −

√
4− µ

))
sin (2mq(µ))

(
1

2

√
4− µ

)
,

where we used the series

sin

(
1

2

√
4− µ

)
=

1

2

√
4− µ+O(|4− µ|3/2)

with |µ− 4| � 1. Define µl = 4− π2

n2 (l − n)
2
, then

F (µl) ≈ 0± sin (2mq(µl))

(
1

2

√
4− µl

)
≈ 0

for l ≈ n. The eigenvalues of the discretized Laplacian with Dirichlet boundary conditions, defined on the

real domain [0, 1], are λl = 4 sin2( lπn ) with 1 ≤ l ≤ n− 1. For l ≈ n we have

λl = 4− π2

n2
(l − n)

2
+O((l − n)3)

= µl +O((l − n)3).
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So we found that the eigenvalues of −h2Lh in the neighborhood of 4 can be approximated by the eigenvalues

of the Laplacian on the real part of the domain. In the same way we can show that the eigenvalues in

the neighborhood of 4
γ2 can be approximated by the eigenvalues of the Laplacian defined on the complex

contour, by approximating

q(µ) =
π

2
− 1

2

√
4− γ2µ+O(|4− γ2µ|3/2).

Now we are looking for the smallest eigenvalues of −h2Lh. Using Taylor series we get

p(µ) =

√
µ

2
+O(|µ|3/2)

q(µ) = γ

√
µ

2
+O(|µ|3/2)

so F (µ) can be approximated by

F (µ) ≈ sin (n
√
µ) cos (mγ

√
µ) cos

(√
µγ

2

)
+ cos (n

√
µ) sin (mγ

√
µ) cos

(√
µ

2

)
for µ � 1. We write γ = 1 + ıε with 0 < ε < 1. This is true for ECS with an angle 0 < θγ <

π
4 . Then the

function can be simplified even more to

F (µ) ≈ sin (n
√
µ+mγ

√
µ) cos(

√
µ

2
) (3.6)

where we used the series

cos

(
γ

√
µ

2

)
= cos

(√
µ

2

)
+O(|µε|)

The eigenvalues λl =
(

lπ
n+mγ

)2

of the scaled continuous operator −h2L, with l ∈ N, are roots of the simplified

function (3). So the smallest eigenvalues of (3.2) can be approximated by λl � 1.

For the Laplace problem (3.2) the spectrum has a typical pitchfork shape. There is a clear complex branch as-

sociated to eigenvectors located on the complex contour, and a branch closer to the real axis that corresponds

to eigenvectors located on the real domain. The smallest eigenvalues in the tail of the pitchfork belong to

the smoothest eigenvectors spread over the entire ECS domain. They lie close to the smallest eigenvalues of

the continuous ECS operator −L (Figure 5). Indeed, define the complex mesh width hα = Rz/(n+m+ 1),

belonging to a straight complex grid connecting 0 and Rz, and α = hα/h. Then we conjecture for the

discretized Laplacian −Lh in (3.2)

σ(−Lh) ⊂ (S ∪ T)

where S is a strip around the complex line 4ρ/(αh)2 (0 ≤ ρ ≤ ρ0 < 1) and T is the interior of the triangle

µ̂1µ2µ3 ⊂ C, with µ1 = 4ρ0/(αh)2, µ2 = 4/h2 and µ3 = 4/(γh)2. We liberally use the terms, pitchfork

and tail of the pitchfork to represent the triangular region T and the line segment S respectively. For the

Helmholtz operator with a constant wave number k the pitchfork is shifted in the negative real direction

over a distance k2.

Remark 2 (Spectrum of smoother ECS transformations). In our analysis we have focused on problems on

a domain that is complex stretched by the ECS transformation in (2.5). This leads, in 1D, to a tridiagonal

matrix which is constant in the interior and constant in the boundary layer. Both regions are connected by a

single condition which is the finite difference approximation of the equation at the turning point. For other
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Figure 5: An illustration of the result in Lemma 3.3. The eigenvalues of the ECS Laplacian discretization

matrix (•) lie along a pitchfork shape figure, close to the eigenvalues of the same Laplace problem restricted

to the interior real domain (/) and the complex contour (.) respectively. In the detail view of the area

around the origin we observe that the smallest eigenvalues practically agree with the smallest eigenvalues of

the Laplace problem defined on the complex line [0, Rz] (4). The result is a pitchfork shape: the smallest

eigenvalues are aligned until they split up into two branches in the point µ1 = 4ρ0/(αh)2, with limiting

points µ2 = 4/h2 (+) and µ3 = 4/(γh)2 (×). (color online)

complex stretching transformations like quadratic or polynomial scaling (see e.g. Figure 6) the discretization

matrix is no longer constant and it is much harder to derive theoretical results for the eigenvalues. Numerical

experiments, however, show a very similar eigenvalue spectrum with a pitchfork. Again, here are some

numerical eigenvalues, corresponding to smooth modes, that approximated the analytical result, (jπ/Rz)
2
.

At the pitchfork, the spectrum breaks again into two branches. One branch belongs to eigenmodes that are

mainly located in the boundary layer and these modes have eigenvalues with a large imaginary part. The

other branch corresponds to states that are located on the real part of the grid and the eigenvalues will lie

close to the real axis.

4 The Model problems

The actual discrete problems that we solve in the section with numerical experiments, Section 6, are derived

from three model problems that are representative for break-up problems as they appear in physical systems.

The discrete formulation is constructed both with the first order Sommerfeld radiation boundary conditions

as well as with the ECS layers. Therefore, the boundary conditions are not part of the nomenclature. E.g.,

MP1 refers to Model Problem 1 and does not take into account the boundary conditions, which would be

explicitly mentioned. Likewise MP2 and MP3. Collectively, these model problems are given by the Helmholtz

equation,

−{∆ + φ(x, y)}u(x, y) = χ(x, y); (x, y) ∈ (0, r)2 (4.1)

and are distinguished by the concrete form of the space dependent wave number φ, the right hand side χ,

and the domain size r.

