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Abstract

We discuss the numerical solution of the Schrödinger equation with a time-dependent Hamilton operator using
commutator-free time-propagators. These propagators areconstructed as products of exponentials of simple weighted
sums of the Hamilton operator. Owing to their exponential form they strictly preserve the unitarity of time-propagation.
The absence of commutators or other computationally involved operations allows for straightforward implementation
and application also to large-scale and sparse matrix problems. We explain the derivation of commutator-free expo-
nential time-propagators in the context of the Magnus expansion, and provide optimized propagators up to order eight.
An extensive theoretical error analysis is presented together with practical efficiency tests for different problems. Is-
sues of practical implementation, in particular the use of the Krylov technique for the calculation of exponentials, are
discussed. We demonstrate for two advanced examples, the hydrogen atom in an electric field and pumped systems
of multiple interacting two-level systems or spins that this approach enables fast and accurate computations.
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1. Introduction

The time-evolution of a driven quantum system is determinedby the Schrödinger equation

i∂tψ(t) = H(t)ψ(t) (1)

with a time-dependent Hamilton operatorH(t), which one tries to solve for a given initial wave functionψ(t0) and
timest ≥ t0. Prominent examples are atoms in laser fields, spins in magnetic fields or quantum dots contacted to AC
voltage sources (see e.g. Ref. [1] for an introductory discussion). The Schrödinger equation is a special case of a
general linear differential equation

∂tx(t) = A(t)x(t) (2)

with time-dependent coefficients, whereA(t) = −iH(t). Other examples from quantum mechanics are the Liouville-
von-Neumann equation for the density operatorρ(t) or master equations for dissipative systems [2]. Analytical so-
lutions of such equations can be found only in a very limited number of cases. In most situations one must resort to
numerical computations. In the present paper we study an efficient numerical solution technique, which is related to
the Magnus expansion but avoids the use of commutators.

The propagatorU(t1, t2) of Eq. (2) satisfies the initial value problem

∂t1U(t1, t2) = A(t1)U(t1, t2) , U(t0, t0) = I , (3)

with the identity operator, or matrix,I . The solutionsx(t) of Eq. (2) fulfill x(t1) = U(t1, t2)x(t2). We note the group
propertyU(t1, t2)U(t2, t3) = U(t1, t3).
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For time-independentA ≡ A(t) the propagator is given by a (matrix) exponential

U(t1 − t2) ≡ U(t1, t2) = exp [(t1 − t2)A] . (4)

The generalization of this expression for time-dependentA(t) is due to W. Magnus [3]. The Magnus expansion (we
refer the reader to the recent review [4]) expresses the propagator in the form

U(t) ≡ U(t, 0) = exp[Ω(t)] . (5)

Notice that we often set the initial timet0 = 0. Expressions for arbitrary initial timet0 are obtained by the variable
substitutiont 7→ t + t0. The operatorΩ(t) is given as an infinite series

Ω(t) =
∫ t

0
dt1A(t1) +

1
2

∫ t

0
dt1

∫ t1

0
dt2 [A(t1),A(t2)] + . . . (6)

involving nested commutators ofA(t) at different times. Only if [A(t1),A(t2)] = 0 for all t1, t2, Eqs. (5), (6) reduce to
the simpler expression Eq. (4). Otherwise the nested commutators provide the necessary correction terms.

The Magnus expansion is important from a theoretical and practical point of view. In many cases the differential
equation Eq. (2) has an underlying Lie group structure, where the propagatorU(t1, t2) is element of a Lie group
and A(t) of the associated Lie algebra. For the Schrödinger equation, skew-hermiticity ofA(t) = −iH(t) implies
unitarity ofU(t1, t2). Violating unitarity results leads to artificial decay or growth of relevant components of the wave
function, which spoils the stability of numerical time propagation. In particular, only unitary propagators preservethe
normalization of the wave function. The Magnus expansion respects the Lie group structure, since the exponential
functionΩ 7→ exp[Ω] mapsΩ(t), which as a sum of commutators ofA(t) is itself a Lie algebra element, onto a Lie
group elementU(t).

From the practical point of view, a truncation of the infiniteMagnus expansion provides an approximate propagator
Ũ(t + δt, t), which can be used to propagate a solutionx(t) over a small time-stepδt. For anNth-order approximation,
where the approximation error scales asδtN+1, all terms withN or less commutators in Eq. (6) must be kept. It
is the virtue of the Magnus expansion that for every truncation Ũ(t + δt, t) is a Lie group element (whenever a Lie
group structure is present). In this way the Magnus expansion allows for the systematic construction of geometric
integrators [5–7], which preserve Lie group structures.

The practical evaluation of the Magnus expansion is howeverrather involved. The number of terms inΩ(t) is large
already for moderate approximation order, and their calculation is complicated because of the nested commutators.
Our starting point for better numerical algorithms are approximations of the form

Ũ(t + δt, t) = eA1eA2 · · · · · eAs , (7)

where eachAi =
∑

n gi,nA(tn) is a (finite) linear combination ofA(t) at different timestn ∈ [t, t+δt] (which will later be
chosen as Gauss-Legendre quadrature points). Such commutator-free exponential time-propagators (CFETs) preserve
Lie group structures through the exponential form of the approximation but avoid the use of commutators. Their
application is thus straightforward and requires only slight adjustments of existing programs for the calculation of
matrix exponentials. No complicated scheme for the computation of nested commutators or the storage of intermediate
results is needed. CFETs are examples for Crouch-Grossman methods [7], and have been studied with a focus on linear
differential equations in Refs. [8, 9]. In particular the work ofBlanes and Moan [8], together with the review [4],
provided the initial motivation for the work reported here.

In the present paper we discuss CFETs from a practitioner’s point of view. Our intention is to provide a com-
prehensive account of the theoretical background and a demonstration of the practical usefulness of this approach. A
specific goal is the construction of optimized high-order CFETs, which can be applied to the Schrödinger equation in
general situations where the resource consumption of naivecomputational approaches, e.g. a second-order approx-
imation, would be intolerably large. To pursue these goals we first revisit the derivation of the Magnus expansion
(Secs. 2, 3) and of the order conditions for the CFET coefficients (Sec. 4). A notable deviation from the literature is
the replacement of a power series expansion ofA(t) with an expansion in Legendre polynomials. Their orthogonality
properties allow to simplify the presentation in two important aspects. First, the rather non-obvious fact that, effec-
tively, only terms of orderδtN/2 of A(t) must be taken into account for the construction ofNth-order approximations
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is evident from the structure of the order conditions. Second, the application of Gauss-Legendre quadrature (Sec. 7)
is straightforward, and the corresponding coefficients are obtained without additional work. We believe that our pre-
sentation is not only simpler than others in the literature,but allows the reader to understand the derivation without
taking unexplained aspects for granted.

Extending previous results we construct CFETs up to order 8.Their error is analyzed theoretically in Sec. 5,
complemented by a practical error analysis in Sec. 6. Minimization of the CFET error requires inclusion of higher
order terms from the Magnus expansion, specifically of theN/2+1-order term ofA(t) for anNth-order approximation.
This in contrast to the error analysis for split-operator techniques found in the literature. Our improved analysis leads
to optimized 4th- and 6th-order CFETs. Again, the use of Legendre polynomials is vital for the analysis.

In practical applications with large Hamiltonian matricesthe evaluation of the exponentials in Eq. (7) is the deter-
mining factor for the actual efficiency. We discuss the combination of CFETs with the Krylov technique in Secs. 8, 9.
In Sec. 10 we compare CFETs with the (t, t′)-method, a Floquet-based approach. Finally, we demonstrate in Sec. 11
the application of CFETs in two situations where precise results are hard to obtain otherwise, e.g. with the original
Magnus expansion, before we conclude in Sec. 12. The appendices give the recursion for the Magnus expansion in
a form suitable for computer algebra computations, a short discussion of free Lie algebras and Hall bases, and the
explicit solution of the order conditions for 6th-order CFETs.

2. The Magnus expansion

The Magnus expansion providesΩ(t) in Eq. (5) as a series

Ω(t) =
∞
∑

n=1

Ωn(t) , (8)

whereΩn(t) is then-fold integral of a sum ofn − 1-fold nested commutators ofA(t). We say that a functionf (t) is
of ordertN if lim t→0 f (t)/tN−1 = 0, i.e. its power series int starts withtN. Since each integration overt increases the
order by one, the termΩn(t) is of ordertn. Derivations of the Magnus expansion can be found at many places in the
literature (cf. Ref. [4]). For our presentation, we follow Ref. [10]. The principal idea is to find an implicit equation
relatingA(t) with Ω(t), which is solved order by order for theΩn(t). Notice that we always assume thatA(t), and the
solutions of Eq. (2), are sufficiently regular to permit a local power series expansion.

2.1. Derivation
By definition (Eqs. (3), (5)),Ω(t) is the solution of the implicit differential equation

∂te
Ω(t) = A(t)eΩ(t) , Ω(0) = 0 . (9)

To evaluate the derivative of the matrix exponential on the left hand side, consider the functionf (s, t) = ∂tesΩ(t). It
fulfills the differential equation

∂s f (s, t) = ∂t∂se
sΩ(t) = ∂te

sΩ(t)Ω(t) = f (s, t)Ω(t) + esΩ(t)Ω̇(t) (10)

with initial condition f (0, t) = 0, whose solution is given byf (s, t) =
∫ s

0
erΩ(t) Ω̇(t) e(s−r)Ω(t)dr. For s= 1, we obtain

∂te
Ω(t) =

(∫ 1

0
erΩ(t)Ω̇(t)e−rΩ(t)dr

)

eΩ(t) =

∞
∑

m=0

(∫ 1

0

rm

m!
[Ω(t), Ω̇(t)]mdr

)

eΩ(t) =

∞
∑

m=0

1
(m+ 1)!

[Ω(t), Ω̇(t)]m eΩ(t) , (11)

where we used the identityeXYe−X =
∑∞

m=0(1/m!)[X,Y]m with the iterated commutators

[X,Y]0 = Y , [X,Y]1 = [X,Y] , [X,Y]m+1 = [X, [X,Y]m] , (12)

which follows, e.g., from comparison of the derivatives ofs 7→ esXYe−sX ands 7→ ∑∞
m=0(sm/m!)[X,Y]m. If theΩ(t) at

differentt commute, only the first termm= 0 in the sum contributes. Using Eq. (11) in Eq. (9) gives

A(t) = (∂te
Ω(t)) e−Ω(t) =

∞
∑

m=0

1
(m+ 1)!

[Ω(t), Ω̇(t)]m . (13)
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We now insert the ansatz for the Magnus series Eq. (8) into Eq.(13). This gives (we drop the argumentt in Ω(t))

A(t) =
∞
∑

m=0

1
(m+ 1)!

[
∞
∑

n=1

Ωn,

∞
∑

k=1

Ω̇k]m

=

∞
∑

m=0

1
(m+ 1)!

∞
∑

n1,...,nm=1

∞
∑

k=1

[Ωn1, [Ωn2, . . . , [Ωnm, Ω̇k] . . . ] .

(14)

To solve forΩ̇n we collect all terms of ordertn−1. A nested commutator [Ωn1, [Ωn2, . . . , [Ωnm, Ω̇k] . . . ] is of order
n1 + · · · + nm+ k− 1 in t. The only (n− 1)th order term that containṡΩn is the term withm= 0. Thus,

Ω̇1 = A , Ω̇n = −
n−1
∑

m=1

1
(m+ 1)!

∑

n1,...,nm,k≥1
n1+···+nm+k=n

[Ωn1, [Ωn2, . . . , [Ωnm, Ω̇k] . . . ] . (15)

Notice that all sums are finite (the last term in the sum overm, for m= n− 1, is (1/n!)[Ω1, Ω̇1]n−1). A final integration
gives the explicit expressions

Ω1(t) =

t
∫

0

A(t′)dt′ , Ωn(t) = −
n−1
∑

m=1

1
(m+ 1)!

∑

n1,...,nm,k≥1
n1+···+nm+k=n

t
∫

0

dt′[Ωn1(t
′), [Ωn2(t

′), . . . , [Ωnm(t′), Ω̇k(t
′)] . . . ] , (16)

which allow for the recursive calculation of theΩn(t). As stated before, every term inΩn(t) involves ann-fold integral
of ann− 1-fold nested commutator ofA(t). We obtain explicitly, up to ordert3,

Ω(t) = Ω1(t) + Ω2(t) + Ω3(t) +O(t4) , with

Ω1(t) =
∫ t

0
dt1A(t1) , Ω2(t) =

1
2

∫ t

0
dt1

∫ t1

0
dt2[A(t1),A(t2)] ,

Ω3(t) =
1
6

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3[A(t1), [A(t2),A(t3)]] + [[A(t1),A(t2)],A(t3)] .

(17)

It is convenient to write theΩn(t) as time-ordered integrals [10]. This requires additionalmanipulation of the
integration domains of the terms found by straightforward integration in Eq. (16). It is possible to derive a systematic
recursion (see Appendix A), which is very useful for symbolic calculations on a computer.

An alternative route to solve Eq. (13) is to note that the commutator expression on the right hand side involves the
Taylor expansion of the function (ex − 1)/x =

∑∞
m=0 xm/(m+ 1)!. Solving forΩ(t) is thus possible using the inverse

function, where the Bernoulli numbersBn appear as the Taylor coefficients inx/(ex − 1) =
∑∞

n=0 Bn
xn

n! . After a few
additional manipulations one obtains again a recursive definition of theΩn(t) (see e.g. Ref [4]). Our experience is
that the present approach is better suited for an algorithmic implementation. Interestingly enough, it avoids the use of
Bernoulli numbers.

