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The information preservation (IP) method has been successfully applied to various non-
equilibrium gas flows. Comparing with the direct simulation Monte Carlo (DSMC) method,
the IP method dramatically reduces the statistical scatter by preserving collective informa-
tion of simulation molecules. In this paper, a multiple temperature model is proposed to
extend the IP method to strongly translational nonequilibrium gas flows. The governing
equations for the IP quantities have been derived from the Boltzmann equation based on
an assumption that each simulation molecule represents a Gaussian distribution function
with a second-order temperature tensor. According to the governing equations, the imple-
mentation of IP method is divided into three steps: molecular movement, molecular colli-
sion, and update step. With a reasonable multiple temperature collision model and the flux
splitting method in the update step, the transport of IP quantities can be accurately mod-
eled. We apply the IP method with the multiple temperature model to shear-driven Cou-
ette flow, external force-driven Poiseuille flow and thermal creep flow, respectively. In
the former two cases, the separation of different temperature components is clearly
observed in the transition regime, and the velocity, temperature and pressure distributions
are also well captured. The thermal creep flow, resulting from the presence of temperature
gradients along boundary walls, is properly simulated. All of the IP results compare well
with the corresponding DSMC results, whereas the IP method uses much smaller sampling
sizes than the DSMC method. This paper shows that the IP method with the multiple tem-
perature model is an accurate and efficient tool to simulate strongly translational nonequi-
librium gas flows.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The transport phenomena, i.e., mass, momentum and heat transfer in different flow regimes, are of great scientific and
practical interests. The classification of various flow regimes is based on a dimensionless parameter, i.e., the Knudsen num-
ber (Kn), which is defined as the ratio of the mean free path to the characteristic length scale of the system [1]. Typically, the
continuum regime is in the range of Kn < 0.01, the slip regime is 0.01 < Kn < 0.1, and the transition regime is 0.1 < Kn < 10.
In the continuum regime, the Navier-Stokes equations with linear relation between stress and strain and the Fourier’s law
for heat conduction are adequate to model the gas behavior. In the slip regime, it is generally recognized that the Navier-
Stokes-Fourier equations with slip boundary conditions are capable to accurately simulate gas flows. However, some studies
have showed that the Navier-Stokes—Fourier equations give qualitatively incorrect predictions to some certain gas flows in
the slip regime, such as the force-driven Poiseuille flow [2]. For gas flows in the transition regime, the Navier-Stokes—Fourier
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equations are known to be inadequate. This is because that the collisions between molecules and collisions of molecules with
wall boundaries have the same order of probability, and thus noncontinuum and nonequilibrium effects become important
[3]. The transition regime is important for many practical engineering problems, such as the microscale gas flows [4] and
hypersonic flow around space vehicles in low earth orbit [5]. Therefore, there is a strong desire and requirement for accurate
models that give reliable results in the transition regime.

The fundamental equation describing the molecular nature of gases is the Boltzmann equations, where a single particle dis-
tribution function is the primary variable. However, solution of the Boltzmann equation is very difficult due to the term of col-
lision integrals. An alternative approach is to directly model the behavior of the individual molecules for rarefied gas flows. The
most popular approach is the direct simulation Monte Carlo (DSMC) method [6]. It has been very successful for solving prob-
lems in the field of high-speed rarefied gas flows. Some researchers have applied it to microchannel flows [7-10] and have
found it very difficult to obtain statistically convergent results under experimental conditions of interest in micro-electro-
mechanical systems (MEMS). Unlike hypersonic problems, microdevices often work at low Mach numbers, which means that
the ratio of macroscopic velocity to thermal velocity is small. Because the statistical scatter inherent in DSMC decreases with
the inverse square root of the sample size, an extremely large sample size is required to reduce it to a level that is small in com-
parison with the macroscopic velocity. This makes DSMC simulation of MEMS flows extremely time-consuming.

Many efforts have been made to reduce the statistical scatter associated with the DSMC method, such as a post-processing
technique [11] and the low-variance deviational simulation Monte Carlo method [12,13]. One successful approach is the infor-
mation preservation (IP) method [14,15]. The IP method was first proposed by Fan and Shen to simulate unidirectional, con-
stant-density, low-speed rarefied gas flows [15]. They proposed to assign each simulation molecule in the DSMC method two
velocities. One is the microscopic velocity, which is used to compute molecular motion following the same steps as the DSMC
method. The other is called information velocity, which corresponds to the collective velocity of the enormous number of real
molecules which are represented by the simulation molecule. Flow velocity is sampled from the information velocity of mol-
ecules instead of the microscopic velocity. It has shown that this sampling exhibited much less statistical scatter than regular
DSMC sampling for low-speed flows, and thus an IP simulation can save computational time by several orders of magnitude
compared with a similar DSMC simulation. Therefore, it is not surprising that many developments have been made to extend
the IP method for general flows. For instance, Cai et al. [16] introduced a pressure force term to update the preserved informa-
tion in 2D isothermal compressible flows, and the flow density was solved using the continuum equation. Later, Shen et al. [17]
extended this technique for gas flows in long micro-channels. Stream-wise pressure distributions and mass fluxes through mi-
cro-channels given by the IP method agree well with experimental data. For non-isothermal flows, Sun and Boyd [ 18] proposed
to preserve temperature information for molecules. Meanwhile, an additional energy transfer model was proposed to describe
the energy flux across an interface. In all these cases, an update step is needed to account for the effects of mass, momentum
and energy transport not captured by molecular movements and collisions. In order to accurately update the preserved infor-
mation, it is very important to establish the theoretical foundation of the IP method. As in Ref. [19], Sun and Boyd established a
theoretical frame to update the IP quantities base on the Maxwell transport equation, and suggested two models, namely the
local thermal equilibrium (LTE) method and the flux splitting (FS) method, to evaluate the correlation coefficients in the trans-
port equations. The LTE method assumes that each simulation molecule represents a Maxwellian distribution, while FS meth-
od splits the molecules into two classes depending on their microscopic velocity and evaluates the correlation coefficients by
taking moments of the half-Maxwellian distributions. It has shown that FS model is better to predict the shock structure of
normal shock waves and the temperature distributions of thermal Couette flows for all Knudsen number. Recently, Masters
and Ye [20] found that it is more reasonable to split the molecules into 2N classes for a problem of N dimensions, that is,
two half spaces in 1-D, four quadrants in 2-D, and eight octants in 3-D. Using the octant FS model, the behavior arising from
thermally driven nonequilibrium flows can be well captured.

