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Abstract

We show how to solve hyperbolic equations numerically on unbounded domains by compactifi-
cation, thereby avoiding the introduction of an artificial outer boundary. The essential ingredient
is a suitable transformation of the time coordinate in combination with spatial compactification.
We construct a new layer method based on this idea, called the hyperboloidal layer. The method
is demonstrated on numerical tests including the one dimensional Maxwell equations using fi-
nite differences and the three dimensional wave equation with and without nonlinear source terms
using spectral techniques.

Keywords: Transparent (nonreflecting, absorbing) boundary conditions, perfectly matched
layers, hyperboloidal layers, hyperboloidal compactification, wave equations, Maxwell
equations.

1. Introduction

Hyperbolic equations typically admit wavelike solutions that oscillate infinitely many times
in an unbounded domain. Take a plane wave in one spatial dimension with frequency ω and
wave number k,

u(x, t) = e2πi(kx−ωt) . (1)

Any mapping of such an oscillatory solution from an infinite domain to a finite domain results in
infinitely many oscillations near the domain boundary, which can not be resolved numerically.
We refer to this phenomenon as the compactification problem [1]. It is commonly stated that
hyperbolic partial differential equations are not compatible with compactification, and therefore
can not be solved on unbounded domains accurately.

A suitable transformation of the time coordinate, however, leads to a finite number of oscil-
lations in an infinite spatial domain. Introduce

τ(x, t) = t −
k
ω

(
x +

C
1 + x

)
, (2)

where C is a finite, positive constant. The plane wave (1) becomes

u(x, τ) = e−2πi(kC/(1+x)+ωτ) . (3)

This representation of the plane wave has only k C cycles along a constant time hypersurface in
the unbounded space x ∈ [0,∞), and is therefore compatible with compactification.
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The simple idea just described has far reaching consequences. In numerical calculations of
hyperbolic equations one typically truncates the unbounded solution domain by introducing an
artificial outer boundary that is not part of the original problem. Boundary conditions, called
transparent, absorbing, radiative, or nonreflecting, are constructed to simulate transparency of
this artificial outer boundary. There has been significant developments in the treatment of ar-
tificial outer boundaries since the 70s, but there is no consensus on an optimal method [2, 3].
Especially the construction of boundary conditions for nonlinear problems is difficult [4]. A suc-
cessful technique for numerical calculations on unbounded domains resolves this problem for
suitable hyperbolic equations and provides direct quantitative access to asymptotic properties of
solutions.

Furthermore, the numerical construction of oscillatory solutions as (3) can be very efficient.
Numerical accuracy requirements for hyperbolic equations are typically given in terms of num-
bers of grid points per wavelength. In the example presented above, the free parameter C de-
termines the number of cycles to be resolved, which can be chosen small. This suggests that
high order numerical discretizations requiring a few points per wavelength can be very efficient
in combination with time transformations of the type (2).

The rest of the paper is devoted to the discussion of time transformation and compactifica-
tion for hyperbolic equations. The theoretical part of the paper (sections 2 and 3) includes a
detailed description of the method. We discuss the compactification problem (section 2.1) and
its resolution (section 2.2) for the advection equation in one dimension. In section 2.3 we discuss
the wave equation with incoming and outgoing characteristics. We show that the method works
also for systems of equations (section 2.4). Hyperboloidal layers are introduced in section 2.5
in analogy to absorbing layers. In multiple spatial dimensions, compactification is performed
in the outgoing direction in combination with rescaling to take care of the asymptotic behavior
(sections 3.1 and 3.2). The layer strategy in multiple dimensions allows us to employ arbitrary
coordinates in an inner domain, where sources or scatterers with irregular shapes may be present
(section 3.3). We finish the theoretical part discussing possible generalizations of the method to
nonspherical coordinate systems (section 3.4). Section 4 includes numerical experiments in one
and three spatial dimensions. In one dimension, we solve the Maxwell equations using finite
difference methods (section 4.1). A stringent test of the method is the evolution of off-centered
initial data for the wave equation in three spatial dimensions with and without nonlinear source
terms (section 4.2). We conclude with a discussion and an outlook in section 5.

2. Compactification in one spatial dimension

2.1. Spatial compactification
Consider the initial boundary value problem for the advection equation

∂tu + ∂xu = 0, u(x, 0) = u0(x), u(0, t) = b(t). (4)

The problem is posed on the unbounded domain x ∈ [0,∞). We transform the infinite domain in
x to a finite domain by introducing the compactifying coordinate ρ via

ρ(x) =
x

1 + x
, x(ρ) =

ρ

1 − ρ
. (5)

The advection equation becomes

∂tu + (1 − ρ)2∂ρu = 0 . (6)
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Figure 1: Characteristic diagram for the advection equation after spatial compactification. The characteristic speed
approaches zero near spatial infinity at {ρ = 1} causing loss of numerical resolution: this is the compactification problem.

The spatial domain is now given by ρ ∈ [0, 1]. Characteristics of this equation are solutions to
the ordinary differential equation

dρ(t)
dt

= −(1 − ρ(t))2.

They are plotted in figure 1. The compactification problem is clearly visible: the coordinate speed
of characteristics approaches zero near a neighborhood of the point that corresponds to spatial
infinity. The advection equation has a finite speed of propagation, therefore its characteristics
can not reach infinity in finite time.

A concrete example illustrates the problem for oscillatory solutions. Set initial data u0(x) =

sin(2πx) and boundary data b(t) = − sin(2πt) in (4). We obtain the solution

u(x, t) = sin(2π(x − t)), (7)

which reads in the compactifying coordinate (5)

u(ρ, t) = sin
(
2π

(
ρ

1 − ρ
− t

))
. (8)

The solution is depicted in figure 2 at t = 0 on x ∈ [0, 10] in the original coordinate and on
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Figure 2: The solution (7) at time t = 0 is plotted on the left panel. The same solution in the compactifying coordinate
given in (8) plotted on the right panel illustrates infinite blueshift in frequency.

ρ ∈ [0, 10/11] in the compactifying coordinate. The oscillations can not be resolved in the
compactifying coordinate near infinity due to infinite blueshift in spatial frequency.

Mapping infinity to a finite coordinate seems to require infinite resolution. However, a suit-
able time transformation discussed in the next section provides a clean solution to this problem.
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2.2. Hyperboloidal compactification
The idea is to transform the time coordinate as in (2). We introduce

τ = t −
(
x +

C
1 + x

)
, (9)

With the compactification (5) we get the Jacobian

∂τ = ∂t, ∂x = (−1 + C Ω2)∂τ + Ω2 ∂ρ ,

where we define Ω := 1 − ρ. The advection equation in the new coordinates (ρ, τ) reads

∂τu +
1
C
∂ρu = 0 .

