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Abstract

This paper deals with the numerical modeling of wave propagation in porous
media described by Biot’s theory. The viscous efforts between the fluid and
the elastic skeleton are assumed to be a linear function of the relative velocity,
which is valid in the low-frequency range. The coexistence of propagating
fast compressional wave and shear wave, and of a diffusive slow compres-
sional wave, makes numerical modeling tricky. To avoid restrictions on the
time step, the Biot’s system is splitted into two parts: the propagative part
is discretized by a fourth-order ADER scheme, while the diffusive part is
solved analytically. Near the material interfaces, a space-time mesh refine-
ment is implemented to capture the small spatial scales related to the slow
compressional wave. The jump conditions along the interfaces are discretized
by an immersed interface method. Numerical experiments and comparisons
with exact solutions confirm the accuracy of the numerical modeling. The
efficiency of the approach is illustrated by simulations of multiple scattering.
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1. Introduction

The propagation of waves in porous media has crucial implications in
many areas, such as the characterization of industrial foams, spongious bones
and petroleum rocks. The most widely used model describing the propaga-
tion of mechanical waves in a saturated porous medium was proposed by
Biot in 1956. A major achievement in Biot’s theory was the prediction of a
second (slow) compressional wave, besides the (fast) compressional wave and
the shear wave classically propagated in elastic media.

Two regimes are distinguished, depending on the frequency of the waves.
At frequencies smaller than a critical frequency fc, the fluid flow inside the
pores is of Poiseuille type, and the viscous efforts between the fluid and
the solid depend linearly on the relative velocity. In this case, the slow
compressional wave is almost static and highly attenuated [4]. An adequate
modeling of this diffusive mode remains a major challenge in real applications.
At frequencies greater than fc, inertial effects begin to dominate the shear
forces, resulting in an ideal flow profile except in the viscous boundary layer,
and the slow wave propagates [5, 32]. Experimental observations of the slow
wave in the low-frequency range [36] and in the high-frequency range [10] have
confirmed Biot’s theory. In the current study, we focus on the low-frequency
range.

Until the 1990’s, Biot’s equations were mainly studied in the harmonic
regime. Various time-domain methods have been proposed since, based on
finite differences [14, 46, 45], finite elements [47], discontinuous Galerkin
methods [38], boundary elements [41], pseudospectral methods [8] and spec-
tral element methods [34]. A recent review of computational poroelasticity
can be found in [9]. Nevertheless, none of the methods proposed in the
low-frequency range give a complete answer to the following difficulties:

• the viscous effects greatly influence numerical stability, imposing a re-
strictive time step. In some physically relevant cases, computations
cannot be carried out in a reasonable time;

• the wavelength of the slow compressional wave is much smaller than
that of the other waves. Consequently, one faces the following alter-
native: either a coarse grid well-suited to the fast wave is chosen, and
the slow wave is badly discretized; either a fine mesh is used, and the
computational cost increases dramatically;
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• maximum computational efficiency is obtained on a Cartesian grid; in
counterpart, the interfaces are coarsely discretized, which yields spuri-
ous solutions. Alternatively, unstructured meshes adapted to the inter-
faces provide accurate description of geometries and jump conditions;
however, the computational effort greatly increases, due to the cost of
the mesh generation and to the CFL condition of stability.

The aim of the present study is to develop an efficient numerical strategy
to remove these drawbacks. A time-splitting is used along with a fourth-order
ADER scheme [42] to integrate Biot’s equations. A flux-conserving space-
time mesh refinement [3] is implemented around the interfaces to capture
the slow compressional wave. Lastly, an immersed interface method [26, 27]
is developed to provide a subcell resolution of the interfaces and to accu-
rately enforce the jump conditions between the different porous media. As
illustrated by the simulations, the combination of these numerical methods
highlights the importance of an accurate modeling of the slow wave.

This article, which generalizes a previous one-dimensional work [12], is
organized as follows. Biot’s model is briefly recalled in section 2. The nu-
merical methods are described in section 3. Section 4 presents numerical
experiments and comparisons with exact solutions. In section 5, conclusions
are drawn and future perspectives are suggested.

2. Physical modeling

2.1. Biot’s model

Biot’s model describes the propagation of mechanical waves in a porous
medium consisting of a solid matrix saturated with fluid circulating freely
through the pores [4, 6, 8, 9]. It is assumed that

• the wavelengths are large compared with the diameter of the pores;

• the amplitudes of perturbations are small;

• the elastic and isotropic matrix is fully saturated by a single fluid phase.

This model relies on 10 physical parameters: the density ρf and the dynamic
viscosity η of the fluid; the density ρs and the shear modulus µ of the elastic
skeleton; the porosity 0 < φ < 1, the tortuosity a ≥ 1, the absolute perme-
ability κ, the Lamé coefficient λf and the two Biot’s coefficients β and m of
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the saturated matrix. The unknowns are the elastic and acoustic displace-
ments us and uf , the elastic stress tensor σ, and the acoustic pressure p. In
one hand, the constitutive laws are:

{

σ = (λf tr ε− β mξ) I+ 2µ ε,

p = m (−β tr ε+ ξ) ,
(1)

where I is the identity, ξ is the rate of fluid change, and ε is the strain tensor

ξ = −∇. (φ (uf − us)) , ε =
1

2

(

∇us +∇uT
s

)

. (2)

The symmetry of σ in (1) implies compatibility conditions between spatial
derivatives of ε, leading to the Beltrami-Michell equation [39, 13]

∂2 σ12

∂ x ∂ y
= θ0

∂2 σ11

∂ x2 + θ1
∂2 σ22

∂ x2 + θ2
∂2 p

∂ x2 + θ1
∂2 σ11

∂ y2
+ θ0

∂2 σ22

∂ y2
+ θ2

∂2 p

∂ y2
,

θ0 = − λ0

4 (λ0 + µ)
, θ1 =

λ0 + 2µ

4 (λ0 + µ)
, θ2 =

µ β

2 (λ0 + µ)
,

(3)
where λ0 = λf − β2m is the Lamé coefficient of the dry matrix.

On the other hand, the conservation of momentum yields










ρ
∂ vs

∂ t
+ ρf

∂w

∂ t
= ∇σ,

ρf
∂ vs

∂ t
+ ρw

∂w

∂ t
+

η

κ
w = −∇p,

(4)

where vs =
∂us

∂t
= (vs1, vs2)

T is the elastic velocity, and w = φ ∂
∂ t

(uf −us) =
(w1, w2)

T is the filtration velocity. To be valid, the second equation of (4)
requires that the spectrum of the waves lies mainly in the low-frequency
range, involving frequencies lower than

fc =
η φ

2 π a κ ρf
. (5)

If f ≥ fc, more sophisticated models are required [5, 29]. In practice, the
viscosity of the fluid is always non-zero; nevertheless, considering η = 0 can
be relevant for two reasons:

• if f ≫ fc, the viscous forces are smaller than the inertial forces [17, 34]
and can be neglected to a first approximation;
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• the exact solutions of poro-elastodynamic equations are computed more
accurately if the saturating fluid is inviscid, which is attractive to val-
idate the numerical methods.