By far, the IP method has been very successful for simulating various micro-scale gas flows. However, the current I[P method
has only preserved a single average temperature for each simulation molecule. It is known that there is a kind of strongly non-
equilibrium gas flows in which the translational temperature components in various directions may be obviously different. To
match the physical reality of these flows, here we propose to preserve multiple translational temperature components in dif-
ferent directions for simulation molecules in the IP method. More important, we derive the transport equations of IP quantities
including multiple temperature components based on the Boltzmann equation. A core idea is to assume that each simulation
molecule represents a Gaussian distribution with a second-order temperature tensor. Consequently, the IP method can be
implemented according to the derived transport equations. This paper is organized as follows: Section 2 provides details on
the derivation of the transport equations; Section 3 describes the implementation of the IP method including molecular move-
ment step, molecular collision step and update step. To well capture nonequilibrium effect, we propose a multiple temperature
collision model and employ the FS method in the update step. Section 4 concerns the application of the current method to sev-
eral typical gas flows: shear-driven Couette flow, external force-driven Poiseuille flow and thermal creep flow. The results ob-
tained by IP method are compared with the DSMC results. Finally we present our conclusions in Section 5.

2. Theoretical foundation of the IP method

In the DSMC method, each simulation molecule represents a large number of real molecules. The simulation molecules
are allowed to move with their microscopic velocity within the computational domain: interacting with boundaries as
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appropriate and with other simulation molecules through a probabilistic treatment of collisions. The macroscopic quantities
are obtained by sampling the molecular information. In the IP method, one simulation molecule not only has microscopic
velocity, but also has certain preserved information that represents the collective, or macroscopic, properties of a large num-
ber of real molecules that could be represented by the simulation molecule. More specifically, the preserved velocity, U,
represents the collective or average velocity of these real molecules, i.e., U = €. The preserved temperature, T, represents
the energy associated with the thermal velocities of these real molecules relative to the preserved velocity, i.e.,
T = (c2 — U%)/3R, where R is the gas constant for the species. The macroscopic quantities can be obtained by sampling the
preserved information instead of microscopic information. It has been shown that this sampling exhibits much less statis-
tical scatter than regular DSMC sampling for low-speed flows.

In IP method, the preserved information is carried by simulation molecules. Besides the molecular movements and col-
lisions, other effects may influence the preserved information. For example, the preserved velocity should be updated if there
is pressure gradient in the flow field. Therefore, it is necessary to establish the theoretical foundation of IP method. Based on
the Maxwell’s equation of change, Sun and Boyd [19] obtained the governing equations for the preserved information. Var-
ious effects on the transport of preserved information could be described using the corresponding terms in the governing
equations, where the so-called “correlation terms” need to be determined by assuming the form of velocity distribution
function. Here we directly start from the velocity distribution function to derive the governing equations for the preserved
information. Since each simulation molecule represents a large number of real molecules with a distribution function f, the
preserved velocity (U) and temperature (T) can be defined as the velocity moments of the distribution function, that is,

U:/c~fdc, (1)
T:%/(C—U)zfdc. (2)

Our starting point of derivation is the Boltzmann equation, i.e.,

a(nf) a(nf) _ [a(nf)
at "¢ or _[ ot L’

3)

where n is the number density of the group of molecules that are represented by the simulation molecule. The governing
equations for the preserved information can be obtained by taking moments of the Boltzmann equation. However, the accu-
rate form of the velocity distribution function is usually unknown. Thus, a valid and reasonable assumption on the distribu-
tion function is very crucial for the IP simulations. The simplest assumption is that each simulation molecule represents a
Maxwellian distribution based on its preserved velocity (U) and the equilibrium temperature (Teq), that is,

S S B (e U
(27RTe)*? 2RTeq |

With this velocity distribution function, taking the moments on the Boltzmann equation gives the governing equations as
follows:

f=fq= (4)

on + (’)k(nU,() =0, (5)
9(nUy) + 0 (nU;Uy) + 9y (NRTeqd3) = 0, (6)
Den(U? + 3RTey)] + 0[n(U? + 3RTeq)Us] + 9(2nRTeqUs) = O. (7)

