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Abstract

A moving window technique for the finite element time domain (FETD)
method is developed to simulate the propagation of electromagnetic waves
induced by the transit of a charged particle beam inside large and long struc-
tures. The window moving along with the beam in the computational domain
adopts high-order finite-element basis functions through p refinement and/or
a high-resolution mesh through h refinement so that a sufficient accuracy
is attained with substantially reduced computational costs. Algorithms to
transfer discretized fields from one mesh to another, which are the key to
implementing a moving window in a finite-element unstructured mesh, are
presented. Numerical experiments are carried out using the moving window
technique to compute short-range wakefields in long accelerator structures.
The results are compared with those obtained from the normal FETD method
and the advantages of using the moving window technique are discussed.
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1. Introduction

Evaluating the effect of wakefields, the parasitic electromagnetic fields,
induced by a particle beam (or bunch) transiting through an accelerator
structure is one of the important tasks in accelerator design [1, 2, 3]. Many
accelerator structures have complex geometries and large spatial dimensions
compared with the size of the beam. Very often, the accurate determination
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of wakefields requires high-fidelity representation of geometry and large-scale
parallel computation using many computer processors. For this purpose,
SLAC has developed a parallel ab initio computational tool to calculate wake-
fields for large accelerator structures using the finite element time domain
method [4, 5]. The tool has been applied to various accelerator projects and
has made tremendous impacts on accelerator design and analysis [4, 5, 6].

Even with the advent of parallel computation, the calculation of wake-
fields for a short bunch is computationally challenging. As the bunch size
gets smaller, the frequency content of the wakefield excited by the bunch in-
creases correspondingly. The mesh required for the accurate determination
of wakefields has to be fine enough to resolve the high frequency components
of the bunch. For ultra-short bunches, the element size needs to be very
small, and therefore the number of elements becomes very large. This makes
the computation prohibitively time-consuming. When one is interested in
determining the effects of wakefields excited by the bunch on itself, only the
short-range wakefield around the bunch is required. In this case, only the
electromagnetic fields around the bunch need to be considered and those far
away can be ignored. The domain of the calculation can then be limited to a
moving window around the beam as it transits through the structure. Within
the moving window, accurate solution can be obtained using high-order finite
element basis functions and small elements (i.e., a fine mesh). While the for-
mer increases the accuracy rapidly [7], the latter helps in resolving the high
frequency content of the beam. As a result, the computational cost can be
much reduced compared to when the problem is solved for the entire region
of the beam transit. A moving window in structured grids is well defined
and its implementation is relatively straight-forward [8, 9]. This has been
done in commercial electromagnetic packages for wakefield computation such
as MAFIA [10]. In the finite-element analysis with unstructured meshes, a
moving window cannot be easily constructed as the elements do not align in
a regular pattern as in finite difference. Furthermore, the discretized field
solution on the mesh inside one window cannot be readily mapped onto an-
other. The transfer of fields from one mesh to another is non-trivial and has
to be done carefully. In this article, we will address issues arising from the
implementation of a moving window in an unstructured grid and present new
algorithms to facilitate the calculation.

The rest of the article is organized as follows. In section 2, we first review
the finite element time domain method for electromagnetic wave propagation
inside an accelerating structure. We then describe the moving window algo-



rithms for unstructured meshes without and with mesh refinement. In sec-
tion 3, we compare the results obtained using the moving window technique
with those from the whole structure simulation and verify the correctness
of the algorithms. We also discuss the benefit of using the moving window
technique. Finally, we provide concluding remarks in section 4.

2. Moving Window Algorithms
2.1. Finite Element Time Domain Method

In this section, we review the formulation of the finite element time do-
main method used to solve the second-order vector wave equation obtained
from Maxwell’s equations. First, we present the finite element formulation of
a time-domain electromagnetic boundary-value problem. Then we describe
the Newmark-( scheme used to discretize the time.

The electromagnetic fields generated by an electric current density J sat-
isfy Maxwell equations in a volume V' bounded by surface S. Eliminating
the magnetic field with the aid of the constitutive relations, we obtain the
second-order vector wave equation, or the curl-curl equation:
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where €, p, and o denote, respectively, the electric permittivity, magnetic
permeability, and conductivity of the medium. A set of boundary conditions
may exist on different parts of the surface S, denoted by Sg, Sy, and Sg:
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where n represents the outward unit vector normal to S, Y denotes the
surface admittance of the boundary Sg, and U(F,t) is a known boundary
source.