2.2. Evolution equations

A velocity-stress formulation is followed: from (1) and (4), we obtain the
system of PDEs































































































































∂ vs1
∂ t

− ρw
χ

(

∂ σ11

∂ x
+

∂ σ12

∂ y

)

− ρf
χ

∂ p

∂ x
=

ρf
χ

η

κ
w1,

∂ vs2
∂ t

− ρw
χ

(

∂ σ12

∂ x
+

∂ σ22

∂ y

)

− ρf
χ

∂ p

∂ y
=

ρf
χ

η

κ
w2,

∂ w1

∂ t
+

ρf
χ

(

∂ σ11

∂ x
+

∂ σ12

∂ y

)

+
ρ

χ

∂ p

∂ x
= −ρ

χ

η

κ
w1,

∂ w2

∂ t
+

ρf
χ

(

∂ σ12

∂ x
+

∂ σ22

∂ y

)

+
ρ

χ

∂ p

∂ y
= −ρ

χ

η

κ
w2,

∂ σ11

∂ t
− (λf + 2µ)

∂ vs1
∂ x

− β m
∂ w1

∂ x
− λf

∂ vs2
∂ y

− β m
∂ w2

∂ y
= fσ11

,

∂ σ12

∂ t
− µ

(

∂ vs2
∂ x

+
∂ vs1
∂ y

)

= fσ12
,

∂ σ22

∂ t
− λf

∂ vs1
∂ x

− β m
∂ w1

∂ x
− (λf + 2µ)

∂ vs2
∂ y

− β m
∂ w2

∂ y
= fσ22

,

∂ p

∂ t
+m

(

β
∂ vs1
∂ x

+
∂ w1

∂ x
+ β

∂ vs2
∂ y

+
∂ w2

∂ y

)

= fp,

(6)

where fσ11
, fσ12

, fσ22
and fp are force densities, ρw = a

φ
ρf , ρ = φ ρf+(1−φ) ρs,

and χ = ρ ρw − ρ2f > 0. Setting

U = (vs1, vs2, w1, w2, σ11, σ12, σ22, p)
T ,

F = (0, 0, 0, 0, fσ11
, fσ12

, fσ22
, fp)

T ,
(7)

equations (6) are written as a first-order non-homogeneous linear system

∂

∂ t
U+A

∂

∂ x
U+B

∂

∂ y
U = −SU + F, (8)

where A, B and S are 8× 8 real matrices detailled in Appendix A.
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The energy of poroelastic waves can be deduced from (6). Without any
source terms (F = 0) and setting C ε = σ + β p I, it is proven in [16] that

E(t) =
1

2

∫

R2

(ρvs
2+C ε : ε) dS+

1

2

∫

R2

(ρww
2+

1

m
p2) dS+

∫

R2

ρfvs.w dS (9)

is an energy that satisfies

dE

d t
= −

∫

R2

η

κ
w2 dS. (10)

Consequently, E is conserved when the viscous effects are neglected (η = 0)
and is a decreasing function otherwise.

2.3. Heterogeneous media

n

t
P

Ω
0

Ω
1

Γ

Figure 1: Interface Γ between two poroelastic media Ω0 and Ω1

.

The physical parameters defined in section 2.1 are piecewise constant and
can be discontinuous across interfaces. In what follows, we will focus on two
domains Ω0 and Ω1, which are separated by a stationary interface Γ described
by a parametric equation (x(τ), y(τ)) (figure 1). At any point P on Γ, the
unit tangential vector t and the unit normal vector n are

t =
1

√

x′2 + y′2

(

x
′

, y
′

)T

, n =
1

√

x′2 + y′2

(

y
′

, −x
′

)T

. (11)

The derivatives x
′

= d x
d τ

and y
′

= d y
d τ

are assumed to be continuous everywhere
along Γ, and to be differentiable as many times as required.

The evolution equations (6) must be completed by a set of jump con-
ditions. The simple case of perfect bonding and perfect hydraulic contact
along Γ is considered here, modeled by the jump conditions [18]:

[vs] = 0, [w.n] = 0, [σ.n] = 0, [p] = 0. (12)
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Enforcing these conditions is one of the main objective of the immersed
interface method presented in section 3.3.

2.4. Dispersion analysis

(a) (b)
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Figure 2: Phase velocities (a) and attenuations (b) of the solutions to Biot’s model cor-
responding to the porous medium Ω0 in table 2. pf : fast compressional wave; ps: slow
compressional wave; s: shear wave. In (a), the horizontal dotted lines refer to the eigen-
values cpf , cps and cs of A and B.

The eigenvalues of A and B in (8) are real: ±cpf , ±cps, ±cs, and 0
(multiplicity 2), where cpf > max(cs, cps) > 0. If η 6= 0, the spectral radius
R(S) = η

κ
ρ
χ
can be very large and then the system (8) is stiff.

A plane wave d ei(ω t−k. r) is injected in (6), where k = k e and d are the
wavevector and the polarization, respectively; r is the position, ω = 2 π f is
the angular frequency and f is the frequency. If d is collinear with k, the
dispersion relation of compressional waves is obtained:

Ak4 +B(ω) k2 + C(ω) = 0,

A = κm
(

λf + 2µ− β2m
)

, C(ω) = χκω4 − i η ρ ω3,

B(ω) = −κ ((λf + 2µ) ρw +m (ρ− 2 β ρf))ω
2 + i η (λf + 2µ)ω,

(13)

where the roots ±kpf and ±kps satisfy 0 < ℜe {kpf} < ℜe {kps}. If d is

7



orthogonal with k, the dispersion relation of the shear wave is obtained:

k =
1√
µ

(

AC −B2

C

)1/2

,

A = ω2 (ρ+ φ ρf(a− 2))− i ω φ2 η

κ
,

B = −ω2 φ ρf (a− 1) + i ω φ2 η

κ
,

C = ω2 φ ρf a− i ω φ2 η

κ
,

(14)

where the roots are ±ks, ℜe {ks} > 0. Based on (13) and (14), the phase
velocities c = ω/ℜe {k} and the attenuations α = ℑm {k} of each wave are
defined. In the remainder of this article, the subscripts pf , ps and s denote
fast compressional, slow compressional and shear waves, respectively.

The phase velocities cpf(f), cps(f) and cs(f) are monotonically increasing
functions, tending asymptotically towards the eigenvalues cpf , cps and cs. If
η = 0, the three waves are non-dispersive and non-dissipative, and the energy
of poroelastic waves (9) is conserved. If η 6= 0, the fast compressional wave
and the shear wave are weakly dispersive and dissipative. The slow compres-
sional wave, however, is highly modified by the viscosity of the saturating
fluid. If f ≪ fc, then cps(f) ≪ cps, and the slow compressional wave tends
towards a static diffusive mode [10]. At greater frequencies, cps is larger but
the attenuation increases. These properties are summarized in figure 2.