2.2. The Baker-Campbell-Hausdorff formula

A special case of the Magnus expansion is the Baker-Campbell-Hausdorff (BCH) formula

eXeY = exp
[

X + Y+
1
2

[X,Y] +
1
12

[X, [X,Y]] − 1
12

[Y, [X,Y]] − 1
24

[Y, [X, [X,Y]]] + . . .
]

. (18)

We note that the left hand side of this equation is the exact propagator for a stepwise constantA(t), with A(t) = Y for
0 ≤ t < 1, A(t) = X for 1 ≤ t ≤ 2. Inserting thisA(t) into the recursion Eq. (16) forΩ(t) provides the exponential on
the right hand side. In a similar spirit, we can obtain the BCHformula for several exponentials

eX1 · · ·eXs = exp
[

s
∑

i=1

Xi +
1
2

∑

1≤i< j≤s

[Xi ,X j ] + . . .
]

. (19)
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3. Approximate Magnus propagators

By construction, the Magnus expansion is an expansion in orders oft. It thus provides a systematic way to obtain
Nth-order approximations̃U (N)(t) = exp[

∑N
n=1Ωn(t)], which coincide with the exact propagatorU(t) for all terms of

ordertN or less, from direct truncation of the infinite series Eq. (8). Notice that we call a functionf (t) anNth-order
approximation of another functiong(t) if the differencef (t) − g(t) is of ordertN+1.

The expression forΩn(t), given through Eq. (16), involvesn-fold integrals. These can be simplified since each
integral needs to be evaluated only up to ordertN+1 for Nth-order approximations. Starting from an expansion ofA(t)
in orders oft, all multi-dimensional integrals in Eq. (17) can be replaced by one-dimensional integrals. In the literature,
it is common to expandA(t) in powers oft (or centered powers (t − δt/2)n for a given time-stepδt). Contrary to these
treatments, we use an expansion in Legendre polynomials. Although both expansion are principally equivalent, the
choice of Legendre polynomials proves itself useful because of their orthogonality properties.

3.1. Legendre expansion of A(t)

The (shifted) Legendre polynomialsPn(x) are defined forn = 0, 1, 2, . . . through the recurrence

P0(x) = 1 ,P1(x) = 2x− 1 ,Pn+1(x) =
2n+ 1
n+ 1

(2x− 1)Pn(x) − n
n+ 1

Pn−1(x) . (20)

By definition,Pn(x) is a polynomial of degreen. Explicitly,

P2(x) = 6x2 − 6x+ 1 ,P3(x) = 20x3 − 30x2 + 12x− 1 ,P4(x) = 70x4 − 140x3 + 90x2 − 20x+ 1 . (21)

The polynomialsPn(x) are symmetric with respect tox = 1/2, i.e.

Pn(1− x) = (−1)nPn(x) . (22)

Furthermore, they form a complete set of orthogonal functions on the interval [0, 1], with scalar product

1
∫

0

Pm(x)Pn(x) dx=
1

2n+ 1
δmn . (23)

In particular,
∫ 1

0
p(x)Pn(x) dx= 0 for every polynomialp(x) of degree less thann.

We now fix a time-stepδt, for which an approximateNth-order propagator̃U (N)(δt) ≡ Ũ (N)(δt, 0) should be
constructed. The functionA(t) is expanded on the interval [0, δt] in a series of Legendre polynomials

A(t) =
1
δt

N
∑

n=1

AnPn−1

( t
δt

)

+O(δtN+1) (0 ≤ t ≤ δt) . (24)

Notice the index shift ofPn−1 versusAn. The (matrix-valued) coefficients are obtained as

An = (2n− 1)

δt
∫

0

A(t)Pn−1

( t
δt

)

dt = (2n− 1)δt

1
∫

0

A(xδt)Pn−1(x)dx . (25)

To see thatAn is a term of orderδtn, compare this expansion with an expansionA(t) =
∑

m≥1 amtm−1 in pow-
ers of t. Since Pn(x) is orthogonal to allxm with m < n, we see from Eq. (25) thatAn starts with the term

δt
∫ 1

0
an(xδt)n−1Pn−1(x) dxof orderδtn. In particular, it is a linear combination only ofam with m≥ n.
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3.2. Legendre expansion ofΩ(t)

If we insert the expansion Eq. (24) ofA(t) into the recursion Eq. (16) we obtainΩ(δt) as a sum of nested commuta-
tors of the expansion coefficientsAn. A nested commutator [An1, . . . ,Anm] is of ordern1+ · · ·+ nm in δt. The prefactor

of this term is obtained as then-fold integralξ(n1, . . . , nm) =
∫ 1

0
dx1 . . .

∫ xm−1

0
dxmPn1−1(x1) · · ·Pnm−1(xm), which is a

rational number independent ofA(t). For example,

Ω2(δt) =
1

2δt2

∫ t

0
dt1

∫ t1

0
dt2 [

∑

n1≥1

An1Pn1−1

( t1
δt

)

,
∑

n2≥1

An2Pn2−1

( t2
δt

)

]

=
1
2

∑

n1,n2≥1

(∫ 1

0
dx1

∫ x1

0
dx2 Pn1−1(x1)Pn2−1(x2)

)

[An1,An2]

=
1
2

(∫ 1

0
dx1

∫ x1

0
dx2 P0(x1)P1(x2) − P1(x1)P0(x2)

)

[A1,A2] = −1
6

[A1,A2] .

(26)

Notice that the only non-zero contributions in the second line come fromn1 = 1, n2 = 0 andn1 = 0, n2 = 1, since the
integral ofPn1(x1)Pn2(x2) vanishes in all other cases. This hints at a general patternto be discussed below.

Collecting all terms up to orderδt9, we find

Ω(δt) = A1 −
1
6

[A1,A2]

+
1
60

[A1, [A1,A3]] − 1
60

[A2, [A1,A2]] +
1

360
[A1, [A1, [A1,A2]]] −

1
30

[A2,A3]

− 1
70

[A3,A4] +
1

140
[A2, [A1,A4]] − 1

210
[A2, [A2,A3]] − 1

420
[A3, [A1,A3]] − 1

210
[A4, [A1,A2]]

− 1
840

[A1, [A1, [A1,A4]]] −
1

504
[[A1,A2], [A1,A3]] +

1
504

[A2, [A1, [A1,A3]]] −
1

840
[A2, [A2, [A1,A2]]]

+
1

2520
[A3, [A1, [A1,A2]]] − 1

2520
[A1, [A1, [A1, [A1,A3]]]] − 1

7560
[[A1,A2], [A1, [A1,A2]]]

+
1

2520
[A2, [A1, [A1, [A1,A2]]]] −

1
15120

[A1, [A1, [A1, [A1, [A1,A2]]]]] +O(δt10) .

(27)

The first line contains the 4th-order terms, the second line the 6th-order terms, and the remaining lines the 8th-order
terms. This expression forΩ(δt) avoids multi-dimensional integrals.

3.3. Properties of the expansion

As seen above forΩ2(δt), only few out of the many possible commutators contribute toΩ(δt). In Eq. (27) several
nested commutators of orderδt9 or less are missing, e.g. the termsA2, . . . ,A9 or [A1,A3], . . . , [A1,A8]. This is a
consequence of two general properties of the expansion thatresult in a zero prefactorξ(n1, . . . , nm) of [An1, . . . ,Anm].

(P1)Time-reversal symmetryU(δt, 0) = U(0, δt)−1 of the propagator implies thatΩ(t) changes sign ifA(t) is replaced
with −A(δt − t). According to the parity Eq. (22) of the Legendre polynomials it follows that even order terms in the
expansion, i.e. terms [An1, . . . ,Anm] with evenn1 + · · · + nm, vanish. This follows also from the calculation of the
prefactorξ(n1, . . . , nm) as ann-fold integral: Each of the inner integrations overx2, . . . , xn changes the parity of the
integrand. The parity also changes by multiplication with apolynomialPn for oddn. Hence, the integrand in the final
integration overx1 has odd parity for odd (n1 − 1)+ · · · + (nm − 1)+ (−1)m−1, i.e. if n1 + · · · + nm is even. Then, the
integration gives zero and the respective term vanishes in Eq. (27).

(P2)As a consequence of the orthogonality of the Legendre polynomials a term [An1, . . . ,Anm] vanishes if some index
nk exceeds the sum of the others by two, i.e.nk > 1+

∑

i,k ni for a k = 1, . . . ,m. To see this change the integration
order in the integral for the prefactorξ(n1, . . . , nm) such that the outermost integration is overxk. This final integration

is of the form
∫ 1

0
dxkPnk−1(xk)p(xk), where the polynomialp(xk) results from the previousm− 1 integrations of the

other polynomialsPni−1(xi). The degree ofp(xk) is at most
∑

i,k ni . If, by assumption, this sum is smaller thannk − 1
the final integral is zero sincePnk−1 is orthogonal to polynomials with smaller degree. Now suppose [An1, . . . ,Anm] is

6



A1 , A3 , [A1,A2] , [A1,A4] , [A2,A3] , [A3,A4]

[A1, [A1,A3]] , [A2, [A1,A2]] , [A2, [A1,A4]] , [A2, [A2,A3]] , [A3, [A1,A3]] , [A4, [A1,A2]]

[A1, [A1, [A1,A2]]] , [A1, [A1, [A1,A4]]] , [A2, [A1, [A1,A3]]]

[A2, [A2, [A1,A2]]] , [A3, [A1, [A1,A2]]] , [[A1,A2], [A1,A3]]

[A1, [A1, [A1, [A1,A3]]]] , [A2, [A1, [A1, [A1,A2]]]] , [[A1,A2], [A1, [A1,A2]]]

[A1, [A1, [A1, [A1, [A1,A2]]]]]

Table 1: The 22 odd elements up to order 8 of the Hall basis withgeneratorsA1, . . . ,A4.

a term of orderN, and one indexnk > N/2. Then,N ≥ ∑

i ni = nk +
∑

i,k ni > N/2+
∑

i,k ni , or
∑

i,k ni < N/2. The
above condition applies, and it follows that this term givesno contribution.

Both properties considerably simplify the derivation of approximate propagators since they reduce the number of terms
in the expansion Eq. (27). According to (P1), approximatelyonly half of the commutators contribute. In particular,
an expansion including all terms up to some odd orderδtN is automatically correct up to orderδtN+1. According to
(P2) there are no contributions from terms such asAm for m≥ 2 or [Am,An] for |m−n| , 1. It also explains why in the
Nth-order expansion ofΩ(t) only commutators of termsA1, . . . ,AN/2 occur (i.e.A1, . . . ,A4 in Eq. (27)). This has the
remarkable consequence that for the construction ofNth-order propagators termsAn for n ≥ N/2+1 can be neglected
even ifn < N. Notice that property (P1) is shared by an expansion in centered powers (t − δt/2)n, while (P2) requires
orthogonality of the Legendre polynomials. This fact motivated our use of a Legendre expansion ofA(t) instead of
the apparently simpler Taylor expansion.

3.4. Uniqueness of the expansion: Hall basis

The expression forΩ(δt) in Eq. (27) is not unique. Non-trivial identities between nested commutators, e.g. the
Jacobi identity [A, [B,C]]+[B, [C,A]]+[C, [A,B]] = 0, allow to replace one commutator by others. To compare nested
commutator expressions by equating the coefficients we must therefore first eliminate the ensuing linear dependencies.
Technically, this amounts to calculations using a vector space basis of the free Lie algebra generated by theAn. Since
every nested commutator is a unique linear combination of the basis elements, uniqueness of the entire Magnus
expansion is achieved.

A systematic construction of free Lie algebra bases is provided by a Hall basis [11]. Algorithms exist for the
rewriting of nested commutators in terms of the Hall basis elements, and for their enumeration. The number of Hall
basis elements grows rapidly with the maximal order considered. As listed in the following table,

order N 2 4 6 8 10
full set of elements 2 7 22 70 225
relevant according to (P1), (P2) 1 2 7 22 73

there are 70 elements up to order 8 in the Hall basis. As a consequence of the two properties (P1), (P2) from Sec. 3.3
only the 22 elements in Table 1 are relevant for our purposes.Notice that in Eq. (27) the elementsA3 and [A1,A4] from
the Hall basis are missing according to (P2), but yield orderconditions for the CFETs as discussed in Sec. 4.1. We do
all calculations using the 22 Hall basis elements, rewriting commutators as necessary, e.g. [A1, [A2, [A1, [A1,A2]]]] =
[A2, [A1, [A1, [A1,A2]]]] + [[A1,A2], [A1, [A1,A2]]].

4. Commutator-free exponential time-propagators

The expansion Eq. (27) ofΩ(δt) still contains nested commutators. AnNth-order commutator-free exponential
time-propagator (CFET) is based on the ansatz

Ũ (N)
CF (δt) = eΩ1eΩ2 · · ·eΩs , (28)
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where each of thesexponentialsΩi is a linear combination

Ωi =

N
∑

n=1

fi,nAn (29)

of the A1, . . . ,AN from the Legendre expansion Eq. (24) ofA(t). The CFET is completely determined through the
coefficients fi,n, which are fixed once and independently of the concreteA(t) used in a calculation. The practical
evaluation of Eq. (28), avoiding commutators and multi-dimensional integrals, is considerably simpler than for the
original Magnus expansion. It will be discussed in more detail in Sec. 8.

Effectively, Eq. (28) is the exact propagator for an auxiliary problem with a fictitious, stepwise constantÃ(t). The
CFET coefficients fi,n must be determined in such a way that the replacement of the complicated time-dependent
problem by the simpler auxiliary problem introduces only anerror∝ δtN+1, independently ofA(t). Now consider an
A(t) = x(t)X + y(t)Y which is the sum of two contributionsX,Y. This situation arises, e.g., for a particle moving in
a time-dependent field. By construction, eachΩi = xiX + yiY itself is a sum ofX,Y, with constantxi , yi replacing
x(t), y(t). Therefore, the CFET describes again a particle moving in afield, and thus preserves the principal physical
situation. Notice, however, that fictitious negative time-steps can occur. The analogous statement does not hold for
the original Magnus expansion involving commutators ofX,Y.