For a Helmholtz equation on a unit square domain with a wave number φ(x, y) = k2, an accuracy condition

that guards against phase errors polluting the computations [19, 20], requires bounding k3h2 by a small
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Figure 6: A one-dimensional domain with smoother ECS transition in order to preserve the order of dis-

cretization. The turning point is magnified.

constant. A similar but less strict constraint that ensures using at least 10 points per wavelength of the

solution translates to kh < 0.625 [21]. Since we plan to observe solely iterative behavior, we will stick to the

latter relaxed condition in our experiments.

4.1 Model Problem 1 (MP1)

MP1 is the same model problem that forms the basis for the results that appeared in [22]. It is characterized

by a point source in the center of the domain embodied by a Dirac delta right hand side. In the discrete

version of the problem, the right hand side is non-zero (= 1) for only one computational node in the scheme,

which lies at the center of the domain. The wave number is constant in MP1, and the domain is a unit

square.

Specification of MP1: (4.2)

φ(x, y) = k2, k ∈ R (constant wave number)

χ(x, y) = δ(x, y) δ(x, y) (Dirac’s delta function)

r = 1.

A plot of MP1 with both type of boundary treatments is given in Figure 7.

4.2 Model Problems 2 and 3, (MP2, MP3)

MP2 and MP3 are Helmholtz model problems with strongly varying wave numbers, and therefore pose a

tough benchmark for an iterative approach. These problems originate from large scale Helmholtz problems

that appear in the simulation of Schrödinger’s equation for single and multiple ionization of atoms and

molecules [4]. The dynamics of two positively charged electrons r1 and r2 in the field of the negatively

charged nuclei need to be modeled and solved. Usually the electrons move, due to their mass difference,

much faster than the nuclei and the latter are usually taken fixed in space. This leads to a Schrödinger

equation with a six-dimensional wave function ψ(r1, r2), which is often expanded in spherical coordinates

13



(a) MP1 with ECS layers (θγ = π
6
) (b) MP1 with Sommerfeld BC

Figure 7: The real part of the solution of MP1 with k = 160, discretized on a grid having 256 interior points

per dimension. This suffices to meet the accuracy condition. (color online)

about the center of the molecule with the z axis along the axis of the molecule. The expansion is∑
l1m1,l2m2

ψl1m1,l2m2
(ρ1, ρ2)Yl1m1

(Ω1)Yl2m2
(Ω2),

where (ρ1,Ω1) and (ρ2,Ω2) are the spherical coordinates of the first and the second electron and Ωi denotes

the two angles in the spherical coordinates. This expansion leads to a very large number of coupled 2D

problems, where ψl1m1,l2m2(ρ1, ρ2) is the solution of the 2D problem for particular integer values of l1, m1,

l2 and m2. It describes the wave as a function of the distances ρ1 and ρ2 of both electrons to the center of

the molecule. The coupled equation has a block structure and the differential operators only appear in the

diagonal blocks since Ylm(Ω) are eigenfunctions of the angular part of the Laplacian operator in spherical

coordinates.

In the work [4], the resulting linear systems for a molecule are solved iteratively. The problem was pre-

conditioned by inverting the diagonal blocks with the direct sparse solver SuperLU, which is based on the

left-looking supernodal method [23] and was employed on a massively parallel computer. The current work

aims to replace this direct solver with an iterative alternate based on preconditioning. The main motivation

for studying the numerical properties of the solver for the model problems is that the approach in [4] can not

be used for solving systems with three or more particles. The diagonal blocks that need to be inverted in

this extended case are at least 3D problems, and the resulting storage and computational complexity grows

out of reach for the current computational infrastructures.

Specification of MP2: (4.3)

φ(x, y) = ν

(
1

ex2 +
1

ey2

)
+ k2, 0 < k < 5, 0 < ν < 10

χ(x, y) =
1

ex2+y2

r = 50.

Specification of MP3: (4.4)
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φ(x, y) =
1

x
+

1

y
+ k2, 0 < k < 5

χ(x, y) =
1

ex2+y2

50 <r < 200

These model problems are representative of the 2D problem that appear when l1 = 0 and l2 = 0. The

coordinates x and y should be interpreted as radial variables ρ1 and ρ2.

Homogeneous Dirichlet boundary conditions stay fixed at the south and the west edges of the domain where

ρ1 and ρ2 are zero. On the east and the north edges where ρ1 or ρ2 are large, absorbing boundary conditions

have to be used. We therefore toggle between the first order Sommerfeld BC and the ECS layers on these

two edges, and provide numerical results with both. For quality calculations that reproduce the physical

experiments, higher order absorbing boundary conditions need to be used, but for the purposes of the

current paper these low order boundary conditions are sufficient. The boundary conditions that MP2 and

MP3 employ are given by Equation (4.5).

u(0, y) = u(x, 0) = 0 Homogeneous Dirichlet BC, south/west edges (4.5)
∂u
∂n̂ = −ıku Sommerfeld BC, east/north edges

or

u = 0 ECS layers, east/north edges

(4.6)

For ν = 7 and k = 2, a plot of the solution of MP2 appears in Figure 8. In this particular case, the minimum

grid size required for an acceptable resolution of the solution is 3412, closest to which the most convenient

practical grid size is 3842 from a multigrid perspective. Later in Section 6.2, we describe how we evaluate

the minimum grid size for MP2 and MP3. The solution has evanescent waves for values of ν > 2.73, which

are damped exponentially on these edges. These evanescent waves correspond to single ionization break-up

reactions [3].

In MP3, φ(x, y) has a singularity at the origin. Unlike MP2, the solution of MP3 always has evanescent

waves at the south/west edges, regardless of the choice of the parameters r and k. For r = 90, and k = 2,

the minimum interior grid size required is around 10242 and the solution is depicted in Figure 9.