In the low-frequency range, the direct contribution of the slow compres-
sional wave to the overall wave propagation processes is therefore negligible
when considering an homogeneous medium. However, the influence of the
slow wave becomes crucial in heterogeneous media [6]. The slow compres-
sional wave, generated during the interaction between the propagative waves
and the scatterers, remains localized around the interfaces. Consequently,
this slow wave has a major influence on the balance equations at the in-
terfaces, modifying crucially the behavior of fast compressional and shear
diffracted waves. An accurate computation of the slow wave is therefore
necessary, as shown in the numerical tests of section 4.

3. Numerical modeling

3.1. Numerical scheme

To integrate the system (8), a uniform grid is introduced; the spatial mesh
sizes are ∆ x,∆ y, and the time step is ∆ t. A straightforward discretization
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of (8) by an explicit time scheme leads to the following stability condition:

∆t ≤ min

(

Θ∆x

cpf
,

2

R(S)

)

, (15)

where Θ is obtained by a Von-Neumann analysis of stability when S = 0. In
(15), the bound induced by the spectral radius of S can be very restrictive. In
sandstone saturated with bitumen, for example, the maximal CFL number
is roughly cpf ∆t/∆x ≈ 10−12 ≪ Θ, which is intractable for computations.

We follow here a more efficient strategy based on second-order Strang’s
splitting [23], solving alternatively the hyperbolic system

∂

∂ t
U +A

∂

∂ x
U +B

∂

∂ y
U = 0, (16)

and then the diffusive system with a source term

∂

∂ t
U = −SU + F. (17)

The linear system (16) is solved by applying any scheme for hyperbolic sys-

tems, giving U
n+1/2
i,j . In the numerical experiments performed in section 4, a

fourth-order ADER scheme is used [42], which involves a centered stencil of
25 nodes. On Cartesian grids, this scheme amounts to a fourth-order Lax-
Wendroff scheme [28]. It is dispersive of order 4 and dissipative of order 6,
and its stability limit is Θ = 1 [43, 25]. Other single-grid schemes can be
used without any restrictions.

Since the physical parameters do not vary with time, the diffusive system
(17) is solved exactly. For simplicity, null force density is taken: F = 0. In
this case, p and σ are unchanged, whereas the velocities become (k = 1, 2)

vn+1
k = v

n+1/2
k +

ρf
ρ

(

1− e−
η
κ

ρ
χ
T
)

w
n+1/2
k ,

wn+1
k = e−

η
κ

ρ
χ
T w

n+1/2
k ,

(18)

where T depends on the time step (see section 3.4). The splitting (16)-(17)
along with exact integration (18) recovers the optimal condition of stability:
cpf ∆ t/∆ x ≤ Θ.

Since the matrices A and B do not commute with S, the theoretical
order of convergence falls from 4 to 2 when the viscosity is non-negligible.
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Using a fourth-order accurate scheme such as ADER 4 is nevertheless advan-
tageous, compared with a second-order scheme such as Lax-Wendroff: the
stability limit is improved, and numerical artifacts (dispersion, attenuation,
anisotropy) are greatly reduced.

In [38], the authors notice that the first-order splitting does not lead to a
correct representation of the slow mode at low frequencies. Nevertheless, the
numerous one-dimensional examples provided in [12] demonstrate that the
second-order splitting accurately represents the static mode when a sufficient
number of discretization points per wavelength is used. This can be obtained
by using a local space-time refinement presented in the following section.

3.2. Mesh refinement

The slow wave has much smaller spatial scales of evolution than the wave-
length of the other waves. A very fine grid is therefore required to account for
its evolution. Since the use of a fine uniform grid on the whole computational
domain is out of reach, grid refinement provides a good alternative. In ad-
dition, the slow wave remains localized near the interfaces (section 2.4), and
hence grid refinement is necessary only around these places. Lastly, even if
the slow wave propagates (η = 0) the property cpf ≫ cps is usually satisfied:
consequently, a fine mesh near the interface is still useful to perform accurate
extrapolations, as required by the immersed interface method (section 3.3).

We adopt here a space-time mesh refinement approach based on flux
conservation [1, 3], which is more naturally coupled to the flux-conserving
scheme developed to solve (16). The refined zones are rectangular Cartesian
patches with mesh sizes ∆ x / q,∆ y / q, where the integer q is the refinement
factor. To reduce the cpu time and to limit the numerical dispersion on
the coarse grid, a local time step ∆ t / q is used [22, 40]. When one time
step is done on the coarse grid, q time substeps are done on the refined
zone. The extrapolated values required to couple coarse and fine grids are
obtained by linear interpolation in space and time on the numerical values at
the surrounding nodes [25]. In the case of the Lax-Wendroff scheme applied
to the scalar advection equation, the stability of the coupling is proven in [2]
whatever q.

The additional cost induced by mesh refinement can become prohibitive,
both concerning the memory requirements and the computational time, be-
cause of the q substeps inside one time step. The value of q must be estimated
carefully in terms of the physical parameters. For this purpose, the wave-
lengths λpf(f0) = cpf(f0)/f0 and λps(f0) = cps(f0)/f0 are deduced from the
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dispersion analysis, where f0 is the central frequency of the source. The num-
ber of fine grid nodes per wavelength of the slow compressional wave and the
number of coarse grid nodes per wavelength of the fast compressional wave
must then be roughly equal:

λps(f0)

∆x / q
≈ λpf(f0)

∆x
⇒ q ≈ cpf(f0)

cps(f0)
. (19)

3.3. Immersed interface method

The discretization of the interfaces requires special care. A straightfor-
ward stair-step discretization of the interfaces introduces a first-order geo-
metrical error and yields spurious numerical diffractions. In addition, the
jump conditions (12) are not enforced numerically if no special treatment is
applied. Lastly, the smoothness requirements to solve (16) are not satisfied,
decreasing the convergence rate of the ADER scheme.

To remove these drawbacks while maintaining the efficiency of Cartesian
grid methods, we adapt an immersed interface method previously developed
in acoustics and elastodynamics [35, 26, 27, 25]. At the irregular points where
the ADER’s stencil crosses the interface Γ, the scheme will usemodified values
of the solution, instead of the usual numerical values. The modified values
are extrapolations, based on the local geometry of Γ and on r successive
derivatives of the jump conditions (12). The parameter r is discussed at the
end of this section.

Let us consider a point M(xI , yJ) ∈ Ω1 and its orthogonal projection P
onto Γ (figure 3). The algorithm to build the modified value at M is divided
into four steps.