This equation has the same form, up to an additional free parameter, as the advection equation
in the original coordinates (4), but the meaning of the coordinates is different. Solutions to the
above equation in the bounded domain ρ ∈ [0, 1] correspond to solutions to the original advection
equation in the unbounded domain x ∈ [0,∞). The free parameter C expresses the freedom to
prescribe the characteristic speed in the compactifying coordinate and the number of cycles in an
infinite domain. To see this, we write the solution (7) in the new coordinates

u(ρ, τ) = − sin (2π(C Ω + τ)) . (10)

The solution is depicted in figure 3 at τ = 0 for two values of C. The number of cycles on
the domain is finite and depends on C. The wave is resolved evenly through the compactified
domain. In such representations of the solution it should be kept in mind that lines of constant τ
do not correspond to lines of constant t.
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Figure 3: The solution (10) at time τ = 1 is plotted for two values of C. On the left panel we have C = 1 and on the
right panel C = 5. The number of oscillations, and therefore the wavelength of the solution, can be influenced by the free
parameter C.

The idea to introduce a coordinate transformation of time in combination with compactifi-
cation comes from general relativity [5]. The time function (2) approaches characteristics of
the advection equation asymptotically. In general relativity, infinity along characteristic direc-
tions is called null infinity. Time functions whose level sets approach null infinity are called
hyperboloidal because their asymptotic behavior is similar to the asymptotic behavior of stan-
dard hyperboloids [6, 7]. To see this, consider the rectangular hyperbola on the (x, t) plane,
t2 − x2 = C2, with a free parameter C. Shifting the hyperbola along the t direction by τ gives
(t − τ)2 − x2 = C2. Introducing τ as the new time coordinate we write

τ = t −
√

C2 + x2. (11)
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We plot in figure 4 two families of hyperbolae with C = 1 and C = 5. The asymptotes of these
hyperbolae on x > 0 are the characteristics of the advection equation, τ = t−x, for any value of C.
Time surfaces (2) and (9) share the same asymptotic behavior, hence the name hyperboloidal for
such surfaces. A suitable compactification along hyperboloidal surfaces sets the coordinate loca-
tion of null infinity to a time independent value (see [8] for a discussion of conformal and causal
properties of hyperboloidal surfaces and compactification on asymptotically flat spacetimes).
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Figure 4: Rectangular hyperbola (11) for C = 1 and C = 5 depicted on the (x, t) plane. The hyperbolae are flatter near
the origin for larger C but their asymptotic behavior in leading order is independent of C.

It is useful to summarize the hyperboloidal compactification technique with general expres-
sions. We introduce coordinates τ and ρ via

τ = t − h(x), x =
ρ

Ω
. (12)

The height function, h, must satisfy |dh/dx| < 1 in units in which the speed of light (advection
speed in the above example) is unity, so that τ is a time function. We also require that the gradient
of the function Ω ≡ Ω(ρ) is nonvanishing at its zero set. The zero set of Ω corresponds to infinity
in x. The coordinate transformations have the Jacobian

∂t = ∂τ, ∂x = −H ∂τ +
Ω2

L
∂ρ, where H :=

dh
dx

(ρ), L := Ω − ρ
dΩ

dρ
. (13)

The advection equation becomes in this notation

∂τu +
Ω2

(1 − H)L
∂ρu = 0. (14)

The specific choices (5) and (9) satisfy

Ω2

(1 − H)L
=

1
C
. (15)

In general, the time transformation must be chosen such that we have asymptotically in x, or
equivalently as Ω approaches zero

1 − H ∼ O(Ω2). (16)

This relation formulates that the asymptotic boost of time surfaces needs to approach the speed
of light as fast as the infinite compression of space to have a uniform outgoing characteristic
speed in a compactified domain. This intuitive explanation suggests the names boost function for
H, and compress function for Ω.
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2.3. Wave equation

The advection equation discussed in the previous section is a special example because its
characteristics propagate in only one direction. A more representative example with incoming
and outgoing characteristics is the wave equation,

∂2
t u − ∂2

xu = 0. (17)

The characteristics of (17) on a bounded domain are plotted on the left panel of figure 5. We are
interested in the problem on the unbounded domain x ∈ (−∞,∞). With (13) we get[

∂2
τ +

Ω2

(1 − H2)L

(
2H∂τ∂ρ −

Ω2

L
∂2
ρ + ∂ρ(H)∂τ − ∂ρ

(
Ω2

L

)
∂ρ

)]
u = 0. (18)

The transformation (9) is not the right choice for the solution domain. Instead, we choose the
height function of standard hyperboloids, h(x) =

√
S 2 + x2. We prescribe an arbitrary coordinate

location for null infinity by modifying the zero set of the compress function. We set

Ω =
1
2

(
1 −

ρ2

S 2

)
⇒ L =

1
2

(
1 +

ρ2

S 2

)
and H =

2S ρ
S 2 + ρ2 . (19)

The parameter S determines the coordinate location of null infinity on the numerical grid.
The unbounded domain x ∈ (−∞,∞) corresponds in the compactifying coordinate to ρ ∈ (−S , S ).
The wave equation becomes

∂2
τu +

2ρ
S
∂τ∂ρu −Ω2 ∂2

ρu +
2 S Ω

S 2 + ρ2 ∂τu +
(3S 2 + ρ2)ρΩ

S 2(S 2 + ρ2)
∂ρu = 0. (20)

The equation evaluated at infinity, {ρ = ±S }, takes the form

∂τ
(
∂τ ± 2 ∂ρ

)
u = 0,

reflecting that both boundaries are outflow boundaries and do not require boundary conditions.
The characteristics of the wave equation (20) are plotted on the right panel of figure 5. No

boundary conditions are needed because no characteristics enter the simulation domain. Further-
more, the outgoing characteristics leave the domain smoothly through the outflow boundaries.

The initial value problem for the wave equation (17) is related to the initial value problem
for (18) by time evolution as indicated in figure 4. This may be an undesired complication in
practical applications. If we are interested in the evolution of compactly supported data, we
can keep the t surfaces in an interior domain which includes the data and apply hyperboloidal
compactification only in the exterior domain as discussed in section 2.5.