(a) MP2 with ECS layers (θγ = π
6
) (b) MP2 with Sommerfeld BC

Figure 8: The real part of the solution of MP2, with ν = 7 and k = 2. For values of ν > 2.73, evanescent

waves form near Dirichlet edges. (color online)

This completes the description of the model problems, which we solve iteratively in Section 6.2.
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(a) MP3 with ECS layers (θγ = π
6
) (b) MP3 with Sommerfeld BC

Figure 9: The real part of the solution of MP3, with r = 90 and k = 2. Evanescent waves are visible near

Dirichlet boundaries. The wavelength is quite small and implies a huge grid size to comply with accuracy

requirements. (color online)

5 Multigrid and preconditioning

In this section we discuss the effect of the spectral properties of the indefinite Helmholtz operator on the

convergence of iterative processes such as multigrid. The spectrum λHh ∈ σ(Hh) of the discrete Helmholtz

operator and that of the discrete Laplacian on an ECS grid, i.e., λLh ∈ σ(Lh), varies only up to a real

constant −k2, which defines the distance by which an eigenvalue λLh shifts westwards to render λHh . We

saw in Section 3 that λHh is constrained to an area consisting of a straight line segment, and a region bounded

by a triangle, the so-called pitchfork. We observe that for small values of hk, the smallest eigenvalues lie on

the tail of the pitchfork. The eigenmodes corresponding to these small eigenvalues are the standing waves

that cover both the real and the complex part of the domain. It is important to note that none of the small

eigenvalues can be exactly equal to zero because we have shown that each of the corresponding modes must

possess at least a non-zero imaginary part. Depending on the magnitude of the real wave number, this can

potentially lead to a very large (but bounded) condition number and thus confirms that the discrete problem

is ill-conditioned.

5.1 Multigrid

In this section, we assume familiarity with basic geometric multigrid. See [24, 25, 26] for a quick access.

Here, we briefly skim through the multigrid difficulties in solving an indefinite Helmholtz problem.

The first aspect of multigrid that requires attention in the context of indefinite linear systems, is the absence

of a pointwise smoothing procedure. For a given discrete operator Mh, a strict condition on the so-called h-

ellipticity measure Eh(Mh) [27, 26], viz, Eh(Mh) > 0 formally implies the existence of a pointwise smoothing

process. Circumventing the details, it suffices to mention here that the h-ellipticity of the discretized indefinite

Helmholtz operator is very close to zero for interesting values of the wave number, and therefore, common

stationary methods do not amply relax the error to be representable on the coarse grid.

The other troublesome multigrid aspect that merits attention is coarse grid correction. To see this, imagine

that we increase the mesh width while keeping k constant. The rightmost eigenvalues of the discrete operator

on the finest level lies near 4/h2−k2 and cannot come near zero without strictly violating the posted accuracy

condition hk < 0.625. However, this is more likely to happen within a multigrid cycle where the same operator

is re-discretized on the coarser grids, each with a larger mesh width. This effect can lead to resonant behavior

on a level where 4/h2 − k2 ≈ 0. This leads to a severe degradation of multigrid performance. This issue is

also well-known and discussed in papers, such as [28, 21].
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An important point to observe in this context, is that smoothing is much less of a trouble than coarse grid

correction in the case of a multigrid solution of an indefinite problem. For moderate wave numbers in MP1

such as k = 40, we see that multigrid still converges after a careful choice of components. For example,

we conducted a test on this problem with k = 40 and interior grid size N = 64 in both dimensions; with

ECS layers on all edges. The components were ILU(0) with ω = 0.3, F(1,2)-cycle, FW-restriction, bilinear

prolongation and Galerkin formulation of the coarse grid operator. For this problem multigrid converged

in 21 iterations. However, we also saw that for twice the grid size and twice the wave number, the same

algorithm failed to converge with any combination of components. When we introduced a slight damping in

the wave number, k = (80− 0.05ı), multigrid converged again in 35 F(1,1)-cycles, and thus confirms that it

might be used for approximate preconditioner solves in a Krylov setup. Note that these choices of k and N

are not ideal from an accuracy perspective, however, the above example is useful to understand the multigrid

performance.

5.2 A short overview of the complex shifted Laplacian (CSL) preconditioner

The idea of preconditioning the Helmholtz problem with its (slightly) damped version as published by

Erlangga et al. in [13, 21, 22] is founded on avoiding the diverging behavior of multigrid for the original

indefinite problem. The damping is brought about by a complex shift of the Laplacian, which evidently shifts

its spectrum away from the origin. As a result, the discrete problems formulated with the shifted Laplacian

can be tackled by multigrid. This preconditioning is perfectly applicable in the ECS context as well. The

continuous version of the preconditioner for the Helmholtz problem on the ECS domain [0, 1] ∪ [1, Rz] ⊂ C
is given by

MCSL ≡ −(L+ β2k2) in [0, 1] ∪ [1, Rz] ⊂ C, (5.1)

with a complex shift β2 = ε1 + ıε2 ∈ C. It is also important to know that in the comparison with [21], the

complex shift β1 − ıβ2 in [21] is equivalent to ε1 + ıε2 in this paper.

Since MCSL = −(L + β2k2) and H = −(L + k2) share the same eigenvectors it is easy to see that the

eigenvalues of the continuous preconditioned system (MCSL)−1H lie on a circle. Indeed, the spectrum is

given by the linear fractional transformation LF (µ) = µ+k2

µ+β2k2 that maps the complex line of eigenvalues λL

of the Laplacian to the circle through 1/β,
1+R2

zk
2

1+R2
zβ

2k2 and 1.