For the implementation of IP method, every term in the governing equations is calculated based on statistical average in
one computational cell. Eq. (5) is the transport equation of preserved density, which is defined on a cell basis. Egs. (6) and
(7) are the transport equations of preserved velocity and energy, which are defined for every simulation molecule. The
second terms on the left hand side of Eqs. (6) and (7) are convection terms, corresponding to the changes due to the
microscopic movement of simulation molecules. The third terms on the left hand side of Egs. (6) and (7) are update terms,
which account for the effects of momentum and energy transport not captured by molecular movements. These two terms
are similar to the pressure terms in Navier-Stokes equations. That is why pressure force term should be supplied to up-
date the preserved information in the original IP simulations. Note that the Eqs. (6) and (7) is the same as the Eqgs. (16)
and (17) in the reference [19], where Sun and Boyd obtained the transport equations of IP quantities from Maxwell trans-
port equations. This is because that both of the two derivations are based on the local thermodynamic equilibrium (LTE)
assumption, which means that each simulation molecule represents a group of real molecules with a Maxwellian
distribution.

However, it is known that the translational temperature components in different directions may have obvious difference
in strongly nonequilibrium gas flows. Even if the group of real molecules represented by a simulation molecule is in
thermodynamic equilibrium and isotropic state at the initial time, they will become anisotropic in the evolution process
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due to nonequilibrium constraint conditions in the flow field. Therefore, it is more reasonable to assume that each simulation
molecule represents a Gaussian distribution with a second-order temperature tensor T, that is,

f=fis= c-U)-T' (c-U), 8)

1
[det(27RT)]'/ P 3R

where T is defined as the second-order moments of f, i.e.,

Ty = 1R /(Ci = Ui)(c; = Uj)fesde. ®

It is obvious that Teg = (Tx + Tyy + T2;)/3. Actually, the Gaussian distribution has been used as a middle state to describe the
molecular collision process in the early work by Maxwell [21], and then re-discovered by many researchers, such as Holway
[22], Levermore [23], Xu and Guo [24]. With Gaussian distribution function, taking the moments on the Boltzmann equation
gives the following governing equations:

o + d(nUy) = 0, (10)
0[(TIU,') + E)k(nU,»Uk) + 8k(nRT,-k) = A(HU,‘),
8t[n(Uin + RTij)D + 8k[n(U,-Uj + RT,'j)Uk] + 6k[nR(UiTjk + Ukai)} = A[H(U,‘Uj + RTU)] (12)

Similar to Egs. (6) and (7), the second terms on the left hand side of Eqs. (11) and (12) are convection terms, while the third
terms on the left hand side of Eqs. (11) and (12) are update terms. There are two obvious advantages in the Eqs. (11) and (12)
comparing with Egs. (6) and (7). First, temperature changes from scalar to second-order tensor. Thus, it is convenient to pre-
serve multiple temperature components in different directions for each simulation molecule in the IP method. The corre-
sponding governing equation for multiple temperature components is the Eq. (12). Second, update terms contain pressure
effect as well as shear effect. For example, the update term in Eq. (11) changes from 9x(nRT,,) to 9i(nRTy), so it provides
the possibility to recover the thermal creep mechanism, which is crucial in thermally driven flows. The terms on the right
hand side of Egs. (11) and (12) are collision terms, which mean that the preserved velocities and temperature components of
two collision molecules should be transferred with each other during the process of molecular collision. Due to the implicit
expressions of collision terms, it is difficult to solve the Egs. (11) and (12) mathematically. Fortunately, it is not a problem for
the implementation of IP method, where the corresponding convection and collision terms are simulated based on the
microscopic molecular movements and collisions, respectively.

3. Implementation of the IP method

The IP method is implemented on top of the DSMC method by preserving macroscopic information in simulated mol-
ecules. The preserved information does not produce any influence on the motion of molecules and are used only for sam-
pling to obtain the macroscopic field. At the initial time, each simulation molecule is assigned preserved velocity U and
multiple temperatures T according to the ambient conditions, i.e.,, U= ¢ and Ty =Ty, = T, = Toq, where € and T4 are the
local macroscopic velocity and equilibrium temperature, respectively. The preserved density defined on a cell basis is
set the same as ambient density. In every calculating time step, molecular movement, molecular collision and update step
are executed to transport the preserved information according to the Egs. (10)-(12). The movement and collision steps are
decoupled as the usual DSMC procedures. The update step must be treated very carefully to capture the nonequilibrium
effect. Note that we do not preserve the shear temperature components. This is based on the considerations of two as-
pects. On the one hand, it is difficult to deal with the distribution of shear temperate components when two molecules
collide. Meanwhile, little deviation of shear temperature components may be amplified in the update step, and this would
cause unreal results. Thus, it is better to evaluate the shear terms using flux splitting method than directly from the shear
temperature components. In the following, we give the details of how to deal with the preserved information in the IP
method.