To avoid the constant, curl-free electric field that is non-physical in our
simulation but is supported by Equation (1), we take the time integration of



the electric field E(F,t), denoted by E(F,t) = ffoo E(F, 7) dr, and solve the
following curl-curl equation instead [5]
0
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We discretize the field using tangentially continuous Nédélec basis func-
tions [11], £(F,t) = o~ 2;(t)N;(F), with N denoting the total number of
unknowns, and obtain the equation in the matrix and vector form:

0? 0
where x = (u1,us,...,ux)’ and K, M,R,Q are N-by-N square matrices
given by
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The vector f is the driving force that is given by
t
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In solving the above equation, the implicit Newmark-8 scheme [12] is
employed for numerical time integration. The method is proven to be uncon-
ditionally stable when the prescribed parameter 3 is larger than or equals to
0.25. With the Newmark-( time discretization, a system of linear equations
is needed to be solved at each time step:
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— [M — 1cAt(R + Q) + B(cAt)’K] x™ !
—(cAt)? [BETL + (1 —28)f" + pfn )]

4



In the above equation, vectors with superscripts n+1,n, and n— 1 represent

the ones at the current and the two previous steps, respectively. At a given
discrete time ¢, the electric field E and the magnetic flux density B can be
computed from the solution vector x:

E(f) = Z%xiﬁm (13)

B(f) = —) 2,V xNi(F) (14)

i

Once the time histories of the electric field and the magnetic flux density
have been determined, observables depending on them can be evaluated. For
example, a wake potential generated by a moving particle beam with charge
q inside an electromagnetic structure and seen by a test particle traveling on
the same or on a parallel path at a distance s behind the particle beam can
be calculated as follows:

Wiz, ,3):—5/ By, 1) st 2 (15)
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Here, without loss of generality, the transit direction of the beam through
the structure and that of the test charge is in the positive z direction. c is
the speed of light. The transverse offsets of the driving beam and the test
charge from the z axis are p' and p, respectively. The test particle enters the
structure at z; and leaves at zs.

2.2. Moving Window Technique on Finite Element Mesh

In calculating the short-range wakefield excited by a moving particle beam
inside a large and long accelerator structure, only the small region in the
vicinity of the particle beam is required in the simulation. The moving win-
dow technique, in which the domain of the simulation is limited to a small
region of interest near the beam and moves along with it, can greatly reduce
computational resource requirements. This technique has been applied to
finite difference time domain (FDTD) methods [8, 9], but not to finite ele-
ment based methods on unstructured grids. In this section, we describe the
algorithm for the implementation of a moving window for the finite element
time domain simulation method on unstructured grids.

Given an unstructured grid that represents the discretized geometry and
a moving particle beam, first we define a bounding box containing the beam



as the window. The transverse dimension of the bounding box is large enough
to include that of the mesh while the longitudinal dimension covers the beam
size and the padded zones in front of and behind the beam, as illustrated in
Figure 1. The computational domain contains all the mesh elements inside
the window. A mesh element is inside the window when any part of the
element overlaps with the bounding box. Its corresponding basis functions
order p is set to be nonzero. Otherwise, the mesh element is outside the
window and excluded from the computation by setting its corresponding
basis functions order p to zero.

The length of the padded zone behind the beam, b, is determined by
the maximum distance s,,,, of the wakefield that needs to be computed.
Namely, b+ d >= $,,42, Where d is the longitudinal size of the driving bunch.
The length of the padded zone in front of the beam, f, is determined by
how often the computational domain (the volume of the moving window)
changes. The shorter the f is, the smaller the computational domain is
and the more frequent the window moves. Each time when the window
moves, there are additional computational costs in establishing the mesh
inside the new window, partitioning the mesh and distributing the mesh
elements for load balancing if the simulation runs in parallel, assembling the
matrices in Equations (7 - 10), and transferring vectors from the old mesh
to the new mesh. The optimal choice of f would be to balance the reduction
of the computational domain using a smaller window and the additional
overheads of switching to a new window. However, a priori method for the
determination of the optimal f does not exist. In practice, we choose f so
that the beam will march forward for about a hundred time steps before it
reaches the front (right) boundary of the window. In the unstructured grid,
generally speaking, the left and right boundaries of the mesh in the window
do not align smoothly with the planar surfaces of the bounding box. This will
not affect the computation accuracy as long as the resultant computational
domain covers the wakefield distance to be calculated.