The linear fractional transformation maps the negative imaginary half plane to the interior of the complex

circle through the complex values 0, 1 and 1/β2. So the spectrum of the discretized operator Lh is mapped

to this region. More specifically, each line of the triangle that bounds the eigenvalues is mapped onto a

segment of a circle that lies inside this region. As a result, the eigenvalues of the preconditioned discrete

system (MCSL
h )−1Hh lie away from the origin, inside a banana shaped figure that is the image of the different

branch lines in the pitchfork and the tail from Figure 5 as illustrated in Figure 10. The preconditioned system

can be solved much more conveniently with Krylov subspace solvers by employing very few multigrid cycles

for approximate preconditioner inversion.

5.3 The complex stretched grid (CSG) preconditioner

We readily see that the indefinite spectrum may be shifted favorably by an alternate strategy, which is

more focused towards the ECS formulation. Instead of scaling the wave number, we keep it unchanged and

scale the discretization grid. To see this, imagine discretizing the one-dimensional complex shifted Laplacian

MCSL = − d2

dx2 − β2k2 with β ∈ C on a real interval with constant mesh width h ∈ R, and note that

(β2k2)h2 = k2(β2h2). The left term in this last equality appears in the discretization of MCSL, while the

right term can be interpreted as a quantity that appears in the discretization of the Helmholtz problem
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Figure 10: The pitchfork of the original Helmholtz operator in Figure 5 is mapped to a banana (dotted lines),

with the eigenvalues (•) inside. The lines corresponding to the eigenvalue problem on the real domain and

the complex contour are mapped to a circular arc (/) through 0 and a smaller circular arc (.) respectively.

They enclose the preconditioned spectrum and the image of the intermediate complex line associated to the

eigenvalue problem on the complex line [0, Rz] (4). (color online)

MCSG = − d2

dz2 − k
2 defined on a straight complex line with constant mesh width βh ∈ C. Indeed

MCSL
h uh ≡ −(

1

h2
Lh + β2k2)uh = bh ⇔MCSG

h uh ≡ −(
1

β2h2
Lh + k2)uh =

1

β2
bh, (5.2)

so the system MCSL
h uh = bh yields the same solution as MCSG

h uh = bh/β
2. In this way we found the

equivalent complex stretched grid (CSG) preconditioner MCSG. In this context we will denote the angle of

β in the complex plane as θβ .

The same argument still holds on ECS domains where the contour mesh widths are already complex and

for inhomogeneous wave numbers as present in MP2 and MP3. This approach offers extra possibilities to

explore. Instead of scaling, for example, the entire spectrum away from the origin, only the problematic

branch of eigenvalues close to the real axis can be scaled deeper into the complex plane. In other words,

only the interior part of the grid is scaled with β, while the complex contour stays the same. In general, we

can build a preconditioner by defining the original Helmholtz equation on a convenient domain, given by a

coordinate transformation

z(x) =

{
x+ ıfΩ(x), x ∈ Ω;

x+ ıfΓ(x), x ∈ Γ,

with fΩ, fΓ ∈ C2 increasing (e.g. linear, quadratic, . . . ) and lim
x→∂Ω

fΩ(x) = lim
x→∂Ω

fΓ(x) 6= 0.

Applied to (2.5) we get

MCSGu(z) ≡ − ∂2

∂z2
u(z) in [0, z(1)] ∪ [z(1), z(R)] ⊂ C, (5.3)

with homogeneous Dirichlet boundary conditions in z(0) = 0 and z(R) ≡ Rz. Independent of the complex

contour Γz = [z(1), Rz], we now have the interior region Ωz = [0, z(1)] complex as well.

In Figure 11 the interior region is chosen along the line connecting the two boundaries 0 and Rz of the

original ECS domain. As a result the interior mesh width is scaled from h to βh; the complex contour has no

extra scaling, the mesh width γh is preserved. Figure 13 displays the resulting preconditioned system with
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CSG (right) versus the CSL (left) with the same scaling in the wave number, from k to βk. CSG leads to a

similar C-shaped spectrum, away from the origin, favorable for Krylov methods. However, experiments show

that the spectrum of the preconditioner (see Figure 12) is still bad for our current multigrid configuration.

The numerical experiments with the CSG preconditioning method in the next section all use grids that are

equally scaled over the entire domain, i.e. the interior part and complex contour. The CSG preconditioner

with scaling factor β is then related to the equivalent CSL preconditioner with scaled wave number βk, this

means a complex shift β2, as in equation (5.2).
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0.2

real

im
ag

 

 

Ω
z

Γ
z

θγ

θγ
θα

MCSG

L

Figure 11: The CSG domain. The domain for MCSG (line) is complex stretched in the region of interest

[0, 1] as well, such that it aligns with the line connecting the two boundaries 0 and Rz of the original ECS

domain (dashed line).
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Figure 12: The eigenvalues of the discrete preconditioner MCSG
h on the domain in Figure 11. The eigenvalues

lie in a narrow pitchfork (•) that lies in the bottom half of the pitchfork of the original matrix −Lh (dotted

lines) from Figure 5. By choosing the domain as in Figure 11, the top branch of the new pitchfork lies along

the middle line associated to the eigenvalue problem on the complex line [0, Rz], i.e. the line of eigenvalues

of the continuous problem.

6 Numerical experiments

In this section we supplement the theoretical development with numerical experiments carried out on the

model problems with both kinds of boundary treatment as discussed earlier. We provide a brief comparison

of different multigrid components, which allowed us to choose the best set for the approximate multigrid

inversion of the preconditioning operator during a Krylov solve. The details of the solver and results from the
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Figure 13: Left: The banana shaped spectrum of the CSL-preconditioned Helmholtz system (MCSL
h )−1Hh

in Figure 10 grows slightly towards the origin for increasing k. The same effect was observed for Som-

merfeld radiation conditions by Erlangga et al. in [22]. Right: The eigenvalues of the equivalent discrete

preconditioned Helmholtz system (MCSG
h )−1Hh with the complex stretched grid preconditioner defined on

the domain in Figure 11, lie on a C-shaped figure, away from the origin, with a similar dependence on k.

numerical experiments are displayed in tables and figures for easy access. For the numerical experiments we

use the Shortley-Weller finite difference discretization (3) applied to a cell-centered mesh topology. The cell-

centered mesh topology is chosen because multigrid is slightly more convenient with this choice for general

Robin-type first order derivative boundary conditions (henceforth BC), of which the Sommerfeld radiation

BC are a special case. Moreover, the stencil is the same as for the vertex-centered case, so the results are

easily carried over.