The simplest example of a CFET is the 2nd-order midpoint rule

Ũ (2)
CF2:1(δt) = exp[A1] = exp

[

∫ δt

0
dt A(t)

]

≃ exp[δt A(δt/2)] , (30)

corresponding tos = 1 and f1,1 = 1. The second exponential is identical to the first accordingto the definition
Eq. (25) ofA1. The last exponential is obtained by approximation of the integral through Gauss-Legendre quadrature
(addressed later in Sec. 7), which here reduces to evaluation of A(t) at the midpointt = δt/2.

4.1. Derivation of order conditions

The construction of higher-order CFETs is substantially more difficult, and a systematic procedure is missing. We
adopt the following strategy: Starting from the CFET ansatzEq. (28), the BCH formula (19) allows us to combine the
sexponentials until we obtaiñU (N)

CF (δt) = eΩ̃ with

Ω̃ =

s
∑

i=1

fi,1A1 +
∑

1≤i< j≤s

fi,1 f j,2 − f j,1 fi,2
2

[A1,A2] + . . . (31)

TheΩ̃ has to be compared withΩ(δt) from the Magnus expansion Eq. (27), demanding equality of terms of orderδtN

or less. Working in a Hall basis, this implies equality of their prefactors which results in equations for the coefficients
fi,n, the so-called order conditions. Specifically, we find

s
∑

i=1

fi,n = δn,1 (32)

arising from the termsAn, and from [A1,A2]

∑

1≤i< j≤s

fi,1 f j,2 − f j,1 fi,2 = −
1
3
. (33)

For higher-order commutators, the derivations become increasingly cumbersome, and calculations are best delegated
to a computer. Since standard computer algebra systems are less useful for calculations in non-commutative algebras
we used self-written programs that perform the Lie algebra manipulations, based on algorithms from Ref. [12].

Counting allNth-order elements in the Hall basis (Sec. 3.4), we see that the number of order conditions is 22 (70)
for order 6 (order 8), and thus appears to be too large for a practical solution of the multivariate polynomial equations
that arise. As we found in Sec. 3.2 several commutators do notappear inΩ(δt) as a consequence of the two properties
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4th-order

2 exponentials 3 exponentials

CF4:2 CF4:3
f1,1 = 1/2 f1,2 = 1/3 f2,1 = 0 f1,1 = 11/40 f1,2 = 20/87 f2,1 = 9/20

Table 2: Coefficients for 4th-order CFETs with 2 and 3 exponentials. Noticethat CF4:3 is not recommended for use (cf. Sec. 6.3).

(P1), (P2). The key observation is that the corresponding order conditions can be satisfied by a suitably restricted
choice of thefi,n according to the following two rules.

(R1) Since passing from̃U (N)
CF (δt, 0) to Ũ (N)

CF (0, δt)−1 changes the sign ofAn by (−1)n, a CFET complies with time-
reversal symmetry if the coefficients obey

fs−i+1,n = (−1)n+1 fi,n . (34)

For a time-symmetric CFET it thus suffices to specify thefi,n for i ≤ s/2, i.e. for the first half of the exponentials
eΩi , and choose the remaining coefficients according to Eq. (34). For odds, the coefficients f(s+1)/2,n of the central
exponentiali = (s+ 1)/2 must be specified for oddn only, while they are zero for evenn. With this constraint the
order conditions for even order terms, which do not contribute toΩ(δt) according to (P1), are automatically satisfied.

(R2)Property (P2) states that up to orderδtN only termsAn with n ≤ N/2 contribute toΩ(δt). The order conditions
involving higher-orderAn can be satisfied simply by settingfi,n = 0 for n > N/2: Since all coefficients are zero the
corresponding commutators drop out entirely. The remarkable implication is that anNth-order CFET can be built
already from the termsA1, . . . ,AN/2. We note that this property is intrinsically connected withGaussian quadrature
using orthogonal polynomials (cf. Sec. 7). It becomes obvious working with Legendre polynomials, while it requires
sophisticated additional arguments in general [5].

By rule (R1) the number of relevant coefficients and order conditions is reduced approximately by onehalf. For this
reason we consider only time-symmetric CFETs. Notice that asymmetricNth-order CFET is automatically of order
N + 1, if N is odd. Rule (R2) implies that the summation indexn in Eq. (29) only has to run from 1 toN/2. We will
later relax this rule to allow for minimization of the error,which requires inclusion of the termAN/2+1.

With both rules, the number of order conditions is significantly reduced, to 2, 7, 22 for N = 4, 6, 8 CFETs (cf.
the Table in Sec. 3.4). On the other hand, a symmetricNth-order CFET withs exponentials has⌊sN/4⌋ coefficients
(rounding down to an integer). The counting shows that 5 exponentials (11 exponentials) are needed for a 6th-order
(8th-order) CFET. Only in exceptional cases solutions withless exponentials exist, e.g. CF6:4 in Table 3.

4.2. Fourth-order CFETs
We consider 4th-order propagators (N = 4) with three exponentials (s= 3), of the form

Ũ (4)
CF(δt) = exp[f1,1A1 + f1,2A2] exp[ f2,1A1] exp[ f1,1A1 − f1,2A2] . (35)

As explained before (cf. Eqs. (32), (33)), we get the two order conditions

1 = 2 f1,1 + f2,1 ,

−1
6
= −( f1,1 + f2,1) f1,2 .

(36)

The first arises from the termA1, and the second from the term [A1,A2]. In accordance with the above counting of
terms, we have 3 coefficients and 2 order conditions. Usingf2,1 as the free parameter, we find

f1,1 =
1− f2,1

2
, f1,2 =

1
3(1+ f2,1)

. (37)

Corresponding coefficients are listed in Table 2. The parameterf2,1 will later allow for optimization of the propagator
(see Sec. 5.2). Settingf2,1 = 0, we obtain the unique 4th-order CFET withs= 2 exponentials

Ũ (4)
CF4:2(δt) = exp

[1
2

A1 +
1
3

A2

]

exp
[1
2

A1 −
1
3

A2

]

. (38)

The notation used here and in the following is CFN:s for anNth-order CFET withsexponentials.
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6th-order

4 exponentials

CF6:4

f1,1 =
1
2
+

(5400− 600
√

6)1/3

60
+

(

1
5(9+

√
6)

)1/3

2 · 32/3

f1,2 = f1,1 − 2
3 f 2

1,1 f1,3 =
1

10− 10f1,1
f2,1 = 1

2 − f1,1 f2,2 = 1
3(1− 4 f1,1 + 2 f 2

1,1) f2,3 = − f1,3

f3,1 = 0 f3,2 = 0 f3,3 = 0

5 exponentials

CF6:5

f1,1 = 0.16 f1,2 = 0.14587456942714338561 f1,3 = 0.11762370828143015682
f2,1 = 0.38752405202531186588 f2,2 = 0.15089113704380764664 f2,3 = −0.12805075909013044594
f3,1 = 1− 2 f2,1 − 2 f1,1 f3,2 = 0 f3,3 = −2 f2,3 − 2 f1,3
CF6:5b (cf. Ref. [8])

f1,1 = 0.2 f1,2 = 0.1746879190177786220 f1,3 = 0.12406375705333586606
f2,1 = 0.34815492558797391479 f2,2 = 0.1068765450953683 f2,3 = −0.139021313323765096675
f3,1 = 1− 2 f2,1 − 2 f1,1 f32 = 0 f33 = −2 f2,3 − 2 f1,3
6 exponentials

CF6:6

f1,1 = 0.16 f1,2 = 0.15101538937746543493 f1,3 = 0.13304616813239630479

f2,1 = −0.22738164742696330169 f2,2 = −0.087654259755115431662 f2,3 = 0.069919836812656575583

f3,1 = 1/2− f1,1 − f2,1 f3,2 = 0.21035154512209824847 f3,3 = − f1,3 − f2,3

Table 3: Coefficients for unoptimized 6th-order CFETs withs = 4, 5, 6 exponentials (coefficients for optimized 6th-order CFETs are given in
Table 6). The CFET CF6:5b corresponds to the coefficients of the propagatorψ[6]

5 from Ref. [8].

4.3. Sixth-order CFETs

For 6th-order (N = 6), we consider propagators withs = 6 exponentials. The 9 coefficients fi,n, for 1 ≤ i, n ≤ 3,
must satisfy 7 order conditions corresponding to the 7 Hall basis elements

A1 , A3 , [A1,A2] , [A2,A3] , [A1, [A1,A3]] , [A2, [A1,A2]] , [A1, [A1, [A1,A2]]] (39)

from Table 1. We note that two coefficients can be chosen as a free parameter.
An explicit solution of the order conditions is possible to alarge degree, and simple explicit expressions for the

coefficients can be obtained in some cases (cf. Appendix C). Setting f3,2 = 0, the two central exponentials can be
combined, resulting in propagators withs = 5 exponentials and a single free parameter. Surprisingly, there is also a
solution with f3,1 = f3,2 = f3,3 = 0, giving a 6th-order CFET with only 4 exponentials (see CF6:4 in Table 3), although
there are less coefficients than order conditions. We do not know whether the existence of this solution is accidental,
or hints at a general redundancy pattern of the equations. For practical purposes, the CFET CF6:5 from Table 3 is
most relevant, since it has small approximation error. Further optimized 6th-order CFETs will be obtained in Sec. 5.3.

4.4. Eighth-order CFETs

The 22 order conditions of 8th-order CFETs correspond to theentire set of commutators from Table 1. Exactly 22
coefficients exist fors= 11 exponentials. Due to their complexity, the order conditions can only be solved numerically.
Several solutions were computed using a root finder based on the Newton iteration [13]. Severe ill-conditioning of the
equations required the use of high-precision arithmetics,based on the MPFUN package [14], and repeated restarting
of the Newton iteration. The coefficients of an 8th-order CFET with small approximation error,selected from about
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8th-order: 11 exponentials

CF8:11

f1,1 = 0.169715531043933180094151f1,2 = 0.152866146944615909929839
f1,3 = 0.119167378745981369601216f1,4 = 0.068619226448029559107538

f2,1 = 0.379420807516005431504230f2,2 = 0.148839980923180990943008
f2,3 = −0.115880829186628075021088f2,4 = −0.188555246668412628269760

f3,1 = 0.469459306644050573017994f3,2 = −0.379844237839363505173921
f3,3 = 0.022898814729462898505141f3,4 = 0.571855043580130805495594

f4,1 = −0.448225927391070886302766f4,2 = 0.362889857410989942809900
f4,3 = −0.022565582830528472333301f4,4 = −0.544507517141613383517695

f5,1 = −0.293924473106317605373923f5,2 = −0.026255628265819381983204
f5,3 = 0.096761509131620390100068f5,4 = 0.000018330145571671744069

f6,1 = 0.447109510586798614120629f6,3 = −0.200762581179816221704073

Table 4: Coefficients for an 8th-order CFET with 11 exponentials.

50 computed solutions of the order conditions, are given in Table 4. A systematic search of the coefficient space was
not possible.

5. Theoretical error analysis

The CFET error is determined by the differenceχ = Ω̃ − Ω between the exactΩ(δt) from the Magnus expansion
Eq. (27) and the approximatẽΩ from Eq. (31). The theoretical error analysis aims at minimization of the error term
in the general situation, where no specific information about A(t) is available.

5.1. General considerations

By construction the error term is of the formχ =
∑

k(pk − ck)Ck, where theCk are theN + 1-order commutators
from the Hall basis, thepk are polynomials in the coefficientsfi,n such as in Eq. (31), and theck the constant prefactors
from Eq. (27). The size ofχ can be measured with a matrix norm‖ · ‖. It is

‖χ‖ = ‖
∑

k

(pk − ck)Ck‖ ≤
∑

k

|pk − ck| · ‖Ck‖ . (40)

In concrete situations,‖χ‖ depends not only on the size‖Ck‖ but also on the amount of dependency between
differentCk, which is responsible for the difference between left hand and right hand side of the above inequality. In the
general case we may not assume that the difference is small. Accidental cancellations, i.e.‖(pk−ck)Ck+(pl−cl)Cl‖ ≈ 0
for a k , l, are typical. Optimization of a CFET, that is minimization of ‖χ‖ through variation of the coefficients fi,n,
thus requires that all|pk − ck| become simultaneously small. Only then, the error can be expected to be small in
the general case. Such optimized CFETs are universally applicable and perform equally well in different situations.
Optimization will be achieved for 4th- and 6th-order CFETs,listed below in Tables 5, 6. For 8th-order CFETs,
optimization is not practicable due to the complexity of theorder conditions.

An important point, which seems to have been missed in the literature, complicates the error analysis in compar-
ison to split-operator techniques. While rule (R2) in Sec. 4.1 states that the termsAn for n > N/2 can be disregarded
in the construction of anNth-order CFET, the error termχ contains a contribution fromAN/2+1 since the prefactors
ck of the corresponding commutators are non-zero in Eq. (27). For 4th-order, this applies to the terms [A1, [A1,A3]]
and [A2,A3] involving A3. In contrast to the basic construction of higher-order CFETs with (R2), CFET optimization
requires explicit inclusion ofAN/2+1. Therefore, the optimized 4th- and 6th-order CFETs includenon-zero coefficients
for the A3 or A4 term, respectively. Additional order conditions, e.g.