The above calculation is made for the one dimensional, source free, constant coefficient
wave equation. The method applies when variable coefficients or suitable lower order terms
are present. The requirement on the variable coefficients in the principal part is that they are
asymptotically constant. For the lower order terms we require a fall off behavior of at least Ω2

so that the division by 1 − H2 in (18) leads to a regular equation.
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Figure 5: On the left panel we plot the characteristics for the standard wave equation (17) on the bounded domain
x ∈ [−10, 10]. On the right panel hyperboloidal compactification has been applied with infinity located at ρ = S = ±10.
The standard wave equation on a bounded domain requires boundary conditions for the incoming characteristics from
both boundaries. There are no incoming characteristics with hyperboloidal compactification.

2.4. Hyperbolic systems
Consider the linear, homogeneous system of partial differential equations with variable coef-

ficients
∂tu = A∂xu, (21)

where u = (u1(x, t), u2(x, t), . . . , un(x, t))T , and A is an n × n matrix that may depend on x. The
transformation (12) with Jacobian (13) leads to

(1 + HA)∂τu =
Ω2

L
A∂ρu. (22)

Assuming that the time transformation has been chosen to satisfy (16), we require that the poly-
nomial remainder of det(1 + HA) by 1 − H vanishes asymptotically. This is a condition on the
asymptotic form of the elements of A. For example, taking n = 2 we write

A =

(
a11 a12
a21 a22

)
.

The asymptotic condition for the applicability of hyperboloidal compactification reads

1 + a11 + a22 − a12a21 + a11a22 = 0. (23)

A typical example is the wave equation (17) written as a first order symmetric hyperbolic
system. The wave equation takes the form (21) in the auxiliary variables v = ∂tu and w = ∂xu,
with

u =

(
v
w

)
, A =

(
0 1
1 0

)
. (24)

The condition (23) is satisfied. The transformed system reads

∂τu =
Ω2

(1 − H2)L

(
−H 1
1 −H

)
∂ρu. (25)

Note that this equation is not the first order symmetric hyperbolic form of the transformed wave
equation (18). The particular choice (19) leads to the regular system

∂τu =
1

2 S 2

(
−2S ρ S 2 + ρ2

S 2 + ρ2 −2S ρ

)
∂ρu.
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The outer boundaries at ρ = ±S are pure outflow boundaries.
As a further example consider the one dimensional Maxwell equations for the electric and

magnetic fields (Ē, H̄)

∂tĒ = −
1
ε
∂xH̄, ∂tH̄ = −

1
µ
∂xĒ,

The electric permittivity ε and the magnetic permeability µ may be point-dependent. The equa-
tions have the form (21) with

u =

(
Ē
H̄

)
, and A = −

1
εµ

(
0 µ
ε 0

)
.

We get after hyperboloidal compactification

∂τu = −
Ω2

(εµ − H2)L

(
H µ
ε H

)
∂ρu. (26)

In vacuum outside a compact domain we have ε = ε0 and µ = µ0, where ε0 and µ0 are the
electric and the magnetic constants. We need to choose the asymptotic behavior of H such that
√
ε0µ0 − H ∼ O(Ω2). Then the Maxwell equations behave similarly to the wave equation (25)

near null infinity.
The example of Maxwell equations suggests that including lower order terms or variable

characteristic speeds in a compact domain are straightforward in the hyperboloidal method as
long as the asymptotic form of the equations are suitable. The asymptotic characteristic speeds
need to be constant and lower order terms need to have compact support or fall off sufficiently
fast. Hyperboloidal compactification can then be applied outside a compact domain as discussed
in the next section.

2.5. Hyperboloidal layers

It may be desirable to employ specific coordinates in a compact domain without the time
transformation or the compactification required by the hyperboloidal method. One reason is
technical. Elaborate numerical techniques to deal with shocks, scatterers, and media assume
predominantly specific coordinates. It may be impractical to modify these methods to work with
hyperboloidal compactification throughout the simulation domain. Another reason is initial data.
One may be interested in the evolution of certain (compactly supported) initial data prescribed
on a level set of t. Therefore, it may be favorable to restrict the hyperboloidal compactification
to a layer.

We discuss briefly the perfectly matched layer (PML) by Bérenger [9] to set the stage for
hyperboloidal layers. In the PML method one attaches an absorbing medium—a layer— to the
domain of interest such that the interface between the interior domain and the exterior medium
is transparent independent from the frequency and the angle of incidence of the outgoing wave.
Inside the layer the solution decays exponentially in the direction perpendicular to the interface.
As a consequence, the solution is close to zero at the outer boundary of the layer where any stable
boundary condition may be applied. The reflections from the outer boundary may be ignored if
the layer is sufficiently wide.

The success of the PML method lies in the transparency of the interface between the interior
domain and the layer. This property finds explanation in the interpretation of Chew and Weedon
of the PML as the analytic continuation of the equations into complex coordinates [10]. The
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challenge is then to find suitable choices of the equations and the free parameters that lead to
exponential damping of the solution in a stable way, which may be difficult depending on the
problem [11, 12, 13].

A simple example omitting details of the method beyond our needs demonstrates the basic
idea. We perform an analytic continuation of x into the complex plane beyond a certain interface
R. The coordinate x is written in terms of its real and imaginary parts as Re(x)+ iσIm(x)Θ(x−R),
where σ is a positive parameter, and Θ denotes the Heaviside step function. Setting k = 1, the
plane wave (1) at time t = 0 becomes

u(x, 0) = e2πiRe(x)e−2πσIm(x)Θ(x−R) . (27)

The strength of the exponential decay is controlled by a free parameter σ. The solution is plotted
in figure 6 for σ = 0.1.
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u

Figure 6: The plane wave solution with the spatial coordinate analytically extended into the complex plane (27) demon-
strates how outgoing waves are damped exponentially in the absorbing layer of the PML method. We set σ = 0.1 and
R = 5. The dashed line indicates the location of the interface.

For a hyperboloidal layer we perform a real coordinate transformation, both of space and
time, beyond a certain timelike surface x = R called the interface. We set

x − R =
ρ − R

Ω
, Ω = 1 −

(ρ − R)2

(S − R)2 Θ(ρ − R) , (28)

where the coordinate location of infinity satisfies S > R. The width of the layer is S − R. This
transformation is partly motivated by the agreement between the coordinates x and ρ along the
interface in the sense that

x(R) = R,
dx
dρ

(R) = 1,
d2x
dρ2 (R) = 0 . (29)

A simple prescription for the boost function is to require unit outgoing characteristic speed
across the layer. For example, the outgoing and incoming characteristic speeds c± for the wave
equation on ρ > 0 are

c± =
Ω2

L(±1 − H)
, with L = Ω − (ρ − R)

dΩ

dρ
. (30)

The requirement of unit outgoing characteristic speed reads c+ = 1, implying

1 − H =
Ω2

L
. (31)
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For ρ < −R we require c− = −1. The resulting characteristics are depicted in figure 7. For
|ρ| < R we obtain the standard characteristics in (x, t) coordinates. For |ρ| > R we obtain the
hyperboloidal characteristics in (ρ, τ) coordinates (compare figure 5).