3.1. Movement step

Molecules are moved as in the DSMC method, and the preserved information is carried with molecular movements. This
step corresponds to perform the convection terms in Egs. (11) and (12), i.e., d(nU;jUx) and 9[n(U;U; + RT;;)U]. It should be
noted that in the IP method, the preserved information for each simulation molecule is transported according to its micro-
scopic velocity but not the preserved velocity. For one simulation molecule, it corresponds to simulate the terms as 9,(nUjcy)
and 9y[n(U;U; + RTy)ci], and the difference between the simulation and the convection terms in Egs. (11) and (12) is obvious.
However, the IP method only requires the correctness of average effect since one simulation molecule represents a large
number of real molecules. Consider one computational cell, the average values of preserved velocity and microscopic veloc-
ity of molecules are almost the same, that is, U, = ¢. Thus, the average effect of the convection terms in one computational
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cell, i.e., dx(nU;Uy) and 0k [n(U;U; + RT)Uy], can be represented by the movement of DSMC molecules carried with preserved
information.

The preserved information of one simulation molecule may be changed when the molecule interacts with a wall bound-
ary. It is reasonable to set the reflected preserved information of the simulation molecule in accordance with the collective
behavior of a large number of real molecules represented by the simulation molecule. Namely, if it is a specular reflection,
only the normal preserved velocity component will be reserved; if it is a diffuse reflection, the preserved velocity and
temperature of the reflected molecules are set the same as the wall velocity and temperature, that is, U=U,,; and
T = Tyy =T, = Twan

3.2. Collision step

Molecules are selected at random to make pairs, and binary collisions are performed for a subset of these pairs based on
the usual DSMC procedures. This step corresponds to perform the collision terms in Eqgs. (11) and (12). It is believed that
collisions make molecules tend to be in an equilibrium state; hence the preserved information of molecules tends to be
the same after collisions. If two molecules collide, a simple collision model can be derived based on the conservation of
momentum and energy, that is,

Ufl :U*Z :OS(U,] +U12) (13)

Tir = Tiy = (Tix + Ta2)/3 + Y (Tja + Tjj2) /12+Z Ui1 — Uj2)?/(12R), (14)

j#i j=1

where the subscript i represents the direction, the subscript 1 and 2 represent the index of the two collision molecules, and
the symbols with superscript = represent the post-collision quantities. Note that T; represents the diagonal component of
temperature tensor. For example, Eq. (14) for T,y yields:

3
T = Tia = (Tt + Tw2)/3 + (Tyy + Tyy2) /12 4+ Tzt + T22) /12 + Y (Uja — Uj2)*/(12R). (15)
j=1

However, numerical tests show that the aforementioned simple collision model cannot correctly simulate the viscosity and
thermal conductivity of the flows. Hence, the simple collision model needs to be modified. The preserved macroscopic infor-
mation for two collision molecules may be different after one collision. As described in reference [18], it may depend on the
relative speed of the two molecules, the deflection angle in the collision plane, and so no. Sun and Boyd [18] proposed a phe-
nomenological model for the distribution of the preserved velocity and average temperature for the two molecules as
follows:

Uiy = 0.5(Uix + Uiz) + 0.5¢, cos(0)(Uiy — Uia), (16)

Ui, = 0.5(Ui1 + Uip) — 0.5¢, cos(0) (Uir — Uiz), (17)

(Uja — Uj2)*/(12R), (18)

M)

T; =0.5(T; +T3) 4+ 0.5c; cos(0)(T; — T2) + (1 — c cos? 0)
1

.
Il

3
Ty = 0.5(T; +T2) — 0.5¢; cos(0)(Ty — T) + (1 — c2 cos? 0) Y (Ujy — Uj2)*/(12R), (19)
j=1

where ¢, and c; are assumed to be constants depending on gas species, and 0 is defined as the deflection angle in the collision
plane, i.e.,

cosf = (i Ci1—Ciy < —c;2)>/(z}r.y’;), (20)
i=1

where v and v; are the relative speed of the two molecules before and after collision, respectively. Here we employ the same
model as that proposed by Sun and Boyd for the distribution of preserved velocity, but for the preserved temperature, some
revisions should be made because multiple temperature model is used here. Consider the variance of preserved temperature
component in a certain direction, the effect of the deflection angle component in the parallel direction is usually different
from the effects of the deflection angle components in the two other vertical directions. Thus, we introduce two parameters
¢;1 and c;; in the model of distribution of preserved temperature components as follows:
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Ty = 0.5(Tu1 + Toz) +0.5¢;1 €0(0) €05 () (T = Taz) + Y 0.5¢,2 cos(6y) cos (07 ) (Tr = T2)

J#i
3
+ (1= ckcos?0) Y (Ujn — Uja)*/(12R), (21)
Jj=1
T;5 = 0.5(Ty1 + Ty2) — 0.5¢;1 cos(;) cos (9 ) %l — ZO 5c;, cos(0;) cos (9 )(TM —Ty2)
Jj#i
3
+ (1 — ¢ cos? 9) Z] J(12R), (22)

where cos 0; = (i1 — Ci2)/vr,C0S 0] = ( 11— Ch) /vy, and Ty = 2Tiin/3 + 37, Tji0/6. As in reference [18], the values of ¢, is
determined when the numerical shear tress agrees with the theoretical result and experimental data in low speed Couette
flows, while c¢;; and c,, are determined when the numerical heat flux agrees with the DSMC result in thermal Couette flows.
For Argon gas, we determined the three constants: ¢, = —0.18, ¢;; =0.80 and c;, = 1.56. In Section 4, the determined con-
stants will be used in the simulation of flows with Argon gas.