∑s
i=1 fi,N/2+1 = 0 arising from theAN/2+1 term
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4th-order (optimized)

3 exponentials

CF4:3Opt

f1,1 = 11/40 f1,2 = 20/87 f1,3 = 7/50 f2,1 = 9/20 f2,3 = −7/25

Table 5: Coefficients for the optimized 4th-order CFET CF4:3Opt with 3 exponentials (Eq. (43)). The unoptimized CFET CF4:3 from Table 2is
obtained by dropping theA3 terms from CF4:3Opt.

itself, must be accounted for. We note that for split-operator techniques [15], where essentially the full Magnus prop-
agatoreΩ(t) is replaced by the terme(X+Y)t for a time-independentA(t) ≡ X+Y, the equivalent coefficientsck = 0, and
no additional provisions are necessary.

Since the error termχ is of orderδtN+1 we must ask whether also termsAn for N/2 + 1 < n ≤ N + 1 need be
considered. Property (P1) states that nested commutators involving these terms do not occur in Eq. (27) up to order
N + 1, i.e. the corresponding prefactorck = 0 in Eq. (40). Since we have set the coefficients of theseAn to zero by
rule (R2), they do not contribute toχ and need not be considered. Notice again that the use of Legendre polynomials
in (24) simplifies the derivation: With a power series expansion all terms up to orderδtN+1 would explicitly contribute
to χ, and minimization of|χ| would result in a number of additional though redundant equations.

5.2. Optimized fourth-order CFETs

For a 4th-order CFET including theA3 term, we make the ansatz

Ũ (4)
CF4(δt) = exp[f1,1A1 + f1,2A2 + f1,3A3] exp[ f2,1A1 + f2,3A3] exp[ f1,1A1 − f1,2A2 + f1,3A3] , (41)

in extension of Eq. (35). The previous order conditions still apply, andf1,1, f1,2 are given by Eq. (37). The new order
condition arising from theA3 term is 2f1,3+ f2,3 = 0, which gives one additional free parameterf2,3 with f1,3 = − f2,3/2.
With these choices, we obtain for the error term

χ = Ω̃ − Ω =
( 1
60
− 1+ 2 f2,1

54(1+ f2,1)2

)

[A2, [A1,A2]] +
( 1
1440

−
f 2
2,1

288

)

[A1, [A1, [A1,A2]]]

−
( 1
24

(1+ f2,1) f2,3 +
1
60

)

[A1, [A1,A3]] +
( f2,3
6(1+ f2,1)

+
1
30

)

[A2,A3] +O(δt7) .

(42)

It has four contributions corresponding to the 5th-order exponentials in the second line of Eq. (27).
In Fig. 1 (left panel) we show exemplarily|pk − ck| for k = [A2, [A1,A2]] andk = [A1, [A1, [A1,A2]]] as a function

of f2,1. The optimal choice is close tof2,1 ≈ 0.45= 9/20. If we only try to minimize the contribution from these two
commutators, neglecting theA3 terms, we thus obtain the CFET CF4:3 from Table 2. We will see below in Sec. 6.3
that this CFET is far from being optimal. Full minimization of χ through variation off2,1 and f2,3, including theA3

terms, results inf2,1 ≈ 0.45, f2,3 ≈ −0.28. For an optimized 4th-order CFET we thus propose the choice f2,1 = 9/20,
f2,3 = −7/25, which results in (cf. Table 5)

UCF4:3Opt(δt) = exp
[11
40

A1 +
20
87

A2 +
7
50

A3

]

exp
[ 9
20

A1 −
7
25

A3

]

exp
[11
40

A1 −
20
87

A2 +
7
50

A3

]

. (43)

5.3. Optimized sixth-order CFETs

Extending 6th-order CFETs with 6 exponentials (Sec. 4.3) byinclusion of the termA4 provides us with three
additional coefficients f1,4, f2,4, f3,4. The new order condition

0 = f1,1 f1,4 + 2 f2,1 f1,4 + f2,1 f2,4 + 2 f3,1 f1,4 + 2 f3,1 f2,4 + f3,1 f3,4 (44)

arising from the commutator [A1,A4] fixes the value off3,4. Notice that the termA4 itself does not lead to a new
order condition, since it is even and the associatedck = pk = 0 by rule (R1). Using the explicit solution of the order
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Figure 1: Left panel: Contributions|pk − ck| to the 5th-order error termχ of 4th-order CFETs (Eq. (42)) as a function of the free parameter f2,1,
for commutators [A2, [A1, A2]] (black) and [A1, [A1, [A1, A2]]] (red). Both contributions become small in the vicinity of f2,1 = 0.45. Right panel:
Maximum χ123 of the contributions|pk − ck| to the 7th-order error termχ for 6th-order CFETs, excluding contributions from theA4 term. As
indicated in the figure, the maximal contribution comes fromeither the [[A1, A2], [A1, A3]] (for f1,1 . 0.16) or the [A3, [A1, A3]] term ( f1,1 & 0.16)
The upper panel indicates the number of solutions of thes= 5, N = 6 order conditions.

conditions (cf. Appendix C), we can minimize the error termχ through variation of the four free parametersf1,1,
f3,2, f1,4, f2,4. For s = 5 exponentials, we setf3,2 = f3,4 = 0. To illustrate the typical behaviour, we show in Fig. 1
(right panel) the partial errorχ123 = max|pk − ck| including only the contributions from commutatorsCk without the
A4 term. It depends on the single parameterf1,1. Optimal choices occur aroundf1,1 ≈ 0.16, corresponding to the
CFET CF6:5 from Table 3. This also provides partial justification for the CFET CF6:5b withf1,1 = 0.2 from Ref. [8].
Inclusion of theA4 term and subsequent minimization of the associated error contribution, keepingf1,1 fixed, results
in the improved CFET CF6:5Imp. The full minimization of|χ| with free variation of all parameters results in the
optimized 6th-order CFETs CF6:5Opt and CF6:6Opt listed in Table 6.

6. Practical error analysis

The theoretical error analysis results in optimized CFETs,whose error is expected to be small in the general case.
In a concrete situation dependencies between the nested commutators in the error term may lead to different results.
To confirm the validity of the theoretical error analysis we study the CFET error for a driven two-level system. Further
issues of practical relevance concern the choice between CFETs of different order, and the time-step selection.

6.1. Time-stepping and effective error
In the standard time-stepping approach, the approximate propagatorŨ(t) over longer propagation times is con-

structed as a product of short-time CFETsŨ (N)
CF (t+δt, t). Equivalently, a concrete solutionx(t) is repeatedly propagated

over a small time stepδt. The propagator̃U(T) for the maximal propagation timeT is a product ofNs = T/δt CFETs.
Intermediate results are obtained at multiples ofδt.

The accuracy of time-stepping is controlled through the size of δt. For Nth-order CFETsŨ (N)
CF (t + δt, t), the

error contributed by each one scales asδtN+1. Due to accumulation of errors, the propagation error afterNs steps is
ǫ = cNsδtN+1 = cTδtN with an error constantc which depends on the concrete situation. To achieve a given accuracy
requires a time stepδt ≤ (ǫ/cT)1/N for a maximal acceptable errorǫ. Usually,δt ≪ T. The computational effort
is dominated by theNs-fold evaluation of thes exponentials in Eq. (28). It is thus proportional tosNs = sT/δt ≥
c̄T1+1/Nǫ−1/N with the effective error constant

c̄ = sc1/N . (45)

This quantity determines the efficiency of time-propagation with anNth-order CFET withsstages. As a rule of thumb
we note the relation

effort ∝ error−1/N × time . (46)
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6th-order (optimized)

5 exponentials

CF6:5Imp

f1,1 = 0.16 f1,2 = 0.14587456942714338561 f1,3 = 0.11762370828143015682
f2,1 = 0.38752405202531186588 f2,2 = 0.15089113704380764664 f2,3 = −0.12805075909013044594
f3,1 = 1− 2 f2,1 − 2 f1,1 f3,2 = 0 f3,3 = −2 f2,3 − 2 f1,3
f1,4 = 0.074 f2,4 = −0.212530296697694739551 f3,4 = 0
CF6:5Opt

f1,1 = 0.1714 f1,2 = 0.15409059414309687213 f1,3 = 0.11947178242929061641
f2,1 = 0.37496374319946236513 f2,2 = 0.13813675394387646682 f2,3 = −0.13090674649282935743
f3,1 = 1− 2 f2,1 − 2 f1,1 f3,2 = 0 f3,3 = −2 f2,3 − 2 f1,3
f1,4 = 0.07195 f2,4 = −0.21123356253315514306 f3,4 = 0

6 exponentials

CF6:6Opt

f1,1 = 0.3952 f1,2 = 0.35629343479227292880 f1,3 = 0.27848030437681878641

f2,1 = −0.22432144875476807927 f2,2 = −0.19935407393749030416 f2,3 = −0.15625650102884866893

f3,1 = 1/2− f1,1 − f2,1 f3,2 = 0.1145 f3,3 = − f1,3 − f2,3
f1,4 = 0.1579 f2,4 = −0.09512 f3,4 = −0.16475168057141371958

Table 6: Coefficients for optimized 6th-order CFETs withs = 5, 6 exponentials. In each case, the last row gives the coefficients for theA4 term.
The CFET CF6:5Imp is obtained from CF6:5 (Table 3) through separate minimization of theA4 error contributions.

6.2. Driven two-level system

Our test problem is a driven two-level system, realized, e.g., by a spin 1/2 in a magnetic field~B(t) = (Bx(t), By(t), Bz(t)).
In the eigenbasis of the z-component of angular momentum, the Hamilton operator is given by the matrix

H(t) =
1
2

∑

k=x,y,z

Bk(t)σk =
1
2

(

Bz(t) Bx(t) − iBy(t)
Bx(t) + iBy(t) −Bz(t)

)

, (47)

with the standard Pauli matrices [16]

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

. (48)

For particular choices of~B(t) the propagator can be expressed in simple, closed form. Oneexample is the period-
ically driven two-level system with~B(t) = (2V cos 2ωt, 2V sin 2ωt, 2∆), or

H(t) =

(

∆ Ve−2iωt

Ve2iωt −∆

)

, (49)

where∆, V, ω ∈ R. The exact propagator is given by

U(t, 0) =

























e−iωt(cosΩt − i
∆ − ω
Ω

sinΩt) −i
V
Ω

e−iωt sinΩt

−i
V
Ω

eiωt sinΩt eiωt(cosΩt + i
∆ − ω
Ω

sinΩt)

























(50)

withΩ =
√

(∆ − ω)2 + V2. We note that, in accordance with Floquet theory for periodically driven systems,U(πn/ω, 0)=
U(π/ω, 0)n for integern. The transition probability spin up↔ spin down

P(t) = |U21(t, 0)|2 =
(V
Ω

)2

sin2Ωt (51)
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Figure 2: Effective error constant ¯c of 4th-order CFETs with 3 exponentials, given as a function of the free parameterf2,1 in Eq. (41). As explained
in the text, the driven two-level system (Eq. (49)) is propagated over the time 0≤ t ≤ T = 20π/ω, for parametersω = 1,∆ = 0.5 andV = 0.5,1.0.
Shown are results for CFETs including theA3 term for the optimal choicef2,3 = −0.28 (dashed red curve), and without theA3 term (f2,3 = 0, solid
black curve). The horizontal dashed gray line gives ¯c for the CFET CF4:2 with 2 exponentials (Eq. (38)), corresponding to f2,1 = f2,3 = 0.

is typical for a Breit-Wigner resonance.
In the case of two-level systems, application of a CFET requires evaluation of matrix exponentialseΩi , which

correspond to propagation with fictitious constant magnetic fields. Each exponential can be evaluated in closed form
with the relation

exp(i
φ

2
~n · ~σ) = cos

φ

2
+ i sin

φ

2
~n · ~σ (|~n| = 1) (52)

for the spin 1/2 rotation operator.
To quantify the CFET error we calculate the deviationǫ(t) = ‖Ũ(t) − U(t)‖ of the approximate propagatorŨ(t)

from the exactU(t). We use the Frobenius norm for aL × L square matrix

‖U − Ũ‖2 = 1
L

tr[(U − Ũ)†(U − Ũ)] =
1
L

∑

i j

|Ui j − Ũi j |2 , (53)

where tr[·] denotes the trace. This choice is particularly convenientfor the Schrödinger equation, where the propaga-
tors are unitary such that‖U‖ = 1 and‖U − Ũ‖2 = 2‖1−U†Ũ‖. Notice that this definition accounts for phase slips of
the propagators. With the BCH formula we find that the CFET error

ǫ(δt) = ‖U(δt) − Ũ(δt)‖ = 2‖1− e−Ω(δt)eΩ̃(δt)‖ = 2‖1− eχ+O(δtN+2)‖ = 2‖χ‖ +O(δtN+2) (54)

is indeed determined by the error termχ = Ω̃(δt) − Ω(δt). The commutator relations of the spin algebra imply that
the nested commutatorsCk in Eq. (40) are not independent. This allows us to check the theoretical error analysis
from Sec. 5 in a situation where cancellation between differentCk plays a role. We note that cancellation is not
a peculiar consequence of the small Hilbert space of the present example, but of commutator relations dictated by
physics. Similar relations hold in any relevant situation.

6.3. Fourth-order CFETs

To determine the effective error constant ¯c, we propagate the driven two-level system Eq. (49) over 20 periods of
the driving field, i.e. up to a timeT = 20π/ω. From the maximal propagation errorǫ = max{ǫ(t)|0 ≤ t ≤ T} we get
the effective error constant as ¯c = (s/δt)(ǫ/T)1/N in the limit δt ≪ T.