-10 -5 0 5 10
Ρ

5
Τ

Figure 7: Characteristic structure for hyperboloidal layers with boundaries located at ρ = ±S = ±10 and interfaces at
ρ = ±R = ±5. Compare the inner domain [−5, 5] to the left panel of figure 5, and the layers [−10,−5] and [5, 10] to the
right panel of figure 5. No characteristics enter the computational domain.

The plane wave in the layer has the same form as in the interior by (28) and (31) (figure 8;
the dashed line indicates the interface). The important difference to the standard method is that
the incoming characteristic speed vanishes at the outer grid boundary.
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Figure 8: On the left panel we plot the plane wave solution with the compress function given in (28) and the boost
function given in (31). The characteristic speeds are depicted on the right panel in which the top and the bottom curves
correspond to outgoing and incoming characteristic speeds. The domain is given by ρ ∈ [0, 10] with a compactifying
layer starting at ρ = R = 5 as indicated by the dashed lines. The incoming characteristic speed at the outer boundary
vanishes, therefore no outer boundary conditions are needed in the layer.

There is a large freedom in the choice of compress and boost functions, which may be ex-
ploited for specific purposes. As an example, take a linear compress function

Ω = 1 −
ρ − R
S − R

Θ(ρ − R), (32)

and the boost function of standard hyperboloids translated by R

H =
x − R√

(x − R)2 + C2
Θ(x − R) . (33)

The resulting representation of the plane wave is plotted on the left panel of figure 9 for C = 3.
Now we have fewer oscillations in the layer than in the interior because of the spatial redshift
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controlled by C. A strong redshift, and consequently few spatial oscillations, may be preferable
in a high order space discretization scheme in which a few grid points per wavelength are suf-
ficient for good accuracy. On the right panel of figure 9, however, we see that strong spatial
redshift comes at a price: the outgoing coordinate speed increases strongly in the layer. Evalua-
tion of c+ from (30) gives at infinity c+ = 2(S − R)2/C2. A small value for C with a wide layer
leads to a high outgoing characteristic speed, which requires small time steps in an explicit time
integration algorithm.
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Figure 9: On the left we plot the plane wave solution with (32) and (33) for C = 3 in the otherwise same setting as in
figure 8. There are fewer oscillations in the layer due to the stronger redshift causing a higher outgoing characteristic
speed as depicted on the right panel.

The balance between accuracy in time and in space is influenced by the compress and boost
functions, and the free parameters included in them. The specific choices will depend on the
requirements of the problem. It can be expected that in most applications the outgoing charac-
teristic speed in the layer will be chosen close to the speed in the interior domain as in figure
8.

The hyperboloidal layer is similar to the PML in that both methods allow us to solve the
equations of interest in standard coordinates in an inner domain. In both methods the interface
between the inner domain and the layer is transparent on the analytical level, independent of
the frequency and angle of incidence of the outgoing wave. The key difference is that the PML
absorbs the outgoing wave so that it is damped exponentially, whereas the compactifying layer
transports it to infinity. The solution in the hyperboloidal layer is of interest, as opposed to
the solution in the absorbing layer. In fact, the solution at the outer boundary of the layer is
of special interest in radiative systems because it gives the radiation signal as measured by an
idealized observer at infinity.

3. Multiple dimensions

Hyperboloidal compactification is applicable in multiple dimensions when compactification
is performed in the outgoing direction. The main difference in multiple dimensions is that a
rescaling of the unknown fields needs to be performed such that the fields attain a non-vanishing
finite limit at infinity. The rescaling depends on the fall off behavior of these fields, and therefore
on the equation and the spatial dimension.
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3.1. Rescaling
We begin our discussion with the three dimensional wave equation on flat spacetime(

−∂2
t + ∆R3

)
u = 0.

Here, ∆R3 is the Laplace operator on three dimensional Euclidean space. We write the wave
equation in spherical coordinates to single out the outgoing direction(

−∂2
t + ∂2

r +
2
r
∂r +

1
r2 ∆S2

)
u = 0,

with ∆S2 , the Laplace–Beltrami operator on the two sphere, and r, the radial coordinate. In sec-
tion 2.3 we showed that hyperboloidal compactification introduces a divisor that is proportional
to the square of the compress function. With the compactification r = ρ/Ω we see that any term
beyond the flat wave operator on the (r, t) plane that falls off as r−2 or faster is multiplied with at
least Ω2, and is therefore regular under hyperboloidal compactification.

The angular part of the wave equation in spherical coordinates admits a regular compacti-
fication. The first radial derivative term, however, results in a singular operator at infinity. We
resolve this problem by rescaling. The three dimensional wave equation on the (r, t) plane takes
the form of the one dimensional wave equation in the rescaled variable v := ru. We get(

−∂2
t + ∂2

r +
1
r2 ∆S2

)
v = 0,

which admits a regular hyperboloidal compactification.
This procedure generalizes to dimensions other than three. The essential feature of the rescal-

ing is that it takes care of the fall off behavior of the scalar field. In three dimensions ru attains
a regular limit at infinity; in n dimensions the rescaling depends on n. Solutions to the wave
equation decay asymptotically as r−(n−1)/2 by energy conservation. We expect therefore that the
n dimensional wave equation written for the rescaled variable v := r(n−1)/2u admits a regular
hyperboloidal compactification.

The n dimensional wave equation in spherical coordinates reads(
−∂2

t + ∂2
r +

n − 1
r

∂r +
1
r2 ∆Sn−1

)
u = 0,

where ∆Sn−1 is the Laplace-Beltrami operator on the n − 1 sphere. Transforming to the rescaled
variable v := r(n−1)/2u, we get(

−∂2
t + ∂2

r −
1

4r2 (n − 1)(n − 3) +
1
r2 ∆Sn−1

)
v = 0.

All terms beyond the one dimensional wave operator fall off as r−2 and are therefore amenable
to a regular hyperboloidal compactification.