3.3. Update step
Besides the molecular movements and collisions, the preserved information should be modified according to the update

terms in Eqs. (10)-(12). Based on the average over all molecules in each computational cell, the governing equations for up-
date can be written as follows:

A = =8 (nUy), (23)
0:(nU;) = —0y (nRTy,), (24)
8t[n(U,»Uj + RTu)D = —0k [nR(UiT}‘k -+ Uka,‘)]. (25)

Note that the update terms in Eqs. (24), (25) are obtained by integrating the Gaussian distribution over the whole-space, for
example,

+00 +00
RTIk = / / / Ck — Uk)fgst dC]de (26)

In strongly nonequilibrium flows, the preserved information carried by molecules with inverse movement directions may be
very different. Thus, a more accurate evaluation of the update terms is to include certain nonequilibrium characteristic of the
flow. Here we employ the idea of flux splitting method, which is proposed by Sun and Boyd [19] and is developed by Masters
and Ye [20]. In each computational cell, molecules are classified into different classes according to their microscopic veloc-
ities, and the complete update terms are obtained by summing the average contribution from each class. For each simulation
molecule, the contribution to its class is evaluated by integrating the Gaussian distribution function over the half-space
determined by comparing its microscopic velocity (¢;) to its preserved velocity (U;). In this way, if considering the nonequi-
librium characteristic, it is more reasonable to evaluate the term RT;, for one-dimensional flows as follows:

+00  ptoo +oo oo
RT,k = / / / Ck — Uk)fEstde]de\c<u -‘r/ / / — Uk)fEstidede|ci>ui~ (27)
For two-dimensional flows, the term RT; could be evaluated by summing the contributions from four classes as follows:
+00 U; U; +oo U;
RTy = / / / )(C— Ulfisdeidede .. / / / —Ufisdeidedesd oy, v

+oo  ptoo too  ptoo
/ / / Ck_Uk)fESdC dede| (C<Uic>Uj) / / / Ck—Uk)fESdeC]de‘ (c>Us.c>Uj)-
(28)

With flux splitting method, the shear mechanism can be recovered although we don’t preserve shear temperature compo-
nents directly. By similar means, the term R(U;Tj + U;Ti;) can be derived. For one-dimensional flows, the term RU;Tj could
be expressed as follows:

+0o +00 U;
RU{Ty =¢; - / / / (¢; = Uj)(cx — Un)fesdeidesdei] oy,

r+00 +o0 r+00
+Gi- / / / (¢ —Uj)(ck — Uk)fESdCidede|cl>ui- (29)
J-o . > JU;
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3.4. Sampling

The flow properties are obtained by sampling preserved information of molecules in each computational cell. The flow
velocity is,

U.=U. (30)
The temperature component is,
01—
T)o(.c: xx+E(U§_Ux2)~, (31)
01—
Tyy.c = Tyy + R(U§ - Uyz)’ (32)
1 =
Tzz.c = Tzz + E(Ug - Uzz)7 (33)
and the average temperature is
Tc = (Txx,c + Tyy,c + Tzz‘c)/3~ (34)

The flow number density n. can be obtained by using time or ensemble averaging of the preserved density defined on a cell
basis.

3.5. Summary of the IP procedure

At the initial time, every simulation molecule is given a preserved velocity and multiple temperatures according to the
ambient conditions. The preserved density defined on a cell basis is set the same as the ambient density. In each calculating
time step, the transport of preserved information includes molecular movement, molecular collision and update steps. The
detailed procedure is summarized as follows:

(a) Molecules move according to their microscopic velocities as in the DSMC method, and the preserved information is
carried with the molecular movements. In this step, the preserved information of each simulation molecule keeps
invariant.

(b) Collision pairs are determined by the DSMC collision scheme. If two molecules are selected as a collision pair, their
preserved velocities will be changed according to Egs. (16) and (17), and their preserved temperature components will
be changed according to Eqgs. (21) and (22).

(c) After molecule movements and collisions, preserved information are updated following the Eqgs. (23)-(25). The update
terms on the right hand side of governing equations are obtained based on the average over all molecules in each com-
putational cell as formulas defined in Section 3.3. In addition, it is assumed that the update terms apply equally to
individual molecules in each computational cell. In this way, the preserved density of each computational cell and pre-
served information of each simulation molecule can be updated according to Eqgs. (23)-(25).

Steps (a)-(c) are repeated in the process of calculation. For steady flows, time averaging is used to obtain the final results
after the flow reaches a steady state. For unsteady flows, repeat steps (a)-(c) for the desired sampling size, and ensemble
averaging is used to obtain the instantaneous flow field.

4. Numerical experiments

In previous studies, the IP method has exhibited the ability to reduce the statistical scatter in the DSMC method. In the
present paper, we employ the IP method with multiple temperature model to simulate three typical gas flows: shear-driven
Couette flow, external force-driven Poiseuille flow and thermal creep flow. In the former two cases, we test the capability of
IP method to capture the different temperature components in strongly translational nonequilibrium flows. In thermal creep
flow, we test the capability of IP method to reproduce the creep mechanism.