In the rest of the section we will discuss how to move the window. When
the particle beam reaches the right boundary of the window, the bounding
box of the window is moved along the beam transit direction so that it has
a padded zone with length f in front of the beam and a padded zone with
length b behind, as shown in Figure 2. The computational domain is updated
by adding new elements entering the new window and by dropping elements
in the old window when they are outside the new window. There is a shared
mesh region between the old and new meshes, as illustrated in Figure 2. The
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Figure 1: Moving window on an unstructured grid. The dashed box illustrates the moving
window region. Its length is defined by b+ d + f, where b is the length of the padded
zone behind the beam, d the beam size and f the length of the padded zone in front of
the beam. b and f are adjustable parameters in each specific problem. The particle beam
moves from left to right.

new mesh is partitioned using ParMetis [13] and the elements in the mesh are
redistrsibuted to corresponding processes. Then, the matrices in Equations
(7 - 10) are re-assembled.
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Figure 2: The window is moved along the beam transit direction when the beam front
reaches the right boundary of the window. The dashed boxes illustrate the moving window
regions. The top and bottom plots represent two consecutive windows. The shaded region
is the overlapping computational domain between the old and new meshes.

In order to continue time marching as in Equation (12), the vectors x",
x"~ 1 f* and f"! need to be transferred from the old mesh onto the new
mesh. Algorithm 1 describes the details of transferring a vector on the old
mesh and forming a new vector on the new mesh in a scalable way. The
algorithm is based on the fact that the mesh elements in the overlapping
computational domain do not change although they may be redistributed to
different processes in parallel simulation. The vectors x” and x"~! are trans-
ferred using Algorithm 1. The vector f* and f*~! can be either transferred
in a similar way or recomputed with the driving source at the corresponding
time steps.



Algorithm 1 Transfer a vector from the old mesh to the new mesh.
input: given a vector v on the old mesh

output: a new vector v/ on the new mesh

condition: existence of an overlapping mesh region

1. scatter values in the vector v to each mesh elements according to its
associated degrees-of-freedom (DOF) information
(a) keep the values when the mesh element is in the overlapping region
(b) drop the element and its values when the element is outside the
new window
(c) set the values of the newly-added mesh elements to zeroes
2. redistribute mesh elements in the new mesh together with their as-
sociated values to different processes according to partitioning of the
mesh
3. gather values in each mesh element to form a new vector v/ on the new
mesh according to the updated DOF information

2.3. Moving Window with Mesh Refinement

The element size used in a simulation has to be small enough to resolve
the frequency content of a particle beam; otherwise the results will not be
accurate. For an ultra-short particle beam, the small element size required
will lead to a prohibitively large number of mesh elements for the whole
geometry to be generated and stored in the computer memory. Meanwhile,
wakefield computation only requires a certain part of the mesh at a given
time step, and it is this part that needs calculation accuracy. Thus, it is
advantageous to start with a coarse mesh and refine the mesh inside the
window as needed. In this section, we discuss how online mesh refinement is
done to provide enough resolution for an ultra-short particle beam passing
through a structure.

Curvilinear tetrahedral elements are used in our simulation for high-
fidelity representation of geometry. In refining an existing coarse mesh, we
choose to subdivide a tetrahedron by splitting all the six edges into shorter
ones [14]. Cutting a tetrahedron at its four corners leaves an octahedron,
which can be split into four tetrahedra by adding an inner edge connecting
two diagonally opposite corners of the octahedron. There are three possible
inner diagonals in the octahedron, and the shortest one is chosen to mini-
mize the distortions of the created tetrahedra. Figure 3 illustrates the edge
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splitting in subdividing a linear or curvilinear tetrahedron.

(a) Subdividing a linear (b) Subdividing a curvilin-
tetrahedron. ear tetrahedron.

Figure 3: Subdividing tetrahedral elements by splitting all the six edges.

Once the refined mesh is created, the processes of mesh partitioning, mesh
distribution, and matrix assembly can be easily done on the newly-created
mesh. The difficult task is how to transfer the vectors x”, x"~!, f* and f*~!
that are only meaningful on the old mesh. Algorithm 1 cannot be applied any
more because a newly-created tetrahedral element in the overlapping compu-
tational domain may have different vertex ordering. Thus, the tetrahedron
may have an equivalent but different set of basis functions associated with
it. A novel method [15] has been recently developed to project discretized
electromagnetic fields from one mesh onto another. The details can be found
in Reference [15]. Here we only briefly review the method.