The inclusion of sources or of suitable nonlinearities is straightforward under the condition
that the corresponding terms in the equation fall off sufficiently fast. For example, a power
nonlinearity on the right hand side of the wave equation of the type up leads to the source term
vpr−(n−1)(p−1)/2. This term is regular under hyperboloidal compactification if the power of r is −2
or lower, which implies p ≥ 1 + 4/(n − 1). The critical power for which equality is satisfied is
also the critical conformal power for semilinear wave equations with a power nonlinearity. This
apparent coincidence is explained in the next section.
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3.2. Conformal method

Compactification of spacetimes with a suitable time transformation as proposed by Penrose
in [5] as well the hyperboloidal initial value problem as proposed by Friedrich [7] employ confor-
mal methods. The conformal language is prevalent in studies of spacetimes in general relativity
[14]. In this section we discuss the hyperboloidal compactification using conformal techniques.
This viewpoint is of theoretical and practical interest because it reveals the interplay of confor-
mal geometry, partial differential equations, and numerical methods within the hyperboloidal
approach, and also simplifies the implementation of the method for certain problems.

In general, a hyperboloidal time transformation with a spatial compactification leads to a
singular metric. Consider the Minkowski metric in spherical coordinates

η = −dt2 + r2dr2 + r2dσ2, (34)

where dσ2 is the standard metric on the unit sphere. Introducing new coordinates τ and ρ as in
(12) gives [8]

η = −dτ2 −
2HL
Ω2 dτdρ +

1 − H2

Ω4 L2dρ2 +
ρ2

Ω2 dσ2.

This representation of the Minkowski metric is singular at infinity. The singularity is removed
by conformally rescaling the metric,

g = Ω2η = −Ω2 dτ2 − 2HL dτdρ +
1 − H2

Ω2 L2dρ2 + ρ2 dσ2. (35)

The conformal metric g is regular at null infinity by (16), and can be extended beyond null infinity
in a process referred to as conformal extension [5, 14, 15]. In this context, the function Ω is called
the conformal factor. The zero set of the conformal factor corresponds to null infinity where it
has a non-vanishing gradient. These properties of the conformal factor underlie our choices for
the compress function in the previous sections.

Partial differential equations within the conformal framework have first been studied for
fields with vanishing rest mass, such as scalar, electromagnetic, and gravitational fields [15].
The key observation is that the complicated asymptotic analysis of solutions to these partial dif-
ferential equations is replaced with local differential geometry by considering the conformally
transformed equations in a conformally extended, regular spacetime [16, 17].

We discuss the wave equation on Minkowski spacetime as an example. Under a conformal
rescaling of the Minkowski metric, g = Ω2 η, the wave equation transforms as [14, 15](

�g −
n − 1

4n
R[g]

)
v = Ω−(n+3)/2 �η u, with v := Ω(1−n)/2u. (36)

Here, �g := gµν∇µ∇ν is the d’Alembert operator with respect to g, R[g] is the Ricci scalar of
g, and n is the spatial dimension of the spacetime. The rescaling with Ω in the definition of the
variable v is asymptotically equivalent to the rescaling in Section 3.1, where we factor out the
fall off behavior of u such that the rescaled variable v has a non-vanishing limit at null infinity.
To see this, consider a specific choice for Ω from previous sections, say Ω(ρ) = 1 − ρ as in (5).
In terms of the coordinate r = ρ/Ω, the conformal factor reads Ω(r) = (1 + r)−1, which behaves
asymptotically as r−1. Therefore the definition of v in (36) corresponds asymptotically to the
definition of v in section 3.1.
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We can also explain the observation made at the end of section 3.1 concerning the agreement
between the critical conformal power and the critical power for which hyperboloidal compact-
ification leads to a regular equation. Using �ηu = up and the definition of v in (36) we get at
the right hand side of the conformally invariant wave equation Ω((n−1)p−(n+3))/2vp. Regularity of
this term at infinity, where the conformal factor vanishes, requires (n − 1)p ≥ n + 3, which is the
condition of Section 3.1. Equality is obtained for pc = 1 + 4/(n − 1) for which the semilinear
wave equation is conformally invariant, hence pc is called the critical conformal power.

The conformal approach may be useful for various reasons. It extends directly to asymp-
totically flat backgrounds with non-vanishing curvature [8, 18]. It also helps identifying the
transformation behavior of the equations independent of coordinates. For example, Yang-Mills
and Maxwell equations are conformally invariant, and therefore do not require a rescaling of the
variables (the specific variables in which the covariant equations are written may not be confor-
mally invariant and may require a rescaling).

Hyperboloidal compactification with rescaling, as presented in section 3.1, seems numer-
ically feasible in any spatial dimension. In even spatial dimensions, however, the notion of
conformal infinity may not be feasible [19]. It is an open question whether the hyperboloidal
technique applies to this case. If the method fails in even dimensions, it should be interesting to
understand whether this failure is related to the violation of Huygens’ principle.

3.3. Hyperboloidal layers in multiple dimensions

In multiple dimensional problems, the layer technique is employed along the outgoing direc-
tion r. We employ a compactifying coordinate ρ defined via r = ρ/Ω. The compress function
needs to be unity in a compact domain bounded by radius R, be sufficiently smooth across the
interface at r = ρ = R, and vanish at a coordinate location S > R with non-vanishing gradient. A
suitable choice is

Ω = 1 −
(
ρ − R
S − R

)4

Θ(ρ − R), L = 1 +
(ρ − R)3(3ρ + R)

(S − R)4 Θ(ρ − R) .

The coordinates r and ρ coincide up to second order along the interface (compare (29)). The
height function in the new time coordinate depends only on the radial coordinate: τ = t − h(r).
The boost function is given by H = dh/dr. It may be set such that the outgoing characteristic
speed through the layer is unity. For the wave equation this corresponds to

1 − H =
Ω2

L
,

as in (31). Finally, the rescaling of the variable is performed with the compress function noting
that asymptotically Ω ∼ r−1. Further details are presented in section 4.2 in which the layer
technique is applied to solve the wave equation numerically in three spatial dimensions.

The extension of the hyperboloidal method from one dimension to multiple dimensions is
fairly straightforward in spherical coordinates, which may be, however, too restrictive for the
grid geometry in applications. The discussion of the conformal regularity of the Minkowski
metric suggests that the method can also be applied in nonspherical coordinates as discussed in
the next section.

14



3.4. Nonspherical coordinate systems

Spherical coordinates are suitable for hyperboloidal compactification because cuts of null
infinity have spherical topology [15]. The coordinate shape of null infinity, however, does not
have to be a sphere. We can employ any coordinate system with a unique outgoing direction for
the compactification.

An example for a nonspherical coordinate system, useful especially in electromagnetism, is
the prolate spheroidal coordinate system. The relation between Cartesian coordinates {x, y, z} and
prolate spheroidal coordinates {µ, ν, φ} reads

x = sinh µ sin ν cosϕ, y = sinh µ sin ν sinϕ, z = cosh µ cos ν.