4.1. Shear-driven Couette flow

Shear-driven Couette flow is popularly encountered in micromotors, comb mechanisms, and microbearings. In the sim-
plest case, the Couette flow can be used as a prototype flow to model such flows driven by a moving plate. In the continuum
regime, accurate solutions can be obtained by solving Navier-Stokes equations. However, in the transition regime, it is not
easy to obtain accurate solutions due to the rarefied gas effect. Meanwhile, there are few experimental data and simulation
results in the literature. Hence, the DSMC results are used to compare with the IP results.

Fig. 1 shows the schematic diagram of the Couette flow. The two infinite parallel plates are separated by a distance L. The
upper plate is moving with fixed speed, and the lower plate is quiescent. In our IP and DSMC simulations, the working gas is
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plate 2: T=273K, U=300m/s

y=L

X argon gas

plate 1: T=273K, U=0

Fig. 1. Schematic diagram for the Couette flow.

Argon. The temperature of both plates is 273 K, and the velocity of upper plate is 300 m/s. The use of this wall velocity is from
the consideration of two aspects. First, it is easy for DSMC to reduce the statistical scatter to an acceptable level. Second, be-
cause of the large velocity gradient, the dissipation causes the gas temperature to increase significantly. Thus, it is convenient
to check the multiple temperature model for IP method proposed here. The one-dimensional computational domain is di-
vided into cells within which collision pairs are selected. The size of cells is smaller than 0.5/, and the computational time
step equals to 0.17, where / and 7 are the molecular mean free path and mean collision time, respectively. The macroscopic
quantities are obtained by sampling the preserved information for [P method or by sampling the microscopic information for
DSMC method.

The preserved information is carried by molecules with movements. Diffusive reflections are assumed at both of plates. It
means that the molecules colliding with these walls rebound with the same macroscopic or preserved velocity and temper-
ature as that of the walls, while the thermal velocities of molecules are sampled from half-range Maxwellian distribution at
the temperature of the corresponding wall. Variable hard sphere (VHS) model is employed to describe the interaction of
molecular collisions. For IP method, collision pairs are selected based on the usual DSMC procedure. The post-collision pre-
served velocities are distributed according to Egs. (16) and (17), and the post-collision preserved temperature components
are distributed according to Egs. (21) and (22).

Besides movement and collision steps, update step is needed for IP method based on the analysis in Section 3. For one-
dimensional Couette flow, gradient of macroscopic flow quantities only exists in the y direction, hence the governing equa-
tions can be simplified as:

anU,)  9(nRT,y)
aty T ayyy ' (35)

d(n(Uy +RTy))  9(2nRU,T,,) 36)
ot N ay ’
Considering the nonequilibrium characteristic in the y direction, each simulation molecule is classified as belonging to one
class based on its microscopic velocity (c,) relative to its preserved velocity (Uy). According to the Egs. (27) and (29), the up-
date terms can be evaluated as:

— 1 1
Ty = jTyy + P Tyy ) (37)
cy<Uy cy>Uy
— 1 RT 1 RT,
UyTyy = §Tyy(Uy —\ 277y7,y) + iTyy(Uy +/ T;éy) (38)
cy>Uy

cy<Uy

Note that the expression of Eq. (38) is similar to Eq. (24) in reference [19], where the flux splitting method is used to calcu-
lating the update term. The difference between them is that the latter is based on the total energy, and here we clearly show
that the energy update step should be particularly implemented on the energy component in the y direction. This can be
explained based on gas kinetic theory as follows. When one molecule moves across an interface vertical to the y direction,
the average translational energy component in the y direction carried by the molecule is kT whereas the corresponding vol-
ume average is only 1 kT, while both of the average translational energy components in the x and z directions carried by the
molecule are the same as the corresponding volume averages, i.e., 1 kT. Therefore, the update should be performed on the
energy component in the y direction.

In the following, simulation results of Couette flow ranging from continuum regime to transition regime are given. Fig. 2
shows the velocity and temperature distributions along the y direction for Kn = 0.01, where the solid lines are the current
IP results and circles are the DSMC results. Actually, three temperature components are plotted for both IP and DSMC results,
even though they are indistinguishable. At this Knudsen number, the separation between the temperatures is too small to be
seen. This is because that there are enough molecular collisions to make the translational energy equally distribute in the three
directions. To quantify the level of agreement between the IP and DSMC results, we use the normalized root mean square
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Fig. 2. Velocity (a) and temperature (b) distributions in Couette flow for Kn = 0.01.