In Fig. 2 we show ¯c as a function of the free parameterf2,1 used in Sec. 5.2 for optimization of 4th-order CFETs
with 3 exponentials. In both cases (upper and lower panel) ¯c is minimal for f2,1 ≃ 0.45 = 9/20, which confirms
the previous theoretical analysis based on Fig. 1. In comparison to CF4:2 with 2 exponentials, which has larger ¯c
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Figure 3: Effective error constant ¯c for unoptimized (CF4:2, CF4:3 from Table 2) and optimized (CF4:3Opt from Table 5) 4th-order CFETs, as
indicated. As for the previous figure, the driven two-level system is propagated overT = 20π/ω. Results are given as a function of∆, with ω = 1
andV = 0.1, 0.5,1.0, 2.0 as indicated in the panels.

than CF4:3Opt, we see that the error reduction is sufficiently large to outweigh the increased effort arising with an
additional third exponential. We conclude that the optimization is successful and results in more efficient CFETs.

The importance of including theA3 term becomes evident when dropping it, i.e. settingf2,3 = 0 (solid black
curve). Generally, ¯c for such CFETs is large because of significant contributionsfrom theA3 terms in Eq. (42), and
the ‘optimal’ valuef2,1 = 9/20 does not reduce the error. Accidental cancellation of different terms occurs for certain
parameter combinations and leads to the ‘dip’ in ¯c for f2,1 ≈ −0.4 (lower panel). Notice that in contrast to such
artificial minima the true optimized valuef2,1 ≈ 0.45 gives a stable minimum of ¯c.

In Fig. 3 we show ¯c for a range of parameter combinations of the driven two-level system. Again we see that the
optimization of CF4:3Opt is successful and results in smaller values of ¯c. As an estimate, CF4:3Opt is about 10% to
50% more efficient than CF4:2. Optimization attempts without theA3 terms (CF4:3) result in reduced efficiency.

6.4. Sixth-order CFETs

In Fig. 4 we show the effective error constant ¯c for different 6th-order CFETs. We can draw similar conclusions
as for the 4th-order CFETs. Since the parameterf1,1 = 0.2 of the CFET CF6:5b from Ref. [8] is close to the optimal
choicef1,1 = 0.16 of CF6:5, both CFETs are comparable, with a slight advantage for CF6:5. The CFET CF6:4 is much
less efficient, although it requires only 4 exponentials. The optimized CFET CF6:5Opt is generally the most efficient,
while dropping theA4 term (as in CF6:5, CF6:5b) reduces the efficiency. Notice that CF6:5Imp, including theA4 term
into CF6:5, is not as efficient as the fully optimized CF6:5Opt, but still significantly better than the other CFETs. The
additional freedom of choice of parameters for 6 exponentials (CF6:6Opt) does not lead to further reduction of ¯c.

6.5. Comparison of CFETs of different order

According to Eq. (46), time-propagation with smaller error, i.e. higher accuracy demands, is more efficient using
higher-order CFETs. A givenNth-order CFET is most efficient in a certain ‘accuracy window’, whose size depends
on the respective error constant ¯c and propagation timeT. The intended accuracy goal thus suggests a preferential
choice ofN and the corresponding optimized CFET.

Consider two CFETs of orderN1 < N2, with effective error constants ¯c1, c̄2. Inverting the effort-error relation
from Sec. 6.1, we find that theN1-order CFET is more efficient than theN2-order CFET if

( c̄1

c̄2

)

N1N2
N2−N1 ≤ ǫ

T
. (55)

The decisive quantity is the ratioǫ/T of the maximal acceptable errorǫ and the propagation timeT.
For a rough estimate, let us assume that the effective error constants ¯c1, c̄2 are given by the numbers1, s2 of

exponentials. Withs= 1, 2, 5, 11 for N = 2, 4, 6, 8 we find the following values, which provide some orientation:
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Figure 4: Effective error constant ¯c for different unoptimized (CF6:4, CF6:5, CF6:5b from Table 3) and optimized (CF6:5Imp, CF6:5Opt, CF6:6Opt
from Table 6) 6th-order CFETs, as indicated. The solid black(red) curve corresponds to CF6:5 (CF6:5Opt). The propagation parameters are
identical to Fig. 3.

errorǫ/T: . . . 6× 10−2 . . . 2× 10−5 . . . 6× 10−9 . . .

favourableN: 2 | 4 | 6 | 8

As a rule of thumb, the accuracy window spans three orders of magnitude: 4th-order CFETs are good for low (error
10−3), 6th-order for moderate (error 10−6), and 8th-order for high (error 10−9) accuracy demands. The use of 2nd-order
CFETs such as the midpoint rule should be avoided. Long propagation times shift the advantage towards higher-order
CFETs.

For a case study we show in Fig. 5 the error-effort plot for 2nd- to 8th-order CFETs, applied to the two-level
system from Sec. 6.2, for short (left panel) and long (right panel) propagation time. Notice that a very small error
can be achieved before it saturates at machine precision. The accuracy window of theNth-order CFET is bounded by
the crossing with theN ± 2 curves. For a moderate error 10−7 (the square root of machine precision for FORTRAN
double precision numbers), switching from the 4th- to the 6th-order CFET reduces the effort by a factor of 2–3. For
longer propagation times (right panel) the accuracy windowshifts to larger errors, and the 8th-order CFET becomes
more efficient. The performance of the 2nd-order midpoint rule is several orders of magnitude worse. To illustrate the
benefit of optimization, we include results for the unoptimized CFET CF6:5. As can be seen, it is never competitive
in comparison to the (optimized) 4th- or (unoptimized) 8th-order CFET.

6.6. Time-step selection

In practice a prescribed accuracy goal has to be achieved without knowledge of the exact solution of the problem.
A simple, conservative approach is to perform calculationswith an ever decreasing time stepδt until convergence, i.e.
two subsequent calculations agree within numerical round-off errors. This approach wastes much computational time
if we seek less accurate results, as it tries to construct the(numerically) exact solution.

For a better time-step selection we can use the known scalingof the error asǫ = cTδtN. An estimate of the error
constantc is obtained from two calculations with different time stepsδt1, δt2 according to the relation

max‖x1(t) − x2(t)‖ = cT|δtN1 − δtN2 | . (56)

It involves only the difference between the two approximate solutionsx1(t), x2(t), but not the unknown exact solution.
A reasonable choice isδt1/δt2 = (2 . . .3)1/N, such that the error decreases by a small but significant amount. From
the estimate ofc we can extrapolate to the required time stepδt for the given accuracy goal. For a reliable estimate
of the final error it is recommended to perform an additional calculation with smallerδt. An alternative is to compare
numerical solutions obtained with two CFETs of different order.

For applications where the time-dependence ofA(t) does not change significantly witht, the required time-step
can be determined for some finite period 0≤ t ≪ T that is characteristic for the dynamical evolution of the system.
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mM
1 2 3 4

xm 1/21
wm 1

xm 1/2−
√

3/6 1/2+
√

3/62
wm 1/2 1/2

xm 1/2−
√

3/20 1/2 1/2+
√

3/203
wm 5/18 4/9 5/18

xm 1/2−
√

(3+2
√

6/5)/28 1/2−
√

(3−2
√

6/5)/28 1/2+
√

(3−2
√

6/5)/28 1/2+
√

(3+2
√

6/5)/28
4

wm (18−
√

30)/72 (18+
√

30)/72 (18+
√

30)/72 (18−
√

30)/72

Table 7: Points and weights for Gauss-Legendre quadrature over [0, 1] up to order 8, see Eq. (57). Generally,xM+1−m = 1− xm andwM+1−m = wm.

The solution over the entire propagation time [0,T] is then computed with the fixed, predetermined value ofδt. In
other situations, we can proceed similar to heuristic strategies for general differential equation solvers [13, 17], which
achieve the global accuracy goal through control of the local time-stepping error. If the above extrapolation forδt is
performed at every step, it allows for propagation with adaptive time-step selection.

7. Gauss-Legendre quadrature

In numerical applications the termsAn from the Legendre expansion Eq. (25) can be calculated with anumerical
quadrature formula. For an optimizedNth-order CFET the quadrature formula must be of orderN + 1. A convenient
choice is Gauss-Legendre quadrature [13] withN/2+ 1 quadrature points.

Gauss-Legendre quadrature is specified throughM pointsx1, . . . , xM, which are the zeros of the Legendre poly-
nomialPM(x), and weightsw1, . . . ,wM (see Table 7). The integral of a functionf (x) is approximated as

∫ 1

0
f (x)dx≈

M
∑

m=1

wm f (xm) . (57)

Using the orthogonality of Legendre polynomials it can be shown that Gauss-Legendre quadrature is of order 2M, in
the sense that this expression is exact for polynomials withmaximal degree 2M − 1. Equivalently, the error of the

approximation
∫ δt

0
f (t)dt ≈ δt ∑M

m=1 wm f (xmδt) scales asδt2M+1.
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For the integrals in Eq. (25) Gauss-Legendre quadrature with M = N/2+ 1 points gives

An ≃ (2n− 1)δt
N/2+1
∑

m=1

wmPn−1(xm)A(xmδt) (58)

for the termsA1, . . . ,AN/2+1 of an optimizedNth-order CFET. This expression can be inserted into Eq. (29)to obtain

Ωi = δt
N/2+1
∑

m=1

gi,mA(xmδt) (59)

as a linear combination ofA(t) at different timesxmδt in [0, δt], where the new coefficients are

gi,m = wm

N/2+1
∑

n=1

(2n− 1)Pn−1(xm) fi,n . (60)

We note that, using Legendre polynomials, the calculation of the gi,m from the tabulatedfi,n is much simpler than for
an expansion in powers ofδt (cf. Refs. [4, 8]). Specifically for the CFET CF4:2 from Eq. (38) we obtain

Ũ (4)
CF4:2= exp

[

δt













3− 2
√

3
12

A(1) +
3+ 2

√
3

12
A(2)













]

exp
[

δt













3+ 2
√

3
12

A(1) +
3− 2

√
3

12
A(2)













]

, (61)

whereA(1) = A[(1/2−
√

3/6)δt], A(2) = A[(1/2+
√

3/6)δt].
It remains to show that Gauss-Legendre quadrature withN/2+ 1 points correctly reproduces theΩi . If we insert

the expansion Eq. (24) into Eq. (58), we find that theAn are approximated as

An ≃ (2n− 1)
∑

l≥1

Al

N/2+1
∑

m=1

wmPn−1(xm)Pl−1(xm) . (62)

The summands on the right hand side are theN + 2-order Gauss-Legendre approximations

∫ 1

0
Pn−1(x)Pl−1(x)dx≃

N/2+1
∑

m=1

wmPn−1(xm)Pl−1(xm) (63)

of the scalar product of Legendre polynomials. As long as (n−1)+ (l−1)≤ N+1, i.e.n+ l ≤ N+3, the approximation
is exact and gives the correct valueδnl/(2n− 1). In particular forn = 1, 2, all integrals for 1≤ l ≤ N + 1 are evaluated
correctly, and Gauss-Legendre quadrature constructs the termsA1,A2 with an error of orderδtN+2, as required for an
optimizedNth-order CFET. Forn ≥ 3, the integrals withl > N − (n− 3) are not evaluated correctly, and introduce an
error of orderδtN+4−n into the termAn.

To understand why the CFET order is nevertheless preserved we must revisit the property (P2) discussed in
Secs. 3.3, 4.1. It states that every nested commutator [An1, . . . ,Anm] contributing toΩ(t) fulfills the conditionnk ≤
1+

∑

i,k ni for all k = 1, . . . ,m. By rule (R2) for the CFET construction this property carries over to the approximate
Ω̃(t) from Eq. (31). Since the error of the termAnk incurred from numerical quadrature is of the orderδtN+4−nk , the
error of the nested commutator is of orderδtN+4−nk+

∑

i,k ni due to the multiplication with the remaining terms. By the
above condition this is at least of orderδtN+3, as required.

We note that the above argumentation shows the intrinsic connection between Gauss-Legendre quadrature and
the property (P2) about the absence of certain nested commutators fromΩ(t). The connection is established through
expansions in orthogonal Legendre polynomials. Of practical interest is that Gauss-Legendre quadrature withN/2+1
points suffices for (optimized)Nth-order CFETs, although in principle most termsAn are reproduced with an error of
lower order.
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8. Implementation

Due to the simple product form of Eq. (28) the application of CFETs is straightforward. The single difficult
numerical part is the evaluation of the matrix exponentialseΩi , which is possible with the Krylov technique discussed
below. Using Gauss-Legendre quadrature eachΩi is obtained fromA(t) as a weighted sum (Eq. (59)). For large-scale
problems, whereA(t) is a sparse matrix, it implies that also theΩi are sparse. Moreover the sparsity pattern ofA(t),
i.e. the distribution of nonzero entries, is preserved: Zeros add up to zeros. This allows for seamless integration
of CFETs into existing programs, which implement specific data storage formats or matrix-vector multiplication
routines [18]. The extension to time-dependent Hamilton operators requires only minor modifications. The feature of
easy implementation gives CFETs additional advantage overthe original Magnus expansion.

8.1. Calculation of exponentials

Two powerful approaches for the computation of matrix exponentials, particularly ofe−iM with sparse hermitian
matricesM, are the Krylov [19, 20] and the Chebyshev technique [21]. Both techniques calculatee−iMψ, the expo-
nential applied to a vector, iteratively. They avoid diagonalization of the matrixM, which enters only through matrix-
vector multiplication as required for sparse matrices. IfM is a sum of simple terms, split-operator techniques [15] can
reduce the computational effort considerably. Other methods, such as the 2nd-order Crank-Nicholson approximation
e−iM = (1− iM)/(1+ iM), are neither very accurate, nor suitable for large-scale problems [22].