6.1 Choice of Multigrid Components

To select a set of multigrid components from the different available choices, we take MP1 with k = 80,

and use a grid size of 1282 obeying the accuracy constraints. ECS layers are used, and defined by scaling

the mesh widths in these layers by eıθγ with the angle θγ = π/6. In this case, most of the spectrum lies

in the 4th quadrant of the complex plane, i.e., except the eigenvalues responsible for making the linear

system indefinite. Through a negative imaginary shift of the Helmholtz operater equal to −0.2, we push the

spectrum adequately towards the 4th quadrant, thus transforming the linear system so that it is now nearly

negative semi-definite. It is imperative to comprehend that with Sommerfeld BC, the major part of the

spectrum of the original problem is in the 1st quadrant, and therefore with Sommerfeld BC, a preconditioner

formed through a positive imaginary shift will make sense.

From Figure 14, we immediately recognize the set of multigrid components that work best in the present

context. ILU(0) smoothing, Full Weighted (FW) averaging as restriction, bilinear interpolation as prolon-

gation, and the Galerkin formulation for the coarse grid operator. These components are harnessed within

a V(0,1)-cycle and yield an algorithm that does an excellent job on the preconditioner. Therefore, these are

the components that we will invariably use in Section 6.2. For the sake of completeness, we also checked

out multigrid performance with various combinations of ω-Jacobi, with an under-relaxation of 0.5, employed

in F-cycles. The comparison was very thorough, and included tests with the Four-Point averaging [26] as

restriction, as well as with direct discretization on the coarse grids. The results are presented in Figure 14,
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Figure 14: Multigrid performance on the preconditioner formed through the CSL technique (β = (1,−0.2))

for MP1, with k = 80, 128 interior points plus 2 × 32 points in the ECS layers along each dimension (on

either sides). In all the cases, prolongation was done through bilinear interpolation. The legend incorporates

the smoother, the relaxation parameter, the restriction method, the cycle type, and the coarse grid operator.

DCG stands for Direct Coarse Grid operator, while GCG stands for the Galerkin Coarse Grid operator.

k 1 2 3 4 5

ν

0 0.625 0.312 0.208 0.156 0.125

1 0.360 0.255 0.188 0.147 0.120

2 0.279 0.221 0.173 0.140 0.116

3 0.236 0.197 0.161 0.133 0.112

4 0.208 0.180 0.151 0.127 0.109

5 0.188 0.167 0.143 0.122 0.105

6 0.173 0.156 0.136 0.118 0.102

7 0.161 0.147 0.130 0.114 0.100

8 0.151 0.139 0.125 0.110 0.097

9 0.143 0.133 0.120 0.107 0.095

10 0.136 0.127 0.116 0.104 0.093

Table 1: Maximum mesh width limits for MP2

are self explanatory, and indicate the most viable set of components very clearly.

6.2 Numerical Experiments

In this section before putting up the results of the numerical experiments, we first sort out the minimum

grid size requirement for MP2 and MP3, which are Helmholtz problems with strongly varying wave numbers.

As the wave numbers are infinite at the origin, we take into consideration the highest discrete wave number

that the discretized problem can attain under the cell-centered mesh topology. For reasons of brevity, the

complete analysis is not shown here. We however, brief the steps involved in the analysis. First, we transform

the problem into a new coordinate system; so that x̃ = x/r, and ỹ = y/r. This new system is in the unit

square domain and is therefore dimensionless. The next step is to evaluate the supremum of the transformed

wave number, which occurs at the origin for the model problems. For MP2, this is straightforward. We use

this value in the accuracy condition and are led to the maximum mesh widths that must be obeyed. For

MP2 this is given in Table 1.

Here, we will solve two test-cases of MP2. One is characterized by ν = 7 and k = 2, while the other is
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k 1 2 3 4 5

r

∀ 50 < r < 200 0.095 0.089 0.082 0.075 0.068

Table 2: Upper limit on the mesh width for MP3 with respect to k

BC Preconditioning operator

MG perform., MGP MGP MGP

on precond. Bi-CGSTAB IDR(4) IDR(8)

Conv., # iter matvec matvec matvec

cputime cputime cputime cputime

M
P
1
:
k
=

1
6
0

S
o
m
m
er
fe
ld

B
C CSL, with shift = −1 + 0.2ı

0.31, 12 79 72 76

0.52 sec. 4.75 sec. 4 sec. 5.35 sec.

CSG, with angle = − π

28

0.24, 10 74 70 72

0.47 sec. 4 sec. 3.98 sec. 4.40 sec.

CSL, with shift = −e−2ıπ/28 = −0.97 + 0.22ı
0.26, 11 74 69 72

0.48 sec. 4.78 sec. 4.26 sec. 5.20 sec.

E
C
S
L
ay
er
s CSL, with shift = −1− 0.2ı

0.29, 12 59 62 60

1.13 sec. 9.15 sec. 9.11 sec. 9.61 sec.

CSG, with angle =
π

28

0.24, 10 58 62 56

1.12 sec. 9 sec. 9.23 sec. 9.62 sec.

CSL, with shift = −e2ıπ/28 = −0.97− 0.22ı
0.24, 10 58 59 54

1.10 sec. 9.04 sec. 9.06 sec. 9.30 sec.