Given a discretized vector field e® with a set of basis functions {Ngld}
on an unstructured mesh, we need to obtain the discretized field ™" with a
different set of basis functions {NZ} on a new mesh that accurately represents
the same field €”? on the old mesh. Algorithm 2 described the details of the
method. Note that « is an adjustable parameter to balance the errors of the
field and its curl, which are introduced by the projection of the field from
one mesh to another. If « is set to zero, the above method is equivalent to
interpolation using a different set of vector basis functions. However, the
curl of the field will contain very large errors. It is recommended to use
o= }l(cAt)2 in the simulation where c is the speed of light and At the time
step.



Algorithm 2 Transfer a vector from the old mesh to the new mesh with
mesh refinement.

input: given a vector e”® on the old mesh

output: a new vector €""” on the new mesh

1. define a field F(e?d) = 37, egldNeld
2. define the curl of the field V x F(e?) = 37 e0ldy x N
3. evaluate discretized vector b on the new mesh

b, = [F(e") N, +a [v X ﬁ(eold)] (V x N, dV

where « is an adjustable parameter

old

4. solve the system of linear equations to obtain e™"
(M + aK)e™™ = b

3. Examples and Results

In this section, we present two examples to demonstrate the effectiveness
of using the moving window technique in the FETD method for wakefield
calculations in accelertor applications. One uses the moving window without
mesh refinement and the other with mesh refinement.

Figure 4: A computer model of an undulator taper structure. It provides smooth tran-
sitions from a 50 mmx6 mm elliptical pipe to a 75 mmx25 mm pipe then back to a
50 mmx6 mm pipe. The tapered transitions are 100 mm long on both sides. The center
pipe is 50 mm long while the end pipes are 25 mm long. The total length of the model is
300 mm.

3.1. Ezample with p-refinement

In order to study wakefield effects on beam stability for storage ring accel-
erators, it is important to calculate the Green’s function wakefield determined
by a short particle bunch. For the storage ring PEP-X [1], currently under
study as a new generation synchrotron light source, it is desirable to use a
short bunch for the computation of wakefields of its beamline components.
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In particular, the calculations for large and long beamline components will
be computationally challenging at this bunch length. Such an example is
the undulator structure with long smooth tapers connecting vacuum cham-
bers with different cross sections. Figure 4 shows the computer model of
the undulator structure. For all the wakefield calculations in thie paper, the
excitation source is defined by a moving Gaussian bunch with RMS length
o, and in a typical run, a length of 100 is used to cover the entire spatial

extent of the bunch.
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Figure 5: Wake potential of a ¢ = 4 mm bunch in the undulator structure. The dot-

dashed curve represents the wakefield using the whole structure with 2 mm mesh size.
The dashed curve represents the wakefield using a moving window. The results match for
the first 50 mm as the beam size is 40 mm and the length of the trailing padded zone is

10 mm.
To verify the correctness of the moving window technique, we compare
the simulations with and without moving window using a long bunch length,
where the results can be computed readily without using substantial com-
puter resources. We generated a tetrahedral mesh for the undulator taper
model with 2 mm element size which is good enough to model the wakefield
for a long ¢ = 4 mm bunch. Two simulations were carried out: the first
run used the whole structure with 2nd order basis functions, and the second
a moving window with 2nd order basis functions within it and zeroth order
outside. In using the moving window, the length of the trailing padded zone
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b is 10 mm and that of the front padded zone f 40 mm. Thus, the total
window size is 90 mm since the beam size is 40 mm (100 for a Gaussian
beam with ¢ = 4 mm). The wakefields in Figure 5 show that the results
from the two runs are identical, verifying the implementation of the moving
window technique in the FETD simulation. Both runs were executed on 5
nodes of a Cray XT5 computer with each node containing two hex-core AMD
Opteron processors, 16GB memory, and a SeaStar 2+ router. It took 21.5
minutes for the first run and only 11.0 minutes for the second run with a
moving window. The moving window technique reduces the computational
domain, the matrix and vector sizes associated with it, and thus the overall
computational costs.