deviation (RMSD) to compare differences between the IP and DSMC results. For Couette flow at Kn = 0.01, the normalized
RMSD of U and T are 0.17% and 0.12%, respectively. It shows that the IP and DSMC results compare well with each other. As
the Knudsen number increases to 0.1, the three temperatures can be clearly observed in Fig. 3, where the magnitudes of
the temperature are distributed from the highest T, to T, and to the lowest T,,. At Kn = 0.1, both velocity and temperature
distributions obtained by IP method have a fair agreement with the DSMC results. The normalized RMSD of U, T, Ty, T,y and T,
obtained by IP and DSMC methods are 0.17%, 0.13%, 0.25%, 0.09% and 0.06%, respectively. As the Knudsen number increases to
0.5, both velocity and temperature distributions shown in Fig. 4 become flat in comparison with that under the condition of
small Knudsen numbers because the velocity slip and temperature jump at the wall boundaries are very large. In this case,
the normalized RMSD of U, T, Ty, Ty, and T, obtained by IP and DSMC methods are 0.29%, 0.12%, 0.73%, 0.25% and 0.37%, respec-
tively. It is shown that the discrepancies between the temperature components obtained by IP and DSMC method become lar-
ger as the increasing of Knudsen number. This is because that there are three constants in the present IP collision model. As
described in Section 3.2, they are determined when the shear stress and heat flux predicted by IP method agree with the exper-
imental and DSMC results in Couette flows for Kn = 0.01. Therefore, it is not surprising that the discrepancy between IP and
DSMC results becomes larger as the increasing of Knudsen number. In the future, a more general collision model could be
developed by considering the effect of Knudsen number. Note that the IP method requires more computer memory to preserve
macroscopic information and spends extra time in calculating the transport of preserved information. However, the advantage
of the IP method is that it needs much less sampling sizes comparing with the DSMC method. For example, in the case of
Kn = 0.1, the DSMC method requires about 2.4 x 107 sampling molecules per computational cell to get smooth distributions
of temperature components, while the IP method only needs about 2.4 x 10* sampling molecules per computational cell to
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Fig. 3. Velocity (a) and temperature (b) distributions in Couette flow for Kn = 0.1.

obtain the same level of results. Consequently, the total computation time for IP method is only about 0.5% of that for DSMC
method.

4.2. External force-driven Poiseuille flow

Another typical unidirectional flow is the external force-driven Poiseuille flow, which is confined between two stationary
infinite parallel plates and is driven by the uniform external force in the x direction, i.e., in the direction parallel to the plates.
Fig. 5 gives the schematic diagram of the Poiseuille flow. If one considers this problem on the basis of the Navier-Stokes
equations, it is a simple unidirectional flow. It is generally recognized that in the slip flow regime, the Navier-Stokes equa-
tions with the slip boundary condition are capable to accurately simulate the gas flow. However, various studies have
showed that some important phenomena in the external force-driven Poiseuille flow in the slip regime cannot be obtained
by the Navier-Stokes equation. One of such phenomena is a bimodal shape of the temperature profile with a slight hollow at
the center between the plates. This effect was first pointed out by Mansour et. al [2] on the basis of numerical results ob-
tained by the DSMC method and of an explicit perturbation solution derived earlier by Tij and Santos [25] using the Bhatna-
gar-Gross—Krook (BGK) model. Recently, Xu et. al [26] well reproduced the effect by using an extended BGK model with
multiple translational temperature. Here we employ the IP method to simulate Poiseuille flow and compare the IP results
with the DSMC results.

In our simulations, the working gas is Argon, and the temperature of the two parallel plates is kept at 273 K. The imple-
mentation of the IP and DSMC method for Poiseuille flow is the same as that described in the Section 4.1 for shear-driven
Couette flow except that an velocity increment aAt should be added to both of the microscopic velocity and preserved veloc-
ity for each simulated molecule during a calculating time step, where a is the acceleration caused by the external force. Fig. 6
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shows the velocity and temperature distributions along the y direction for Kn = 0.01 and a = 3.52 x 10® m/s?. The simulation
results are close to the solution obtained by Navier-Stokes equations. At this Knudsen number, the difference between the
temperature components is indistinguishable. Fig. 7 shows the velocity and temperature profiles along the y direction for
Kn=0.1and a =3.52 x 10'° m/s% The velocity distribution is similar to the case for Kn = 0.01 except for a larger slip velocity
at the boundary, but the three temperature components are obviously separated. The temperature minimum in both T,, and
the average temperature T can be clearly observed in Fig. 7(b). Meanwhile, the curved pressure distribution is well captured
as shown in Fig. 8. All of the IP results and DSMC results have a good agreement. The advantage of IP method is that it uses
much smaller sampling sizes than DSMC method. For example, in the case of Kn = 0.1, the DSMC method requires about
4.8 x 107 sampling molecules per computational cell to accurately show the temperature and pressure distributions, while
the IP method only needs about 4.8 x 10* sampling molecules per computational cell to obtain the same level of results. The
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total computation time for IP method is about 0.5% of that for DSMC method.
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Fig. 6. Velocity (a) and temperature (b) distributions in Poiseuille flow for Kn = 0.01.