Table 3: Experimental results - Iterative solution of MP1. One V (0, 1) multigrid cycle is used for approximate

inversion of the preconditioners. This preconditioning is used with Bi-CGSTAB, IDR(4) and IDR(8). The

interior domain is a unit square, discretized with 256 points along both dimensions. With ECS layers, there

are 2× 64 additional points per dimension, belonging to the layers. With ECS formulation each edge of the

domain is endowed with an absorbing layer.

characterized by ν = 1 and k = 4. For both of these test-cases, the minimum grid size (from a multigrid

perspective) is 3842.

For MP3, we immediately see that the origin cannot be substituted into the dimensionless wave number (due

to the singularity). We observe that (hx/2, hy/2) gives the largest wave number that the discrete problem

can attain. Using this in the accuracy condition results in a quadratic equation, which we solve to get the

mesh sizes. These are scaled back to (0, r)2 and are given in Table 2.

We form two test-cases with MP3 as well. The first one is characterized by r = 90 and k = 2 and requires a

minimum interior grid size of 10242. The second test case is much more severe. It is formed by r = 150 and

k = 4, and requires a minimum interior grid size of 20482 for an acceptable resolution.

Remark 3 (Reading and comparing the experimental results). The experimental results are summarized

in Tables 6.2, 6.2, and 6.2. Table 6.2 accounts for one, and Tables 6.2 and 6.2 account for two problems

(each) derived from using different values of the parameters in the model problems. This is mentioned

vertically in the first column of each table. Each of these problems give two different discrete versions, when

formulated once with the Sommerfeld approximation (on the boundaries), and second, when formulated

with ECS layers. This is also vertically marked in the tables. Next, each discrete formulation is solved with

Krylov methods, using three preconditioners; (1) the CSL preconditioner with the shift k2 → β2k2 where

β2 = ε1 + ıε2 ≡ 1 + ε2 (with ε2 having the smallest absolute value for which the chosen multigrid method

converges), (2) the CSG preconditioner having the scaling h → βh where β = eıθβ (with θβ the smallest
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angle for which the chosen multigrid method converges), and finally, (3) the CSL preconditioner again, with

a complex shift equal to β2 = e2ıθβ (with θβ as used with the CSG preconditioner). Each row in the tables

accounts for one of the above mentioned preconditioners. Each row (after specifying the preconditioner) lists

the following information:

1. Multigrid performance on the preconditioner taken as a standalone problem. Conv., is the average

convergence factor per cycle, and #iter is the number of cycles consumed to reduce the relative

residual by 7 orders of magnitude.

2. The number of multigrid preconditioned (MGP) matvecs employed by Bi-CGSTAB. Note that each

iteration of Bi-CGSTAB consists of two such matvecs. We chose matvecs over conventional iterations

to have a better idea of the total number of multigrid cycles used, as well as to have a fair comparison

with IDR(s).

3. The number of multigrid preconditioned matvecs employed by IDR(4).

4. The number of multigrid preconditioned matvecs employed by IDR(8).

Within each row, the three Krylov methods can be compared against one another with the same precondi-

tioner. Within the stacks containing three rows each, the relative performance of the three preconditioners

on an identical discrete problem can be checked.

In this paper we use one multigrid V (0, 1)-cycle for each preconditioning step that is involved in the solver.

Convergence of the Krylov solver is determined by a check on the relative residual going below a tolerance

value of 10−6, i.e., the algorithm stops after the mth iteration if:

‖dm‖2
‖d0‖2

< 10−6 (6.1)

‖di‖2 is the defect (measured in the discrete L2-norm) after the ith solver iteration.

It is a well-known fact that due to indefiniteness multigrid cannot work directly with the Helmholtz problem

as a solver. The CSL and the CSG preconditioners are attempts to maneuver the spectrum slightly so that its

indefiniteness can be reduced, and that the eigenvalues may be slightly shifted so as to bring them closer to

the positive or to the negative definite regimes in the complex plane. Roughly speaking, the CSL translates

the spectrum, while the CSG rotates it to accomplish the objective. A preconditioner, therefore, can also be

build as a hybrid between the CSL and the CSG approaches, i.e., with a general CSL shift ε1 + ıε2 combined

with a general CSG rotation angle θβ . However, during experimentation, the latter preconditioner did not

prove any better than either of these two approaches used in isolation, and is hence not presented.

Remark 4 (On choosing the CSL and the CSG parameters). An automation can be set up which starts

from a given imaginary shift for the CSL preconditioner, or a given angle for the CSG precondtioner, and

monitors the residual norm obtained after successive multigrid cycles. In such an automatic routine, absolute

values of the shift size or the angles may be reduced to a benchmark for which the given multigrid method

just converges (say in 10-20 cycles). Parametrized with this shift (or angle), the preconditioner may be used

in the Krylov method with approximate solves for preconditioning. Note that such a selection routine may

only run once, and decide upon the shifts to be employed for all later Krylov iterations. In this paper,

however, we just resort to doing the above described process manually.

We first observe from Table 6.2 that the performance of the CSL preconditioner with both shifting strategies

is similar to the performance of the CSG preconditioner. The multigrid inversion of the preconditioners as

well as the overall numerical solution method are very good for MP1.
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BC Preconditioning operator

MG perform., MGP MGP MGP

on precond. Bi-CGSTAB IDR(4) IDR(8)

Conv., # iter matvec matvec matvec

cputime cputime cputime cputime

M
P
2
:
ν
=

7
,k

=
2

S
o
m
m
er
fe
ld

B
C CSL, with shift = −1 + 0.35ı

0.25, 10 123 120 122

1.10 sec. 18.8 sec. 17.5 sec. 20.0 sec.

CSG, with angle = − π

20

0.25, 10 113 115 115

1.08 sec. 15.8 sec. 14.6 sec. 16.2 sec.

CSL, with shift = −e−2ıπ/20 = −0.95 + 0.31ı
0.26, 11 115 114 113

1.20 sec. 16.8 sec. 16.0 sec. 17.1 sec.