The Chebyshev technique is based on the expansion of the exponential functioneixt in a series of Chebyshev
polynomials. Similar to the calculation of spectral functions [23], it has the advantage of low memory demands,
simple implementation, and unconditional stability and concomitant accuracy for arbitrary large propagation times.
The main disadvantage, especially for time-dependent Hamilton operators, is the need to determine a-priori bounds
on the eigenvalues of the matrixM.

The Krylov technique is based on the Lanczos iteration. Starting with the initial vectorψ, each multiplication with
M gives a new vectorMkψ, which is orthogonalized to the previous vectors from the iteration. A fewK iterations
generate an orthogonal basis of the Krylov subspace spannedby the vectorsψ,Mψ,M2ψ, . . . ,MK−1ψ. The exponential
e−iMψ is approximately evaluated within the low-dimensional Krylov subspace, which effectively reduces the problem
to the calculation of an exponential of a densem×mmatrix [22]. The success of this procedure depends on the quality
of the Krylov approximation ofM. For the calculation of the exponentiale−iM, the error bound

error ≤ const. × e−ρ
2/K

(eρ
K

)K
(2ρ ≤ K), (64)

where the constant is independent ofK andρ, can be established [20]. Here, 4ρ = λmax − λmin is the spread of
the maximal and minimal eigenvalueλmax, λmin of M. IncreasingK leads to fast reduction of the error. However,
the finite main storage restricts the size ofK. Therefore, the Krylov technique requires time-stepping,based on the
equalitye−iHnδt = (e−iHδt)n, if the error is not sufficiently small after a single Lanczos iteration. For fixedK, the Krylov
approximation error fore−iHδt is of orderδtK .

8.2. Comparison of the Krylov and Chebyshev technique

In Fig. 6 we compare the Krylov and Chebyshev technique with an mth-order Taylor expansion of the exponential
e−itHψ, whereH is the diagonal 50×50 matrix with entriesHnn = nω and the vector elementsψn are chosen at random
(prior to normalization ofψ). This corresponds to time-propagation for the quantum harmonic oscillator (cf. Sec. 9).
The error is given by theℓ2-norm ǫ = |ψ(t) − ψ̃(t)| between the numerical resultψ̃(t) and the exactψ(t), here with
ψn(t) = e−itωnψn. The effort is equal to the number of evaluations ofHψ in the computation. For the Chebyshev
technique and Taylor expansion, which evaluate the exponential at once, this corresponds to the number of terms kept
in the respective series. These definitions of error and effort are also used in the following examples.

For the left panel in Fig. 6, the system is propagated fort = π/(10ω), i.e. a 20th of the oscillator period. The
plot shows the typical problems of the Taylor expansion, whose error grows initially before it saturates far above
machine precision. Since the Taylor expansion violates unitarity, the large errors of the exponential spoil the stability
of time-propagation. Notice that anNth-order Runge-Kutta method applied toe−iHt is equivalent to using the Taylor
expansion, which explains their diminished usefulness forquantum systems. For the Chebyshev technique, the error
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π/(10ω)). Right panel: Propagation over a 100th (t = π/(50ω)) and a full oscillator period (t = 2π/ω). Notice the asymptotic decay of the Krylov
error∼ effortK−1.

decays fast after the first 10− 20 terms. Unitarity is again achieved only at the level of machine precision, which
however now can be reached easily. The Krylov technique is competitive for sufficiently many Krylov vectors in the
iteration (K & 10) and moderate accuracy demands. Notice that the eigenvalues of the quantum harmonic oscillator
occur as multiples ofω, which leads to a large eigenvalue spreadρ in Eq. (64)) and increases the computational effort
more than the ‘classical’ time-scale 1/ω may suggest.

The Krylov technique becomes more efficient for small time-stepsδt. It complements the Chebyshev technique
which excels for longer propagation times. Both scenarios are depicted in the right panel in Fig. 6. This makes the
Krylov technique the more suitable choice for combination with CFETs, where the length of the time-step is restricted
by the time-dependence ofA(t) (or H(t)). Its central advantage, however, is that it strictly preserves unitarity even
for finite error. This allows us to dispense with the evaluation of the exponentialseΩi to very high accuracy when the
overall error is dominated by the CFET error. Instead, we canuse the Lanczos iteration with smallK (it mustK > N
for anNth-order CFET). The reduction of the time-stepδt, in order to decrease the CFET error, reduces the Krylov
error at the same time. While we recommend the use of the Krylov technique for CFETs we must also note that the
present example shows that the Chebyshev technique should not be finally dismissed even for short-time propagation.

9. Example: CFETs applied to the parametric harmonic oscillator

A genuine example for driven system is the quantum parametric harmonic oscillator

H(t) =
1
2

p̂2 +
ω(t)2

2
q̂2 , (65)

where we allow for a time-dependent oscillator frequencyω(t) = ω2
0 + ξ cosΩt. Positionq̂ and momentum operator

p̂ obey the canonical commutation relation [ ˆq, p̂] = i. The oscillator positionq(t) = 〈q̂〉(t) = 〈ψ(t)|q̂|ψ(t)〉, given as the
expectation value of ˆq, follows the classical equation of motion – the Mathieu equation –

q̈+ (ω2
0 + ξ cosΩt)q = 0 . (66)

9.1. Classical oscillator

The solution of the Mathieu equation provides us with the classical propagatorU(t, 0), which is a 2× 2 matrix.
According to Floquet theory, the eigenvaluesλ of U(2π/Ω), the propagator over one period, determine the stability of
the classical system: It is stable, i.e the solutions of Eq. (66) are bounded, if all|λ| ≤ 1, and unstable otherwise. The
left panel of Fig. 7 shows the stability chart of the parametric oscillator, which we obtained with the CFET CF6:5Opt.
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In the right panel of Fig. 7 we show the corresponding error-effort plot for CFETs of different order, where the
errorǫ = max|q(t) − q̃(t)| is measured as the difference between the exact and numerical positionq(t) andq̃(t) over
10 periods 0≤ t ≤ T = 20π/Ω. The optimized 6th-order CFET CF6:5Opt is advantageous forpractical accuracy
demands. In the left panel of Fig. 8 we compare different CFETs over a range ofξ, ω0 values. Shown is the effort
needed to achieve an error of 10−6 or better. As expected, the CFET CF6:5Opt is the most efficient.

9.2. Quantum oscillator

For the quantum oscillator, we represent position ˆq = (b+b†)/
√

2ω0 and momentum operator ˆp = i
√
ω0/2(b†−b)

through bosonic ladder operators [b, b†] = 1. The Hamilton operator is given by

H(t) =
ω0

4













(ω(t)2

ω2
0

− 1
)

(b†
2
+ b2) +

(ω(t)2

ω2
0

+ 1
)

(2b†b+ 1)













. (67)

For ξ = 0, withω(t) ≡ ω0, we recover the standard Hamilton operatorH = ω0(b†b+ 1/2). Truncation of the infinite-
dimensional bosonic Hilbert space, excluding high energy states, is required to obtain the Hamilton operator as a
matrix. For the examples we keep the lowestNb = 50 Fock states|n〉, with b†b|n〉 = n|n〉.

In the right panel of Fig. 8 we compare different CFETs for the quantum oscillator. As the initial wave function
we choose a coherent state|ψc〉 with 〈ψc|q̂|ψc〉 = 3, 〈ψc|p̂|ψc〉 = 0. The error is measured by the deviationǫ =
max|ψ(t)− ψ̃(t)| between the exact and numerical wave functionψ(t) andψ̃(t), over 10 periods 0≤ t ≤ 20π/Ω. Shown
is the effort needed to achieve an error of 10−6 or better, as for the classical case.

A new aspect in comparison with the CFET error analysis for the classical oscillator is the numerical evaluation
of the exponentialseΩi with the Krylov technique. For few Krylov vectors (K = 10, upper panel) the Krylov error
from the approximate exponentials dominates. In this case,short time-steps are preferential to reduce the Krylov
error sufficiently, with the consequence that the unoptimized 4th-order CFET CF4:2 is most efficient since it uses the
smallest number of exponentials. With more Krylov vectors (K = 20, lower panel) the exponentials are evaluated
to much higher accuracy also for longer time steps, and the expected advantage of optimized higher-order CFETs is
recovered. The overall most efficient propagation is achieved with the CFET CF6:5Opt forK = 20.

Notice that the necessary Hilbert space truncation limits calculations in the unstable regimes shown in Fig. 7, as
the classical instability manifest itself for the quantum system in the excitation of high energy Fock states. Although
the truncated Hamilton operator remains hermitian and can be used for time-propagation, the position expectation
value〈q̂〉(t) cannot be expected to obey the classical equation Eq. (66).
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9.3. The interaction picture for numerical time-propagation

Standard time-dependent perturbation theory is based on the interaction picture. Consider a decompositionA(t) =
D + B(t), whereD is a constant diagonal matrix. The propagator forD is the exponentialetD. The interaction picture
is defined byxI (t) = e−tDx(t). If B(t) ≡ 0, xI (t) is constant. Otherwise, it obeys the equation of motion

∂tx
I (t) = e−tDB(t)etDxI (t) = BI (t)xI (t) , (68)

whereBI (t) = e−tDB(t)etD. SinceD is diagonal, the matrix elements ofBI (t) are easily calculated, withBI
mn =

e(Dnn−Dmm)tBI
mn. Notice that the diagonal elements ofB(t) do not change, and a sparsity pattern is preserved.

The interaction picture is useful if it simplifies the equation of motion whenB(t) is a small perturbation. That is is
generally not the case can be understood for the driven two-level system Eq. (49) from Sec. 6.2, whereD is identified
with the term∆σz. The equation of motion in the interaction picture is identical to the original equation of motion
with new parameters∆I = 0, ωI = ω − ∆. As can be seen from Eq. (50), the propagator in the interaction picture
is identical to the original propagator apart from an additional rotating phasee±i∆t. This implies that the calculation
in the interaction picture has not simplified. From the perspective of numerical time propagation the difficulty even
increases sinceBI (t) varies faster thanB(t) due to the additional time-dependence acquired in the transformation with
etD. This is particularly true ifB(t) is a small perturbation, since|ω − ∆| > ω for large∆.

Notice that for the present problem the choiceD = ±ωσz leads to a constant Hamilton operator in the interaction
picture, which allows for the construction of the exact propagator Eq. (50). Indeed, the celebrated rotating wave
approximation is exact for this particular case. Despite its persistence in quantum optics it does not easily generalize
to other situations.

9.4. The interaction picture for the harmonic oscillator

While the interaction picture per se does not simplify time-propagation, it can be useful to reduce the computa-
tional effort associated with the numerical evaluation of exponentials. As discussed in Sec. 8.2, the quantum harmonic
oscillator is an example where large eigenvaluesnω increase the effort. Switching to the interaction picture, with
D = ωb†b, increases the CFET error because of the additional time-dependence on the scale ofω, but simplifies
the evaluation of exponentials since the large diagonal entries nω are removed from the matrix. We illustrate this
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possibility with the error-effort plot for the CFET CF6:5Opt in Fig. 9 (left panel), where results for the interaction
picture are compared to those from standard propagation fora different numberK of Krylov vectors. We see that in
the interaction picture the Krylov error is much reduced so that the CFET error, with scaling∼ effort6, dominates over
the entire range. For moderate accuracy demands, with errors down to 10−7, the interaction picture with onlyK = 7
Krylov vectors is most efficient. For smaller error, the interaction picture is again less favourable, since the CFET
error has increased in comparison to standard propagation.The right panel of Fig. 9 shows the effort to achieve an
error 10−6, supporting the expectation that the interaction picture becomes rather efficient at larger (ω0/Ω)2. Whether
there is a benefit of using the interaction picture also for non-bosonic systems remains to be studied.

10. Comparison of CFETs to Floquet approaches

For problems with a periodic time-dependence Floquet theory suggests exploitation of the periodicity of the prop-
agator. A notable implementation of this idea is the (t, t′)-method [24]. Introducing time as an additional variablet′,
the wave functionψ(t) is recovered from the solutionΨ(t, t′) = exp(−iH t)Ψ(0, t′) of the Schrödinger equation with a
time-independent Hamilton operatorH = H(t′) − i∂t′ asψ(t) = Ψ(t, t). The validity of this procedure can be checked
by evaluation of∂tΨ(t, t), with initial conditionΨ(0, t′) = ψ(0). In computations, the auxiliary degree of freedomt′

is represented with a Fourier basis of periodic functionsφn(t′) = e2πint′/T . The calculation of the matrix exponential
exp(−iH t) in the enlarged Hilbert space is ideally suited for the Chebyshev technique providing solutions for one or
more periods at once. The accuracy is determined by the number NF of Fourier modes kept in the calculation.

In Ref. [24], the (t, t′)-method was compared to a 2nd-order Magnus propagator. It was found that the (t, t′)-
method is far more efficient and allows for reduction of the error down to machine precision with moderate effort.
Following these examinations, we consider the quantum harmonic oscillatorH = p̂2/2 + q̂2/2 + f (t)q̂ with a time-
dependent periodic forcef (t) = f (t +T). We propagate the initial coherent state|ψc〉 over 10 periods (T = 5/3π) with
(i) a sinusoidal forcef (t) = sin2 2πt/T, (ii) a Gaussian pulsef (t) = exp(−((t − T/2)/0.4)2), The error-effort plot in
Fig. 10 compares the (t, t′)-method with higher-order CFETs.