Step 1: high-order interface conditions.
On the side Ωk (k = 0, 1), the boundary values of the spatial derivatives of
U up to the r-th order are put in a vector Ur

k with nv = 4 (r + 1) (r + 2)
components:

Ur
k = lim

M→P,M∈Ωk

(

UT , ...,
∂l

∂ xl−m ∂ ym
UT , ...,

∂r

∂ yr
UT

)T

, (20)

where l = 0, ..., r and m = 0, ..., l. Following this formalism, the zero-th
order jump conditions (12) are written

C0
1U

0
1 = C0

0U
0
0, (21)
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where the matrices of the jump conditions C0
k depend on the local geometry

of Γ:

C0
k(τ) =

















1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 y

′ −x
′

0 0 0 0
0 0 0 0 y

′ −x
′

0 0
0 0 0 0 0 y

′ −x
′

0
0 0 0 0 0 0 0 1

















. (22)

The jump condition (21) is differentiated with respect to time t, and then the
time derivatives are replaced by spatial derivatives thanks to the conservation
law (16). For example, we obtain

∂

∂ t
(C0

0U
0
0) = −C0

0A0
∂

∂ x
U0

0 −C0
0B0

∂

∂ y
U0

0, (23)

where A0 and B0 are the matrices in Ω0. The jump condition (21) is also
differentiated in terms of τ . Taking advantage of the chain-rule, we obtain
e.g.

d

d τ
(C0

0U
0
0) =

(

d

d τ
C0

0

)

U0
0 +C0

0

(

x
′ ∂

∂ x
U0

0 + y
′ ∂

∂ y
U0

0

)

. (24)

From (21), (23) and (24), we build matrices C1
k such that C1

1U
1
1 = C1

0U
1
0,

which provides first-order jump conditions. By iterating this process r times,
r-th order interface conditions are obtained

Cr
1U

r
1 = Cr

0U
r
0, (25)

where Cr
k are nc × nv matrices (k = 0, 1), and nc = 3 (r + 1) (r + 2). The

computation of matrices Cr
k is a tedious task when r ≥ 2, that can be greatly

simplified using computer algebra tools.

Step 2: high-order Beltrami-Michell equations.
The equation (3) is satisfied anywhere in a poroelastic medium. Under suffi-
cient smoothness requirements, it can be differentiated with respect to x and
y, as many times as required:

∂j σ12

∂ xj−i−1 ∂ yi+1 = θ0
∂j σ11

∂ xj−i ∂ yi
+ θ1

∂j σ22

∂ xj−i ∂ yi
+ θ2

∂j p

∂ xj−i ∂ yi

+θ1
∂j σ11

∂ xj−i−2 ∂ yi+2 + θ0
∂j σ22

∂ xj−i−2 ∂ yi+2 + θ2
∂j p

∂ xj−i−2 ∂ yi+2 ,

(26)
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where j ≥ 2 and i = 0, · · · , j − 2. The equations (26) are also satisfied
along Γ. They can be used therefore to reduce the number of independent
components in Ur

k. For this purpose, we define the vectors Vr
k such that

Ur
k = Gr

k V
r
k, (27)

where Gr
k are nv × (nv − nb) matrices, and nb = r (r − 1)/2 if r ≥ 2, nb = 0

otherwise. Based on (20) and (26), an algorithm to compute the non-zero
components of Gr

k is proposed in Appendix B.

Step 3: high-order boundary values.
Based on (25) and (27), the vectors of independent boundary values satisfy

Sr
1V

r
1 = Sr

0 V
r
0, (28)

where Sr
k = Cr

k G
r
k are nc × (nv − nb) matrices. Since the system (28) is

underdetermined, the solution is not unique, and hence it can be written

Vr
1 =

(

(Sr
1)

−1 Sr
0 |KSr

1

)

(

Vr
0

Λr

)

, (29)

where (Sr
1)

−1 is the least-squares pseudo-inverse of Sr
1, KSr

1
is the matrix

filled with the kernel of Sr
1, and Λr is a set of nv − nc − nb Lagrange multi-

pliers that represent the coordinates of Vr
1 onto the kernel. A singular value

decomposition of Sr
1 is used to build (Sr

1)
−1 and the kernel KSr

1
[37].

Step 4: construction of modified values.
Let Πr

ij be the matrix of r-th order 2D Taylor expansions

Πr
i,j =

(

1, ...,
1

l ! (l −m) !
(xi − xP )

l−m(yj − yP )
m, ...,

(yj − yP )
r

r !

)

I8, (30)

where I8 is the 8 × 8 identity matrix, l = 0, ..., r and m = 0, ..., l. The
modified value at (xI , yJ) is a smooth extension of the solution on the other
side of Γ (figure 3), and it writes:

U∗

I,J = Πr
I,J U

r
0 = Πr

I,J G
r
0V

r
0. (31)

The vector Vr
0 in (31) remains to be estimated in terms of the boundary

conditions and of the numerical values at surrounding grid points. For this

13
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+

+
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+

I

J M(I,J)

d

Figure 3: Irregular point M(xI , yJ) ∈ Ω1 and its orthogonal projection P onto Γ. The
grid nodes used to compute U

∗

I,J are inside the circle with radius d and centered on P ;
they are denoted by +.

purpose, we consider the disc D centered at P with a radius d, that contains
Nd grid points. At the grid points of D ∩Ω0, r-th order Taylor expansion of
the solution at P gives

U(xi, yj, tn) = Πr
i,j U

r
0 +O(∆ xr+1),

= Πr
i,j G

r
0 (1 | 0)

(

Vr
0

Λr

)

+O(∆ xr+1).
(32)

At the grid points of D ∩ Ω1, r-th order Taylor expansion of the solution at
P and the boundary conditions (29) give

U(xi, yj, tn) = Πr
i,j U

r
1 +O(∆ xr+1),

= Πr
i,j G

r
1

(

(Sr
1)

−1 Sr
0 |KSr

1

)

(

Vr
0

Λr

)

+O(∆ xr+1).
(33)
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Equations (32) and (33) are written in the matrix form

(U(., tn))D = M

(

Vr
0

Λr

)

+







O(∆ xr+1)
...

O(∆ xr+1)






, (34)

where M is a convenient 8Nd× (2nv − 2nb−nc) matrix. To ensure that the
system (34) is overdetermined, the radius d of the disc is chosen to satisfy

ε(d, r) =
8Nd

2nv − 2nb − nc
≥ 1. (35)

Exact values in (34) are replaced by numerical ones, and the Taylor rests are
removed. The least-squares inverse of M is denoted by M−1. The Lagrange
multipliers Λk are accounted in the construction of M, but are not involved
in the definition of the modified value (31). As a consequence, they can be
removed and the (nv − nb)× 8Nd restriction M−1 of M−1 is defined by

Vr
0 = M−1 (Un)

D
. (36)

Lastly, the modified value follows from (31) and (36):

U∗

I,J = Πr
I,J G

r
0M

−1 (Un)
D
. (37)

Comments and practical details.