We have r2 = sinh2 µ + cos2 ν. Here, µ is the outgoing direction that has closed coordinate
surfaces. Compactification is performed along µ. Using the conformal method, we argue that
if conformal compactification of Minkowski spacetime in these coordinates leads to a regular
metric, the equations we solve on that background will be regular. The Minkowski metric reads

η = −dt2 + dx2 + dy2 + dz2 = −dt2 + (sinh2 µ + sin2 ν) (dµ2 + dν2) + sinh2 µ sin2 ν dϕ2.

We introduce a new time coordinate by setting

τ = t −
√

1 + sinh2 µ.

The metric becomes

η = −dτ2 − 2 sinh µ dµdτ + sin2 ν dµ2 + (sinh2 µ + sin2 ν)dν2 + sinh2 µ sin2 νdϕ2.

Compactification along µ is performed via

sinh µ =
2ρ

1 − ρ2 =
ρ

Ω
, dµ =

dρ
Ω
.

The conformal metric g = Ω2η becomes

g = −Ω2dτ2 − 2ρ dρ dτ + sin2 ν dρ2 + (ρ2 + Ω2 sin2 ν)dν2 + ρ2 sin2 ν dϕ2.

The qualitative behavior of this metric near infinity is similar to the conformal Minkowski metric
given in (35); the only difference is the coordinate representation. Therefore we conclude that
hyperboloidal compactification of suitable hyperbolic equations in prolate spheroidal coordinates
leads to regular equations as for spherical or oblate spheroidal coordinates.

It is an open question whether the hyperboloidal method applies to Cartesian or cylindrical
coordinates. The difficulty is to ensure regularity of the equations at corners and along edges
with respect to limits to infinity. This requirement implies a restriction on the geometry of both
the interface boundary and the numerical outer boundary. Even with the requirement of smooth
coordinate surfaces, it would be useful to extend the method such that the layer has an arbitrary
shape in coordinate space. This generalization would increase the efficiency of the method when
dealing with scatterers with irregular shape.
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4. Numerical experiments

The aim of this chapter is to demonstrate numerical implementations of hyperboloidal com-
pactification on simple examples in one and three spatial dimensions. The application of the
method in two dimensions is an open question as discussed in 3.2 and is left for future work.
Also left for future work is an in-depth numerical analysis of the method in comparison with
other boundary treatments, such as absorbing boundary conditions or perfectly matched layers.

In previous sections, we have seen that we may employ an arbitrary coordinate system in an
interior domain restricting compactification to a layer outside that domain. This idea is based
on the matching method with a transition zone presented in [8]. Numerical applications of the
matching, however, are inefficient due to a blueshift in frequency in the matching region and
many arbitrary parameters for the transition function [20, 21]. A hyperboloidal layer gives a
sufficiently smooth interface without a transition function.

In this section, we compare the numerical accuracy of solutions with and without the layer
in one dimension. In three dimensions we focus on the application of hyperboloidal layers for
the wave equation. Calculations using hyperboloid foliations, that is, constant mean curvature
surfaces without the layer, have been presented in [21].

4.1. One spatial dimension

4.1.1. Analytical setup
Consider the Maxwell equations (26). Assume that the electric permittivity and the magnetic

permeability are constant and have unit value. The transformed Maxwell system for the unknown
vector u = (Ē, H̄)T reads

∂τu = −
Ω2

(1 − H2)L

(
H 1
1 H

)
∂ρu. (37)

The characteristic speeds are c± = −Ω2/((±1+ H)L). This system is similar to the wave equation
written in first order symmetric hyperbolic form (25), so our results apply both to Maxwell and
wave equations in one dimension.

We experiment with two sets of the compress and boost functions. First we employ the
hyperboloid foliation everywhere in the simulation domain. We set as in (19)

Ω =
1
2

(
1 −

ρ2

S 2

)
and H =

2S ρ
S 2 + ρ2 .

The characteristic speeds read c± = ±(1± ρ/S )2/2. The minus sign corresponds to the incoming
speed at the right boundary, which vanishes at ρ = S . The plus sign corresponds to the incoming
speed at the left boundary, which vanishes at ρ = −S . The qualitative behavior of the charac-
teristics is the same as depicted on the right panel of figure 5. The time step in an explicit time
integration scheme is restricted by the maximum absolute value of the characteristic speed which
reads |c|max = 2.

The second set of compress and boost functions are for hyperboloidal layers. We set the
compress function as in (28)

Ω = 1 −
(ρ − R)2

(S − R)2 Θ(ρ − R).
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We determine the boost function from the requirement of unit outgoing characteristic speeds
through the layers. We set

H = 1 −
Ω2

L
for ρ > R , and H = −1 −

Ω2

L
for ρ < −R .

The characteristic structure for the resulting equations are depicted in figure 7.

4.1.2. Numerical setup
The hyperboloidal method is essentially independent of numerical details due to its geometric

origin. We discretize (37) employing common methods: an explicit 4th order Runge–Kutta time
integrator and finite differencing in space with 4th, 6th, and 8th order accurate centered operators.
At the boundaries we apply one-sided stencils of the same order as the inner operator. We use
Kreiss–Oliger type artificial dissipation to suppress numerical high-frequency waves [22]. For a
2p − 2 accurate scheme we choose a dissipation operator Ddiss of order 2p as

Ddiss = ε (−1)p h2p−1

2p Dp
+Dp
−,

where h is the grid size, D± are forward and backward finite differencing operators and ε is the
dissipation parameter.

Both for the hyperboloid foliation and the layer we set S = 10. The simulation domain is
then given by ρ ∈ [−10, 10], which corresponds to the unbounded domain x ∈ (−∞,∞). The
interface for the layer is at R = ±5. Hyperboloidal coordinates (ρ, τ) coincide with standard
coordinates (x, t) within the domain |ρ| ≤ 5.

We solve the initial value problem for (37) with a Gaussian wave packet centered at the origin
for the electric field and vanishing data for the magnetic field. We set at the initial time surface

Ē(ρ, 0) = e−ρ
2
, H̄(ρ, 0) = 0 .

The solutions with respect to the hyperboloid foliation and the hyperboloidal layer correspond
to different initial value problems due to the different time surfaces. The solution constructed
using the hyperboloidal layer corresponds, however, to the solution that we would obtain using
the standard coordinates (x, t).