In calculating the wakefield for ¢ = 0.5 mm bunch, we generated a mesh
with about 19 million quadratic tetrahedral elemesnts using 0.25 mm element
size, which should be small enough to resolve the high frequency components
of the short bunch. We set b to 60 mm, and f 25 mm so that the total
window size is 90 mm. With this window size, the window moves 15 times
until it is completely outside the undulator structure at the downstream. The
maximum number of DOF's in all these consecutive windows is 54.9 millions.
The simulation was performed on Jaguarpf [16] using 6000 cores and took
15 wall-clock hours. The wake potential is shown in Figure 6. It should be
pointed out the wakefield for a Gausssian bunch can be constructed from
that for a shorter Gaussian bunch. We used the wakefield shown in Figure 6
to constrcut excellently the wakefield in Figure 5 for a longer bunch, thus
validating the calculation for the short bunch.

3.2. Example with h- and p-refinement

The second example is to calculate the short-range wakefield of a wiggler
taper structure in PEP-X as shown in Figure 7. It provides smooth transi-
tions from a 45 mmx 15 mm rectangular pipe to 48 mm circular beam pipe
and back to a 45 mmx 15 mm rectangular pipe. The length of each transition
is 400 mm. The circular beam pipe is 100 mm long and the rectangular beam
pipes are both 50 mm long. The total length of the model is 1 m. We need
to evaluate the wakefield due to a short particle beam passing through the
structure.

We did the following computational experiment to verify our moving win-
dow with the mesh refinement algorithm described in the laste section. First,
we generated a mesh with 5 mm element size for the simulation using a beam
with ¢ = 20 mm bunch. Then, we generated a mesh with 10 mm element
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Figure 6: Wake potential of a ¢ = 0.5 mm bunch passing through an undulator taper,
calculated with a 90 mm moving window.

size. For this coarser mesh, we ran the simulation using a moving window
with one level of mesh refinement for the same beam size. In both runs, we
used a window size of 0.5 m with b = 0.1 m and f = 0.2 m. Both runs were
carried out using 5 nodes of a Cray XT5 computer with each node contain-
ing two hex-core AMD Opteron processors, 16GB memory, and a SeaStar
2+ route. It took about 23 minutes to finish the first run and about 36.5
minutes the second. The longer execution time in the second run is due to
the overhead associated with mesh refinement. The wakefields from both
runs are shown in Figure 8, and the results are in remarkable agreement for
the first 0.3 m. This verifies the correctness of our algorithm for the mov-
ing window with mesh refinement. The technique of moving window with
mesh refinement further reduces the computational cost, especially in terms
of memory usage since only the refined mesh inside the window needs to be
stored. Finally, the wake potential for a short particle beam with ¢ = 1 mm
is plotted in Figure 9. It is calculated using a window with b = 60 mm and
f =100 mm. The initial coarse mesh was constructed using 1 mm element
size. The meshes in consecutive windows were refined to 0.5 mm size ele-
ments during the computation. The window moves 11 times before it exits
the downstream end of the structure. The maximum number of DOF's in all
these windows is 74.7 millions. It took about 26 hours with 6000 cores of
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Jaguarpf, a Cray XT5 to complete the simulation.

Figure 7: The side view of a computer model of the wiggler taper in PEP-X. It provides
smooth transitions from a 45 mmx15 mm rectangular pipe to 48 mm circular beam pipe
and back to a 45 mmx15 mm rectangular pipe. The transition length is 400 mm each.
The circular beam pipe is 100 mm long and the rectangular beam pipes are both 50 mm
long. The total length of the model is 1 m.

4. Concluding Remarks

A moving window finite element time domain (FETD) method is de-
veloped to expedite the simulate the propagation of electromagnetic waves
induced by a particle beam transit through an electrically large and long
structure. The efficiency of the moving window technique is achieved by
using higher-order basis functions for the mesh elements inside the window
(p-refinement). Additional gain in efficiency can be obtained by employing
online mesh refinement in the moving window (h-refinement), especially when
the simulation starts with a coarse mesh for the entire structure in reducing
memory storage. Parallel algorithms for transferring discretized vectors from
one mesh to another, which are the key to the success of the moving window
technique, are presented. Numerical experiments have been carried out to
validate the technique and demonstrate its advantanges over normal FETD
computations in saving computing resources. It is shown that the moving
window FETD method is an effective way to compute short-range wakefields
of an ultra-short particle beam in large, complex accelerator structures.
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