1. A similar algorithm is applied at each irregular point along Γ. The
sizes of the matrices involved are summarized in table 1. Since the
jump conditions do not vary with time, the evaluation of the matrices
in (37) is done during a preprocessing step. Only small matrix-vector
products are therefore required at each time step. After optimization
of the computer codes, this additional cost is made negligible, lower
than 1% of the time-marching.

2. The matrix M in (34) depends on the subcell position of P inside the
mesh and on the jump conditions at P , involving the local geometry
and the curvature of Γ at P . Consequently, all these insights are incor-
porated in the modified value (37), and hence in the scheme.
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Quantity Size

nv 4 (r + 1) (r + 2)
nc 3 (r + 1) (r + 2)
nb r (r − 1) / 2 if r ≥ 2, 0 else
Cr

k nc × nv

Gr
k nv × (nv − nb)

Sr
k nc × (nv − nb)

Πr
k 8× nv

1 (nv − nb)× (nv − nb)
0 (nv − nb)× (nv − nc − nb)
M 8Nd × (2nv − 2nb − nc)

M−1 (nv − nb)× 8Nd

Table 1: Quantities involved in the computation of the modified values (section 3.3).

3. The simulations indicate that overestimation of ε in (35) has a crucial
influence on the stability of the immersed interface method. Various
strategies can be used to ensure (35), for instance an adaptive choice
of d depending on the local geometry of Γ at P . We adopt here a
simpler strategy, based on a constant radius d. Taking r = 2, numerical
experiments have shown that d = 3.2∆ x is a good candidate, while
d = 4.5∆ x is used when r = 3. In this case, we obtain typically
Nd ≈ 20 and ε ≈ 4.

4. The order r plays an important role on the accuracy of the coupling
between the immersed interface method and a s-th order scheme. If r ≥
s, then a s-th order local truncation error is obtained at the irregular
points. This condition can be slightly relaxed: r = s−1 still ensures a s-
th order overall accuracy [19]. As a consequence, a fourth-order ADER
scheme (s = 4) requires a third-order immersed interface method (r =
3) to maintain fourth-order convergence.

5. A GKS analysis of stability has been performed in 1D in the case of
an inviscid saturating fluid [25]. Extending this approach to 2D prob-
lems with viscous saturating fluids is out of reach. Various numerical
experiments, however, indicate the stability of the method under the
usual CFL condition (section 3.1), if two requirements are satisfied: (i)
the number of grid nodes used for extrapolations is sufficiently large,
as stated in point 3; (ii) the Beltrami-Michell equations (27) are used.
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3.4. Summary of the algorithm

The numerical strategy presented in this section couples three numerical
methods: a finite difference numerical scheme with splitting (section 3.1), a
space-time mesh refinement (section 3.2), and an immersed interface method
(section 3.3). To clarify the interactions between these methods, the global
algorithm is summarized as follows:
⊲ Preprocessing

- Detection of irregular grid points

- Computation of extrapolation matrices in (37)

- Initialization of the solution at t = 0

- Diffusive step (18) where T = ∆ t / 2 on the coarse grid

- Diffusive step (18) where T = ∆ t / (2 q) on the refined grids

⊲ Time iterations

• Coarse grid:

- Computation of modified values (37) if present

- Solving the propagative step (16)

- Diffusive step (18) where T = ∆ t

• On each refined grid, q subtime iterations:

- Space-time interpolations at the grid boundaries

- Computation of modified values (37)

- Solving the propagative step (16)

- Diffusive step (18) where T = ∆ t / q

⊲ End of time iterations

- Diffusive step (18) where T = ∆ t / 2 on the coarse grid

- Diffusive step (18) where T = ∆ t / (2 q) on the refined grids
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4. Numerical experiments

4.1. Configurations

Five tests are proposed along this section. In Test 1, the convergence
order of the ADER scheme coupled with the immersed interface method
is measured. Test 2 illustrates the different kind of waves in homogeneous
media, and also the influence of the local space-time refinement. Test 3
investigates the numerical stability of the global algorithm. Diffraction of a
plane wave by one (Test 4) and four (Test 5) cylindrical scatterers illustrates
the accuracy and the physical relevance of the proposed numerical methods.

The physical parameters given in table 2 correspond to Cold Lake sand-
stone and shale saturated with water [14], respectively. In some experiments,
an inviscid saturating fluid is artificially considered: η = 0 Pa.s, the other
parameters being unchanged. As recalled in section 2.1, this limit-case has
physical significance only in the high-frequency range. It is mainly addressed
here for a numerical purpose.

Parameters Ω0 Ω1

ρs (kg/m
3) 2650 2211

µ (Pa) 2.926 109 3.539 109

ρf (kg/m3) 1040 1040
η (Pa.s) 1.5 10−3 10−3

φ 0.335 0.05
a 2 2
κ (m2) 10−11 5. 10−12

λf (Pa) 6.1425 109 4.689 109

β 0.9558 0.0527
m (Pa) 6.491 109 9.852 109

cpf (m/s) 2384.1 2350.4
cps (m/s) 758.9 486.4
cs (m/s) 1229.0 1290.0
fc (Hz) 3844.9 765.1

Table 2: Physical parameters of the matrix (Ω0) and of the scatterer (Ω1), corresponding
to sandstone and shale saturated with water, respectively.

Once the spatial mesh sizes ∆ x and ∆ y are chosen on the coarse grid,
the time step follows from the CFL number in Ω0: cpf0∆ t/max (∆ x,∆ y) =
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0.95 < 1. If η 6= 0, the maximum CFL number induced by (15) is equal to
0.5: consequently, the simulations done here with the splitting (16)-(17) are
twice faster than with unsplitted methods.

The grids are excited by two means: either a plane fast compressional
wave, either a point source that generates cylindrical waves. Details of the
excitation method are given in Appendix C. In the case of an incident plane
wave, the exact expression given in Appendix C is also enforced numerically
on the edges of the computational domain. No special attention is paid to
simulate outgoing waves, for instance with Perfectly-Matched Layers [31, 46].
In all the presented tests, the size of the domain and the number of iterations
are chosen to avoid the spurious reflections of diffracted waves with the outer
frontiers.

4.2. Test 1: convergence measurements

In Test 1, we focus on the coupling between the ADER scheme (section
3.1) and the immersed interface method (section 3.3). For this purpose, we
consider a domain [0, 400] m2 cut by a plane interface with slope 60 degrees.
The saturating fluids are inviscid: exact solutions can be computed very
accurately without Fourier synthesis, and splitting errors of the scheme are
avoided. The source is plane (C.2), with parameters: γ = 10−3, f0 = 40 Hz,
t = 3.3 10−2 s, and θ = −30 degrees (figure 4-a). Consequently, the incident
wave propagates normally to the interface, leading to a 1-D configuration;
from a numerical point of view, however, the problem is fully bidimensional.