4.1.3. Results
Figure 10 shows convergence factors for the electric field from a three level convergence test

with 100, 200, and 400 grid cells. The convergence factor Q is calculated for the electric field in
the L2 norm via Q := log2

‖Ēlow−Ēmed‖

‖Ēmed−Ēhigh‖
. The factors are in accordance with the implemented finite

difference operators.
The total energy is radiated to infinity leaving the zero solution behind in accordance with

Huygens’ principle for Maxwell equations in one dimensional flat spacetime. Therefore, a good
measure of the quality of the boundary treatment is the value of the unknown after the initial wave
packet leaves the simulation domain. This value is related to the numerical reflection coefficient
of the boundary. The analytical reflection coefficients at the interfaces and at the boundaries are
zero in the hyperboloidal method. Numerically, however, the interfaces and the finite differencing
at the outer boundaries cause reflections. Consider the L2 norm of the solution as a function of
time plotted in figure 11. The plots depict the field with respect to the hyperboloid foliation (left)
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Figure 10: Convergence factors in time in the L2 norm for the Maxwell equations in one spatial dimension. Solid curves
represent the hyperboloid foliation, dashed curves the layer method. The curves indicate from bottom to top 4th, 6th, and
8th order convergence in accordance with the order of implemented finite differencing operators.

and with respect to the layer (right). The errors are larger for the layer. Red, green, and blue
curves represent solutions calculated with 4th, 6th, and 8th accurate finite difference operators,
respectively. To each order the solution is calculated with and without dissipation. We observe
that artificial dissipation strongly reduces numerical errors. Figure 11 shows that the error at late
times with 4th order stencils with dissipation has the same order of magnitude as the one with
8th order stencils without dissipation.
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Figure 11: The L2 norm of the electric field in time for 4th (red), 6th (green), and 8th (blue) order finite differencing with
respect to the hyperboloid foliation (left) and the hyperboloidal layer (right). The curve indicating smaller errors to each
order corresponds to the solution with artificial dissipation. The plot shows that the effect of dissipation to the quality of
the solution is comparable to using a higher order numerical discretization. Errors with the layer method are larger than
errors with the hyperboloid foliation.

The main result from figures 10 and 11 is that the numerical error is reduced drastically by
higher resolution, higher order discretization, and artificial dissipation—without changing the
boundary treatment. The boundary treatment does not introduce errors into the solution that are
put in by hand. To emphasize this point, we plot in figure 12 two solutions using the hyperboloid
foliation and the hyperboloidal layer. For each method, one solution is obtained with 4th order fi-
nite differencing, without dissipation, and 100 grid cells (red curve); the other solution is obtained
with 8th order finite differencing, with dissipation, and 200 grid cells (blue curve). The combined
effect of these improvements demonstrates that accuracy with hyperboloidal compactification is
not restricted by the boundary treatment but by the numerical accuracy in the simulation domain.
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Figure 12: Comparison of numerical errors as indicated by late time values of the L2 norm of the electric field between
a numerical solution with low (red) and high accuracy (blue) for the hyperboloid (left) and the layer (right) method.
Accuracy with hyperboloidal compactification is not restricted by the boundary treatment.

4.2. Three spatial dimensions
4.2.1. Analytical setup

Consider the semilinear wave equation with a focussing power nonlinearity, �ηu = −up. We
solve this equation with and without the nonlinear term by using the conformal method. The
semilinear conformal wave equation reads

�gv =
1
6

R[g] v −Ωp−3 vp, (38)

where g is the conformal metric, R[g] is the Ricci scalar to the metric g, and v = Ω−1u. The
conformal metric g is obtained from the Minkowski metric η given in (34) by the time transfor-
mation τ = t − h(r), the spatial compactification r = ρ/Ω, and the conformal rescaling g = Ω2η.
We set the conformal factor Ω as in section 3.3

Ω = 1 −
(
ρ − R
S − R

)4

Θ(ρ − R), L = 1 +
(ρ − R)3(3ρ + R)

(S − R)4 Θ(ρ − R) .

This choice ensures that the coordinates r and ρ coincide and the Ricci scalar is continuous along
the interface. The boost function is such that the outgoing characteristic speed through the layer
is unity (31). The conformal metric becomes

g = −Ω2dτ2 − 2(L −Ω2) dτdρ + (2L −Ω2) dρ2 + ρ2dσ2.

For ρ < R we recover the Minkowski metric (34). The characteristic speeds of spherical wave
fronts are

c± =
L ± L −Ω2

2 L −Ω2 .

We observe that the outgoing characteristic speed c+ is unity everywhere; the incoming charac-
teristic speed c− is unity inside the domain ρ < R, and zero at infinity. The characteristic structure
is similar to the right half of figure 7. The Ricci scalar reads

R[g] =
6Ω(ΩL′ − 2LΩ′)

ρ2L3 .

The apostrophe denotes derivative by the argument.
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4.2.2. Numerical setup
We apply similar numerical techniques as those that have been used to test constant mean

curvature foliations [21]. The application of hyperboloidal compactification is complicated by
the requirement of a spherical grid outer boundary because spherical coordinates are ill-defined
at the origin. To deal with this problem, we use the Spectral Einstein Code (SpEC) [23].

Figure 13: The numerical grid for calculations in Minkowski spacetime. We have a cube around the origin on the domain
[−2, 2] in each Cartesian direction and four spherical shells extending from ρ = 2 to future null infinity at ρ = 20. The
colors depict off-centered Gaussian initial data for the time derivative of the scalar field.

We cover the origin with an inner cube using Cartesian coordinates, thereby avoiding the
coordinate singularity of spherical coordinates at the origin. Spherical shells starting within the
cube extend to a spherical outer boundary which corresponds to null infinity (figure 13). The
domain in the radial direction is ρ ∈ [0, 20]. The cube around the origin has xi ∈ [−2, 2]. Four
spherical shells extend from ρ = 2 to future null infinity.

Spatial derivatives are discretized by a pseudospectral method. For the Cartesian grid we use
Chebyshev polynomials in each direction. For the shells we use Chebyshev polynomials in the
radial direction and spherical harmonics in the angular directions. The wave equation is written
in first order symmetric hyperbolic form and time integration is performed with a Runge–Kutta
algorithm (see [21] for details). The colors in figure 13 depict the off-centered data prescribed
for the time derivative of the scalar field. The data for the scalar field vanishes.

The interface to the hyperboloidal layer is at R = 10. Experiments confirm that the results
reported below are not sensitive to the location of the interface if the layer is sufficiently thick to
resolve an outgoing wavelength. The optimal thickness of the layer in applications will depend
on certain factors such as the wavelength of the outgoing radiation or, probably, the shape of the
scatterer. Future research should determine guidelines for the thickness of the layer.