4.3. Thermal creep flows

The thermal creep flow, resulting from the presence of temperature gradients along boundary walls, was first discovered
by Reynolds and later studied by Maxwell. By far, a number of microscale and nanoscale systems have utilized this phenom-
enon for pumping and propulsion [27]. The creep mechanism can be explained on the basis of kinetic theory as follows. Con-
sider a gas with a temperature gradient parallel to a confining wall, the average tangential momentum of molecules leaving
the wall from a given point is zero while the molecules arriving from hot regions impart more tangential momentum to the
wall than molecules arriving from colder regions. Thus, a shear stress is exerted on the wall, with the gas flowing from the
colder to the hotter region as a reaction force. In order to know the detailed flow field of thermal creep flows, many different
approaches have been proposed, including various solutions of the linearized Boltzmann transport equation [28,29], near
continuum slip models [30], and DSMC simulations [31]. Linearized BTE methods are capable to simulate gas flows with
small thermal gradient, i.e., weakly nonequilibrium, but are likely inadequate for the large thermal gradients that may be
encountered in microscale and nanoscale systems. Near continuum models are only applicable for a small range of flow con-
ditions. Although DSMC method has been used to simulate thermal creep flows in the whole regime very successfully, the
statistical scatter makes the application of DSMC method to low-speed flows is very expensive. This situation has motivated
the development of specialized DSMC method. Recently, Master and Ye [20] simulated thermal creep flows by using IP meth-
od, where the Maxwell transport equation is used to update the preserved information and flux splitting model is developed
to evaluate the correlation terms in the transport equations. Their simulations showed that IP method is able to accurately
model the behavior arising from thermally driven nonequilibrium flows with much less sample sizes than DSMC method.
Here we employ the multiple temperature model for IP method to simulate thermal creep flows. Egs. (10)-(12) are used
to transport the preserved information of molecules. Comparing with the Maxwell transport equation used by Masters
and Ye, it is obvious that the term 9(nRTj) in Eq. (11) provides the potential creep effect with the shear temperature
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components. Although the shear temperature components are not preserved for molecules in IP method, the shear stress
effect could be obtained in the term by using the idea of flux splitting.

We consider a two-dimensional model as shown in Fig. 9. The two vertical walls of the channel are maintained at two
different temperatures T; =273 K and T, =573 K. The temperature of the two horizontal walls varies linearly along the
length of the channel. The working gas (Argon) is initially in thermal equilibrium with the walls, i.e., T(x,y) = (T, — T1)x/
L+ Ty, and at a uniform pressure of one atmosphere, i.e., P(x,y) = 1 atm. The two-dimensional computational domain is di-
vided into 200 cells along the length and 40 cells along the width. Diffusive reflections are assumed at walls. Variable hard
sphere (VHS) model is employed to describe the interaction of molecular collisions. The movement and collision steps are
performed as described in Section 3. For two-dimensional gas flows, the governing equation for update step could be written
as:

dnUy)  O(nRTw) O(nRT,)

at 0X ay (39)
onU,)  O(nRT,) OnRTy,)

ot ox ay (40)
on(Us +RTx)) _ 92nRUTw)  92nRU,Tyy) (1)

ot 0x ay ’
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Considering the nonequilibrium effect in the flow directions, flux splitting method is used to evaluate the update terms in
Egs. (39) and (40). According to Eq. (28), the expression of Tj can be evaluated as follow:
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For thermal creep flows, the shear stress nRT,, is crucial to produce the creep mechanism. On the other hand, the transport of
preserved temperature is mainly dependent on the molecular motions and collisions and is almost independent on the effect
of update terms. Thus, the update terms in Eqgs. (41) and (42) can be evaluated with the original expressions for
simplification.

Fig. 10 shows the distribution of temperature contours in the field obtained by IP and DSMC simulations. The two results
compare well with each other. Except for the regions close to the two end walls, the gas temperature almost follows the lin-
ear temperature distribution imposed by the horizontal walls. Different from the gas behavior in continuum regime, the dis-
tribution of velocity vectors in Fig. 11 shows that a pair of vortices is formed, with creep flow moving from cold to hot region
along the horizontal walls and a central flow in the opposite direction. The sampling size of each computational cell for
DSMC simulation is up to 1.7 x 107, while the corresponding sampling size for IP simulation is only 1.7 x 10°. However,
the statistical scatter of velocity in the IP result is much smaller than the DSMC result. Therefore, the total computation time
needed for IP method is much less than that needed for DSMC method. Due to gas flow, the pressure in the field is no longer
uniform. Fig. 12 presents the pressure distributions along the length of the microchannel at the midst of vertical direction.
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We compare the present IP result with the DSMC result and the published IP result obtained by Masters and Ye. All of them
predict a static pressure gradient as expected.

5. Conclusions

In this paper, a model with multiple temperature components for the IP method is proposed. More important, we derive
the governing equations for the IP quantities based on the Boltzmann equation by assuming each simulation molecule rep-
resents a Gaussian distribution function. According to the governing equations, the implementation of IP method is divided
into molecular movement, molecular collision and update step. With a reasonable multiple temperature collision model and
the flux splitting method for update, we successfully simulated the shear-driven Couette flow, external force-driven Poiseu-
ille flow and thermal creep flow. All of the IP results have a good agreement with the corresponding DSMC results, and IP
method uses much smaller sampling sizes than DSMC method. Therefore, it is believed that IP method is an accurate and
efficient tool for simulating the nonequilibrium gas flows. A natural extension of this work is applying the multiple temper-
ature model proposed here to other strongly nonequilibrium phenomena, such as the shock structure. Note that we have
only considered monatomic molecule (Argon) in this paper. If polyatomic molecule is considered, and the flow temperature
is high enough to excite the molecular rotational and vibrational degrees of freedom, the rotational and vibrational temper-
atures should be additionally preserved in simulation molecules as information to better capture the flow physics of strongly
nonequilibrium flows. We recommend that further studies could be performed on this subject.
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