The computations are done on a uniform grid of N × N points, during
N/4 time steps. Comparisons with the exact values of the pressure p are
done on the subdomain [50, 350] m× [150, 250] m, in order to avoid spurious
effects induced by the edges of the computational domain (figure 4-b). The
measures involve reflected and transmitted fast and slow compressional waves
generated by the interface (no shear wave is generated in 1D); these waves
are highly sensitive to the discretization of the jump conditions.

Errors in l2 norm and convergence rates are reported in table 3 and drawn
on figure 5. Various values of r are investigated; r = 0 means that no
immersed interface method is applied; in this case, first-order accuracy is
obtained. As stated in section 3.3, fourth-order accuracy is maintained if
r = 4 − 1 = 3, i.e if third-order extrapolations are used in the immersed
interface method. In the present test case, r = 2 is sufficient to obtain the
same level of accuracy on a large range of grid size. Nevertheless, this could
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(a) (b)

Figure 4: Test 1. Snapshots of p at the initial instant (a) and at the instant of measure
(b). The white rectangle denotes the zone where convergence errors are measured.

be untrue in other contexts, and hence we will always use r = 3 in the
following simulations.

4.3. Test 2: mesh refinement

In the second test, we focus on the coupling between the ADER scheme
(section 3.1) and the mesh refinement (section 3.2). For this purpose, a
homogeneous medium Ω0 on a domain [−250, 250] m2 is excited by the force
density (C.4). The parameters of the source are: xs = ys = 0, f0 = 40 Hz,

ζ =
cpf0
15 f0

, r0 = 2 ζ , and γ = 103. The computational domain is discretized

on a coarse mesh of 5002 points. Two locally refined areas are added: one
around the source point G1 = [−25, 25]2, and one at G2 = [80, 130]× [80, 120].
Both grids are refined by a factor q = 5, leading to 2552 points in G1 and
205× 255 points in G2.

Figure 6 shows snapshots of the fields after 280 iterations. At this time
t ≃ 4.4 / f0, the fast compressional wave has also crossed the grid G2. In the
left column, one takes η = 0, and consequently all the waves generated by
the source propagate radially. In the right column, the viscosity is non zero,
and the slow compressional wave remains localized around the source point.
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N r = 0 order r = 1 order r = 2 order r = 3 order

400 4.894 100 - 6.527 100 - 6.107 100 - 5.067 100 -

800 1.247 100 1.973 1.667 100 1.961 1.065 100 2.520 8.642 10−1
2.552

1200 6.520 10−1
1.599 6.758 10−1

2.242 2.273 10−1
3.809 1.936 10−1

3.690

1600 4.770 10−1
1.086 3.617 10−1

2.173 7.995 10−2
3.632 6.835 10−2

3.619

2000 3.818 10−1
0.998 2.254 10−1

2.119 3.344 10−2
3.906 2.888 10−2

3.861

2400 3.128 10−1
1.093 1.509 10−1

2.201 1.564 10−2
4.168 1.414 10−2

3.917

2800 2.696 10−1
0.964 1.097 10−1

2.069 9.157 10−3
3.473 7.697 10−3

3.945

3200 2.390 10−1
0.902 8.431 10−2

1.971 5.598 10−3
3.685 4.504 10−3

4.013

3600 2.115 10−1
1.038 6.573 10−2

2.114 3.613 10−3
3.718 2.840 10−3

3.915

4000 1.928 10−1
0.879 5.362 10−2

1.933 2.485 10−3
3.552 1.866 10−3

3.986

Table 3: Test 1. Convergence rate in l2 norm. No immersed interface method (r = 0),
linear (r = 1), quadratic (r = 2) or cubic (r = 3) immersed interface method.

This wave is clearly observed on the pressure field, but is also present in the
stress fields although not visible on the corresponding panels of figure 6.

In order to evaluate the influence of the refined areas, a reference solution
is computed using a fine mesh ∆x = ∆y = 1/5 m on the whole computational
domain. As observed in figure 7-(a),(b), the local space-time refinement ap-
plied in G1 and G2 does not lead to significant spurious reflections during the
propagation of the waves. On the contrary and as expected, the refinement
around the source point leads to a much better resolution of the slow wave
in the viscous case: see figure 7-(c).

In conclusion, mesh refinement coupled with the ADER scheme (with or
without splitting) accurately represents the behavior of the different poroe-
lastic waves in an homogeneous medium, even though they present a spatially
complex structure, as observed in figure 7-(d).

4.4. Test 3: stability of the complete algorithm

Some theoretical results based on GKS theory exist concerning the sta-
bility of immersed interface methods or local mesh refinement [19, 2, 44,
24, 3, 25]. However, these analyses have been done mainly in the case of
one-dimensional model problems and basic numerical schemes. The present
algorithm combines more sophisticated numerical methods in 2D, and hence
GKS analysis is out of reach. The only reasonable way to confirm the stability
of the full method is to perform numerical perturbation tests.
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Figure 5: Test 1. Error measured in l2 norm versus the number of points Nx, with various
order r of the immersed interface method. Dotted line corresponds to 4-th order slope.

For this purpose, we consider a heterogeneous porous media made up by
a matrix Ω0 with a cylindrical scatterer Ω1 of radius r = 10 m, centered in
a domain [−50, 50]m2. In both Ω0 and Ω1, the viscosity of the saturating
fluids are taken into account (η 6= 0). All the components of U (7) are
initialized randomly at each grid points, and the source F is set to zero.
The computational domain [−50, 50]m2 is discretized by a coarse grid. The
scatterer is included in a grid G1 of size 15 × 15 m2 with a large refinement
factor q = 9.

In figure 8, the energy of poroelastic waves (9) is displayed during 3 104

iterations. Theoretically, this energy should slowly decrease, depending on w
in (10). At the beginning of the simulations, a large decrease of E is observed.
It is logically induced by the random non-smooth initial field, which generates
a large numerical dissipation. After roughly 1000 time steps, a smooth field
is reached and the mechanical energy slowly decreases. This confirms the
stability of the full numerical method, involving the ADER scheme with
splitting, mesh refinement, and immersed interface method.

4.5. Test 4: diffraction of a plane wave by a cylinder

A cylindrical scatterer Ω1 of radius 40 m is centered at point (0, 0) in
the computational domain [−200, 200]m2. The source is a plane wave (C.2)

22



p p

σ11 σ11

σ12 σ12

Figure 6: Test 2. Snapshots of p, σ11 and σ12 of the fast (pf ), slow (ps), and shear (s)
waves emitted by a source point. Left column: viscosity η = 0. Right column: viscous
case. Dashed areas indicate the location of the refined grids G1 and G2.
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Figure 7: Test 2 in the inviscid case, corresponding to the left column of figure 6. Stress
σ11 along lines y = 30 m (a) and y = 130 m (b). Comparison between the fine grid
reference solution and the solution obtained with a coarse grid and two refined areas of
factor q = 5 (c). 3D representation of σ11 (d).
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Figure 8: Test 3. Time evolution of the computed total energy (9).

initially in medium Ω0, with parameters: γ = 1, f0 = 40 Hz, t = −2.09 10−2

s, and θ = 0 degree. The initial conditions are illustrated in figure 9 (a-b).
In figure 9, the viscosity has been canceled in both media Ω0 and Ω1. In

such a configuration, the analytical solution of (7) can be computed using
Fourier and Bessel expansions and is used to validate the simulations. The
diffracted waves propagate with velocities cpf , cps and cs given in table 2. To
ensure the same number of points per wavelength for all the diffracted waves
(see section 3.2), the computational domain is locally refined by inserting the
cylinder in the grid G1 = [−45, 45]2 with a refinement factor q = 5, deduced
from relation (19) and table 2. The influence of this refinement combined
with the immersed interface method is clearly visible in figure 9.