E
C
S
L
ay
er
s CSL, with shift = −1− 0.34ı

0.17, 8 71 72 74

2.70 sec. 31.2 sec. 31.3 sec. 32.3 sec.

CSG, with angle =
π

20

0.19, 9 68 73 69

2.60 sec. 31.5 sec. 32.1 sec. 33.2 sec.

CSL, with shift = −e2ıπ/20 = −0.95− 0.31ı
0.18, 9 70 77 71

2.61 sec. 32.9 sec. 34.0 sec. 33.8 sec.

M
P
2
:
ν
=

1
,k

=
4

S
o
m
m
er
fe
ld

B
C CSL, with shift = −1 + 0.27ı

0.39, 15 179 175 177

1.60 sec. 29.3 sec. 27.2 sec. 29.5 sec.

CSG, with angle = − π

27

0.51, 21 161 164 161

2.30 sec. 26.2 sec. 27.0 sec. 27.1 sec.

CSL, with shift = −e−2ıπ/27 = −0.97 + 0.23ı
0.53, 22 161 160 159

2.39 sec. 26.1 sec. 24.7 sec. 26.8 sec.

E
C
S
L
ay
er
s CSL, with shift = −1− 0.27ı

0.34, 13 138 125 131

4.20 sec. 43.4 sec. 40.0 sec. 44.0 sec.

CSG, with angle =
π

26

0.43, 18 115 123 114

5.50 sec. 36.0 sec. 38.3 sec. 37.9 sec.

CSL, with shift = −e2ıπ/26 = −0.97− 0.24ı
0.44, 17 116 120 124

5.50 sec. 35.8 sec. 38.1 sec. 39.3 sec.

Table 4: Experimental results - Iterative solution of two different discrete problems obtained from MP2

(by using different values of ν and k). One V (0, 1) multigrid cycle is used for approximate inversion of the

preconditioners. This preconditioning is used with Bi-CGSTAB, IDR(4) and IDR(8). For both problems, the

interior domain is a square of 50 units, discretized with 384 points along both dimensions. With ECS layers,

there are 128 additional points per dimension, belonging to the layers. Contrary to MP1 the formulation

with ECS Layers only has these layers on two edges of the domain, the north and the east.

In Table 6.2, we have solved two test-cases of MP2 with different characterizing parameters. The values of

ν and k distinguish the test-cases. From Table 1, we read that the mesh width requirement for both these

test-cases is the same (0.147), and therefore they can be solved on an identical grid of interior size 3842. We

observe that although the supremum of the wave number in the domain is identical for both the test-cases,

the second one takes twice the time needed to compute the solution of the first one, for MP2.

Remark 5 (Smooth ECS transition). Plausibly, the sharp rotation of the linear ECS contour may not

be very desirable for the discretization of some applications. For this reason, we checked out the iterative

performance of the preconditioners and the solvers, for MP2, formulated with an ECS contour that rotates

gradually in 256 very small equally sized angles. The one-dimensional analog of the domain is shown in

Figure 6. The performance of multigrid (on such preconditioners) as well as the Krylov methods turned out

very similar to that listed in the tables.
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BC Preconditioning operator

MG perform., MGP MGP MGP

on precond. Bi-CGSTAB IDR(4) IDR(8)

Conv., # iter matvec matvec matvec

cputime cputime cputime cputime

M
P
3
:
r
=

9
0
,k

=
2

S
o
m
m
er
fe
ld

B
C CSL, with shift = −1 + 0.38ı

0.44, 18 207 214 232

15.3 sec. 4m 32s 4m 25s 4m 58s

CSG, with angle = − π

17

0.41, 16 205 207 207

13.1 sec. 4m 24s 4m 13s 5m 11s

CSL, with shift = −e−2ıπ/17 = −0.93 + 0.36ı
0.45, 18 198 204 223

15.4 sec. 4m 17s 4m 19s 5m 2s

E
C
S
L
ay
er
s CSL, with shift = −1− 0.38ı

0.28, 11 142 145 141

14.8 sec. 4m 52s 4m 34s 4m 56s

CSG, with angle =
π

17

0.27, 11 139 139 134

15.3 sec. 4m 49s 4m 30s 4m 48s

CSL, with shift = −e2ıπ/17 = −0.93− 0.36ı
0.27, 11 138 137 137

15.3 sec. 4m 48s 4m 35s 5m 1s

M
P
3
:
r
=

1
5
0
,k

=
4

S
o
m
m
er
fe
ld

B
C CSL, with shift = −1 + 0.40ı

0.39, 15 681 682 669

53.9 sec. 1h 3m 1h 1m 12s 1h

CSG, with angle = − π

17

0.37, 15 620 650 652

55.9 sec. 58m 15s 59m 25s 1h 2m 12s

CSL, with shift = −e−2ıπ/17 = −0.93 + 0.36ı
0.39, 15 623 673 614

53.4 sec. 56m 46s 1h 2m 55m

E
C
S
L
ay
er
s CSL, with shift = −1− 0.40ı

0.37, 15 436 413 423

1m 26s 1h 10m 1h 4m 1h 8m

CSG, with angle =
π

17

0.31, 13 390 387 392

1m 15s 56m 39s 55m 46s 1h 1m

CSL, with shift = −e2ıπ/17 = −0.93− 0.36ı
0.30, 13 395 390 383

1m 16s 57m 55s 55m 48s 59m 56s

Table 5: Experimental results - Iterative solution of two different discrete problems obtained from MP3 (by

using different domain sizes and values of k). One V (0, 1) multigrid cycle is used for approximate inversion

of the preconditioners. This preconditioning is used with Bi-CGSTAB, IDR(4) and IDR(8). The interior

domain is a square of r units. For r = 90, k = 2 (upper six rows), the problem is discretized with 1024

interior points along both dimensions. In these problem, when ECS layers are used, there are 256 additional

points per dimension, belonging to the layers. For r = 150, k = 4, the problem is discretized with 2048

interior points per dimension. In the ECS formulation there are 512 extra points (per dimension) in these

layers. For both problems, ECS layers are only required, and used, at the north and the east edges of the

domain.