We see that in both examples the (t, t′)-method is significantly less efficient than any but the 2nd-order CFET.
Although thet-t′ error drops rapidly onceNF is sufficiently large to represent the Fourier components of the aux-
iliary wave functionΨ(t, t′), even moderate accuracy requiresNF ≥ 26 and proportionately large effort. For the
Gaussian pulse more Fourier modes must be kept, since weightis distributed to higher Fourier coefficients fn =

(1/T)
∫ T

0
f (t)e2πint/Tdt of the driving forcef (t). This restricts the use of the (t, t′)-method if memory limitations are

a concern. Notice that splitting the periodic problem into several time-steps increases the effort further, in particular
since the Fourier coefficients of the then discontinuous force decay more slowly.
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The poor efficiency of the (t, t′)-method in comparison to the higher-order CFETs is not a failure of the Floquet
approach. If we associate a fictitious time-stepT/NF with the representation of the wave functionΨ(t, t′) throughNF

Fourier nodes per period, it is much larger than the time-step in the CFET time-stepping. This is in accordance with
the expectation that for periodic problems Fourier decomposition provides a better representation of the propagator
than the concatenation of step-wise constant propagators.A related observation is the increased accuracy of the
Fourier transform for integration of periodic functions over the combination of finite order polynomial integration
formulae. In total, the (t, t′)-method requires less application of the Hamilton operator H for propagation over the
entire 10 periods than the CFET/Krylov technique with short time-steps. However, the practically relevant effort of
computations in the Fourier space is just larger byNF , which, effectively, renders the (t, t′)-method less efficient than
higher-order CFETs.

11. Further applications

We complete our study of the practical applicability of CFETs with calculations for two complex quantum systems,
for which neither exact solutions nor classical analogues are known: A chain of interacting spins – or two-level atoms
– in pulsed magnetic fields (Sec. 11.1), and the hydrogen atomin an electric field (Sec. 11.2). Both systems feature
non-trivial physical effects, and require computation of exponentials for moderate-to-large sparse matrices.

11.1. Driven spin chain
In first approximation atoms in a strong light field can be described by interacting spins 1/2 in a magnetic field.

We consider the Hamilton operator

H =
S

∑

s=1

H(s) + J
S−1
∑

s=1

(σ(s)
x σ

(s+1)
x + σ(s)

y σ
(s+1)
y ) (69)

of a spin chain withS spins, where

H(s) = ∆σ(s)
z +ℜV(t)σ(s)

x − ℑV(t)σ(s)
y =

(

∆ V(t)
V∗(t) −∆

)

(70)

is the Hamilton operator of a single spin, subjected to a magnetic field similar to Eq. (49). If the system is initially
prepared in the ground state, the magnetic field induces transitions to excited states. For the choice

V(t) =
Ve−2iωt

cosht/τ
, (71)
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Figure 11: Time-propagation of the driven spin chain Eqs. (69), (70), with∆ = 1, J = 0.1. The system is pumped by a sequence of resonant pulses
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panel shows the pulsed fieldℜV(t). Right panel: Error-effort plot for the time-propagation shown in the left panel, for different CFETs and number
of Krylov vectorsK as indicated. For comparison, the panels include either thecurve for CF6:5Opt,K = 10, or for CF6:5 in the upper right panel.

a magnetic pulse of half-width≈ 1.32τ and frequencyω, the transition probability for a single spin (S = 1) can be de-
duced from the result for the Rosen-Zener model [25]. Specifically, the transition probabilityP∞ = |〈↑|U(∞,−∞)|↓〉|2,
i.e. the probability that the spin is flipped through the pulse, is

P∞ =
sin2 πVτ

cosh2 π(∆ − ω)τ
. (72)

In Fig. 11 (left panel) we show the expectation value ¯σz(t) ≡ (1/S)
∑S

s=1〈ψ(t)|σ(i)
z |ψ(t)〉 for a sequence of magnetic

field pulses. The pulse sequence brings a single spin (curve for S = 1) back to its initial state after two subsequent
pulses. For several interacting spins (S = 20), dephasing leads to a state with ¯σz(t) ≡ 0 after the first few pulses.

The right panel in Fig. 11 compares the efficiency of different CFETs with a different numberK of Krylov vectors.
This example shows, similar as for the harmonic oscillator,the importance of balancing the Krylov and CFET error.
For smallK = 7 the Krylov error dominates, which gives the 4th-order CFETCF4:3Opt an advantage over higher-
order CFETs because it requires less exponentials per time-step. The Krylov error is however less dominant than for
the harmonic oscillator, and the 6th-order CFET CF6:5Opt with K = 10 results in the most efficient time-propagation.
Notice that the unoptimized CFET CF6:5 (upper right panel) is about 50% less efficient. As an interesting feature we
note that the slope of the curves forK = 10 resembles that of a 9th-order relation (error ∼ 1/effort9), which is the
expected scaling of the Krylov error forK = 10 (cf. Eq. (64)). The ‘bend’ from the 9th-order scaling to a 4th-order
scaling is clearly seen in the curve for CF4:3Opt. The error of higher-order CFETs remains smaller than the Krylov
error, and 9th-order scaling persists down to machine precision.

11.2. The hydrogen atom in an electric field

Our last example is that of a hydrogen-like atom in a classical monochromatic electric field along thez-axis. The
Hamilton operator in dipole approximation isH = −∇2− 2

r +Ez(t)dz, whereEz(t) denotes the field strength anddz ≡ z
is thez-component of the dipole operator. Working in the basis of hydrogen eigenstates|nlm〉, with energyωn = −1/n2

for Ez(t) ≡ 0, the quantum numberm is conserved for the above Hamiltonian. We consider only them= 0 sector. The
required matrix elements of the dipole operatordz can be calculated analytically or with a one-dimensional numerical
integration. They are non-zero only between states for which the respectivel differs by±1.

The system is initially prepared in theEz(t) ≡ 0 ground stateψ(t = 0) = |10〉, andψ(t) is calculated for 0≤ t ≤
T = 104 using the CFET CF6:5Opt in combination with the Krylov technique (K = 10). The electric field is given
by Ez(t) = E0

zh(t) cosΩt, whereh(t) = (1+ a)/(1+ aexp(−b(x − t0)2)) is an envelope function witha = b = 10−6,
t0 = 5000. In Fig. 12 we show the summed occupation probabilityPn(t) =

∑n−1
l=0 |〈nl|ψ(t)〉|2 (left panel) and its time
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averageP̄n = (1/T)
∫ T

0
Pn(t)dt (right panel). In the weak coupling limitEz → 0, resonances occur if the transition

frequency|ωn1−ωn2 | between states|n1, l〉 and|n2, l±1〉 is a multiple of the field frequencyΩ. This behaviour is clearly
seen if only the threen = 1, 2 states|10〉, |20〉, |21〉 are included in the calculation (lower right panel in Fig. 12). The
broad resonance atΩ = ω1 − ω2 = 3/4 is most pronounced, while the resonances atΩ = 3/8, 3/12, . . . become
increasingly sharp (for a non-classical field, these would correspond to multi-photon absorption). Inclusion of states
with largern (upper right panel, withn ≤ 50 in the numerical calculation) shifts the frequencies of then = 1↔ n = 2
transition, and leads to the numerous sharp resonances of transitions to higher excited states.

12. Conclusions

The development of practicable techniques for the propagation of driven quantum systems requires realization of
high theoretical efficiency gains under the restrictions of actual applications. In the present paper we studied a par-
ticular class of numerical techniques, the commutator-free exponential time-propagators, which combine favourable
theoretical properties, such as preservation of unitarityand high approximation order, with the virtue of simple imple-
mentation.

Conceptually, CFETs are related to the more traditional Magnus expansion. From the practical point of view, they
are in fact the better alternative, at least for the problemsstudied here. Avoiding commutators makes them easier
to implement and also more efficient, since the complicated structure of the original Magnus expansion and all the
bookkeeping it requires is replaced by their simple exponential product form.

We dealt with the derivation, optimization, and application of CFETs from the common point of view of the prac-
titioner who wants to solve the Schrödinger equation. For every issue the present work extends the existing literature.
Our construction and analysis of CFETs relies essentially on the use of Legendre polynomials and their orthogonality
properties. In this way we can provide a comprehensive and self-contained presentation. It also simplifies the error
analysis and allows us to identify the importance of including higher-order terms for the CFET optimization. We
provide coefficients of fully optimized 4th- and 6th-order CFETs, as well as of a good albeit unoptimized 8th-order
CFET. As both the theoretical and practical error analysis show full optimization is successful in further reducing the
error, leading to about 50% higher efficiency in comparison to the partly optimized counterparts.While the potential
of 6th-order CFETs is probably largely exhausted, optimization of 8th-order CFETs remains promising.

We have discussed the practical application of CFETs at great length, paying particular attention to realistic situ-
ations where exponentials can not be calculated in closed form. Based on our findings, we generally recommend the
use of the CFET CF6:5Opt together with a Krylov calculation of the exponential using about 10-15 Krylov vectors.
The results for the examples presented show that very accurate results can be obtained with moderate effort. They
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provide evidence that for the Schrödinger equation optimized higher-order CFETs are substantially more efficient than
alternative techniques such as general purpose Runge-Kutta methods or numerical Floquet approaches. Most impor-
tantly, CFETs are robust: They are unconditionally stable,and their quality does not substantially decline at points of
resonance. CFETs are thus a good choice for library routinesfor time-propagation. We believe that the implemen-
tation and optimization of a general purpose time-propagation routine provides most potential for further significant
efficiency gains. Irrespective of machine dependent implementation details, this has to include refined strategies for
the automated choice of the step-size and the number of Krylov vectors, as well as tracking of the accumulated error.
Even now CFETs are a viable and convenient technique for the time-propagation of driven quantum systems.
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Appendix A. Recursion for the Magnus expansion

It is possible to write everyΩn(t) from the Magnus expansion as ann-fold time-ordered integral

Ωn(t) =

t
∫

0

dt1

t1
∫

0

dt2 . . .

tn−1
∫

0

dtn Zn(t1, . . . , tn) =
∫

∆n[t|1,...,n]

Zn(1, . . . , n) (A.1)

of a multivariate functionZn(1, . . . , n) ≡ Zn(t1, . . . , tn). With regard to Eq. (17), we have

Z1(t1) = A(t1) , Z2(t1, t2) =
1
2

[A(t1),A(t2)] , Z3(t1, t2, t3) =
1
6

[A(t1), [A(t2),A(t3)]] +
1
6

[[A(t1),A(t2)],A(t3)] . (A.2)

The integration domain of the time-ordered integral is the set of decreasingn-tuples

∆n[t|i1, . . . , in] = {(t1, . . . , tn) ∈ Rn|t > ti1 > ti2 > · · · > tin > 0} , (A.3)

wherei1, . . . , in is a permutation of 1, . . . , n denoting the arrangement of the tuple elements. For example,∆2[t|1, 2] =
{(t1, t2) ∈ R2|t > t1 > t2 > 0} and∆2[t|2, 1] = {(t1, t2) ∈ R2|t > t2 > t1 > 0}. Every permutation selects one of then!
wedge-shaped subsets of then-dimensional hypercube [0, t]n, which is the disjoint union of all these sets (up to points
from ann − 1-dimensional subset, which as a set of measure zero is irrelevant for integration). The time derivative
Ω̇n(t) is given by then− 1-fold integral

Ω̇n(t) =
∫

∆n−1[t|1,...,n−1]

Zn(t, 1, . . . , n− 1) . (A.4)

We also note that
t

∫

0

dt′
∫

∆n[t′ |1,...,n]

f (t′, 1, . . . , n) =
∫

∆n+1[t|1,...,n+1]

f (1, . . . , n+ 1) . (A.5)

According to Eq. (16),Ωn+1 is given as

Ωn+1(t) =
n

∑

m=1

(−1)m+1

(m+ 1)!

∑

n1,...,nm+1≥1
n1+···+nm+1=n+1

t
∫

0

dt′[. . . [Ω̇n1(t
′),Ωn2(t

′)], . . . ,Ωnm(t′)],Ωnm+1(t
′)]

=

n
∑

m=1

(−1)m+1

(m+ 1)!

∑

n1,...,nm+1≥1
n1+···+nm+1=n+1

t
∫

0

dt′
∫

In[t′ |n1−1,n2,...,nm+1]

[Zn1,Zn2, . . . ,Znm+1](t
′, 1, . . . , n) ,

(A.6)
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where we use the notation (n = n1 + · · · + nk)

[Zn1,Zn2, . . . ,Znk](1, . . . , n) = [. . . [Zn1(1, . . . , n1),Zn2(n1 + 1, . . . , n1 + n2)], . . . ,Znk(n− nk + 1, . . . , n)] (A.7)

for the nested commutator in the integrand. The integrationdomain is a product set

In[t|n1, . . . , nk] = ∆n1[t|1, . . . , n1] × ∆n2[t|1, . . . , n2] × · · · × ∆nk [t|1, . . . , nk] (n = n1 + · · · + nk) . (A.8)

To bring the integrals in Eq. (A.6) into time-ordered form, the integration domain is split into disjoint pieces that
are mapped onto the ‘wedge’ sets∆n[t| . . . ] through a permutation of the integration variables. For every (t1, . . . , tn) ∈
In[t|n1, . . . , nk] a unique permutationπ exists that orders then-tuple such that (tπ−1(1), . . . , tπ−1(n)) ∈ ∆n[t|1, . . . , n]. The
admissible permutations are those that respect the order ofelements corresponding to each of the∆ni [t| . . . ] factors in
In[t|n1, . . . , nk]. These form the set

Pn[n1, . . . , nk] = {π is permutation of{1, . . . , n}| π(1) < · · · < π(n1) andπ(n1 + 1) < · · · < π(n1 + n2)

. . . andπ(n− nk + 1) < · · · < π(n)} , (A.9)

where stilln = n1+ · · ·+nk. It hasn!/(n1! · · ·nk!) elements. In particular,Pn[1, 1, . . . , 1] is the set of all permutations,
whilePn[n] contains only the identity.