Without refinement nor interface method (q = 1, r = 0, left column),
the waves created during the interaction with the scatterer are polluted by
spurious numerical artifacts. With q = 5 and r = 3 (right column), these
non-physical perturbations disappear and the reflected-transmitted waves
are correctly computed. Comparisons with the exact solution presented on
figure 10 confirm the accuracy of the simulation. Without mesh refinement
nor immersed interface method, inaccurate results are obtained, especially for
the reflected fast compressional wave where a shift of about 5 m is observed
(figure 10-(b)).

In figure 10 -(c) and (d), the time evolution of the pressure registered
at the point (−60, 60) is presented from t = 0.028 s, in order to avoid the
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Figure 9: Test 4, inviscid fluids. (a): p at initial time. (b): p along the line y = 0;
vertical lines denote the frontiers of the scatterer. (c-d): p after 180 iterations. (c): no
refinement nor interface method (q = 1, r = 0). (d): refinement factor q = 5 and third
order immersed interface method (r = 3). Dotted square represents the frontiers of the
refined domain. The cross denotes the location of the receiver.
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Figure 10: Test 4, inviscid fluids. (a): p on the line y = 0 after 180 iterations. (b): zoom
around the reflected fast compressional wave. (c): time evolution of p recorded at receiver
(x = −60, y = 60) from t = 0.028 s to the final instant. (d) zoom on the time evolution
of scattered waves.
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incident initial wave. We observe the fast reflected wave, followed by the slow
wave and a combination of diffracted fast and slow waves. Once again, the
full strategy captures accurately all the temporal variations of the solution,
while the basic algorithm gives very poor results, especially concerning the
waves diffracted by the scatterer (see figure 10-(d)).

The same configuration is now considered by taking into account the vis-
cosity of the saturating fluids (see table 2). Based on the dispersion analysis
performed in section 2.4, the values of the phase velocity at f0 = 40 Hz give
a refinement factor q ≈ 22 in the grid G1 to satisfy our refinement criterion
(19). Snapshots of p and σ11 after 180 iterations are given on figure 11,
showing different structures than in the inviscid case presented in figure 9.
The diffracted fast compressional and shear waves propagate, while the slow
compressional wave remains localized around the scatterer.

The spatial structure of this diffusive wave is clearly visible in figure 11-
(c),(d). Figure 11-(e) focuses on the pressure component of the slow wave
around the interface. It is observed that the numerical method applied with-
out mesh refinement nor interface treatment gives inaccurate results about
this static wave. This is also the case of the propagative reflected compres-
sional wave shown in figure 11-(f). The computed fields converge when the
refinement factor in G1 increases. With refinement factors q larger than 15,
the results are mostly indistinguishable, and hence they are not represented
here. With q = 15, the refined grid G1 contains 13652 discretization points
and involves 19184 irregular points in the immersed interface algorithm.

The time evolution of the mechanical energy (9) is illustrated in figure
12. The times ti = 0.008 s and tf ≃ 0.066 s correspond respectively to the
instants when the plane wave begins to interact with the scatterer and when
it has crossed the scatterer entirely. In the case of inviscid saturating fluids
(blue circles on figure 12), the energy is almost conserved, as expected, and
only a decrease of 0.15% is observed. In the viscous case (blue diamond
on figure 12), the energy decreases when the plane wave interacts with the
scatterer, and remains constant otherwise. This behavior is logical, since the
rate of decrease of energy in (10) is governed by w. In homogeneous medium,
w is extremely small compared with other fields, and hence dE

d t
≈ 0. On

the other hand, during the interaction between the wave and the scatterer,
the filtration velocity of the slow wave generated at the interface has an
important amplitude. The theoretical decrease of energy, obtained by a
numerical integration of equation (10), is shown using a dotted line in figure
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Figure 11: Test 4, viscous fluids. Snapshot of p (a) and σ11 (b) after 180 iterations, with a
refinement factor q = 15 and a third order interface method (r = 3). Snapshot of p around
the scatterer (c), (d). Zoom of p on the line y = 0 around the reflected fast compressional
wave (e) and around the diffusive slow wave around the right interface (f).
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12 and is very close to the observed decrease of E. This confirms that our
numerical strategy accurately models the dissipation of mechanical energy.
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Figure 12: Test 4. Time variation of the computed mechanical energy E(t)/E(0) defined
by relation (9) for inviscid and viscous case. Numerical integration of relation (10) is also
represented by the dashed curve.

4.6. Test 5: multiple scatterers

In the last test, the ability of the proposed numerical strategy to handle
complex geometries is illustrated. Four cylindrical scatterers of medium Ω1

are inserted in the matrix Ω0. Each cylinder is surrounded by a refined grid.
The refinement factor is q = 5 in the inviscid case, and q = 10 in the case of
viscous saturating fluids. The pressure field is represented in figure 13. The
behavior of the fast compressional waves is qualitatively the same in both
cases, unlike the slow waves:

• in the inviscid case (figure 13, left column), the slow waves propagate
and interact with the other scatterers, which generates new sets of
reflected-transmitted waves. Accurate computation of these successive
interactions is obtained thanks to the combination of the local refine-
ment procedure and the immersed interface method;

• in the viscous case (figure 13, right column), the slow waves remain
localized around the interfaces, and hence they do not participate di-
rectly to the scattering process. At time t2, they have mostly disap-
peared due to their physically diffusive behavior. As indicated by test
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t1 t1

t2 t2

Figure 13: Test 5. Snapshots of p at two different times t1 ant t2, corresponding to 140
and 280 iterations. Left column: inviscid fluids; right column: viscous saturating fluids.

31



4, a fine modeling of these waves is nevertheless necessary in order to
compute accurately the propagative diffracted waves.