4.2.3. Results
Spatial truncation errors converge exponentially in a pseudospectral code. We show such

spectral convergence in figure 14 for a solution of the homogeneous linear wave equation with
off-centered initial data. We calculate convergence in the auxiliary variable of the first order
reduction vi := ∂iv. Figure 14 shows that the numerical difference between vi and ∂iv converges in
the L2 norm geometrically with N collocation points in each subdomain direction. The constraint
error grows slowly in time but the evolution is stable. Convergence of the constraint error is not
disturbed by the presence of the boundary located at ρ = 20.
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Figure 14: Spectral convergence for the homogeneous wave equation with off-centered initial data. We show the L2 norm
of the constraint, vi − ∂iv, using N = 5, 7, 9, 11 collocation points (from top to bottom) in each subdomain direction.

A stringent test for boundary methods is the inclusion of nonlinear terms in the equations.
The boundary treatment for semilinear wave equations is a difficult problem, especially in three
spatial dimensions [4]. Therefore, we present also results for the wave equation with a cubic
source term (with p = 3 in (38)). The backscatter due to the self interaction of the field violates
Huygens’ principle which makes the solution more interesting. Transparency boundary condi-
tions must not eliminate all reflections from the outer boundary but only spurious ones. This
makes the treatment of the artificial boundary difficult.

The backscatter by the nonlinear term leads to a late time polynomial decay of the solution:
as t−2 at a finite distance, as t−1 at infinity. It is difficult to obtain the correct decay rates with an
artificial outer boundary. The decay rate at infinity is not even accessible with standard methods.
Figure 15 shows that the rates are calculated accurately with the hyperboloidal method. The
local decay rate is defined as d ln |v(ρ, τ)|/d ln τ. The invariance of the time direction under
hyperboloidal transformations implies that the rates calculated with the hyperboloidal method
are equivalent to the rates calculated with the untransformed equations.
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Figure 15: Local decay rates for the cubic wave equation measured by observers located from top to bottom at ρ =

{20, 19.97, 19.9, 19.8, 19.4, 17.86}, or equivalently at r = {∞, 1970, 500, 226, 87, 29}. The bottom curve that corresponds
to the fastest decay bends up after τ = 500 due to accumulation of numerical errors.

Any numerical method fails after a certain time due to accumulation of numerical errors.
In figure 15 the bottom curve that corresponds to the fastest decay bends up after about τ =

500. This behavior is expected, and is due to accumulated numerical errors. We can delay its
appearance by increasing the numerical resolution of the simulation. The long time accuracy of
the solution is not limited by the boundary treatment, but solely by the accuracy of the interior
calculation.
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5. Discussion

Hyperboloidal compactification provides a clean solution to the artificial outer boundary
problem. It allows us to solve suitable hyperbolic equations accurately on unbounded domains.
The underlying idea originates in studies of asymptotic structure of spacetimes in general rela-
tivity [5, 7]. It is remarkable that such a practical method is available at the interface between
differential geometry, conformal structure, partial differential equations, and numerical analysis.

With the hyperboloidal layer method, in which compactification is restricted to a layer, we
can apply arbitrary coordinates in an interior domain, and we gain direct quantitative access to the
asymptotic solution. The numerical boundary of the simulation domain corresponds to infinity,
therefore no outer boundary conditions are needed. The hyperboloidal time transformation leads
to a non-vanishing coordinate speed for outgoing characteristics up to and including infinity in
compactifying coordinates.

Some further advantages of the hyperboloidal method are listed as follows. Efficiency of nu-
merical calculations improves by suitable choices of free parameters that modify the wavelength
of outgoing radiation. It is straightforward to apply the method to various covariant hyperbolic
equations, such as wave, Maxwell, or Yang–Mills equations. It is not necessary to calculate
boundary data that typically depend on the particular equations. Including source terms and
nonlinearities does not modify the boundary treatment if certain asymptotic fall-off conditions
are satisfied. No separate error controlling at the outer boundary is needed because there are no
errors beyond the numerical discretization. There is no overhead in software implementation of
boundary routines. The method is largely independent of numerical schemes due to its geometric
origin.

An important current limitation of the method is the requirement of a spherical or spheroidal
grid near the outer boundary. It is not clear whether hyperboloidal compactification works with
global Cartesian or cylindrical grid structures. Another limitation is source terms that lead to a
singular compactification (Klein–Gordon equation, low power nonlinearities). The applicability
of the method in even spatial dimensions, starting with two dimensional problems, should be
studied.

The decision to apply hyperboloidal compactification can be made only after detailed com-
parative studies which go beyond the scope of this paper. A comparison of different boundary
treatments (absorbing boundary conditions, perfectly matched layers, and hyperboloidal layers)
within the same numerical setting on a simple example, such as the linear, homogeneous wave
equation, would be useful. The method should be applied to Maxwell equations and its effi-
ciency should be studied when scatterers with irregular shapes are present in the computational
domain. Generalizations of the method, such as adapting the coordinate representation of the
hyperboloidal layer to the shape of scatterers, might lead to very efficient computations.

The relevance of hyperboloidal compactification depends on the problem at hand. The
method in its current form does not apply to non-covariant problems, however, it may be ex-
tended to deal with heterogeneous media, anisotropic elastic waves, optical waveguides, Euler
equations, Navier–Stokes equations, among others.

The idea of boosting the time direction may find applications beyond compactification. It
seems that transformations of the characteristic cone for hyperbolic equations are largely unex-
plored outside numerical relativity. The presented solution of the outer boundary problem may
be just one application of such transformations. Others might be useful, for example in numerical
studies of high frequency waves.
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[21] A. Zenginoğlu and L. E. Kidder, Hyperboloidal evolution of test fields in three spatial dimensions, Phys. Rev. D81

(2010) 124010.
[22] H. O. Kreiss and J. Oliger, Methods for the approximate solution of time dependent problems, International Council

of Scientific Unions, World Meteorological Organization, Geneva, 1973.
[23] L. Kidder, H. Pfeiffer, and M. Scheel, SpEC: Spectral Einstein Code.

URL http://www.black-holes.org/SpEC.html

23

http://www.black-holes.org/SpEC.html
http://www.black-holes.org/SpEC.html

	1 Introduction
	2 Compactification in one spatial dimension
	2.1 Spatial compactification
	2.2 Hyperboloidal compactification
	2.3 Wave equation
	2.4 Hyperbolic systems
	2.5 Hyperboloidal layers

	3 Multiple dimensions
	3.1 Rescaling
	3.2 Conformal method
	3.3 Hyperboloidal layers in multiple dimensions
	3.4 Nonspherical coordinate systems

	4 Numerical experiments
	4.1 One spatial dimension
	4.1.1 Analytical setup
	4.1.2 Numerical setup
	4.1.3 Results

	4.2 Three spatial dimensions
	4.2.1 Analytical setup
	4.2.2 Numerical setup
	4.2.3 Results


	5 Discussion