The decomposition ofIn[t|n1, . . . , nk] into disjoint subsets congruent with∆n[t|1, . . . , n] is given by

In[t|n1, . . . , nk] =
⊎

π∈Pn[n1,...,nk]

∆n[t|π−1(1), . . . , π−1(n)] . (A.10)

Permutation of the integration variables then gives the identity
∫

In[t|n1,...,nk]

f (1, . . . , n) =
∑

π∈Pn[n1,...,nk]

∫

∆n[t|1,...,n]

f (π(1), . . . , π(n)) . (A.11)

This identity allows us to express the integrals in Eq. (A.6)as time-ordered integrals. The final integration overt′

preserves time-ordering according to Eq. (A.5).
After these preparations we can finally state the recursion

Z1(t) = A(t) ,

Zn+1(0, 1, . . . , n) =
n

∑

m=1

(−1)m+1

(m+ 1)!

∑

n1,...,nm+1≥1
n1+···+nm+1=n+1

∑

π∈Pn[n1−1,...,nm+1]

[Zn1, . . . ,Znm+1](0, π(1), . . . , π(n)) . (A.12)

While the first termsZn can be obtained by hand, the calculation of higher terms is better left to the computer. Consider
exemplarily the calculation ofZ3. The sum overn1, . . . , nm+1 contains 2+ 1 terms form= 1, 2. Thus,

Z3(0, 1, 2)=
1
2

∑

π∈P2[0,2]

[Z1,Z2](0, π(1), π(2))+
1
2

∑

π∈P2[1,1]

[Z2,Z1](0, π(1), π(2))− 1
6

∑

π∈P2[0,1,1]

[Z1,Z1,Z1](0, π(1), π(2))

=
1
2

[Z1,Z2](0, 1, 2)+
1
2

([Z2,Z1](0, 1, 2)+ [Z2,Z1](0, 2, 1))− 1
6

([Z1,Z1,Z1](0, 1, 2)+ [Z1,Z1,Z1](0, 2, 1))

=
1
4

[0, [1, 2]] +
1
4

[[0, 1], 2]+
1
4

[[0, 2], 1]− 1
6

[[0, 1], 2]− 1
6

[[0, 2], 1] =
1
6

[0, [1, 2]] +
1
6

[[0, 1], 2] ,

(A.13)

writing [0, [1, 2]] = [A(0), [A(1),A(2)]] = [A(t0), [A(t1),A(t2)]] etc. as a short-hand notation. This reproduces the term
from Eqs. (17), (A.2).
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A1, A2, [A1,A2], [A1, [A1,A2]] , [A2, [A1,A2]] ,

[A1, [A1, [A1,A2]]] , [A2, [A1, [A1,A2]]] , [A2, [A2, [A1,A2]]] ,

[A1, [A1, [A1, [A1,A2]]]] , [A2, [A1, [A1, [A1,A2]]]] , [A2, [A2, [A1, [A1,A2]]]] ,

[A2, [A2, [A2, [A1,A2]]]] , [[A1,A2], [A1, [A1,A2]]] , [[A1,A2], [A2, [A1,A2]]] ,

[A1, [A1, [A1, [A1, [A1,A2]]]]] , [A2, [A1, [A1, [A1, [A1,A2]]]]] , [A2, [A2, [A1, [A1, [A1,A2]]]]] ,

[A2, [A2, [A2, [A1, [A1,A2]]]]] , [A2, [A2, [A2, [A2, [A1,A2]]]]] , [[A1,A2], [A1, [A1, [A1,A2]]]] ,

[[A1,A2], [A2, [A1, [A1,A2]]]] , [[A1,A2], [A2, [A2, [A1,A2]]]] , [[A1, [A1,A2]] , [A2, [A1,A2]]]

Table B.8: The 23 Hall basis elements with generatorsA1, A2 and up to 5 commutators.

Appendix B. Free Lie algebras and Hall bases

Avoiding formal definitions, the basic concept of a free Lie algebra can be understood in simple terms. For more
thorough accounts, see Refs. [11, 12].

A free Lie algebra is a vector space equipped with a function in two arguments [·, ·], the commutator. It consists
of all nested commutators of the generatorsA1,A2, . . . and all linear combinations thereof. In addition to the standard
vector space properties, one demands bilinearity [X + Y,Z] = [X,Z] + [Y,Z], [cX,Y] = c[X,Y] and anti-symmetry
[X,Y] = −[Y,X] of the commutator, together with the Jacobi identity [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y]] = 0. No
further relations hold: Two elements of the free Lie algebraare different if they cannot be transformed into each other
with these identities. In other words, only the minimal relations characteristic for a commutator hold.

Anti-symmetry and the Jacobi identity imply linear dependencies between nested commutators of the generators.
In particular, they do not form a vector space basis of the free Lie algebra. For three elementsX,Y,Z exist 12
commutator combinations

[X, [Y,Z]] , [X, [Z,Y]] , [Y, [X,Z]] , [Y, [Z,X]] , [Z, [X,Y]] , [Z, [Y,X]] ,

[[X,Y],Z], [[X,Z],Y], [[Y,X],Z], [[Y,Z],X], [[Z,X],Y], [[Z,Y],X] .
(B.1)

Any three of them are linearly dependent, such that we must select two for a basis. With this in mind, the Hall basis
construction defines a systematic selection rule. First, define an order “<” on the generators and nested commutators.
For the generators, setAi < A j if i < j. For the commutators, set [X,Y] < [V,W] if X < V or X = V,Y < W. Set
generallyX < Y if Y is composed out of more commutators thanX. The Hall basis is now defined recursively: (H1)
All generatorsAi are in the Hall basis, (H2) a commutator [Ai,A j ] is in the Hall basis ifAi < A j (i.e. i < j), (H3) if
X,Y,Z are in the Hall basis, so is [X, [Y,Z]] provided that [Y,Z] is in the Hall basis andY ≤ X < [Y,Z].

To understand rule (H3), observe first that it removes the ambiguity due to anti-symmetry, since it enforcesX < Y
for Hall basis elements [X,Y]. Now consider a nested commutator [X, [Y,Z]] from the Hall basis. It isY ≤ X < [Y,Z]
by (H3), and alsoY < Z. Consequently,Y < [X,Z]. Both properties rule out most commutators from Eq. (B.1)
apart from [X, [Y,Z]] itself and [Y, [X,Z]], [ Z, [Y,X]], [[ Y,X],Z]. If X = Y, only [Y, [X,Z]] is non-zero. Otherwise, for
Y < X, [Y, [X,Z]] violates (H3). Then, depending on whetherZ ≶ [Y,X], either [Z, [Y,X]] or [[ Y,X],Z] fulfills (H3).
If Z = [X,Y], both commutators vanish. In any case, at most one commutator from Eq. (B.1) is a Hall basis element
in addition to [X, [Y,Z]]. This argument implies linear independence of the basis elements, and can be turned into an
inductive proof. Moreover, rule (H3) amounts to a recursivealgorithm to check for membership of the Hall basis.

Completeness of the Hall basis can be shown with a similar argumentation. Based on this, a recursive al-
gorithm can be devised to express commutators [X,Y] as linear combinations of the Hall basis elements. In Ta-
ble B.8 we show the first 23 Hall basis elements involving the generatorsA1, A2. For example, the last commutator
[[A1, [A1,A2]] , [A2, [A1,A2]]] fulfills (H3) with X = [A1, [A1,A2]], Y = A2, Z = [A1,A2]. Another example is to write
the four-fold nested commutator [A1, [A2, [A1, [A2,A1]]]] = [[A1,A2], [A1, [A2,A1]]] − [A2, [A1, [A1, [A1,A2]]]] as the
unique sum of two elements from the table. As discussed in Secs. 3, 4, only a small subset of all Hall basis elements
needs to be considered for the Magnus expansion or CFET construction.
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Appendix C. Order conditions for 6th-order CFETs

The order conditions for 6th-order CFETs can be largely solved by algebraic manipulations. For 6th-order CFETs
with 5 exponentials, one has 7 equations for the 8 coefficients f1,1, f1,2, f1,3, f2,1, f2,2, f2,3, f3,1, f3,3, as follows:

A1 : 1 = 2 f1,1 + 2 f2,1 + f3,1

A3 : 0 = 2 f1,3 + 2 f2,3 + f3,3

[A1,A2] : −1
6
= − f1,1 f1,2 − 2 f2,1 f1,2 − f2,1 f2,2 − f3,1 f1,2 − f3,1 f2,2

[A2,A3] : − 1
30
= f1,2 f1,3 + 2 f1,2 f2,3 + f1,2 f3,3 + f2,2 f2,3 + f2,2 f3,3

[A1, [A1,A3]] :
1
60
= +

1
3

f1,1 f2,1 f1,3 −
2
3

f1,1 f2,1 f2,3 −
1
3

f1,1 f2,1 f3,3 +
1
6

f1,1 f3,1 f1,3 −
1
3

f1,1 f3,1 f2,3 −
1
6

f1,1 f3,1 f3,3

− 1
3

f 2
1,1 f2,3 −

1
6

f 2
1,1 f3,3 +

2
3

f2,1 f3,1 f1,3 +
1
6

f2,1 f3,1 f2,3 −
1
6

f2,1 f3,1 f3,3 +
2
3

f 2
2,1 f1,3 −

1
6

f 2
2,1 f3,3

+
1
6

f 2
3,1 f1,3 +

1
6

f 2
3,1 f2,3

[A2, [A1,A2]] : − 1
60
= −1

3
f1,1 f 2

1,2 − 1 f2,1 f1,2 f2,2 − 1 f2,1 f 2
1,2 −

1
3

f2,1 f 2
2,2 − 1 f3,1 f1,2 f2,2 −

1
2

f3,1 f 2
1,2 −

1
2

f3,1 f 2
2,2

[A1, [A1, [A1,A2]]] :
1

360
=

1
3

f1,1 f2,1 f3,1 f1,2 +
1
2

f1,1 f2,1 f3,1 f2,2 +
1
3

f1,1 f 2
2,1 f1,2 +

1
3

f1,1 f 2
2,1 f2,2 +

1
12

f1,1 f 2
3,1 f1,2

+
1
6

f1,1 f 2
3,1 f2,2 +

1
3

f 2
1,1 f2,1 f1,2 +

1
6

f 2
1,1 f2,1 f2,2 +

1
6

f 2
1,1 f3,1 f1,2 +

1
6

f 2
1,1 f3,1 f2,2 +

1
12

f 3
1,1 f1,2

+
1
12

f2,1 f 2
3,1 f2,2 +

1
6

f 2
2,1 f3,1 f2,2 +

1
12

f 3
2,1 f2,2

(C.1)

The order conditions for 6 exponentials have a similar structure, but are too long to be shown here.
Apart from degenerate cases, the order conditions can be reduced to a single polynomial equation. We consider

f1,1 as a free parameters. Then, iff2,1 is the solution ofp( f1,1, f2,1) = 0 with the polynomial

p(x, y) = − 2+ 30x− 192x2 + 680x3 − 1440x4 + 1815x5 − 1250x6 + 360x7

+ (18− 232x+ 1230x2 − 3440x3 + 5345x4 − 4350x5 + 1440x6)y

+ (−60+ 650x− 2740x2 + 5655x3 − 5710x4 + 2250x5)y2 + (90− 800x+ 2535x2 − 3450x3 + 1710x4)y3

+ (−60+ 425x− 920x2 + 630x3)y4 + (15− 80x+ 90x2)y5

(C.2)

of degree 5 iny, the remaining coefficients are given by

f2,2 =
1+ 5 f1,1( f1,1 − 1)

30(f1,1 + f2,1 − 1)( f1,1 + f2,1)(2 f1,1 + f2,1 − 1)
, f1,2 =

1− 6 f2,2 + 12f1,1 f2,2 + 6 f2,1 f2,2
6(1− f1,1)

,

f1,3 =
(2 f1,1 − 1)(2f1,1 + f2,1 − 1)− 3 f2,2

30(f1,2(2 f1,1 − 1)(2f1,1 + f2,1 − 1)+ f2,2(1+ 8 f 2
1,1 + 2( f2,1 − 2) f2,1 + (8 f2,1 − 7) f1,1))

,

f2,3 =
f1,1 + 3 f1,2 + 4 f1,1 f2,1 + 2( f2,1 − 1) f2,1 + 6 f2,2 − 1

30(f1,2(2 f1,1 − 1)(2f1,1 + f2,1 − 1)+ f2,2(1+ 8 f 2
1,1 + 2( f2,1 − 2) f2,1 + (8 f2,1 − 7) f1,1))

,

f3,1 = 1− 2 f1,1 − 2 f2,1 , f3,3 = −2 f1,3 − 2 f2,3 .

(C.3)

Several solutions exist with simple explicit expressions for the coefficients, such as the ten solutions shown in
Table C.9. Unfortunately, none of these is competitive withthe CFETs from Tables 3, 6. For the CFET CF6:5
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6th-order, 5 exponentials

f1,1 = (5−
√

5)/10 f2,1 = (23− 4
√

5)/60

f1,1 = (5+
√

5)/10 f2,1 = (23+ 4
√

5)/60

f1,1 = (65±
√

1005)/90 f2,1 = 3/10

f1,1 = 3/10 f2,1 = (553± 3
√

201)/2400

f1,1 = 1 f2,1 = (30±
√

290± 50
√

5)/60

Table C.9: Explicit simple solutions of the order conditions Eq. C.1 for 6th-order CFETs with 5 exponentials. The remaining coefficients can be
found with Eq. (C.3). In the last row, all four combinations of the signs are allowed.

with f1,1 = 0.16 = 4/25, the coefficient f2,1 = 0.387524052. . . is the single real root of the polynomialp(x) =
−126131602+ 1646347450x− 7919062500x2+ 16950031250x3− 15834375000x4+ 5498046875x5.
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