5. Conclusion

Numerical modeling of 2-D poroelastic waves was addressed numerically
in the time-domain. The evolution equations were issued from Biot’s theory,
assuming viscous efforts of Poiseuille type, which is valid essentially in the
low-frequency range. Three numerical tools were combined: a fourth-order
scheme with time-splitting, a space-time mesh refinement, and an immersed
interface method. The resulting method provides highly accurate simulations
of wave propagation in realistic configurations. Numerical experiments have
indicated that even if the slow waves remain localized around sources or in-
terfaces, the manner in which they are computed influences the propagative
waves, that are measured in practical applications. Academic cylindrical
geometries have been considered here; however, more complex smooth ge-
ometries can be handled without any restrictions, for example cubic splines.
Various extensions of the present work are suggested:

• The numerical methods presented here make it possible to simulate rel-
evant physical experiments. We have especially in mind the modeling
of multiple scattering in random media. Based on simulated data, the
properties of the effective medium equivalent to the disordered medium
under study can be deduced [11]. This numerical approach compares
advantageously with the methods usually followed by physicists: real
experiments are expensive, and analytical methods are restricted to
very small concentrations of scatterers [30]. The example given in sec-
tion 4.6 is obviously preliminary: interaction of a plane wave with
hundreds of scatterers needs to be addressed, which requires the par-
allelization of the algorithms.

• Poroelastic media in perfectly bonded contact are considered here.
More realistic conditions can be studied and properly enforced by the
immersed interface method, for instance sliding and imperfect bond-
ing [27], or imperfect hydraulic contact [6]. Comparison of numerical
simulation with experimental results could help to validate or improve
the models of contact, which constitutes a current issue in poroelastic-
ity. Generalizing our approach to the interface between a poroelastic
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medium and a fluid is another direction of work with large applications,
for instance in biomechanics.

• Incorporation of attenuation in the elastic skeleton is required to model
the real processes of dissipation [8]. For this purpose, memory variables
need to be introduced in the evolution equations (6).

• Lastly, the numerical modeling of the transient Biot equations in the
full range of validity of poroelasticity constitutes a natural extension
of the present work. At frequencies greater than fc in (5), a correction
of the viscosity proportional with the square root of frequency needs
to be introduced, as described e.g. by the JKD model [21, 15]. In the
time domain, the new evolution equations involve fractional derivatives
of order 1/2, whose efficient numerical evaluation is a major challenge
[29, 20, 33].
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Appendix A. Matrices involved in system (8)

Based on (6) and (7), the matrices in (8) write

A =

























0

−ρw/χ 0 0 −ρf/χ
0 −ρw/χ 0 0

ρf/χ 0 0 ρ/χ
0 ρf/χ 0 0

−(λf + 2µ) 0 −β m 0
0 −µ 0 0

−λf 0 −β m 0
β m 0 m 0

0

























,

B =

























0

0 −ρw/χ 0 0
0 0 −ρw/χ −ρf/χ
0 ρf/χ 0 0
0 0 ρf/χ ρ/χ

0 −λf 0 −β m
−µ 0 0 0
0 −(λf + 2µ) 0 −β m
0 β m 0 m

0

























,

S =
η

κ













0 0 −ρf/χ 0
0 0 0 −ρf/χ
0 0 ρ/χ 0
0 0 0 ρ/χ

0

0 0













.

(A.1)

Appendix B. Algorithm for the Beltrami-Michell conditions

The following algorithm is proposed to compute the non-zero components
of matrices Gr

k (k = 0, 1) involved in the Step 2 of the immersed interface
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method (see section 3.3):

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α = −1, β = −1,

for γ = 0, ..., r, for δ = 0, ..., γ

if δ = 0 then for ε = 1, ..., 8

α = α + 1, β = β + 1, Gr
k[α, β] = 1

if γ 6= 0 and δ 6= 0 and γ 6= δ then

if γ = 2 then ν = 0, η = 0,

else if δ = 1 then ν = 0, η = 1,

else if δ = γ − 1 then ν = 1, η = 0,

else ν = 1, η = 1,

for ε = 1, ..., 5

α = α+ 1, β = β + 1, Gr
k[α, β] = 1

α = α + 1, β = β − 8 + ν, Gr
k[α, β] = θ0

β = β + 2− ν, Gr
k[α, β] = θ1

β = β + 1, Gr
k[α, β] = θ2

β = β + 12, Gr
k[α, β] = θ1

β = β + 2− η, Gr
k[α, β] = θ0

β = β + 1, Gr
k[α, β] = θ2

α = α + 1, β = β − 9 + η, Gr
k[α, β] = 1

α = α + 1, β = β + 1, Gr
k[α, β] = 1

if γ 6= 0 and γ = δ then for ε = 1, ..., 8

α = α + 1, β = β + 1, Gr
k[α, β] = 1.

(B.1)

Appendix C. Implementation of sources

Two sources are considered. The first one involves a plane right-going
fast compressional wave, whose wavevector k makes an angle θ with the
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horizontal x-axis. Its time evolution is

h(t) =











4
∑

m=1

am sin(βm ω0 t) if 0 < t <
1

f0
,

0 otherwise,

(C.1)

where βm = 2m−1, ω0 = 2π f0; the coefficients am are: a1 = 1, a2 = −21/32,
a3 = 63/768, a4 = −1/512, ensuring C6 smoothness. The support of the
incident plane wave lies initially in Ω0. If η 6= 0, this wave is slightly dispersive
and its time-domain expression follows from a Fourier synthesis:

Û(r, ω) = γ













































− cos θ

− sin θ

φ (1− Ypf) cos θ

φ (1− Ypf) sin θ

kpf
ω

(

λf + 2µ cos2 θ + β mφ (Ypf − 1)
)

kpf
ω

2µ sin θ cos θ

kpf
ω

(

λf + 2µ sin2 θ + β mφ (Ypf − 1)
)

−kpf
ω

m (β + φ (Ypf − 1))













































ei (ω t−kpf .r) ĥ(ω),

(C.2)
where γ is an amplitude factor, kpf is the wavenumber (13) and

Ypf(ω) =
((1− φ) ρs + ρf β (a− 1)) ω2 − (λf + 2µ−mβ2) k2

pf + i ω φ β
η
κ

ρf (a β − φ)ω2 − i ω φ β
η
κ

.

(C.3)
When η = 0, kpf depends linearly on ω, and consequently Ypf and the vector
column in (C.2) no more involve ω: a straightforward time-domain expression
of the incident plane wave can be obtained.

As a second source, we also implement force densities acting on σ12 in
(6). The only non-null component in (7) is

fσ12
= g(x, y) h(t) (C.4)
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where g is a truncated gaussian centered at point (xs, ys):

g(x, y) =







γ e−(
r
ζ )

2

if r =
√

(x− xs)2 + (y − ys)2 ≤ r0,

0 otherwise,

(C.5)

and h is a Ricker signal:

h(t) =











(

2 π2f 2
0

(

t− 1

f0

)2

− 1

)

exp

(

−2 π2 f 2
0

(

t− 1

f0

)2
)

if 0 < t <
2

f0
,

0 otherwise.
(C.6)

This source generates cylindrical waves of all types: fast and slow compres-
sional waves, shear waves.
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