The results from experiments on the harder model problem, i.e., MP3 whose spectrum is more indefinite

compared to the other model problems here, are laid out in Table 6.2. We clearly see an advantage in the

number of matvecs on problems with the ECS layers against the Sommerfeld BC. However, each matvec of

an ECS problem takes longer due to the additional grid points in the layer, hence this advantage is not seen

in the CPU time. Figure 15, details the convergence history of the first test-case of MP3. This is important

in order to check out any possible stagnation trend in the convergence. We find however, that in all the cases

Bi-CGSTAB and IDR(4) show a well-matched convergence behavior. IDR(4), however, seems to be slightly

faster in comparison with Bi-CGSTAB as it avoids the slight initial stagnation evident with Bi-CGSTAB in

the figure. With a comparison between two Krylov methods, it is often also interesting to observe both the

CPU time as well as the solver matvecs due to possible differences in the subspace minimization strategies
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(a) Bi-CGSTAB on MP3 with Sommerfeld BC (b) IDR(4) on MP3 with Sommerfeld BC

(c) Bi-CGSTAB on MP3 with ECS layers (d) IDR(4) on MP3 with ECS layers

Figure 15: Bi-CGSTAB and IDR(4) defect reduction history with the proposed CSG preconditioner as well

as the CSL preconditioner for MP3 with 20482 points in the interior of the domain. ECS layers (where used)

have added 512 points per dimension in the exterior layers. Expected convergence traits for Bi-CGSTAB

and IDR(4) are clearly visible. (color online)

in different methods. This reveals that although for many test-runs IDR(8) reports lesser matvecs than

IDR(4), it really does not provide any concrete enhancement. Evidently, the reduction in matvecs is easily

offset by the increase in CPU time (plus an associated increase in storage which is not shown).

We also checked out the solver performance for a larger MP3 problem with size 40962 (not reported in the

tables). The CPU time already runs over 4 hours for a problem of this size, although the performance of

the iterative method is of the same quality as the other problems. This is due to the huge complexity of the

test.

Remark 6 (Testing the situation with GMRES). We ran multigrid preconditioned GMRES on MP2, with

ν = 1, k = 4 (ECS formulation). Multigrid was used to approximately invert the CSG preconditioning

operator exactly as specified in the second last row of Table 6.2, during each GMRES iteration. GMRES

reported 103 iterations to reduce the relative residual by seven orders of magnitude, and reported the

consumed CPU time as 175 seconds. The same level of accuracy can be reached with Bi-CGSTAB or IDR(s)

(as depicted in Table 6.2 in roughly one fifth of the time required for GMRES. GMRES therefore qualifies

well for analytic purposes, or where the problem size is small.

Remark 7 (Platform specification and storage scheme). These experiments were performed serially on an

Intel Xeon (8-core) with 32 gigabytes of RAM. We used Matlab v7 as the testing platform. Some processes

such as matvec computations, and backslash inversion of some matrices in the multigrid heirarchy were

performed in parallel using all the 8 processors. We implemented some linear algebra routines in mex-C

to speed up the computations, and used the Compressed Row Sparse Format for storage of the matrix

data. Matlab uses Compressed Column Sparse Format for such needs. Both the CSL, as well as the CSG

preconditioners were stored as sparse matrices in either of these formats.
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7 Conclusions and outlook

In this paper, we have studied the Helmholtz problems that arise in mathematical models for single and

double ionization of atomic and molecular systems. The problems typically have regions in space where the

wave number can be large and absorbing boundary conditions are often implemented with complex stretched

grids.

We developed and analyzed the iterative properties of the exterior complex scaled (ECS) absorbing boundary

layers for the indefinite Helmholtz equation. We have analyzed the spectral properties of the discrete problem

formulated with ECS layers and found bounds around the spectrum of the Helmholtz operator for constant

wave numbers. These bounds were derived for a finite difference Shortley-Weller discretization and linear

exterior scaling. Although the theoretical estimates are limited to this model, numerical tests suggest that

they are valid for quite general cases.

An alternative preconditioner to the complex shifted Laplacian (CSL) is introduced where instead of shift-

ing the wave number, the grids are given a complex scaling. We call this complex stretched grid (CSG)

preconditioning. We introduced two new benchmark problems that are derived from break-up problems in

quantum mechanics and have strongly varying spatially dependent wave numbers. They provide a tough

benchmark for future development of iterative Helmholtz solvers.

The CSG and the CSL preconditioners are related and perform similarly for most problems. The precondi-

tioner inversion is performed approximately by a geometric multigrid method, based on ILU(0) relaxation,

V(0,1)-cycles, FW restriction, bilinear prolongation, and the Galerkin coarse grid operator. Different numer-

ical experiments with the CSG preconditioner on the model problems, show that our multigrid method is

more stable for problems with constant wave numbers. With spatially dependent wave numbers we see that

our multigrid method requires a higher damping of the operator to render the indefiniteness manageable.

However, with greater damping, the spectra of the preconditioner and the operator get farther apart and

this prolongs Krylov convergence. Although not listed, we tried different alternatives for multigrid precon-

ditioning, such as F-cycles and more than one V-cycle, however, the best results from a CPU time aspect

are shown.

In future, we intend to explore two different avenues to improve the solver for the model problems introduced

here. The main problem is the reduction of CPU time for problems formulated with ECS layers. This can be

brought about by first reducing the complexity of the problem by applying adaptive mesh refinement (AMR)

techniques for discretization, say, near the evanescent layers of the solution. And secondly, by identifying

a way of shifting only the most problematic part of the spectrum, since every cluster of eigenvalues that is

needlessly shifted can significantly decrease the performance of the preconditioning. This may results in a

better solver than the current state-of-the-art, and is thus our future goal.
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